

Intel® SHA

Extensions

New Instructions

Supporting the Secure

Hash Algorithm on Intel®

Architecture Processors

 July 2013

White Paper

Sean Gulley

Vinodh Gopal

Kirk Yap

Wajdi Feghali

Jim Guilford

Gil Wolrich

IA Architects

Intel Corporation

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

2

Executive Summary

This paper provides an introduction to the family of new instructions that

support performance acceleration of the Secure Hash Algorithm (SHA) on

Intel® Architecture processors. There are seven new SSE based

instructions, four supporting SHA-1 and three for SHA-256. A detailed

description of the Intel® SHA Extensions and example code sequences to

fully process SHA-1 and SHA-256 blocks is provided.

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 3

Contents

Overview .. 4

Secure Hash Algorithm Introduction ... 4

Intel® SHA Extension Definitions .. 6

SHA-1 .. 6
SHA-256 ... 10

Using the Intel® SHA Extensions .. 13

SHA-1 .. 14
SHA-256 ... 17
Using C/C++ Compiler Intrinsics .. 19

Conclusion .. 20

Acknowledgements .. 21

References .. 21

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

4

Overview

The Secure Hash Algorithm (SHA) is a cryptographic hashing algorithm

specified by the National Institute of Standards and Technology (NIST) in the

Federal Information Processing Standards Publication 180 (FIPS PUB 180)[1].

The SHA family of algorithms is heavily employed in many of the most

common cryptographic applications today. Primary usages of SHA include

data integrity, message authentication, and digital signatures. One example

of the impact of SHA is every secure web session initiation includes SHA-1,

the latest protocols involve SHA-256 as well, and then the session data

transfers between client and server are also commonly protected by one of

the two algorithms. Given SHA-1 and SHA-256 make up the vast majority of

secure hashing usage cases, the Intel® SHA Extensions were designed to

support only those two algorithms (note SHA-224 is also implicitly supported

with the SHA-256 instructions).

A hashing algorithm processes an arbitrary length message and results in a

fixed length message digest. This is considered a one-way function, as the

original message cannot be determined with absolute certainty based on the

message digest. The Secure Hash Algorithm gets the name secure since it

was designed to make it computationally infeasible to find any message that

can be processed into a chosen message digest. Additionally, SHA is defined

as secure because one cannot find two distinct messages that result in the

same message digest. The security of the algorithms within the SHA family is

outside the scope of this paper.

The Intel® SHA Extensions are a family of seven Streaming SIMD Extensions

(SSE) based instructions that are used together to accelerate the

performance of processing SHA-1 and SHA-256 on Intel® Architecture

processors. Given the growing importance of SHA in our everyday computing

devices, the new instructions are designed to provide a needed boost of

performance to hashing a single buffer of data. The performance benefits will

not only help improve responsiveness and lower power consumption for a

given application, it may enable developers to adopt SHA in new applications

to protect data while delivering to their user experience goals. The

instructions are defined in a way that simplifies their mapping into the

algorithm processing flow of most software libraries, thus enabling easier

development.

Secure Hash Algorithm Introduction

The process of SHA to calculate the message digest has two phases. First is

the preprocessing of the message to pad it out to a 64 byte multiple with the

length of the message embedded in the last 8 bytes. The message is then

split into 64 byte blocks to be processed in the next phase. The second

phase is the hash computation, which has two main components itself. One

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 5

is the message schedule which takes the 64 byte block and expands it into

32-bit dwords to be processed per round, and the other is the absorption of a

given rounds message dword into the working variables. The Intel® SHA

Extensions only focus on the compute-intensive hash computation; a padding

discussion will not be included in this paper.

The message schedule calculation for SHA-1 is the following:
For i=0 to 79

 If (0 ≤ i ≤ 15)

Wi = Mi
Else

Wi = ROL1(Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16)

Where Wi is a 32-bit dword to be used in the ith round of the hash

computation and Mi is the ith 32-bit dword in the 64 byte message to be

hashed. ROL is a rotate left operation.

For SHA-256, the message schedule includes the σ functions, which use the

ROR (rotate right) and SHR (shift right) operations:
For i=0 to 63

 If (0 ≤ i ≤ 15)

Wi = Mi
Else

Wi = σ1(Wi-2) + Wi-7 + σ0(Wi-15) + Wi-16

Where σ0(W) is ROR7(W) XOR ROR18(W) XOR SHR3(W) and σ1(W) is

ROR17(W) XOR ROR19(W) XOR SHR10(W).

The rounds function for SHA-1 is the following:
For i=0 to 79

 T = ROL5(A) + fi(B, C, D) + E + Ki + Wi

 E = D

 D = C

 C = ROL30(B)

 B = A

 A = T

Where A, B, C, D, and E are the five 32-bit working variables, K is one of four

constant values (based on rounds 0-19, 20-39, 40-59, and 60-79), and f is

one of four functions based on the same rounds intervals as K.

The rounds function for SHA-256 is the following:
For i=0 to 63

 T1 = H + Σ1(E) + Ch(E,F,G) + Ki + Wi
T2 = Σ0(A) + Maj(A,B,C)

H = G

G = F

F = E

E = D + T1

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

6

D = C

C = B

B = A

A = T1 + T2

Where A, B, C, D, E, F, G, and H are the eight 32-bit working variables, K is

one of 64 constant values, and Σ1(), Σ0(), Ch(), and Maj() are logical

functions.

Intel® SHA Extension Definitions

The Intel® SHA Extensions are comprised of four SHA-1 and three SHA-256

instructions. There are two message schedule helper instructions each, a

rounds instruction each, and an extra rounds related helper for SHA-1. All

instructions are 128-bit SSE based, which use XMM registers. The SHA

instructions are non-SIMD although they are defined with XMM width

operands, whereas all the other supporting SSE instructions (e.g. ADD, XOR,

AND) use dword sized lanes.

Table 1: Intel® SHA Extensions Definitions (rw – Read/Write, r – Read Only)

SHA-1

To aid with the message schedule component of SHA-1, there are two

instructions called sha1msg1 and sha1msg2. The first instruction, sha1msg1,

is intended to accelerate the Wt-14 XOR Wt-16 portion of the message schedule

calculation. The second instruction, sha1msg2, is intended to accelerate Wt-3

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 7

XOR the previously calculated Wt-8 XOR Wt-14 XOR Wt-16 then do the rotate left

by 1 of the result to finalize the message schedule for four consecutive 32-bit

dwords (note Wt-8 is expected to be XOR’d with the result of sha1msg1 using

the pxor instruction).

Figure 1: SHA1MSG1 xmm1, xmm2/m128 (The grayed out words are unused)

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

8

Figure 2: SHA1MSG2 xmm1, xmm2/m128

The SHA-1 specification for the hash computation of a block of message data

is 80 rounds. The rounds instruction, sha1rnds4, performs four of these

rounds at once. The instruction was designed to be four rounds because four

of the five 32-bit SHA-1 working variables (A, B, C, and D) can be updated in

one 128-bit destination XMM register. The inputs to sha1rnds4 are the

working variables (A, B, C, and D), four 32-bit message dwords packed in a

single XMM, with the E working variable added to W0, and an immediate

value specifying which logic function (f()) and constant (K) to use for this

rounds processing.

W
12

 W
13

 W
14

 W
15

X
0

 X
1

 X
2

 X
3

XOR XOR XOR XOR

ROL ROL ROL ROL

SRC2

SRC1

W
16

 W
17

 W
18

 W
19

 DST

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 9

SHA1RNDS4 xmm1, xmm2/m128, imm8

IF (imm8[1:0] == 0)

 THEN f() ← f0(), K ← K0;

ELSE IF (imm8[1:0] == 1)

 THEN f()← f1(), K ← K1;

ELSE IF (imm8[1:0] == 2)

 THEN f()← f2(), K ← K2;

ELSE IF (imm8[1:0] == 3)

 THEN f()← f3(), K ← K3;

A0 ← SRC1[127:96];

B0 ← SRC1[95:64];

C0 ← SRC1[63:32];

D0 ← SRC1[31:0];

W0E ← SRC2[127:96];

W1 ← SRC2[95:64];

W2 ← SRC2[63:32];

W3 ← SRC2[31:0];

Table 2: SHA1RNDS4 Inputs

Rounds operation:
Round i = 0 operation:

A1 ← f(B0, C0, D0) + (A0 ROL 5) + W0E + K;

B1 ← A0;

C1 ← B0 ROL 30;

D1 ← C0;

E1 ← D0;

FOR i = 1 to 3

Ai+1 ← f(Bi, Ci, Di) + (Ai ROL 5) + Wi + Ei + K;

Bi+1 ← Ai;

Ci+1 ← Bi ROL 30;

Di+1 ← Ci;

Ei+1 ← Di;

ENDFOR

Rounds output:
DEST[127:96] ← A4;

DEST[95:64] ← B4;

DEST[63:32] ← C4;

DEST[31:0] ← D4;

Notice in the above rounds definition that the working variables are assigned

based on some form of the value of the adjacent variable a round earlier

(B=A, C=B ROL 30, D=C, and E=D). Looking at this from the perspective of

processing four rounds at once, the value of the fifth working variable, E,

becomes simply A rotated left 30 bits. This property of the specification lends

itself to an easy calculation of the variable E four rounds from the current

round. The sha1nexte instruction exists to do the simple rotate and then add

the result to one of the message dwords to be supplied to the sha1rnds4

instruction. The addition is necessary because with only two 128-bit XMM

registers available to supply the sha1rnds4 instruction and 9 32-bit values

required to do four rounds, one of the 32-bit values has to be absorbed

somewhere. Fortunately the SHA-1 specification adds the E variable with the

current round message dword as part of the function to set A. Therefore the

sha1nexte instruction handles the addition for the first of the four rounds to

be calculated in sha1rnds4.

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

10

Figure 3: SHA1NEXTE xmm1, xmm2/m128

SHA-256

To aid with the message schedule component of SHA-256, there are two

instructions called sha256msg1 and sha256msg2. The first instruction,

sha256msg1, calculates the σ0(Wt-15) + Wt-16 portion of the message schedule

calculation. The second instruction, sha256msg2, is intended to accelerate

σ1(Wt-2) + the previously calculated Wt-7 + σ0(Wt-15) + Wt-16 to finalize the

message schedule for four consecutive 32-bit dwords (note Wt-7 is expected

to be added to the result of sha256msg1 using the paddd instruction).

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 11

Figure 4: SHA256MSG1 xmm1, xmm2/m128

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

12

Figure 5: SHA256MSG2 xmm1, xmm2/m128

The SHA-256 specification for the hash computation of a block of message

data is 64 rounds. The rounds instruction, sha256rnds2, performs two of

these rounds at once. The instruction was designed to be two rounds to

simplify the assignment of the eight 32-bit working variables (A, B, C, D, E,

F, G, and H). The variables C, D, G, and H are stored in one 128-bit XMM

register and A, B, E, and F are stored in another XMM register. Once

sha256rnds2 is executed, the XMM register originally containing CDGH is

updated with the new ABEF values two round calculations later. The SHA-

256 specification is such that the values of CDGH after two rounds are the

original values of ABEF. This is a very simple property that the sha256rnds2

instruction makes use of, hence the non-obvious ordering of working

variables. The third input to sha256rnds2 is the message dwords (Wn) added

to the round constants (Kn). This W+K value must be in the architectural

XMM0 register, since the register is implicitly used by the instruction.

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 13

SHA256RNDS2 xmm1, xmm2/m128, <XMM0>

C0 ← SRC1[127:96];

D0 ← SRC1[95:64];

G0 ← SRC1[63:32];

H0 ← SRC1[31:0];

A0 ← SRC2[127:96];

B0 ← SRC2[95:64];

E0 ← SRC2[63:32];

F0 ← SRC2[31:0];

WK0 ← XMM0[31:0];

WK1 ← XMM0[63:32];

Table 3: SHA256RNDS2 Inputs

Rounds operation:

FOR i = 0 to 1

Ai+1 ← Ch(Ei,Fi,Gi) + Σ1(Ei) + WKi + Hi +Maj(Ai,Bi,Ci)+ Σ0(Ai);

Bi+1 ← Ai;

Ci+1 ← Bi;

Di+1 ← Ci;

Ei+1 ← Ch(Ei,Fi,Gi) + Σ1(Ei) + WKi + Hi + Di;

Fi+1 ← Ei;

Gi+1 ← Fi;

Hi+1 ← Gi;

ENDFOR

Rounds output:

DEST[127:96] ← A2;

DEST[95:64] ← B2;

DEST[63:32] ← E2;

DEST[31:0] ← F2;

Using the Intel® SHA Extensions

The Intel® SHA Extensions can be implemented using direct assembly or

through C/C++ intrinsics. The 16 byte aligned 128-bit memory location form

of the second source operand for each instruction is defined to make the

decoding of the instructions easier. The memory form is not really intended

to be used in the implementation of SHA using the extensions since

unnecessary overhead may be incurred. Availability of the Intel® SHA

Extensions on a particular processor can be determined by checking the SHA

CPUID bit in CPUID.(EAX=07H, ECX=0):EBX.SHA [bit 29]. The following C

function, using inline assembly, performs the CPUID check:

int CheckForIntelShaExtensions() {

 int a, b, c, d;

 // Look for CPUID.7.0.EBX[29]

 // EAX = 7, ECX = 0

 a = 7;

 c = 0;

 asm volatile ("cpuid"

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

14

 :"=a"(a), "=b"(b), "=c"(c), "=d"(d)

 :"a"(a), "c"(c)

);

 // Intel® SHA Extensions feature bit is EBX[29]

 return ((b >> 29) & 1);

}

The following sections will demonstrate how to use the family of extensions to

process a complete 64 byte block of data for SHA-1 and SHA-256.

SHA-1

SHA-1 requires 80 rounds of processing for every 64 byte block of data.

Therefore, sha1rnds4 needs to be executed 20 times for every block. The

most efficient way to implement SHA-1 is to do the message schedule

calculations while performing the rounds processing. The ideal scenario is to

be able to hide the entire message schedule processing under the latency of

the rounds functionality. In other words, the rounds processing is the critical

path and the latency of sha1rnds4 determines the performance of SHA-1

calculations.

The following will go through the main loop of processing a single 64 byte

block of data for SHA-1:

First, save the working variables, A through E, for addition at the end of the

loop. Note the working variables can be stored on the stack as opposed to

xmm registers with little to no performance penalty. This is helpful in 32-bit

applications.

 movdqa ABCD_SAVE, ABCD

 movdqa E_SAVE, E0

Now the rounds processing can begin with rounds 0 through 3. Since the first

16 dwords of the message schedule are the actual message data to be

hashed, the data needs to be read in from memory. Assume the value in

GPR “DATA_PTR” is a pointer to the input data buffer in memory. Once read,

the data typically needs to be byte shuffled to be in the proper byte order

required by the Intel® SHA Extensions.

 movdqu MSG0, [DATA_PTR + 0*16]

 pshufb MSG0, SHUF_MASK

The first four rounds do not require the sha1nexte instruction since the value

in the E register should already be the actual E value. Therefore the message

can be added directly to the register holding the E variable to be in the proper

form expected by sha1rnds4. Before consuming the ABCD state variables,

the value is stored in an alternate E variable register to be used in the next

four rounds. Note the 0 input to sha1rnds4 indicating this use of the rounds

instruction should process data as specified in the first 0-19 rounds. Every

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 15

twenty rounds (every five instances of sha1rnds4 in the loop) the immediate

value needs to be incremented.

 paddd E0, MSG0

 movdqa E1, ABCD

 sha1rnds4 ABCD, E0, 0

Now the next four rounds are ready to be processed. This time the

sha1nexte instruction will be used with the E1 register saved prior to the first

four rounds and the next four dwords of message data.

 movdqu MSG1, [DATA_PTR + 1*16]

 pshufb MSG1, SHUF_MASK

 sha1nexte E1, MSG1

 movdqa E0, ABCD

 sha1rnds4 ABCD, E1, 0

At this point MSG0 contains message dwords W0 through W3 and MSG1

contains W4 through W7. It is time to start using the SHA-1 message

schedule related instructions to help with calculating W16 through W19. MSG0

will be consumed and will contain the result of the calculation to achieve Wt-14

XOR Wt-16.

 sha1msg1 MSG0, MSG1

Rounds 8 through 11 can now be started, in a similar fashion to rounds 4

through 7. Note this time the E0 and E1 registers once again ping ponged

back to the same usage as in rounds 0 through 3.

 movdqu MSG2, [DATA_PTR + 2*16]

 pshufb MSG2, SHUF_MASK

 sha1nexte E0, MSG2

 movdqa E1, ABCD

 sha1rnds4 ABCD, E0, 0

For the message scheduling, MSG1 and MSG2 are used in the same fashion

as MSG0 and MSG1 in the previous four rounds. This pattern will continue by

using sha1msg1 with the previous four rounds message data and the

message data just consumed. The new addition to the message schedule

calculation is an xor. The xor of MSG0 and MSG2 is to bring the Wt-8 data

into the previous Wt-14 XOR Wt-16 calculation.

 sha1msg1 MSG1, MSG2

 pxor MSG0, MSG2

Rounds 12 through 15 are the last ones the message data needs to be read

in from memory. During these rounds is where the final member of the SHA-

1 family of instructions is used. The sha1msg2 instruction takes MSG0 and

MSG3 to complete the calculation of W16 through W19 to be used in the next

four rounds, 16 through 19.

 movdqu MSG3, [DATA_PTR + 3*16]

 pshufb MSG3, SHUF_MASK

 sha1nexte E1, MSG3

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

16

 movdqa E0, ABCD

 sha1msg2 MSG0, MSG3

 sha1rnds4 ABCD, E1, 0

 sha1msg1 MSG2, MSG3

 pxor MSG1, MSG3

The pattern seen in rounds 12 through 15, excluding the memory read,

continues up through rounds 64 to 67. Each time with the E variables ping

ponging back and forth and the four different MSG variables cycling through.

 sha1nexte E0, MSG0

 movdqa E1, ABCD

 sha1msg2 MSG1, MSG0

 sha1rnds4 ABCD, E0, 0

 sha1msg1 MSG3, MSG0

 pxor MSG2, MSG0

Since the message schedule is always ahead of the rounds calculation, the

final rounds (68 through 79) will require fewer instructions. Note the use of

the immediate 3 in the sha1rnds4 instruction usage to indicate being in the

last 20 rounds of processing (60-79).

 ;; Rounds 68-71

 sha1nexte E1, MSG1

 movdqa E0, ABCD

 sha1msg2 MSG2, MSG1

 sha1rnds4 ABCD, E1, 3

 pxor MSG3, MSG1

 ;; Rounds 72-75

 sha1nexte E0, MSG2

 movdqa E1, ABCD

 sha1msg2 MSG3, MSG2

 sha1rnds4 ABCD, E0, 3

 ;; Rounds 76-79

 sha1nexte E1, MSG3

 movdqa E0, ABCD

 sha1rnds4 ABCD, E1, 3

With the rounds processing complete, the final step is to add the saved

working variables with the current state of the working variables. The ABCD

addition is very straightforward. The addition of the current E variable is

much more interesting. Since E0 contains the value of A from round 75, it

needs to be rotated 30 prior to being added to the saved E value.

Fortunately we can make use of the sha1nexte instruction to do the rotate

and do the addition all at once.

sha1nexte E0, E_SAVE

paddd ABCD, ABCD_SAVE

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 17

This completes the block processing and now the code can loop back to

process another block or return with the final state.

SHA-256

The SHA-256 implementation is very similar to SHA-1. Some of the key

differences are SHA-256 has only 64 rounds, the constants need to be added

to the message data (it is not a part of the rounds instruction), and the

message schedule requires more instructions for calculation.

The following will go through the main loop of processing a single 64 byte

block of data for SHA-256:

The SHA-256 code starts the same way as SHA-1, by saving the working

variables A through H for addition at the end of the loop. Note prior to the

loop starting, the initial loading of the state variables is most likely not going

to be from contiguous memory locations given the non-consecutive nature of

the 32-bit variables in the 128-bit XMM registers. This is not a cause for

concern since the shuffle in and back out occurs only outside the main

processing loop, thereby becoming inconsequential in terms of performance.

 movdqa ABEF_SAVE, STATE0

 movdqa CDGH_SAVE, STATE1

Now the rounds processing can begin with rounds 0 through 3. The SHA-256

rounds instruction only processes two rounds at once; however, the code is

optimally organized in a sequence to process four rounds at time. The same

as with SHA-1, the initial 16 dwords of message data needs to be read in

from memory and byte shuffled. One big change is the message data always

needs to be stored in XMM0 for consumption by the rounds instruction.

Therefore we need temporary message registers to save the dwords for later

message schedule calculations. As mentioned, the constants defined in the

SHA-256 specification need to be added to the message prior to the rounds

instruction execution. Note the shuffle of MSG in between sha256rnds2 uses.

This is because only two message dwords are consumed per rounds instance

and there are four consecutive dwords in the 128-bit XMM0 register. One last

observation to make is the usage of STATE0 and STATE1 with the

sha256rnds2 instances. The two registers will ping pong back and forth

throughout the entire block processing loop. The CDGH state input is a

src/dest variable that becomes the new ABEF after the two rounds of

processing. The ABEF input is simply the CDGH state input for the next

sha256rnds2 execution due to the properties of the SHA-256 specification.

 movdqu MSG, [DATA_PTR + 0*16]

 pshufb MSG, SHUF_MASK

 movdqa MSGTMP0, MSG

 paddd MSG, [SHA256CONSTANTS + 0*16]

 sha256rnds2 STATE1, STATE0

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

18

The next four rounds follow the same pattern as the SHA-1 implementation.

The rounds code is similar to the first four rounds with the addition of the first

message schedule instruction instances. MSGTMP0 will be consumed and will

contain the result of the calculation to achieve σ0(Wt-15) + Wt-16.

 movdqu MSG, [DATA_PTR + 1*16]

 pshufb MSG, SHUF_MASK

 movdqa MSGTMP1, MSG

 paddd MSG, [SHA256CONSTANTS + 1*16]

 sha256rnds2 STATE1, STATE0

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

 sha256msg1 MSGTMP0, MSGTMP1

Rounds 8 through 11 look the same as the previous four rounds with the

exception of the register usage for the new message dwords. The rest of the

message schedule code takes shape with rounds 12 through 15. Since the

Wt-7 term is not nicely aligned, there has to be some shifting code to add the

value into the previous calculated σ0(Wt-15) + Wt-16 values. Once that term is

added in, the value is an input to the sha256msg2 instruction which finishes

the W16 through W19 calculation by adding in the σ1(Wt-2) term.

 movdqu MSG, [DATA_PTR + 3*16]

 pshufb MSG, SHUF_MASK

 movdqa MSGTMP3, MSG

 paddd MSG, [SHA256CONSTANTS + 3*16]

 sha256rnds2 STATE1, STATE0

 movdqa MSGTMP4, MSGTMP3

 palignr MSGTMP4, MSGTMP2, 4

 paddd MSGTMP0, MSGTMP4

 sha256msg2 MSGTMP0, MSGTMP3

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

 sha256msg1 MSGTMP2, MSGTMP3

As seen in the SHA-1 implementation, starting at round 16 the code takes on

a repeating pattern through rounds 48 through 51.

 movdqa MSG, MSGTMP0

 paddd MSG, [SHA256CONSTANTS + 4*16]

 sha256rnds2 STATE1, STATE0

 movdqa MSGTMP4, MSGTMP0

 palignr MSGTMP4, MSGTMP3, 4

 paddd MSGTMP1, MSGTMP4

 sha256msg2 MSGTMP1, MSGTMP0

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

 sha256msg1 MSGTMP3, MSGTMP0

The code for the last 12 rounds (52 through 63) is the following:

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 19

 ;; Rounds 52-55

 movdqa MSG, MSGTMP1

 paddd MSG, [SHA256CONSTANTS + 13*16]

 sha256rnds2 STATE1, STATE0

 movdqa MSGTMP4, MSGTMP1

 palignr MSGTMP4, MSGTMP0, 4

 paddd MSGTMP2, MSGTMP4

 sha256msg2 MSGTMP2, MSGTMP1

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

 ;; Rounds 56-59

 movdqa MSG, MSGTMP2

 paddd MSG, [SHA256CONSTANTS + 14*16]

 sha256rnds2 STATE1, STATE0

 movdqa MSGTMP4, MSGTMP2

 palignr MSGTMP4, MSGTMP1, 4

 paddd MSGTMP3, MSGTMP4

 sha256msg2 MSGTMP3, MSGTMP2

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

 ;; Rounds 60-63

 movdqa MSG, MSGTMP3

 paddd MSG, [SHA256CONSTANTS + 15*16]

 sha256rnds2 STATE1, STATE0

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

Finally the state variables are added with the previously saved values and the

loop can either process a new block or return.

 paddd STATE0, ABEF_SAVE

 paddd STATE1, CDGH_SAVE

Using C/C++ Compiler Intrinsics

__m128i _mm_sha1msg1_epu32(__m128i, __m128i);

__m128i _mm_sha1msg2_epu32(__m128i, __m128i);

__m128i _mm_sha1rnds4_epu32(__m128i, __m128i, const int);

__m128i _mm_sha1nexte_epu32(__m128i, __m128i);

Table 4: SHA1 Instruction C/C++ Compiler Intrinsic Equivalent

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

20

__m128i _mm_sha256msg1_epu32(__m128i, __m128i);

__m128i _mm_sha256msg2_epu32(__m128i, __m128i);

__m128i _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i);

Table 5: SHA256 Instruction C/C++ Compiler Intrinsic Equivalent

The following provides a comparison of the usage of assembly versus

intrinsics for the first four rounds of SHA-256:

Assembly:
;; Rounds 0-3

movdqu MSG, [DATA_PTR + 0*16]

pshufb MSG, SHUF_MASK

movdqa MSGTMP0, MSG

 paddd MSG, [SHA256CONSTANTS + 0*16]

 sha256rnds2 STATE1, STATE0

 pshufd MSG, MSG, 0x0E

 sha256rnds2 STATE0, STATE1

Intrinsics:
// Rounds 0-3

msg = _mm_loadu_si128((__m128i*) data);

msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask);

msg = _mm_add_epi32(msgtmp0,

 _mm_set_epi64x(0xE9B5DBA5B5C0FBCFull,

 0x71374491428A2F98ull));

 state1 = _mm_sha256rnds2_epu32(state1, state0, msg);

 msg = _mm_shuffle_epi32(msg, 0x0E);

 state0 = _mm_sha256rnds2_epu32(state0, state1, msg);

Conclusion

SHA-1 and SHA-256 are two of the most common cryptographic algorithms in

use today. The Intel® SHA Extensions are designed to accelerate SHA-1 and

SHA-256 processing. Making use of the Intel® SHA Extensions on processors

where available, is designed to provide a performance increase over current

single buffer software implementations using general purpose instructions.

This paper detailed the Intel® SHA Extensions and how to efficiently use the

instructions when implementing SHA-1 and SHA-256.

 Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

 21

Acknowledgements

We thank David Cote and Ray Askew for their substantial contributions to this

work.

References

[1] FIPS Pub 180-2 Secure Hash Standard

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

Authors

Sean Gulley, Vinodh Gopal, Kirk Yap, Wajdi Feghali, Jim Guilford,
and Gil Wolrich are IA Architects with the DCSG Group at Intel
Corporation.

Acronyms

IA Intel® Architecture

SHA Secure Hash Algorithm

SSE Streaming SIMD Extensions

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

Intel® SHA Extensions: New Instructions Supporting the
Secure Hash Algorithm on Intel® Architecture Processors

22

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S
PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD
INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,
ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT
OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR

WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request. Contact your local Intel sales office or your distributor to obtain the latest

specifications and before placing your product order. Copies of documents which have an order

number and are referenced in this document, or other Intel literature, may be obtained by calling 1-

800-548-4725, or go to: http://www.intel.com/design/literature.htm

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology

and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending

on the specific hardware and software you use. For more information including details on which

processors support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance

will vary depending on your hardware and software configurations. Consult with your system vendor

for more information.

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology

capability. Intel Turbo Boost Technology performance varies depending on hardware, software and

overall system configuration. Check with your PC manufacturer on whether your system delivers Intel

Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost.

Intel, Intel Turbo Boost Technology, Intel Hyper Threading Technology, Intel Xeon are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/technology/turboboost

