

Data Science Ready

Syllabus

Data Science Ready makes the fundamental topics in data science approachable and relevant by using real-world examples and prompts learners to think critically about applying these new understandings to their own workplace. Get an overview of data science with a nearly code- and math-free introduction to prediction, causality, visualization, data wrangling, privacy, and ethics.

Modules		Case Studies	Takeaways	Key Exercises
Module 1	Data 101	Flu Detection	 Explain why data collection is important Identify factors that may affect data quality Recognize that not all data is numerical Explain how the organization of data can affect the information you are able to extract from it 	 List sources of data Discuss what can be done with data Categorize data by various factors Determine whether data is high-quality or not
Module 2	Predictions and Recommendations	Predicting Sepsis	 Understand the basic structure of a predictive algorithm Identify where human decisions shape predictive systems Evaluate the success of a predictive system 	 Examine how weather forecasts work Use data to create a prediction Sort types of training data Simulate a predictive system
Module 3	Cause and Effect	The Google Tax	 Explain why it is important to establish causal relationships Identify barriers to establishing causal relationships in a variety of settings Identify why randomization can help establish a causal relationship but also create other problems 	 Classify relationships based on correlation or causation Examine the relationship between variables Identify potential common causes for correlated events
Module 4	Data Governance and Privacy	Privacy and Facial Recognition	 Explain why data privacy is important Describe what can constitute a violation of privacy Critique existing privacy policies Create a set of ethical tenets to guide data work at their own organizations 	 Formulate data privacy guidelines Discuss the risks of data re- identification Evaluate existing data privacy policies for ethics

Modules		Case Studies	Takeaways	Key Exercises
Module 5	Beyond the Spreadsheet	Burning Glass and Text Data	 Identify sources of non-numerical data Explain why it would be useful to use non-numerical data Describe the differences in approach for supervised and unsupervised learning Identify use cases for neural networks 	 Perform a sentiment analysis Determine what types of data an algorithm cannot read Examine how computers intake visual and audio data Experiment with facial recognition
Module 6	Data Science Ecosystems	Harvard Link	 Explain the importance of data transformation and wrangling List the common technologies used within data science ecosystems Describe the connection between data science tasks, software tools, and hardware tools Identify potential sources of bottlenecks in the data science process 	 Identify and order the lifecycle of data Define what "the cloud" is Estimate the size of various data streams
Module 7	The Road Ahead	Healthcare Prioritization	 Recognize a problem that an algorithm might be able to solve Recognize the challenges created by using data science tools in ways outside their intended use Identify steps within the data science process that need auditing 	 Choose types of data to ingest into an algorithm Evaluate the risks of solely using an algorithm to make decisions Discuss how algorithms can reinforce biases Create a set of guidelines to evaluate projects

Learning requirements: In order to earn a Certificate of Completion, participants must thoughtfully complete all 7 modules by stated deadlines.