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Predictive processing has become an influential framework in cognitive
sciences. This framework turns the traditional view of perception upside
down, claiming that the main flow of information processing is realized
in a top-down, hierarchical manner. Furthermore, it aims at unifying per-
ception, cognition, and action as a single inferential process. However,
in the related literature, the predictive processing framework and its as-
sociated schemes, such as predictive coding, active inference, perceptual
inference, and free-energy principle, tend to be used interchangeably. In
the field of cognitive robotics, there is no clear-cut distinction on which
schemes have been implemented and under which assumptions. In this
letter, working definitions are set with the main aim of analyzing the state
of the art in cognitive robotics research working under the predictive
processing framework as well as some related nonrobotic models. The
analysis suggests that, first, research in both cognitive robotics imple-
mentations and nonrobotic models needs to be extended to the study of
how multiple exteroceptive modalities can be integrated into prediction
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error minimization schemes. Second, a relevant distinction found here
is that cognitive robotics implementations tend to emphasize the learn-
ing of a generative model, while in nonrobotics models, it is almost
absent. Third, despite the relevance for active inference, few cognitive
robotics implementations examine the issues around control and whether
it should result from the substitution of inverse models with propriocep-
tive predictions. Finally, limited attention has been placed on precision
weighting and the tracking of prediction error dynamics. These mecha-
nisms should help to explore more complex behaviors and tasks in cog-
nitive robotics research under the predictive processing framework.

1 Introduction

Predictive processing has become an influential framework in the cognitive
sciences. A defining characteristic of predictive processing is that it “de-
picts perception, cognition, and action as the closely woven product of a
single kind of inferential process” (Clark, 2018, 522). This idea has had a
profound effect on models and theories in different research communities,
from neuroscience to psychology, computational modeling, and cognitive
robotics. In the literature, terms such as predictive processing, hierarchical pre-
dictive processing, active inference, predictive coding, and free energy principle
are often used interchangeably. Scholars refer to them as either theories or
frameworks, occasionally interweaving their core ideas.

In cognitive robotics, a number of architectures and models have claimed
to follow the postulates of these frameworks. Research in embodied cogni-
tive robotics focuses on understanding and modeling perception, cognition,
and action in artificial agents. It is through bodily interactions with their
environment that agents are expected to learn and then be capable of per-
forming cognitive tasks autonomously (Lara et al., 2018; Schillaci, Hafner,
& Lara, 2016). The aim of this letter is to set working definitions and delimit
the main ideas for each of these frameworks, so as to be able to analyze the
literature of cognitive robotics and the different implementations in the lit-
erature. This should help to highlight what has been done and what is miss-
ing and, above all, what the real impact of these frameworks in the area of
robotics and artificial intelligence is. Finally, this letter sets the issues and
challenges that these new frameworks bring to the table.

The structure of this letter is as follows. Section 2 sets the relevant work-
ing definitions. In section 3, different models and architectures are analyzed
in the light of the above mentioned frameworks. Section 4 concludes.

2 Working Definitions

For the purpose of this article, predictive processing is considered to be the
most general set of postulates. It proposes to turn the traditional picture of
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perception upside down (Clark, 2015). The standard picture of perceptual
processing is dominated by the bottom-up flow of information transduced
from sensory receptors. In this picture of perception, as information flows
upward, a progressively richer picture of the world is constructed from a
low-level feature layer processing perceptual input to a high-level seman-
tics layer interpreting information (Marr, 1982). Altogether, predictive pro-
cessing claims to unify perception, cognition, and action under the same
explanatory scope (Clark, 2013; Hohwy, 2013).

The predictive processing view of perception states that agents are con-
stantly and actively predicting sensory stimulation and that only deviations
from the predicted sensory input (prediction errors) are processed bottom-
up. Prediction error is newsworthy sensory information that provides
corrective feedback on top-down predictions and promotes learning. There-
fore, in this view of perception, the core flow of information is top-down,
and the bottom-up flow of sensory information is replaced by the up-
ward flow of prediction error. The core function of the brain is minimizing
prediction error. This process has become known as prediction error mini-
mization (PEM). In a general sense, PEM has been a scheme used in many
machine learning algorithms where the error between the desired output
and the output generated by the network is used for learning (see, for in-
stance, backpropagation algorithms for training neural networks). Different
strategies of PEM have been used in models for perception and action con-
trol in artificial agents (see Schillaci, Hafner et al., 2016, for a review).

Going further, predictive processing suggests that the brain is an active
organ that constantly generates explanations about sensory inputs and then
tests these hypotheses against incoming sensory information (Feldman &
Friston, 2010) in a way that is coherent with Helmholtz’s view of perception
as an unconscious form of inference.

Recurrent neuronal interactions with descending predictions and as-
cending prediction errors following the predictive processing postulates are
illustrated in a simplified segment of the cortical hierarchy in Figure 1A.
Neuronal activity of deep pyramidal cells (represented in black) at higher
layers of the cortex encode prior beliefs about the expected states of the
superficial pyramidal cells (represented in red) at lower layers. At each cor-
tical level, prior beliefs encode the more likely neuronal activity at lower
levels. Superficial pyramidal cells compare descending predictions with the
ascending sensory evidence, resulting in what is known as prediction er-
ror. The prediction error at superficial pyramidal cells is sent to deep pyra-
midal cells for belief updating (posterior belief). In Figure 1B, descending
modulation determines the relative influence of prediction errors at lower
levels of the hierarchy on deep pyramidal cells encoding predictions. Preci-
sion beliefs are encoded by a descending neuromodulatory gating or gain
control (green) of superficial pyramidal cells. In Bayesian inference, beliefs
about precision have a great effect on how posterior beliefs are updated.
Precision beliefs are considered an attentional mechanism that weightens
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A. Recurrent neuronal interactions

Descending Prior beliefs about future states
predictions

Intention

B. Descending modulation

Ascending
prediction errors

C. Action execution
Reflex arc

Figure 1: Schematic representation of hierarchical neuronal message under the
predictive processing postulates.

predictions and sensory evidence depending on how certain or useful these
are for a given task and context. Figure 1C shows a particular example of
active inference for prediction error minimization. Perceptual inferences
about grasping a cup generate visual, cutaneous, and proprioceptive pre-
diction errors that are then minimized by movement. Descending propri-
oceptive predictions should be fulfilled by being highly weighted to incite
movement. Then, proprioceptive prediction errors are generated at the level
of the spinal cord and minimized at the level of peripheral reflexes. At the
same time, when the movement trajectory to grasp the cup is performed,
visual and cutaneous prediction errors are minimized at all levels of the
cortical hierarchy.

Humans and other biological agents deal with a world full of sensory
uncertainty. In humans, there is psychophysical evidence that shows how
Bayesian models can account for perceptual and motor biases by encod-
ing uncertainty in the internal representations of the brain (Knill & Pouget,
2004).

Several Bayesian approaches center on the idea that perceptual and cog-
nitive processes are supported by internal probabilistic generative models
(Clark, 2013, 2015; Friston, 2010a; Hohwy, 2013; Rao & Ballard, 1999). A
generative model is a probabilistic model (joint density), mapping hidden
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causes in the environment with sensory consequences from which sam-
ples are generated (Friston, 2010a). It is usually specified in terms of the
likelihood probability distribution of observing some sensory information
given its causes and a prior probability distribution of the beliefs about the
hidden causes of sensory information (before sampling new observations)
(Badcock, Davey, Whittle, Allen, & Friston, 2017). A posterior density is
a posterior belief generated by combining the prior and the likelihood
weighted according to their precision, defined as the inverse variance
(Adams, Stephan, Brown, Frith, & Friston, 2013). A posterior density can
be calculated using Bayes’ theorem:

p(Ols)p(s)

p0) @1)

p(sl0) =

where p(s|O), also known as the posterior belief, is the probability of hy-
pothesis s with given evidence or observation O. Prior beliefs are updated
(thus becoming posterior beliefs) when sensory evidence (likelihood) is
available. p(O|s) is the likelihood of relating the sensory observation to the
hidden causes, that is, the probability of the specific evidence O. P(s) is
the prior distribution of any hypothesis s or prior belief, and it can be seen
as the prediction of states. P(O) is the probability of encountering this evi-
dence or observation.

This calculation is often practically intractable, and variational Bayes is
then used for approximately calculating the posterior. This method intro-
duces an optimization problem that requires an auxiliary probability den-
sity termed the recognition density (Buckley, Kim, McGregor, & Seth, 2017).

Prediction error is the difference between the mean of the prior belief
and the mean of the likelihood in their respective probability distributions.
Information gain is measured as the Kullback-Leibler (KL) divergence be-
tween the prior belief and the posterior belief. The prior and likelihood dis-
tributions have an expected precision, which is encoded as the inverse of
their respective variance. This precision will bias the posterior belief up-
date. In particular, the posterior belief is updated biased toward the prior
belief given its higher expected precision as compared to the low expected
precision on sensory evidence (see Figure 2A). On the contrary, when the
expected precision on prior belief is low and the expected precision on sen-
sory evidence is high, the prediction is more uncertain or unreliable, having
less of an impact on how the posterior belief is updated than the sensory
evidence (see Figure 2B). In both examples in Figure 2, although the magni-
tude of the prediction error is equivalent, the information gain is greater in
panel B due to the greater divergence between the prior and the posterior
beliefs.

In Bayesian inference, there are beliefs about beliefs (empirical priors)
in terms of having expectations about the beliefs” precision or uncertainty
(Adams, Stephan et al., 2013). Here, attention is seen as a selective sampling
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B Prior belief

Probability

Figure 2: Relevance of the precision of probability distributions in Bayesian
inference.

of sensory information in such a way that predictions about the confidence
of the signals are made to enhance or attenuate prediction errors from dif-
ferent sensory modalities. In order to attain this sampling, this framework
proposes a mechanism known as precision weighting. The information com-
ing from different modalities is weighted according to the expected confi-
dence given a certain task in a certain context (Parr & Friston, 2017; Friston,
Adams, Perrinet, & Breakspear, 2012; Donnarumma, Costantini, Ambrosini,
Friston, & Pezzulo, 2017).

Importantly, precision weights are not only assigned according to their
reliability, but also by their context-varying usefulness, and are thus con-
sidered to be a mechanism for behavior control (Clark, 2020). In the brain,
precision weighting might be mediated by a neuromodulatory gain con-
trol that can be conceived as a Bayes-optimal encoding of precision at a
synaptic level of neuronal populations encoding prediction errors (Friston,
Stephan, Montague, & Dolan, 2014). Prediction errors with high precision
have a great impact on belief updating, and priors with high precision are
robust in the face of noisy or irrelevant prediction errors.

Bayesian beliefs are treated as inferences about the posterior proba-
bility distribution (recognition density) via a process of belief updating
(Ramstead, Kirchhoff, & Friston, 2020). The recognition density is an ap-
proximate probability distribution of the causes of sensory information,
which encodes posterior beliefs as a product of inverting the generative

d-ajo11B/098U/NPa W 108IIP//:d1Y WOy papeojumog

0 & 003U/6Z06061/20%L/S/EE/P

1202 Iudy Gz uo 3senb Aq jpd-ggel



1408 A. Ciria et al.

model (Friston, 2010a). According to the Bayesian brain hypothesis, prior
beliefs are encoded as neuronal representations, and in light of the new ev-
idence, beliefs are updated (posterior density) to produce a posterior belief
following Bayes’ rule (Friston et al., 2014). This means that the brain en-
codes Bayesian recognition densities within its neural dynamics, which can
be conceived as inferences of the hidden causes to find the best guess of the
environment (Demekas, Parr, & Friston, 2020).

According to Friston, Kilner, and Harrison (2006), predictive processing
must be situated within the context of the free-energy principle (Williams,
2018), given that prediction error minimization, under certain assumptions,
corresponds to minimizing free energy (Friston, 2010b). Predictive process-
ing can be seen as a name for a family of related theories, where the free
energy principle (FEP) provides a mathematical framework to implement
the above ideas. The principle is a biological and a neuroscientific frame-
work in which prediction error minimization is conceived as a fundamental
process of self-organizing systems to maintain their sensory states within
their physiological bounds in the face of constant environmental changes
(Adams, Shipp, & Friston, 2013; Friston, 2009, 2010b).

Essentially, the free-energy principle is a mathematical formulation of
how biological agents or systems (like brains) resist a natural tendency to
disorder by limiting the repertoire of their physiological and sensory states
that define their phenotypes (Friston, 2010b). In other words, to maintain
their structural integrity, the sensory states of any biological system must
have low entropy. Entropy is the negative log-probability of an outcome or
the average surprise of sensory signals under the generative model of the
causes of the signals (Friston, Mattout, & Kilner, 2011).

Therefore, biological systems are obliged to minimize their sensory sur-
prise (and implicitly entropy) in order to increase the probability of remain-
ing within their physiological bounds over long timescales (Friston, 2009).

The main aim of minimizing free energy is to guarantee that biologi-
cal systems spend most of their time in their valuable states, those that
they expect to frequent. Prior expectations prescribe a primary repertoire
of valuable states with innate value, inherited through genetic and epige-
netic mechanisms (Friston, 2010Db).

Agents are constantly trying to maximize the evidence for the genera-
tive model by minimizing surprise. The FEP claims that because biological
systems cannot minimize surprise directly, they need to minimize an upper
bound called free energy (Buckley et al., 2017). Free energy can be expressed
as the Kullback-Leibler divergence between two probability distributions,
subtracted by the natural log of the probability of possible states. As Sajid,
Parr, Hope, Price, and Friston (2020) stated, free energy can always be writ-
ten in terms of complexity and accuracy:

F = Dki(Q(s)[IP(sl0)) — InP(o),
= Dki(Q(s)[IP(s))) — EglInP(ols)], (22)
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where Q(s) is the recognition density or approximate posterior distribution
and encodes the prior beliefs an agent possesses about the unknown vari-
ables. The conditional density P(s|o) is the probability of some (hidden) state
(s) given a certain observation (o), and is refereed to as the generative model.
The first line of equation 2.2 can be read as evidence bound minus log ev-
idence or divergence minus surprise. Rewritten as in the second line, it is
read as complexity, which is the difference between the posterior beliefs and
prior beliefs before new evidence is available and accuracy, the expected log
likelihood of the sensory outcomes given some posterior about the causes
of the data (Sajid et al., 2020).

The recognition density (coded by the internal states) and the genera-
tive model are necessary to evaluate free energy (Friston, 2010a). Variational
free energy (VFE) provides an upper bound on surprise, and it is formally
equivalent to weighted prediction error (Buckley et al., 2017). VFE is a sta-
tistical measure of the surprise under a generative model. Negative VFE
provides a lower bound on model evidence. Minimizing VFE with respect
to the recognition density will also minimize the KL divergence between
the recognition density and the true posterior. Therefore, minimizing VFE
makes the recognition density, the probabilistic representation of the causes
of sensory inputs, an approximate of the true posterior (Friston, 2010a). Op-
timizing the recognition density makes it a posterior density on the causes
of sensory information.

Biological agents can minimize free energy by means of two strategies:
changing the recognition density or actively changing their internal states.
Changing the recognition density minimizes free energy and thus reduces
the perceptual divergence. This is a relevant component of the free energy
formulation when expressed as complexity minus accuracy.

Minimizing perceptual divergence increases the complexity of the
model, defined as the difference between the prior density and the pos-
terior beliefs encoded by the recognition density (Friston, 2010a). This first
strategy is known as perceptual inference, this is, when agents change their
predictions to match incoming sensory information. Given that sensory in-
formation can be noisy and ambiguous, perceptual inferences are necessary
to make the input coherent and meaningful.

The second strategy is the standard approach to action in predictive
processing, known as active inference (Adams, Shipp et al., 2013; Brown,
Adams, Parees, Edwards, & Friston, 2013), which consists of an agent
changing sensory inputs through actions that conform to predictions. This
is the same as minimizing the expected free energy (Kruglanski, Jasko,
& Friston, 2020). When acting on the world, free energy is minimized by
sampling sensory information that is consistent with prior beliefs. An ac-
tion can be defined as a set of real states that change hidden states in the
world, which are closely related to control states inferred by the generative
model to explain the consequences of action (Friston, Samothrakis, & Mon-
tague, 2012). Therefore, actions directly affect the accuracy of the generative
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model, defined as the surprise about sensory information expected under
the recognition density (Friston, 2010a). For survival, valuable actions are
those that are expected to provide agents with the capability to avoid states
of surprise.

Every action serves to maximize the evidence of the generative model
in such a way that policies are selected to minimize complexity. The ex-
pected action consequences include the expected inaccuracy or ambigu-
ity, and the expected complexity or risk, which are combined into the
expected free energy (Kruglanski et al., 2020). Thus, expected free energy
is the value of a policy, describing its pragmatic (instrumental) and epis-
temic value. In other words, actions are valuable if they maximize the util-
ity by exploitation (fulfilling preferences), and if they minimize uncertainty
by exploration on model parameters (information gathering, as in intrinsic
motivation strategies; Seth & Tsakiris, 2018). Maximizing epistemic value is
associated with selecting actions that increase model complexity by chang-
ing beliefs, whereas maximizing pragmatic value is associated with actions
that change internal states that align with beliefs (Tschantz, Seth, & Buckley,
2020). Consequently, the minimization of expected free energy occurs when
pragmatic and epistemic values are maximized.

Priors are constantly optimized because they are linked hierarchically
and informed by sensory data in such a way that learning occurs when a
system effectively minimizes free energy (Friston, 2010b). Here, motor com-
mands are proprioceptive predictions, as specific muscle movements (inter-
nal frame of reference) are mapped onto an external frame of reference (e.g.,
vision).

Furthermore, it has been suggested that for biological systems, “It be-
comes important not only to track the constantly fluctuating instantaneous
errors, but also to pay attention to the dynamics of error reduction over
longer time scales” (Kiverstein, Miller, & Rietveld, 2019, 2856). Rate of
change in prediction error is relevant for epistemic value and novelty-
seeking situations. In other words, this mechanism permits an agent to
monitor how good it is in performing an action, and it has been suggested
as the basis for intrinsic motivation and value-related learning (Kiverstein
et al., 2019; Kaplan & Friston, 2018). Therefore, prediction error and its re-
duction rates might signal the expectations on the learnability of particular
situations (Van de Cruys, 2017).

Currently, predictive coding is the most accepted candidate to model
how predictive processing principles are manifested in the brain, namely,
those laid out by the FEP (Friston, 2009; Buckley et al., 2017). It is a frame-
work for understanding redundancy reduction and efficient coding in the
brain (Huang & Rao, 2011) by means of neuronal message passing among
different levels of cortical hierarchies (Rao & Ballard, 1999). “Hierarchi-
cal predictive coding” suggests that the brain predicts its sensory inputs
on the basis of how higher levels provide predictions about lower-level
activation until eventually making predictions about incoming sensory
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information (Friston, 2002, 2005). Active inference enables predictive cod-
ingin a prospective way, where actions attempt to fulfill sensory predictions
by minimizing prediction error (Friston et al., 2011).

In this framework, the minimization of prediction error occurs through
recurrent message passing within the hierarchical inference (Friston,
2010b). Therefore, the changes in higher levels are driven by the forward
flow of the resultant prediction errors in the lower level to optimize top-
down predictions until the prediction error is minimized (Friston, 2002,
2010b).

Predictive coding is closely related to Bayes’ formulations, from the ex-
planation of how “hierarchical probabilistic generative models” are en-
coded in the brain to the manner in which the whole system deals with
uncertainty. Furthermore, the PEM hypothesis suggests that the brain can
be conceived as being “literally Bayesian” (Hohwy, 2013, 17).

However, there is an increasing number of predictive coding variants,
for example, there are differences in the algorithms and in the type of
generative model they use (Spratling, 2017) and in the excitatory or in-
hibitory properties of the hierarchical connections (e.g., Rao & Ballard, 1999;
Spratling, 2008, among others). “These issues matter when it comes to find-
ing definitive empirical evidence for the computational architectures en-
tailed by predictive coding” (Friston, 2019, 3).

All of these frameworks provide new ways to solve the perception-action
control problem in cognitive robotics (Schillaci, Hafner et al., 2016). In the
previous couple of decades, the standard solution was the use of paired
inverse-forward models in what is known as optimal control theory (OCT).
In OCT, a copy of a motor command predicted by an inverse model or
controller is passed to a forward model that in turn predicts the sensory
consequences of the execution of the movement (Wolpert, Ghahramani, &
Jordan, 1995; Wolpert & Kawato, 1998; Kawato, 1999). This leads to mul-
tiple implementations using artificial agents with different computational
approaches (Demiris & Khadhouri, 2006; Méller & Schenck, 2008; Escobar-
Juarez, Schillaci, Hermosillo-Valadez, & Lara-Guzman, 2016; Schillaci, Rit-
ter, Hafner, & Lara, 2016). OCT presents a number of difficultissues to solve,
such as the ill-posed problem of learning an inverse model.

On the other hand, in predictive processing, optimal movements are
understood in terms of inference and beliefs, and not by the optimiza-
tion of a value function of states as being the causal explanation of move-
ment (Friston, 2011). Therefore, there are no desired consequences, because
experience-dependent learning generates prior expectations, which guide
perceptual and active inference (Friston et al., 2011). Contrary to OCT, in
predictive processing there are no rewards or cost functions to optimize
behavior. Optimal behavior minimizes variational free energy, and cost
functions are replaced by priors about sensory states and their transitions
(Friston, Samothrakis, & Montague, 2012). Understanding movement as a

d-ajo11B/098U/NPa W 108IIP//:d1Y WOy papeojumog

0 & 003U/6Z06061/20%L/S/EE/P

1202 Iudy Gz uo 3senb Aq jpd-ggel



1412 A. Ciria et al.

matter of beliefs for generating inferences removes the problem of learning
an inverse model.

Therefore, predictive processing suggests that there is no need for an in-
verse model and, thus, for any efference copy of the motor command as
input to a forward model. The mere existence of the efference copy of the
motor command is a controversial issue (Dogge, Custers, & Aarts, 2019;
Pickering & Clark, 2014). The core mechanism in predictive processing is an
integral forward model (Pickering & Clark, 2014), better known as a gener-
ative model, in which motor commands are replaced by proprioceptive top-
down predictions, mapping prior beliefs to sensory consequences (Friston,
2011; Clark, 2015; Friston, Samothrakis et al., 2012). Top-down predictions
can be seen as control states based on an extrinsic frame of reference (world-
centered-limb position) that are translated into intrinsic muscle-based
coordinates that are then fulfilled by the classical reflex arcs (Friston, 2011).
Minimizing proprioceptive prediction error brings the action about, fulfill-
ing sensory predictions (Friston et al., 2011).

3 Implementations

In this section, we review implementation studies inspired by the mod-
els and frameworks described in the previous section. Review papers can
be found in the literature. This work focuses mostly on robotics research,
which has been developing quite rapidly in the last couple of years. We
also review a number of nonrobotic studies, in particular those having im-
portant aspects that have not received enough exploration in robotics. By
highlighting them, this work aims at encouraging experimental research in
embodied cognitive robotics.

We are certain that there could be work that is not mentioned in this let-
ter. The omission is not intentional. Articles have been selected according to
two criteria. First, the authors mention in their work any of the frameworks
described in the previous section. Second, although the authors do not ex-
plicitly mention these frameworks, it is our understanding that these works
could well enter the discussion and bring interesting topics and questions to
the table. This includes some nonrobotic works. Deriving from the descrip-
tions in the previous section, the following items have been considered as
relevant to analyze the literature in cognitive robotics:

+ (Bay) Bayesian/probabilistic framework. Does the study adopt a
Bayesian or probabilistic formalization?

* (PW) Precision weights. Top-down predictions and bottom-up pre-
diction errors are dynamically weighted according to their expected
reliability.

* (FofI) Flow of information. Predictions flow top-down, while the dif-
ference between predictions and real sensory information (i.e., pre-
diction error) flows bottom-up in the model.
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* (HP) Hierarchical processing. The model presents a hierarchical
structure for the processing of information.

* (IM) Inverse model. The work discusses the benefits or challenges of
using an inverse model, as is the case in OCT.

* (Mod) Modalities. Which modalities are tackled in the proposed
model.

* (BCO) Beyond motor control and estimation of body states. Most of
the reviewed studies adopt predictive processing frameworks to con-
trol robot movements. This attribute is defined to highlight studies
that take a step further by addressing aspects of the framework that
may help in understanding or implementing higher-level cognitive
capabilities.

The selected studies are summarized in Tables 1 and 2. Table 1 classi-
fies each study according to the attributes mentioned above, and Table 2
provides an overview of some implementation details of these works:

* Training: The generative model used in the study is either precoded
or trained. If applicable, this specifies what type of learning algorithm
(i.e., online or offline) has been employed.

+ Data generation: If applicable, this specifies how the training data
have been generated.

+ Agent: The type of artificial system used in the experiment.

* Generative model: The name, or acronym, of the generative model
implemented in the study. Some studies may have not implemented
any generative model but used instead the forward kinematics pro-
vided by the robot manufacturer.

+ Aim: What cognitive or motor task has been modeled.

3.1 Robotic Implementations. The analysis of the literature starts with
one of the first robotic implementations of predictive processing. Tani and
Nolfi (1999) present a two-layer hierarchical architecture that self-organizes
expert modules. Each expert module is a recurrent neural network (RNN).
The bottom layer of RNNs is trained and responds to different types of
sensory and motor inputs. The upper set of experts serves as a gating
mechanism for the lower-level RNNs. The computational model has been
deployed onto a simulated mobile robot for a navigation task. The archi-
tecture is trained in an online fashion. After a short period of time, the gat-
ing experts specialize in navigating through corridors, right and left turns,
and T-junctions. The free parameters of the architecture are trained online
using the backpropagation-through-time algorithm (Rumelhart, Hinton, &
Williams, 1986). However, as the authors point out, a limitation of the ar-
chitecture is that it uses only the bottom-up flow of information, without
integrating top-down predictions to modulate the activation of lower lev-
els. Tani (2019) provides a thorough review of related neurorobotics ex-
periments, many of which were carried out in the author’s laboratory. An
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1416 A. Ciria et al.

interesting implementation is described in Hwang, Kim, Ahmadi, Choi, and
Tani (2018), which the authors refer to as a predictive coding model. The
adopted network is a multilayer hierarchical architecture encoding visual
and proprioceptive information. Although the work is far from the formu-
lations laid in the free-energy principle (Friston, 2009), the VMDNN (pre-
dictive visuo-motor deep dynamic neural network) performs very similar
operations. These include the generation of actions following a prediction
error minimization scheme and the usage of the same model structure for
action generation and recognition. Hwang et al. (2018) claim that “the pro-
posed model provides an online prediction error minimization mechanism
by which the intention behind the observed visuo-proprioceptive patterns
can be inferred by updating the neurons’ internal states in the direction of
minimizing the prediction error” (3). It is worth noting that such an up-
date does not refer to model weights, only to the state of the neurons. The
training of the model is performed in a supervised fashion. The error being
minimized is the difference between a signal generated through kinesthetic
teaching (i.e., where a human experimenter manually directs the move-
ments of the robot limb) and the model predictions. The lateral connections
between modalities at each layer of the hierarchy are an interesting aspect
of the network.

Another relevant work from the same group (Ahmadi & Tani, 2019)
stands out for its formulation of active inference and a training strategy
based on variational Bayes recurrent neural networks.

Finally, Ahmadi and Tani (2017) propose a multiple timescale recurrent
neural network (MTRNN), which consists of multiple levels of subnetworks
with specific temporal constraints on each layer. The model processes data
from three modalities and is capable of generating long-term predictions
in both open-loop and closed-loop fashions. During closed-loop output
generation, internal states of the network can be inferred through error
regression. The network is trained in an open-loop manner, modifying
free parameters using the error between desired states and real activation
values.

A common characteristic of the implementations reviewed so far is that
learning and testing are decoupled. During the testing phase, prediction
errors flow bottom-up, and the network’s “internal state is modified in the
direction of minimizing prediction error via error regression” (Ahmadi &
Tani, 2017, 4). This implies that the network’s weights are not modified after
training. In most of their work, Tani and colleagues use mathematical for-
mulations based on connectionist networks, which are different from those
proposed by Friston (2009); nonetheless, the work is conceptually related
to predictive coding and active inference. More recently, authors have used
explicitly variational inference (e.g., Matsumoto & Tani, 2020; Jung, Mat-
sumoto, & Tani, 2019). An illustrative architecture, which comprises most
of the characteristics of the networks used by these authors, can be seen in
Figure 1 in Hwang et al. (2018).
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A similar approach has been presented by Murata et al. (2015), who pro-
pose an RNN-based model, stochastic continuous-time RNN (S-CTRNN).
The framework integrates probabilistic Bayesian schemes in a recurrent
neural network. Network training is performed offline using temporal
sequences under two learning conditions: with and without presenting
actions that reveal distinctive characteristics amplifying or exaggerating
meaning and structure within bodily motions (also named motionese; Brand,
Baldwin, & Ashburn, 2002). Training data are obtained through kinesthetic
teaching on the robot directed by an experimenter. The loss function of the
optimization process considers the sum of log uncertainty and precision-
weighted prediction error. This is formally equivalent to free energy as pro-
posed in active inference.

In trying to explain the underlying mechanisms causing different types
of behavioral rigidity of the autism spectrum, Idei et al. (2018) adopt an
S-CTRNN with parametric bias (PB) as the computational model for sim-
ulating aberrant sensory precision in a humanoid robot. In this study,
S-CTRNN:Ss learn to estimate sensory variance (precision) and adapt to dif-
ferent environments using prediction error minimization schemes. Learn-
ing is performed in an offline fashion using prerecorded perceptual se-
quences. “The objective of the learning is to find the optimal values of the
parameters (synaptic weights, biases, and internal states of PB units) min-
imizing negative log-likelihood, or precision weighted prediction error”
(Idei et al., 2018). Once trained, the network is capable of reproducing tar-
get visuo-proprioceptive sequences. In the test phase following the learning
one, only the internal states of the PB units are updated in an online fashion
while keeping the other parameters fixed. The study simulates increased
and decreased sensory precision by altering estimated sensory variance (in-
verse of their precision). This is performed by modulating a constant in the
activation function of the variance units of the trained model. Interestingly,
the authors report abnormal behaviors in the robot, such as freezing and
inappropriate repetitive behaviors, correlated to specific modulation of the
sensory variance. In particular, increased sensory variance reduces the pre-
cision of prediction error, thus freezing the PB states of the network and,
consequently, the robot behavior. Decreasing sensory variance instead leads
to unlearned repetitive behavior, likely due to the fixation of the PB states
on suboptimal local solution during prediction error minimization.

Ohata and Tani (2020) extend the predictive coding-inspired variational
recurrent neural network (PV-RNN) presented by Ahmadi and Tani (2019)
in a multimodal imitative interaction experiment with a humanoid robot.
Modalities (proprioception and vision), each encoded with a multilay-
ered PV-RNN, are connected through an associative PV-RNN module. The
associative module generates the top-down prior, which is then fed to
both the proprioception and vision modules. Each sensory module also
generates top-down priors conditioned by the other flows. The authors
show how metapriors assigned to the proprioception and vision modules
have an impact on the learning process and the performance of the error
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regression. Modulating the Kullback-Leibler divergence (KLD) term in the
error minimization scheme leads to better regulation of multimodal percep-
tion, which would be otherwise biased toward a single modality. Stronger
regulation of the KLD term also leads to higher adaptivity in a human-robot
imitation experiment.

Park, Lim, Choi, and Kim (2012) propose an architecture based on
self-organizing maps and transition matrices for studying three different
capabilities and phenomena: performing trajectories, object permanence,
and imitation. Interestingly, the architecture features a hierarchical self-
organized representation of state spaces. However, no bidirectional (top-
down/bottom-up) flow of information as in the previous studies is
implemented. Moreover, the models are in part precoded. In a more recent
study, Park, Kim, and Nagai (2018) adopt a recurrent neural network with
parametric bias (RNNPB) with recurrent feedback from the output layer to
the input layer. Asin Tani (2019), training and testing are decoupled and the
optimization is based on the backpropagation-through-time algorithm. The
optimization of the network parameters uses the prediction error between
a generated motor action and a reference action. Remarkably, this work
analyzes the developmental dynamics of the parameter space in terms of
prediction error. Experiments are carried out on a simulated two degrees-
of-freedom robot arm and a Nao humanoid robot, where goal-directed ac-
tions are generated using the RNNPB.

An interesting series of studies has been produced by Lanillos and col-
leagues. Lanillos and Cheng (2018) present an architecture that combines
generative models and a probabilistic framework inspired by some of the
principles of predictive processing. The architecture is employed to esti-
mate body configurations of a humanoid robot, using three modalities (pro-
prioceptive, vision, and touch). In the literature, the way the brain integrates
multimodal streams in similar error minimization schemes is still under de-
bate. Some authors suggest that the integration of different streams of uni-
modal sensory surprise occurs in hierarchically higher multimodal areas
(Limanowski & Blankenburg, 2013; Apps & Tsakiris, 2014; Clark, 2013; Pez-
zulo, Rigoli, & Friston, 2015), and therefore multimodal predictions and pre-
diction errors would be generated (Friston, 2012). Lanillos and Cheng (2018)
apply an additive formulation of unimodal prediction errors: (1) prior er-
ror, that is, the “error between the most plausible value of the body config-
uration and its prior belief”; (2) proprioceptive error, that is, the distance
between joint angle readings and joint angle samples generated by a Nor-
mal distribution; and (3) visual error, that is, the distance between observed
end-effector image coordinates and those predicted by a visual generative
model.

The proposed minimization scheme adjusts the prior on body config-
uration by summing up the additive multimodal error, while the system
is exposed to multimodal observations. As in Tani’s work, training and
testing are decoupled. The generative models are pretrained using
gaussian process regression. In particular, a visual forward model maps
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proprioceptive data (position of three joints) to visual data (image coordi-
nates of the end effector), whereas a proprioceptive model generates joint
angles from a Normal distribution representing the joint states. Training
data are recorded offline from a humanoid robot executing random tra-
jectories. Another generative model is created for the tactile modality as
a function of the visual generative model. This model is used in a second
experiment to translate the end-effector positions to the spatial locations
on the robot arm touched by an experimenter, in order to correct visual
estimations.

A follow-up work (Oliver, Lanillos, & Cheng, 2019) applies an active in-
ference model for visuomotor coordination in the humanoid robot iCub.
The framework controls two subsystems of the robot body, the head and one
arm. An attractor model drives actions toward goals. Goals are specified in
a visual domain—encoded as linear velocity vectors toward a goal, whose
3D position is estimated using stereo vision and a color marker—and trans-
formed using a Moore-Penrose pseudoinverse Jacobian matrix into linear
velocities in the 4D joint space of the robot. Similarly, visual goals are trans-
formed into joint velocity goals for the head subsystem. The authors assume
normally distributed noise in the sensory inputs. Sensor variances and ac-
tion gains are pretuned and fixed during the experiments. Although no
generative models are trained in this experiment (iCub’s forward kinemat-
ics functions are used), the authors show that minimizing Laplace-encoded
free energy through gradient descent leads to reaching behaviors and visuo-
motor coordination. Similarly, Pezzato, Ferrari, and Corbato (2020) present
an active inference framework using a precoded controller and a genera-
tive function. The study aims at controlling the movements of an industrial
robotic platform using active inference and comparing its adaptivity and
robustness to another state-of-the-art controller for robotic manipulators,
namely, the model reference adaptive controller (MRAC).

Lanillos, Cheng, and Pages (2020) extend the active inference implemen-
tation presented in Oliver et al. (2019). In this study, the visual generative
model is pretrained using a probabilistic neural network (mixture density
network, MDN). Inverse mapping is performed through the backward pass
of the MDN of the most plausible gaussian kernel. The system retrains the
network from scratch whenever the sensory inputs are too far from its pre-
dictions. Differently from Oliver et al. (2019), visual inputs consist of move-
ments estimated through an optical flow algorithm. The generative model
thus maps joint angles to the 2D centroid of a moving blob detected from
the camera. A deep learning classifier is then trained to label joint velocities
and optical flow inputs as self-generated or not.

Sancaktar and Lanillos (2019) apply a similar approach on the humanoid
robot Nao. The minimization scheme uses a pretrained generative model
for the visual input, that is, a convolutional decoder-like neural network.
Training data are collected through a combination of random babbling
and kinesthetic teaching. The generative model maps joint angles to visual
inputs, as in Lang, Schillaci, and Hafner (2018). When computing the
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likelihood for the gradient descent, the density defining the visual input is
created as a collection of independent gaussian distributions centered at
each pixel. In the minimization scheme, the visual prediction error multi-
plied by the inverse of the variance is calculated by applying a forward pass
and a backward pass to the convolutional decoder. The approach is interest-
ing, but studies have pointed at questionable aspects of the biological plau-
sibility of backpropagating errors. This refers, in particular, to the lack of
local error representations in ANNSs and at the symmetry between forward
and backward weights, which is not always present in cortical networks
(Whittington & Bogacz, 2019). As in the previous series of experiments,
active inference is used to control the robot arm movement in a reaching
experiment.

Pio-Lopez, Nizard, Friston, and Pezzulo (2016) present a proof-of-
concept implementation of a control scheme based on active inference us-
ing the 7 degrees-of-freedom arm of a simulated PR2 humanoid robot. The
control scheme is adopted to perform trajectories towards predefined goals.
Authors highlight that such a scheme eliminates the need of an inverse
model for motor control as “action realizes the (sensory) consequences of
(prior) causes” (Pio-Lopez et al., 2016, 9). A generative model maps causes
to actions, where causes are seen as “forces that have some desired fixed
point or orbit” (Pio-Lopez et al., 2016, 9), as sensed by proprioception. Pro-
prioceptive predictions are thus realized in an open-loop fashion, by means
of reflex arcs.

This framework, which employs a hierarchical generative model mini-
mizes the KL-divergence between the distribution of the agent’s priors and
that of the true posterior distribution, which represents the updated belief
given the evidence. Pio-Lopez et al. (2016) point out that more complex be-
haviors require the design of equations of motion. The question on the scal-
ability of such an approach for cognitive robotics remains open.

Although not adopting an active inference approach, Schillaci, Ciria, &
Lara (2020) present a study where intrinsically motivated behaviors are
driven by error-minimization schemes in a simulated robot. The proposed
architecture generates exploratory behaviors toward self-generated goals,
leverages computational resources, and regulates goal selection and the
balance between exploitation and exploration through a multilevel mon-
itoring of prediction error dynamics. The work is framed within the study
of the underlying mechanisms of motivation and the emergence of emo-
tions that drive behaviors and goal selection to promote learning. Scholars
such as Van de Cruys (2017), Kiverstein et al. (2019), and Hsee and Abelson
(1991) argue that what motivates engagement in a behavior is not just the
final outcome but the satisfaction that emerges from the pattern and the ve-
locity of an outcome over time.! “If one . . . assumes that people not only

"Here we intend the desired outcome of an event or of an activity. As for the velocity
of an outcome, we intend the velocity, or the rate, at which such desired goal is achieved.
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passively experience satisfaction, but actively seek satisfaction, then one can
infer an interesting corollary from the velocity relation: People engage in a
behavior not just to seek its actual outcome, but to seek a positive velocity
of outcomes that the behavior creates over time” (Hsee & Abelson, 1991,
346).

The system proposed by Schillaci, Ciria et al. (2020) monitors predic-
tion error dynamics over time and at different levels, driving behaviors
toward those goals that are associated with specific patterns of prediction
error dynamics. The system also modulates exploration noise and leverages
computational resources according to the dynamics of the overall learning
performance. Learning is performed in an online fashion, where image fea-
tures, compressed using a pretrained convolutional autoencoder, are fed
into a self-organizing neural network for unsupervised goal generation and
into an inverse-forward models pair for movement generation and predic-
tion error monitoring. The models are updated in an online fashion, and
an episodic memory system is adopted to reduce catastrophic forgetting
issues. Actions are generated toward goals associated with the steepest de-
scent in low-level prediction error dynamics.

A similar approach for the self-generation of goals has been employed
by Annabi, Pitti, and Quoy (2020) in a simulated experiment where a
two-degrees-of-freedom robotic arm has to learn how to write digits. The
proposed architecture learns sequences of motor primitives based on a free
energy minimization approach. The system combines recurrent neural net-
works for trajectories encoding with a self-organizing system for goal es-
timation, which is trained on data generated through random behaviors.
In the experiments, the system incrementally learns motor primitives and
policies, using a predefined generative forward model. Free energy mini-
mization is used for action selection.

Zhong, Cangelosi, Zhang, and Ogata (2018) present a hierarchical model
consisting of a series of repeated stacked modules to implement active in-
ference in simulated agents. Each layer of the network contains different
modules, including generative units implemented as convolutional recur-
rent networks (long short-term memory networks, LSTM). In the hierar-
chical architecture, predictions and prediction errors flow in top-down and
bottom-up directions, respectively. Generative units are trained in an offline
learning session during two simulated experiments.

It is worth noting that all the work reviewed in this section makes use of
different forms of prediction error minimization schemes to obtain working
models and controllers.

In the context of learning, a goal could be merely the reduction of prediction error. The
velocity of the outcome here would correspond to the rate of reduction of the prediction
error, that is, how fast or slow is prediction error minimized.
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3.2 Nonrobotic Implementations. A wide number of nonrobotic stud-
ies on predictive processing have been produced. This section opens only
a small window on this literature. Nevertheless, promising directions for
cognitive robotics research on predictive processing can be characterized
from the few samples reported here.

The issue of scalability highlighted on the active inference study of Pio-
Lopezetal. (2016) is also apparent in the work of Baltieri and Buckley (2019),
where the authors design an active inference-based linear quadratic gaus-
sian controller to manipulate a one-degree-of-freedom system. The study
aims at showing that such a controller can achieve goal positions without
the need of an efference copy, as in optimal control theory (OCT).

Similar basic proofs-of-concept are presented by Tschantz et al. (2020)
and Baltieri and Buckley (2017), where active inference is used to model
bacterial chemo-taxis in a minimal simulated agent. Tschantz et al. (2020)
focus on an action-oriented model that employs goal-directed (instrumen-
tal) and information-seeking (epistemic) behaviors when learning a gener-
ative model. Different error-minimization strategies are tested, generating
epistemic, instrumental, random behaviors or expected free energy-driven
ones. Tschantz et al. (2020) show that active inference balances exploration
and exploitation and suggest that “[they] are both complementary perspec-
tives of the same objective function—the minimization of expected free en-
ergy” (19). The model is not hierarchical, but it fully exploits the proposals
of active inference. In the other interesting proof-of-concept, Baltieri and
Buckley (2017) present a Braitenberg-like vehicle where behaviors are mod-
ulated according to predefined precision weights.

Friston et al. (2015) also address the exploration-exploitation dilemma.
They argue that when adopting Bayes’ optimal behavior under the free
energy principle, epistemic, intrinsic value is maximized until there is no
further information gain, after which exploitation is assured through max-
imization of extrinsic value (i.e., the utility of the result of an action). In
fact, epistemic actions can bring the agent far from a goal. Nonetheless,
they can be used to plan a path to a goal with greater confidence. Adopt-
ing the formalism of partially observed Markov decision processes, Fris-
ton et al. (2015) present a simulated experiment where an agent (i.e., a rat)
navigates through a T-shaped maze to show the role of epistemic value in
resolving uncertainty about goal-directed behavior. Moreover, the authors
discuss an aspect of the Bayesian framework, that is, the role of the precision
(i.e., the inverse of the variance) of the posterior belief, which is estimated
from the prior belief and the likelihood of the evidence, about control states?
as a message-passing channel. According to this view, precision is associ-
ated with dopaminergic responses, which has been interpreted in terms of

*In the generative model, a control state corresponds to the hidden cause of an action.
“This means the agent has to infer its behavior by forming beliefs about control states,
based upon the observed consequences of its action” (Friston et al., 2015, 190).
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changes in expected value (e.g., reward prediction errors). In brief, changes
in precision would correlate with changes in exploratory or exploitative
behaviors.

In a follow-up study, Schwartenbeck et al. (2019) present an architecture
that has an implicit weighting of the exploitation and (goal-directed) ex-
ploration tendencies, determined by the precision of prior beliefs and the
degree of uncertainty about the world. Two mechanisms for goal-directed
exploration are implemented in the rat-within-a-maze simulated setup:
model parameter exploration and hidden state exploration. In the former
active learning strategy, the agents forage for information about the cor-
rect parameterization of the observation model, represented as a Marko-
vian model in the study. Here, parameters are the set of arrays encoding
the Markovian transition probabilities, that is, the mapping between hid-
den states and observations and the transition between hidden states. In the
latter active inference strategy, agents aim at gathering information about
the current (hidden) state of the world—for example, the current context.
In particular, they sample the outcomes associated with high uncertainty,
only when these are informative for the representation of the task structure.
Much like a standard intrinsic motivation approach, Schwartenbeck et al.
(2019) appeal to the need for random sampling when the uncertainty about
model parameters and hidden states (goal-exploration strategies) fails to in-
form behavior. The aim of this work is to understand “the generative mech-
anisms that underlie information gain and its trade-off with reward maxi-
mization” (Schwartenbeck et al., 2019, 45), but as they note, how to scale up
these mechanisms to more complicated tasks is an open challenge.

Precision weighting is also one of the main focuses of the predictive
coding study carried out by Oliva, Philippsen, and Nagai (2019). Interest-
ingly, they analyze the variations of the precision of prior prediction of a
recurrent (S-CTRNN) generative model over a developmental process. The
model learns to estimate stochastic time series (two-dimensional trajectory
drawings), thus providing an estimate of the variance of the input data.
The framework “shares crucial properties with the developmental process
of humans in that it naturally switches from a strong reliance on sensory
input at an early learning stage to a proper integration of sensory input and
own predictions at later learning stages” (Oliva et al., 2019, 254). This is cor-
related to a reduction of the prediction error and the estimated (prior) vari-
ance over time during learning. Some formulations of the problem in this
work are, however, problematic. In particular, in Oliva et al. (2019) the pos-
terior is computed naively by multiplying the likelihood and the prior using
the basic Bayesian formula, and learning is performed only for maximizing
the likelihood. In a follow-up work (Philippsen & Nagai, 2019), the frame-
work is applied to simulate the generation of representational drawings—
i.e.,, drawings that represent objects—in infants and chimpanzees. The
authors observe that stronger reliance on the prior (hyperprior) enables
the network to perform representational drawings like those produced by
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children, whereas a weak reliance on the prior produces highly accurate
lines but fails to produce missing parts of the representational drawings, as
observed in chimpanzees. Results suggest that chimpanzees” and humans’
“differences in representational drawing behavior might be explainable by
the degree to which they take prior information into account” (Philippsen
& Nagai, 2019, 176).

Allen, Levy, Parr, and Friston (2019) study active inference in a mul-
timodal domain, simulating interactions between interoceptive cardiac
cycle and exteroceptive (visual) perception. The work hypothesizes that
effects of cardiac timing on perception could arise as a function of periodic
sensory attenuation. This study does not involve any robotic implementa-
tion or any learning or control task. However, related implementations are
mostly missing in the literature; therefore, we believe it is worth mentioning
in this letter.

4 Discussion

This work has reviewed a series of studies on robotics and nonrobotics that
have adopted the paradigm of predictive processing under different forms.
Tables 1 and 2 provided a general overview of the main aspects as well as
the differences of these studies.

It is certainly standing out to what length the robotics research and
the nonrobotics models have addressed tasks that go beyond perception
and motor control, traditionally the focus of predictive processing studies.
Limited cognitive robotics research has addressed the scaling up of the pre-
dictive processing paradigm toward higher cognitive capabilities. Compu-
tational studies on minimal simulated systems have suggested that specific
aspects, such as precision weighting, may bridge this gap.

Embodied robotic systems seem to be the most appropriate experimen-
tal platforms not only for studying cognitive development within the pre-
dictive processing framework but also for extending this framework to a
broader range of modalities and behavioral possibilities. In fact, another
aspect of the robotics research reviewed in this letter and worth highlight-
ing is that almost the majority of them® address only proprioception and
a single exteroceptive modality, vision. Little attention in the robotics com-
munity has been posed on how multiple exteroceptive modalities (e.g., vi-
sion, haptic, and auditory), as well as interoceptive ones (Seth & Tsakiris,
2018), can be integrated in prediction error-minimization schemes. Studies
such as those from Tschantz et al. (2020), Friston et al. (2015), Schwarten-
beck et al. (2019), and Schillaci, Ciria et al. (2020) have discussed epistemic
and emotional value, homeostatic drives, and intrinsic motivation that

?Lanillos and Cheng (2018) address also the tactile modality in their study, but do not
fully integrate it in the error minimization scheme.
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regulate behaviors. Interesting research directions for robotics should in-
clude extending this to multimodal self-generated goals and to combina-
tions of fixed homeostatic goals and dynamic ones.

Another important point concerns precision weighting. As in predic-
tive processing, this is assigned a prominent role in behavior and goal
regulation, as well as in perceptual optimization processes. Further cog-
nitive robotics study should explore this path. Most of the nonrobotic
implementations adopt a Bayesian or probabilistic formalization of error-
minimization schemes. This allows an elegant formulation of the precision
in weighting schemes, which consists of the inverse of the variance of the
prior and posterior distributions. However, alternative strategies are avail-
able for implementing precision weighting-like processes in nonprobabilis-
tic models, including the modulation of neuronal activation or of synaptic
weights in artificial neural networks, modulation of firing rates in spiking
neural networks, dopaminergic modulation, and the like. There is a wide
literature on sensor fusion techniques in the machine learning community
that focuses on very related challenges, such as the learning and modula-
tion of the relevance of single sensors in multimodal and predictive settings
(Fayyad, Jaradat, Gruyer, & Najjaran, 2020).

A common denominator in all the reviewed implementations is the use
of predictions for guiding behavior. However, the implementations adopt
different machine learning tools. Works that strictly follow the active infer-
ence principles make use of Bayes as their main tool. It is still an open ques-
tion how all other approaches should be considered in the wider predictive
processing framework. So far, most robotics implementations make use of
nonvariational deep networks as their main tool. However, the bias of us-
ing the Bayesian framework in nonrobotics implementations might hinder
the search for other approaches that could have advantages, importantly,
in terms of computational cost and the complexity of designing generative
models to produce coherent and scaled-up behaviors.

Predictive processing emphasizes the prediction-based learning of a gen-
erative model, which predicts incoming sensory signals (Clark, 2015). In
optimal control theory, a high computational complexity is required for
learning to predict sensory consequences by means of the efference copy
and the inverse model. In predictive processing accounts, this complex-
ity is mapped to the learning of a generative model during hierarchical
perceptual and active inference (Friston, 2011; Friston, Samothrakis et al.,
2012). In this regard, it is still unclear how generative models should be
learned due to the complexity that implies modeling the richness of the
entire environment (Tschantz et al., 2020). Action-oriented models are a
common approach for solving this issue by learning and generating infer-
ences that allow adaptive behavior, even when the world is not modeled
in a precise manner (Tschantz et al., 2020; Baltieri & Buckley, 2017; Pezzulo,
Donnarumma, Iodice, Maisto, & Stoianov, 2017). It is worth highlighting
that despite the relevance of learning for belief updating, most nonrobotic
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computational work focuses on inference, not on learning. Actually, learn-
ing is almost absent here.

The few nonrobotic models that focus on learning generative models are
based on the expected free energy formulations and use simplified agents
and behaviors (Tschantz et al., 2020; Baltieri & Buckley, 2017; Ueltzhoffer,
2018; Millidge, 2020). On the contrary, some cognitive robotics implemen-
tations do have the emphasis slightly shifted toward the learning of gen-
erative models (Lanillos et al., 2020; Ahmadi & Tani, 2017; Idei et al., 2018;
Schillaci, Ciria et al., 2020; Schillaci, Pico Villalpando et al., 2020). Yet learn-
ing and testing are decoupled in many of these studies, in particular, in
those adopting probabilistic methods. This is likely due to the challenges
of implementing online learning of probabilistic models, especially in the
context of high-dimensional sensory and motor spaces.

It is worth pointing out that in cognitive robotics, a variety of learning
methods are used, and just a few of these are equivalent to the free en-
ergy principle formulations. Nonetheless, the agents and behaviors that
are used are much more complex. For cognitive robotics, it is relevant to
explore the reach and possibilities of using generative models for percep-
tion, action, and planning. More important, there is a special interest in the
tools and methods that can be used for the learning of these models, an area
that has been unattended in nonrobotic models using predictive processing
principles.

Finally, attention to the temporal aspect of prediction error dynamics
has been limited (Kiverstein et al., 2019; Tschantz et al., 2020). Predic-
tion error patterns may be associated with emotional experience (Joffily &
Coricelli, 2013). In artificial systems, they are essential components for im-
plementing intrinsically motivated exploration behaviors and artificial cu-
riosity (Oudeyer, Kaplan, & Hafner, 2007; Schillaci, Pico Villalpando et al.,
2020; Baldassarre & Mirolli, 2013; Graziano et al., 2011). Recent studies sug-
gest that error dynamics may influence the regulation of computational re-
sources (Schillaci, Ciria et al., 2020) and the emotional valence of actions
(Joffily & Coricelli, 2013). We believe that prediction error dynamics rep-
resent a promising tool in the exploration of more complex behaviors and
tasks in cognitive robotics under the predictive processing paradigm.
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