
 

 

 

 

Intel® SHA 

Extensions 

New Instructions 

Supporting the Secure 

Hash Algorithm on Intel® 

Architecture Processors 

       July 2013 

 

 

 

 

White Paper 

Sean Gulley 

Vinodh Gopal 

Kirk Yap 

Wajdi Feghali 

Jim Guilford 

Gil Wolrich 

IA Architects 

Intel Corporation 



Intel® SHA Extensions: New Instructions Supporting the  
Secure Hash Algorithm on Intel® Architecture Processors 

 

2    

Executive Summary 

This paper provides an introduction to the family of new instructions that 

support performance acceleration of the Secure Hash Algorithm (SHA) on 

Intel® Architecture processors.  There are seven new SSE based 

instructions, four supporting SHA-1 and three for SHA-256.  A detailed 

description of the Intel® SHA Extensions and example code sequences to 

fully process SHA-1 and SHA-256 blocks is provided.  
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Overview 

The Secure Hash Algorithm (SHA) is a cryptographic hashing algorithm 

specified by the National Institute of Standards and Technology (NIST) in the 

Federal Information Processing Standards Publication 180 (FIPS PUB 180)[1]. 

The SHA family of algorithms is heavily employed in many of the most 

common cryptographic applications today.  Primary usages of SHA include 

data integrity, message authentication, and digital signatures.  One example 

of the impact of SHA is every secure web session initiation includes SHA-1, 

the latest protocols involve SHA-256 as well, and then the session data 

transfers between client and server are also commonly protected by one of 

the two algorithms.  Given SHA-1 and SHA-256 make up the vast majority of 

secure hashing usage cases, the Intel® SHA Extensions were designed to 

support only those two algorithms (note SHA-224 is also implicitly supported 

with the SHA-256 instructions). 

A hashing algorithm processes an arbitrary length message and results in a 

fixed length message digest.  This is considered a one-way function, as the 

original message cannot be determined with absolute certainty based on the 

message digest.  The Secure Hash Algorithm gets the name secure since it 

was designed to make it computationally infeasible to find any message that 

can be processed into a chosen message digest.  Additionally, SHA is defined 

as secure because one cannot find two distinct messages that result in the 

same message digest.  The security of the algorithms within the SHA family is 

outside the scope of this paper.  

The Intel® SHA Extensions are a family of seven Streaming SIMD Extensions 

(SSE) based instructions that are used together to accelerate the 

performance of processing SHA-1 and SHA-256 on Intel® Architecture 

processors.  Given the growing importance of SHA in our everyday computing 

devices, the new instructions are designed to provide a needed boost of 

performance to hashing a single buffer of data.  The performance benefits will 

not only help improve responsiveness and lower power consumption for a 

given application, it may enable developers to adopt SHA in new applications 

to protect data while delivering to their user experience goals.  The 

instructions are defined in a way that simplifies their mapping into the 

algorithm processing flow of most software libraries, thus enabling easier 

development. 

Secure Hash Algorithm Introduction 

The process of SHA to calculate the message digest has two phases.  First is 

the preprocessing of the message to pad it out to a 64 byte multiple with the 

length of the message embedded in the last 8 bytes.  The message is then 

split into 64 byte blocks to be processed in the next phase.  The second 

phase is the hash computation, which has two main components itself.  One 
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is the message schedule which takes the 64 byte block and expands it into 

32-bit dwords to be processed per round, and the other is the absorption of a 

given rounds message dword into the working variables.  The Intel® SHA 

Extensions only focus on the compute-intensive hash computation; a padding 

discussion will not be included in this paper. 

The message schedule calculation for SHA-1 is the following: 
For i=0 to 79 

 If (0 ≤ i ≤ 15)  

Wi = Mi 
Else 

Wi = ROL1(Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16) 

Where Wi is a 32-bit dword to be used in the ith round of the hash 

computation and Mi is the ith 32-bit dword in the 64 byte message to be 

hashed.  ROL is a rotate left operation. 

For SHA-256, the message schedule includes the σ functions, which use the 

ROR (rotate right) and SHR (shift right) operations: 
For i=0 to 63 

 If (0 ≤ i ≤ 15)  

Wi = Mi 
Else 

Wi = σ1(Wi-2) + Wi-7 + σ0(Wi-15) + Wi-16 

Where σ0(W) is ROR7(W) XOR ROR18(W) XOR SHR3(W) and σ1(W) is 

ROR17(W) XOR ROR19(W) XOR SHR10(W). 

The rounds function for SHA-1 is the following: 
For i=0 to 79 

 T = ROL5(A) + fi(B, C, D) + E + Ki + Wi 

 E = D 

 D = C 

 C = ROL30(B) 

 B = A 

 A = T 

 

Where A, B, C, D, and E are the five 32-bit working variables, K is one of four 

constant values (based on rounds 0-19, 20-39, 40-59, and 60-79), and f is 

one of four functions based on the same rounds intervals as K. 

 

The rounds function for SHA-256 is the following: 
For i=0 to 63 

 T1 = H + Σ1(E) + Ch(E,F,G) + Ki + Wi 
T2 = Σ0(A) + Maj(A,B,C) 

H  = G 

G  = F 

F  = E 

E  = D + T1 
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D  = C 

C  = B 

B  = A 

A  = T1 + T2 

 

 

Where A, B, C, D, E, F, G, and H are the eight 32-bit working variables, K is 

one of 64 constant values, and Σ1(), Σ0(), Ch(), and Maj() are logical 

functions.  

Intel® SHA Extension Definitions 

The Intel® SHA Extensions are comprised of four SHA-1 and three SHA-256 

instructions.  There are two message schedule helper instructions each, a 

rounds instruction each, and an extra rounds related helper for SHA-1.  All 

instructions are 128-bit SSE based, which use XMM registers.  The SHA 

instructions are non-SIMD although they are defined with XMM width 

operands, whereas all the other supporting SSE instructions (e.g. ADD, XOR, 

AND) use dword sized lanes. 

 

Table 1: Intel® SHA Extensions Definitions (rw – Read/Write, r – Read Only) 

SHA-1 

To aid with the message schedule component of SHA-1, there are two 

instructions called sha1msg1 and sha1msg2.  The first instruction, sha1msg1, 

is intended to accelerate the Wt-14 XOR Wt-16 portion of the message schedule 

calculation.  The second instruction, sha1msg2, is intended to accelerate Wt-3 



 Intel® SHA Extensions: New Instructions Supporting the  
Secure Hash Algorithm on Intel® Architecture Processors 

 

  7 

XOR the previously calculated Wt-8 XOR Wt-14 XOR Wt-16 then do the rotate left 

by 1 of the result to finalize the message schedule for four consecutive 32-bit 

dwords (note Wt-8 is expected to be XOR’d with the result of sha1msg1 using 

the pxor instruction). 

 

 

 

Figure 1: SHA1MSG1 xmm1, xmm2/m128 (The grayed out words are unused) 
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Figure 2: SHA1MSG2 xmm1, xmm2/m128 

The SHA-1 specification for the hash computation of a block of message data 

is 80 rounds.  The rounds instruction, sha1rnds4, performs four of these 

rounds at once.  The instruction was designed to be four rounds because four 

of the five 32-bit SHA-1 working variables (A, B, C, and D) can be updated in 

one 128-bit destination XMM register.  The inputs to sha1rnds4 are the 

working variables (A, B, C, and D), four 32-bit message dwords packed in a 

single XMM, with the E working variable added to W0, and an immediate 

value specifying which logic function (f()) and constant (K) to use for this 

rounds processing.   
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SHA1RNDS4 xmm1, xmm2/m128, imm8 

 

IF (imm8[1:0] == 0) 

 THEN f() ← f0(), K ← K0; 

ELSE IF (imm8[1:0] == 1) 

 THEN f()← f1(), K ← K1; 

ELSE IF (imm8[1:0] == 2) 

 THEN f()← f2(), K ← K2; 

ELSE IF (imm8[1:0] == 3) 

 THEN f()← f3(), K ← K3; 

A0 ← SRC1[127:96]; 

B0 ← SRC1[95:64]; 

C0 ← SRC1[63:32]; 

D0 ← SRC1[31:0]; 

W0E ← SRC2[127:96]; 

W1  ← SRC2[95:64]; 

W2  ← SRC2[63:32]; 

W3  ← SRC2[31:0]; 

Table 2: SHA1RNDS4 Inputs 

Rounds operation: 
Round i = 0 operation: 

A1 ← f(B0, C0, D0) + (A0 ROL 5) + W0E + K; 

B1 ← A0; 

C1 ← B0 ROL 30; 

D1 ← C0; 

E1 ← D0; 

 

FOR i = 1 to 3 

Ai+1 ← f(Bi, Ci, Di) + (Ai ROL 5) + Wi + Ei + K; 

Bi+1 ← Ai; 

Ci+1 ← Bi ROL 30; 

Di+1 ← Ci; 

Ei+1 ← Di; 

ENDFOR 

 

Rounds output: 
DEST[127:96] ← A4; 

DEST[95:64]  ← B4; 

DEST[63:32]  ← C4; 

DEST[31:0]   ← D4; 

Notice in the above rounds definition that the working variables are assigned 

based on some form of the value of the adjacent variable a round earlier 

(B=A, C=B ROL 30, D=C, and E=D).  Looking at this from the perspective of 

processing four rounds at once, the value of the fifth working variable, E, 

becomes simply A rotated left 30 bits.  This property of the specification lends 

itself to an easy calculation of the variable E four rounds from the current 

round.  The sha1nexte instruction exists to do the simple rotate and then add 

the result to one of the message dwords to be supplied to the sha1rnds4 

instruction.  The addition is necessary because with only two 128-bit XMM 

registers available to supply the sha1rnds4 instruction and 9 32-bit values 

required to do four rounds, one of the 32-bit values has to be absorbed 

somewhere.  Fortunately the SHA-1 specification adds the E variable with the 

current round message dword as part of the function to set A.  Therefore the 

sha1nexte instruction handles the addition for the first of the four rounds to 

be calculated in sha1rnds4. 
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Figure 3: SHA1NEXTE xmm1, xmm2/m128 

 

SHA-256 

To aid with the message schedule component of SHA-256, there are two 

instructions called sha256msg1 and sha256msg2.  The first instruction, 

sha256msg1, calculates the σ0(Wt-15) + Wt-16 portion of the message schedule 

calculation.  The second instruction, sha256msg2, is intended to accelerate 

σ1(Wt-2) + the previously calculated Wt-7 + σ0(Wt-15) + Wt-16 to finalize the 

message schedule for four consecutive 32-bit dwords (note Wt-7 is expected 

to be added to the result of sha256msg1 using the paddd instruction). 
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Figure 4: SHA256MSG1 xmm1, xmm2/m128 
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Figure 5: SHA256MSG2 xmm1, xmm2/m128 

The SHA-256 specification for the hash computation of a block of message 

data is 64 rounds.  The rounds instruction, sha256rnds2, performs two of 

these rounds at once.  The instruction was designed to be two rounds to 

simplify the assignment of the eight 32-bit working variables (A, B, C, D, E, 

F, G, and H).  The variables C, D, G, and H are stored in one 128-bit XMM 

register and A, B, E, and F are stored in another XMM register.  Once 

sha256rnds2 is executed, the XMM register originally containing CDGH is 

updated with the new ABEF values two round calculations later.  The SHA-

256 specification is such that the values of CDGH after two rounds are the 

original values of ABEF.  This is a very simple property that the sha256rnds2 

instruction makes use of, hence the non-obvious ordering of working 

variables.  The third input to sha256rnds2 is the message dwords (Wn) added 

to the round constants (Kn).  This W+K value must be in the architectural 

XMM0 register, since the register is implicitly used by the instruction. 
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SHA256RNDS2 xmm1, xmm2/m128, <XMM0> 

 

C0 ← SRC1[127:96]; 

D0 ← SRC1[95:64]; 

G0 ← SRC1[63:32]; 

H0 ← SRC1[31:0]; 

A0 ← SRC2[127:96]; 

B0 ← SRC2[95:64]; 

E0 ← SRC2[63:32]; 

F0 ← SRC2[31:0]; 

WK0 ← XMM0[31:0]; 

WK1 ← XMM0[63:32]; 

Table 3: SHA256RNDS2 Inputs 

Rounds operation: 

FOR i = 0 to 1 

Ai+1 ← Ch(Ei,Fi,Gi) + Σ1(Ei) + WKi + Hi +Maj(Ai,Bi,Ci)+ Σ0(Ai); 

Bi+1 ← Ai; 

Ci+1 ← Bi; 

Di+1 ← Ci; 

Ei+1 ← Ch(Ei,Fi,Gi) + Σ1(Ei) + WKi + Hi + Di; 

Fi+1 ← Ei; 

Gi+1 ← Fi; 

Hi+1 ← Gi; 

ENDFOR 

 

Rounds output: 

DEST[127:96] ← A2; 

DEST[95:64]  ← B2; 

DEST[63:32]  ← E2; 

DEST[31:0]   ← F2; 

 

Using the Intel® SHA Extensions 

The Intel® SHA Extensions can be implemented using direct assembly or 

through C/C++ intrinsics.  The 16 byte aligned 128-bit memory location form 

of the second source operand for each instruction is defined to make the 

decoding of the instructions easier.  The memory form is not really intended 

to be used in the implementation of SHA using the extensions since 

unnecessary overhead may be incurred.  Availability of the Intel® SHA 

Extensions on a particular processor can be determined by checking the SHA 

CPUID bit in CPUID.(EAX=07H, ECX=0):EBX.SHA [bit 29].  The following C 

function, using inline assembly, performs the CPUID check: 

int CheckForIntelShaExtensions() { 

   int a, b, c, d; 

 

   // Look for CPUID.7.0.EBX[29] 

   // EAX = 7, ECX = 0 

   a = 7; 

   c = 0; 

 

   asm volatile ("cpuid" 
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        :"=a"(a), "=b"(b), "=c"(c), "=d"(d) 

        :"a"(a), "c"(c) 

       ); 

 

   // Intel® SHA Extensions feature bit is EBX[29] 

   return ((b >> 29) & 1); 

} 

The following sections will demonstrate how to use the family of extensions to 

process a complete 64 byte block of data for SHA-1 and SHA-256. 

SHA-1 

SHA-1 requires 80 rounds of processing for every 64 byte block of data.  

Therefore, sha1rnds4 needs to be executed 20 times for every block.  The 

most efficient way to implement SHA-1 is to do the message schedule 

calculations while performing the rounds processing.  The ideal scenario is to 

be able to hide the entire message schedule processing under the latency of 

the rounds functionality.  In other words, the rounds processing is the critical 

path and the latency of sha1rnds4 determines the performance of SHA-1 

calculations.   

The following will go through the main loop of processing a single 64 byte 

block of data for SHA-1: 

First, save the working variables, A through E, for addition at the end of the 

loop.  Note the working variables can be stored on the stack as opposed to 

xmm registers with little to no performance penalty.  This is helpful in 32-bit 

applications. 

 movdqa  ABCD_SAVE, ABCD 

 movdqa  E_SAVE,  E0 

 

Now the rounds processing can begin with rounds 0 through 3.  Since the first 

16 dwords of the message schedule are the actual message data to be 

hashed, the data needs to be read in from memory.  Assume the value in 

GPR “DATA_PTR” is a pointer to the input data buffer in memory.  Once read, 

the data typically needs to be byte shuffled to be in the proper byte order 

required by the Intel® SHA Extensions. 

 
 movdqu  MSG0, [DATA_PTR + 0*16] 

 pshufb  MSG0, SHUF_MASK 

The first four rounds do not require the sha1nexte instruction since the value 

in the E register should already be the actual E value.  Therefore the message 

can be added directly to the register holding the E variable to be in the proper 

form expected by sha1rnds4.  Before consuming the ABCD state variables, 

the value is stored in an alternate E variable register to be used in the next 

four rounds.  Note the 0 input to sha1rnds4 indicating this use of the rounds 

instruction should process data as specified in the first 0-19 rounds.  Every 
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twenty rounds (every five instances of sha1rnds4 in the loop) the immediate 

value needs to be incremented. 

  paddd   E0, MSG0  

  movdqa  E1, ABCD 

  sha1rnds4 ABCD, E0, 0 

Now the next four rounds are ready to be processed.  This time the 

sha1nexte instruction will be used with the E1 register saved prior to the first 

four rounds and the next four dwords of message data.   

 movdqu  MSG1, [DATA_PTR + 1*16] 

 pshufb  MSG1, SHUF_MASK 

  sha1nexte E1,  MSG1 

  movdqa  E0,  ABCD 

  sha1rnds4 ABCD, E1, 0 

At this point MSG0 contains message dwords W0 through W3 and MSG1 

contains W4 through W7.  It is time to start using the SHA-1 message 

schedule related instructions to help with calculating W16 through W19.  MSG0 

will be consumed and will contain the result of the calculation to achieve Wt-14 

XOR Wt-16. 

 sha1msg1 MSG0, MSG1 

Rounds 8 through 11 can now be started, in a similar fashion to rounds 4 

through 7.  Note this time the E0 and E1 registers once again ping ponged 

back to the same usage as in rounds 0 through 3. 

 movdqu  MSG2, [DATA_PTR + 2*16] 

 pshufb  MSG2, SHUF_MASK 

  sha1nexte E0,  MSG2 

  movdqa  E1, ABCD 

  sha1rnds4 ABCD, E0, 0 

For the message scheduling, MSG1 and MSG2 are used in the same fashion 

as MSG0 and MSG1 in the previous four rounds.  This pattern will continue by 

using sha1msg1 with the previous four rounds message data and the 

message data just consumed.  The new addition to the message schedule 

calculation is an xor.  The xor of MSG0 and MSG2 is to bring the Wt-8 data 

into the previous Wt-14 XOR Wt-16 calculation.  

 sha1msg1 MSG1, MSG2 

 pxor  MSG0, MSG2 

Rounds 12 through 15 are the last ones the message data needs to be read 

in from memory.  During these rounds is where the final member of the SHA-

1 family of instructions is used.  The sha1msg2 instruction takes MSG0 and 

MSG3 to complete the calculation of W16 through W19 to be used in the next 

four rounds, 16 through 19. 

 movdqu  MSG3, [DATA_PTR + 3*16] 

 pshufb  MSG3, SHUF_MASK 

  sha1nexte E1,  MSG3 
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  movdqa  E0,  ABCD 

 sha1msg2  MSG0, MSG3 

  sha1rnds4 ABCD, E1, 0 

 sha1msg1  MSG2, MSG3 

 pxor   MSG1, MSG3 

The pattern seen in rounds 12 through 15, excluding the memory read, 

continues up through rounds 64 to 67.  Each time with the E variables ping 

ponging back and forth and the four different MSG variables cycling through. 

  sha1nexte E0,  MSG0 

  movdqa  E1,  ABCD 

 sha1msg2  MSG1, MSG0 

  sha1rnds4 ABCD, E0, 0 

 sha1msg1  MSG3, MSG0 

 pxor   MSG2, MSG0 

Since the message schedule is always ahead of the rounds calculation, the 

final rounds (68 through 79) will require fewer instructions.  Note the use of 

the immediate 3 in the sha1rnds4 instruction usage to indicate being in the 

last 20 rounds of processing (60-79).   

 ;; Rounds 68-71 

  sha1nexte E1,  MSG1 

  movdqa  E0,  ABCD 

 sha1msg2  MSG2, MSG1 

  sha1rnds4 ABCD, E1, 3 

 pxor   MSG3, MSG1 

  

 ;; Rounds 72-75 

  sha1nexte E0,  MSG2 

  movdqa  E1,  ABCD 

 sha1msg2  MSG3, MSG2 

  sha1rnds4 ABCD, E0, 3 

  

 ;; Rounds 76-79 

  sha1nexte E1,  MSG3 

  movdqa  E0,  ABCD 

  sha1rnds4 ABCD, E1, 3 

With the rounds processing complete, the final step is to add the saved 

working variables with the current state of the working variables.  The ABCD 

addition is very straightforward.  The addition of the current E variable is 

much more interesting.  Since E0 contains the value of A from round 75, it 

needs to be rotated 30 prior to being added to the saved E value.  

Fortunately we can make use of the sha1nexte instruction to do the rotate 

and do the addition all at once. 

  

sha1nexte E0,   E_SAVE 

paddd   ABCD, ABCD_SAVE 
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This completes the block processing and now the code can loop back to 

process another block or return with the final state. 

SHA-256 

The SHA-256 implementation is very similar to SHA-1.  Some of the key 

differences are SHA-256 has only 64 rounds, the constants need to be added 

to the message data (it is not a part of the rounds instruction), and the 

message schedule requires more instructions for calculation.   

The following will go through the main loop of processing a single 64 byte 

block of data for SHA-256: 

The SHA-256 code starts the same way as SHA-1, by saving the working 

variables A through H for addition at the end of the loop.  Note prior to the 

loop starting, the initial loading of the state variables is most likely not going 

to be from contiguous memory locations given the non-consecutive nature of 

the 32-bit variables in the 128-bit XMM registers.  This is not a cause for 

concern since the shuffle in and back out occurs only outside the main 

processing loop, thereby becoming inconsequential in terms of performance.   

 movdqa  ABEF_SAVE, STATE0 

 movdqa  CDGH_SAVE, STATE1 

 

Now the rounds processing can begin with rounds 0 through 3.  The SHA-256 

rounds instruction only processes two rounds at once; however, the code is 

optimally organized in a sequence to process four rounds at time.  The same 

as with SHA-1, the initial 16 dwords of message data needs to be read in 

from memory and byte shuffled.  One big change is the message data always 

needs to be stored in XMM0 for consumption by the rounds instruction.  

Therefore we need temporary message registers to save the dwords for later 

message schedule calculations.  As mentioned, the constants defined in the 

SHA-256 specification need to be added to the message prior to the rounds 

instruction execution.  Note the shuffle of MSG in between sha256rnds2 uses.  

This is because only two message dwords are consumed per rounds instance 

and there are four consecutive dwords in the 128-bit XMM0 register.  One last 

observation to make is the usage of STATE0 and STATE1 with the 

sha256rnds2 instances.  The two registers will ping pong back and forth 

throughout the entire block processing loop.  The CDGH state input is a 

src/dest variable that becomes the new ABEF after the two rounds of 

processing.  The ABEF input is simply the CDGH state input for the next 

sha256rnds2 execution due to the properties of the SHA-256 specification. 

 
 movdqu  MSG, [DATA_PTR + 0*16] 

 pshufb  MSG, SHUF_MASK 

 movdqa  MSGTMP0, MSG 

  paddd   MSG, [SHA256CONSTANTS + 0*16] 

  sha256rnds2 STATE1, STATE0 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 
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The next four rounds follow the same pattern as the SHA-1 implementation.  

The rounds code is similar to the first four rounds with the addition of the first 

message schedule instruction instances.  MSGTMP0 will be consumed and will 

contain the result of the calculation to achieve σ0(Wt-15) + Wt-16. 

 
 movdqu  MSG, [DATA_PTR + 1*16] 

 pshufb  MSG, SHUF_MASK 

 movdqa  MSGTMP1, MSG 

  paddd   MSG, [SHA256CONSTANTS + 1*16] 

  sha256rnds2 STATE1, STATE0 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 

 sha256msg1 MSGTMP0, MSGTMP1 

 

Rounds 8 through 11 look the same as the previous four rounds with the 

exception of the register usage for the new message dwords.  The rest of the 

message schedule code takes shape with rounds 12 through 15.  Since the 

Wt-7 term is not nicely aligned, there has to be some shifting code to add the 

value into the previous calculated σ0(Wt-15) + Wt-16 values.  Once that term is 

added in, the value is an input to the sha256msg2 instruction which finishes 

the W16 through W19 calculation by adding in the σ1(Wt-2) term.  

 
 movdqu  MSG, [DATA_PTR + 3*16] 

 pshufb  MSG, SHUF_MASK 

 movdqa  MSGTMP3, MSG 

  paddd   MSG, [SHA256CONSTANTS + 3*16] 

  sha256rnds2 STATE1, STATE0 

 movdqa  MSGTMP4, MSGTMP3 

 palignr  MSGTMP4, MSGTMP2, 4 

 paddd   MSGTMP0, MSGTMP4 

 sha256msg2 MSGTMP0, MSGTMP3 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 

 sha256msg1 MSGTMP2, MSGTMP3 

 

As seen in the SHA-1 implementation, starting at round 16 the code takes on 

a repeating pattern through rounds 48 through 51. 

 
 movdqa  MSG, MSGTMP0 

  paddd   MSG, [SHA256CONSTANTS + 4*16] 

  sha256rnds2 STATE1, STATE0 

 movdqa  MSGTMP4, MSGTMP0 

 palignr  MSGTMP4, MSGTMP3, 4 

 paddd   MSGTMP1, MSGTMP4 

 sha256msg2 MSGTMP1, MSGTMP0 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 

 sha256msg1 MSGTMP3, MSGTMP0 

 

The code for the last 12 rounds (52 through 63) is the following: 
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 ;; Rounds 52-55 

 movdqa  MSG, MSGTMP1 

  paddd   MSG, [SHA256CONSTANTS + 13*16] 

  sha256rnds2 STATE1, STATE0 

 movdqa  MSGTMP4, MSGTMP1 

 palignr  MSGTMP4, MSGTMP0, 4 

 paddd   MSGTMP2, MSGTMP4 

 sha256msg2 MSGTMP2, MSGTMP1 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 

 

 ;; Rounds 56-59 

 movdqa  MSG, MSGTMP2 

  paddd   MSG, [SHA256CONSTANTS + 14*16] 

  sha256rnds2 STATE1, STATE0 

 movdqa  MSGTMP4, MSGTMP2 

 palignr  MSGTMP4, MSGTMP1, 4 

 paddd   MSGTMP3, MSGTMP4 

 sha256msg2 MSGTMP3, MSGTMP2 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 

 

 ;; Rounds 60-63 

 movdqa  MSG, MSGTMP3 

  paddd   MSG, [SHA256CONSTANTS + 15*16] 

  sha256rnds2 STATE1, STATE0 

  pshufd   MSG, MSG, 0x0E 

  sha256rnds2 STATE0, STATE1 

 

Finally the state variables are added with the previously saved values and the 

loop can either process a new block or return. 

  
 paddd  STATE0, ABEF_SAVE 

 paddd  STATE1, CDGH_SAVE 

Using C/C++ Compiler Intrinsics  
 

__m128i _mm_sha1msg1_epu32(__m128i, __m128i); 

__m128i _mm_sha1msg2_epu32(__m128i, __m128i); 

__m128i _mm_sha1rnds4_epu32(__m128i, __m128i, const int); 

__m128i _mm_sha1nexte_epu32(__m128i, __m128i); 

Table 4: SHA1 Instruction C/C++ Compiler Intrinsic Equivalent 
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__m128i _mm_sha256msg1_epu32(__m128i, __m128i); 

 

__m128i _mm_sha256msg2_epu32(__m128i, __m128i); 

 

__m128i _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i); 

 

Table 5: SHA256 Instruction C/C++ Compiler Intrinsic Equivalent 

The following provides a comparison of the usage of assembly versus 

intrinsics for the first four rounds of SHA-256: 

 

Assembly: 
;; Rounds 0-3 

movdqu  MSG, [DATA_PTR + 0*16] 

pshufb  MSG, SHUF_MASK 

movdqa  MSGTMP0, MSG 

 paddd  MSG, [SHA256CONSTANTS + 0*16] 

 sha256rnds2 STATE1, STATE0 

 pshufd   MSG, MSG, 0x0E 

 sha256rnds2 STATE0, STATE1 

 

Intrinsics: 
// Rounds 0-3 

msg     = _mm_loadu_si128((__m128i*) data); 

msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask); 

msg     = _mm_add_epi32(msgtmp0,  

                        _mm_set_epi64x(0xE9B5DBA5B5C0FBCFull, 

                                       0x71374491428A2F98ull)); 

   state1 = _mm_sha256rnds2_epu32(state1, state0, msg); 

   msg    = _mm_shuffle_epi32(msg, 0x0E); 

   state0 = _mm_sha256rnds2_epu32(state0, state1, msg); 

Conclusion 

SHA-1 and SHA-256 are two of the most common cryptographic algorithms in 

use today.  The Intel® SHA Extensions are designed to accelerate SHA-1 and 

SHA-256 processing.  Making use of the Intel® SHA Extensions on processors 

where available, is designed to provide a performance increase over current 

single buffer software implementations using general purpose instructions.  

This paper detailed the Intel® SHA Extensions and how to efficiently use the 

instructions when implementing SHA-1 and SHA-256. 
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