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ARTIFICIAL NEURAL N E T W O R K S IN TIME SERIES 
F O R E C A S T I N G : A COMPARATIVE ANALYSIS1 

HECTOR ALLENDE, CLAUDIO MORAGA AND RODRIGO SALAS 

Artificial neural networks (ANN) have received a great deal of attention in many fields 
of engineering and science. Inspired by the study of brain architecture, ANN represent 
a class of non-linear models capable of learning from data. ANN have been applied in 
many areas where statistical methods are traditionally employed. They have been used 
in pattern recognition, classification, prediction and process control. The purpose of this 
paper is to discuss ANN and compare them to non-linear time series models. We begin 
exploring recent developments in time series forecasting with particular emphasis on the 
use of non-linear models. Thereafter we include a review of recent results on the topic of 
ANN. The relevance of ANN models for the statistical methods is considered using time 
series prediction problems. Finally we construct asymptotic prediction intervals for ANN 
and show how to use prediction intervals to choose the number of nodes in the ANN. 

1. I N T R O D U C T I O N 

Artificial neural networks (ANN) have received a great deal of attention over the last 
years. They are being used in the areas of prediction and classification, areas where 
regression and other related statistical techniques have traditionally been used [13]. 

Forecasting in time series is a common problem. Using a statistical approach, 
Box and Jenkins [8] have developed the integrated autoregressive moving average 
(ARIMA) methodology for fitting a class of linear time series models. Statisticians 
in a number of ways have addressed the restriction of linearity in the Box-Jenkins 
approach. Robust versions of various ARIMA models have been developed. In 
addition, a large amount of literature on inherently non-linear time series models 
is available. The stochastic approach to non-linear time series outlined by [43] can 
not only fit non-linear models to time series data, but also provides measures of 
uncertainty in the estimated model parameters as well as forecasts generated by 
these models. It is the stochastic approach tha t again enables the specification of 
uncertainty in parameter estimates and forecasts. 

^ h i s research was supported in part by the Research Grant FONDECYT 1010101-7010101, 
in part by the Spanish State Secretary of the Ministry of Education, Culture and Sports (Grant 
SAB2000-0048) and by the Ministry of Education and Research of Germany (Grant CHL-99/023). 
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More recently, ANN have been studied as an alternative to these non-linear model-
driven approaches. Because of their characteristics, ANN belong to the data-driven 
approach, i. e. the analysis depends on the available data, with little a priori ratio­
nalization about relationships between variables and about the models. The process 
of constructing the relationships between the input and output variables is addressed 
by certain general-purpose 'learning' algorithms [16]. Some drawbacks of the practi­
cal use of ANN are the possibly long time consumed in the modeling process and the 
large amount of data required by the present ANN technology. Speed-up is being 
achieved due to the impressive progress in increasing the clock rate of present pro­
cessors. The demands on the number of observations remain however a hard open 
problem. One cause of both problems is the lack of a definite generic methodology 
that could be used to design a small structure. Most of the present methodologies 
use networks, with a large number of parameters ("weights"). This means lengthy 
computations to set their values and a requirement for many observations. Unfor­
tunately, in practice, model parameters must be estimated quickly and just a small 
amount of data are available. Moreover, part of the available data should be kept 
for the validation and for performance-evaluation procedures. 

This paper reviews recent developments in one important class of non-linear time 
series models, like the ANN's (model-free systems) and describe a methodology for 
the construction of prediction intervals which facilitates the estimation of forecast. 

In the next section we provide a very brief review of the linear and non-linear 
ARMA models and the optimal prediction. Section 3 contains an overview of ANN 
terminology and describes a methodology for neural model identification. The mul­
tilayer feedforward ANN described can be conceptualized as a means of fitting a 
highly non-linear regression and time series prediction problem. In Section 4 we 
use the results of [24] to construct confidence intervals and prediction intervals in 
non-linear time series. 

2. TIME SERIES ANALYSIS 

2.1. Linear models 

The statistical approach to forecasting involves the construction of stochastic mod­
els to predict the value of an observation xt using previous observations. This is 
often accomplished using linear stochastic difference equation models, with random 
input. By far, the most important class of such models is the linear autoregressive 
integrate moving average (ARIMA) model. Here we provide a very brief review 
of the linear ARIMA-models and optimal prediction for these models. A more 
comprehensive treatment may be found for example in [8]. The seasonal ARIMA 
(p, d, q) x (P,D,Q)S model for such time series is represented by 

$P(BS) <f>p(B) V%Vdxt = SQ(BS) 6q(B) et (1) 

where (j)p(B) is the nonseasonal autoregressive operator of order p, 9q(B) is the 
nonseasonal moving average operator of order q, $p(Bs), QQ(BS) are the seasonal 
autoregressive and moving average operator of order P and Q and the terms xt and 
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et are the time series and a white noise respectively. Moreover it is assumed that 
E[et\xt~i,xt-2, • • •] = 0. This condition is satisfied for example when et are zero 
mean, independent and identically distributed and independent of past xts. It is 
assumed throughout that et has finite variance o1. The backshift operator B shifts 
the index of a time series observation backwards, e. g. Bxt = xt-\ and Bkxt = xt-k-
The order of the operator is selected by Akaike's information criterion (AIC) or by 
Bayes information criterion (BIC) [10] and the parameters $ i , . . . , <I>p, 0 i , . . . , </>p, 
0 i , . . . , 0 Q y 0 i , . . . , 6q are selected from the time series data using optimization 
methods such as maximum likelihood [8] or using robust methods such as recursive 
generalized maximum likelihood [2]. The ARMA-model is limited by the requirement 
of stationarity and invertibility of the time series, i. e. the system generating the 
time series must be time invariant and stable. In addition, the residuals must be 
independent and identically distributed [7]. 

The ARMA models require a stationary time series in order to be useful for 
forecasting. The condition for a series to be weak stationary is that for all t 

E[xt] = w V[xt] = ex2; COV[xuxt-k] = 7*- (2) 

Diagnostic checking of the overall ARMA models is done by the residuals. Several 
tests have been proposed, among them the most popular one seems to be the so-
called portmanteau test proposed by [27] and its robust version by [1]. These tests 
are based on a sum of squared correlations of the estimated residuals suitably scaled. 

2.2. Non-linear models 

Theory and practice are mostly concerned with linear methods and models, such 
as ARIMA models and exponential smoothing methods. However, many time series 
exhibit features which cannot be explained in a linear framework. For example some 
economic series show different properties when the economy is going into, rather than 
coming out of, recession. As a result, there has been increasing interest in non-linear 
models. 

Many types of non-linear models have been proposed in the literature, see for 
example bilinear models [40], classification and regression trees [9], threshold au-
toregressive models [43] and Projection Pursuit Regression [18]. The rewards from 
using non-linear models can occasionally be substantial. However, on the debit side, 
it is generally more difficult to compute forecasts more than one step ahead [25]. 

Another important class of non-linear models is that of non-linear ARMA models 
(NARMA) proposed by [14], which are generalizations of the linear ARMA models 
to the non-linear case. A NARMA model obeys the following equations: 

xt = h(xt-i,xt-2, •• .,xt-p,et-i,... ytt-q) + et (3) 

where h is an unknown smooth function, and as in Section 2.1 it is assumed that 
E[et\xt-i,xt-2, • • •] = 0 and that variance of et is cr2. In this case the conditional 
mean predictor based on the infinite past observation is 

xt = E[h(xt-i, Xt-2, • • •, xt-p, et-i,..., tt-q)\xt-i, Xt-2, • •.]- (4) 
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Suppose that the NARMA model is invertible in the sense that there exists a function 
v such that 

xt = v(xt-i,xt-2,...) + et. (5) 

Then given the infinite past of observations xt_i, xt-2,..., one can compute the et-j 
in (3) exactly: 

et-j = K(xt-j,xt-j-i,...), j = l , 2 , . . . , g . (6) 

In this case the mean estimate is 

xt = h(xt-i,xt-2, - • ,xt-p,et-i,... ,ct-q) (7) 

where the et-^ are specified in terms of present and past xu's. The predictor of (7) 
has a mean square error a1. 

Since we have only a finite observation record, we cannot compute (6) and (7). It 
seems reasonable to approximate the conditional mean predictor (7) by the recursive 
algorithm 

xt - h(xt-i,xt-2>... ,xt-p,et-i,... ,et-q) (8) 

et-j =xt-j -xt-jj = l , 2 , . . . , g (9) 

with the following initial conditions 

x0 = x-i = . . . = X-p+i = e0 = ... = e-q+i = 0. (10) 

For the special case of non-linear autoregressive model (NAR), it is easy to check 
that (3) is given by 

xt = / i (~t_i ,~ t_ 2 , . . . ,~i -p) + et. (11) 

In this case, the minimum mean square error (MSE) optimal predictor of xt given 
xt-i, Xt-2,- • • ? Xt~p is the conditional mean (for t > p + 1). 

xt = E[xt\xt-i,...,xt-p] = h(xt-i,...,xt-p). (12) 

This predictor has mean square error a2. 

3. ARTIFICIAL NEURAL NETWORKS 

The brain is an enormously complex system in which information is distributed 
processed by mutual dynamical interactions of neurons. It is still difficult and chal­
lenging, to understand the mechanisms of the brain. The importance and effec­
tiveness of brain-style computation has become a fundamental principle in the de­
velopment of neural networks. There are three different research areas concerning 
neural networks. One is the experimental based on physiology and molecular biol­
ogy. The second area is engineering applications of neural networks inspired by the 
brain-style computation where information is distributed as analog pattern signal, 
parallel computations are dominant and appropriate learning guarantees flexibility 
and robust computation. The third area is concerned with mathematical founda­
tions of neuro-computing, which searches for the fundamental principles of parallel 
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distributed information systems with learning capabilities. Statistics has a close re­
lation with the second application area of neuronal networks. This area has opened 
new practical methods of pattern recognition, time series analysis, image processing, 
etc. 

Artificial Neural Networks (ANN) provide statistics with tractable multivariate 
non-linear methods to be further studied. On the other hand statistical science 
provides one of the crucial methods for constructing theoretical foundations of neuro-
computing. 

From a statistical perspective ANN are interesting because of their use in vari­
ous kinds of problems, for example: prediction and classification. ANN have been 
used for a wide variety of applications, where statistical methods are traditionally 
employed. They have been used in classification problems as identifying underwater 
sonar contacts, and predicting heart problems of patients [4]. In time series appli­
cations they have been used in predicting stock market performance [23]. ANN are 
currently the preferred method in predicting protein secondary structures [17]. The 
statisticians would normally solve these problems through classical statistical models 
such as discriminant analysis, logistic regression, multiple regression and time series 
models such as ARIMA and forecasting methods. 

Nowadays one can recognize ANN as a potential tool for data analysis. Sev­
eral authors have done comparison studies between statistical methods and ANN 
(see e.g. [47] and [39]). These works tend to focus on performance comparisons 
and use specific problems as examples. ANN trained by error Backpropagation are 
examples of nonparametric regression estimators. In this paper we present the re­
lations between nonparametric inference and ANN, we use the statistical viewpoint 
to highlight strength and weakness of neural models. There is a number of good 
introductory articles on ANN located in various scientific journals. For instance, [26] 
provides an excellent overview of ANN for the signal processing community. There 
have also been papers relating ANN and statistical methods [36] and [37]. One of 
the best for a general overview for statisticians is [13]. 

3.1. Elements of artificial neural networks 

The three essential features of an artificial neural network (ANN) are the basic pro­
cessing elements referred to as neurons or nodes; the network architecture describing 
the connections between nodes; and the training algorithm used to find values of the 
network parameters for performing a particular task. 

An ANN consists of elementary processing elements (neurons), organized in lay­
ers (see Figure 1). The layers between the input and the output layers are called 
"hidden". The number of input units is determined by the application. The archi­
tecture or topology A\ of a network refers to the topological arrangement of the 
network connections. A class of neural models is specified by 

S\ = {g\(x,w),x e Mm,w eW}, W c W (13) 

where g\(x,w) is a non-linear function of x with w being its parameter vector, A is 
the number of hidden neurons and r is the number of free parameters determined 
by AXj i.e., T = p(A\). 
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Fig. 1. A multilayer feedforward ANN for approximating an unknown function cp(x) 

A class (or family) of neural models is a set of ANN models which share the same 
architecture and whose individual members are continuously parameterized by the 
vector w = (uq, i ^ , . . •, wT)

T. The elements of this vector are usually referred to as 
weights. For a single-hidden-layer architecture, the number of hidden units A indexes 
the different classes of ANN models (S\) since it is an unambiguous descriptor of 
the dimension r of the parameter vector (T = (m + 2) A + 1). 

Given the sample of observations, the task of neural learning is to construct an 
estimator g(x,w) of the unknown function <p(x) 

9\(x,w) = 72 ]TwJ 2 ] 7i ^wi/xi + PU. Í^.Л1UJ.U,Í11 . |+«л Jm+l,j 
(14) 

vi=- ^i=i 

where w = (uVi,uV2,... ,wT)
T is a parameter vector to be estimated, 7^ represent 

linearity or non-linearity and A is a control parameter (number of hidden units). An 
important factor in the specification of neural models is the choice of base functions 
7, which are known as 'activation' functions. They can be any non-linear function as 
long as they are continuous, bounded and differentiable. Typically 71 is a sigmoidal 
or the hyperbolic tangent, and 72 is a linear function. 

The estimated parameter w is obtained by minimizing iteratively a cost functional 
Ln(w) i.e. 

w = arg, mm{Ln(w) : w G W}, W C W (15) 

where Ln(w) is, for example, the ordinary mean square error function, i.e. 

1 n 

Ln(ш) = - Y\(УІ - 9\(XІ,Ш))2. 
(16) 

i=l 
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The loss function in equation (16) gives us a measure of the accuracy with which 
an estimator A\, fits the observed data but it does not account for the estimator's 
(model) complexity. Given a sufficient large number of free parameters, r = p(A\), 
a neural estimator A\, can fit the data with arbitrary accuracy. Thus, from the 
perspective of selecting between candidates, model expression (16) is an inadequate 
measure. The usual approach to the selection is the so-called discrimination ap­
proach, where the models are evaluated using a fitness criterion, which usually pe­
nalizes the in-sample performance of the model, as the complexity of the functional 
form increases and the degrees of freedom for error become less. Such criteria, com­
monly used in the context of regression analysis are: the R-Squared adjusted for 
degrees of freedom, Mallow's Cv criterion, Akaike's AIC criterion, etc. 

The basic requirement of any ANN training method is convergence of the per­
formance error to a locally unique minimum. By introducing the requirement that 
for any particular architecture A\ the network has to be trained to convergence, 
we perform a restricted search in the function space. From each class S\ we select 
only one member with its parameter estimated from equation (15). In this setting 
the actual training algorithm used, is irrelevant provided that it satisfies the conver­
gence requirement. The first step is to estimate the parameters w of the model by 
iteratively minimizing the empirical loss Ln(w) (see (16)). This stage must not be 
confused with model selection, which in this framework employs a different fitness 
criterion for selecting among fitted models. The second step is to compute the error 
Hessian An. (See Appendix A.) This is used to facilitate the test on convergence. 
The third step is intended to perform a test for convergence and uniqueness, ba­
sically by examining whether An has negative eigenvalues. The fourth step is to 
estimate the prediction risk P\ = E[L(wn)], which adjusts the empirical loss for 
complexity. The fifth step is to select a model by employing the minimum predic­
tion risk principle which expresses the trade-off between the generalization ability 
of the network and its complexity. However it has to be noted that since the search 
is restricted, the selected network is the best among the alternatives considered and 
it does not necessarily represent a global optimum. The final step involves testing 
the adequacy of the selected model. Satisfying those tests is a necessary but not 
sufficient condition for model adequacy. Failure to satisfy those tests indicates that 
either a different numbers of hidden units is needed or some relevant variables were 
omitted. 

3.2. Model-free forecast 

Artificial neural networks are essentially devices for non-parametric statistical in­
ference. From the statistical viewpoint, they have a simple interpretation: given a 
sample Dn = {(#i,2/i)}r=-i generated by an unknown function f(x) with the addition 
of a stochastic component e, i. e. 

yi = f(xi)+ei (17) 

the task of "neural learning" is to construct an estimator g(x,w) = f(x) of f(x), 
where w = (iLq,... ,wT)T is a set of free parameters (known as "connection weights" 
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in sub-section 3.1.). Since no a priori assumptions are made regarding the functional 
form of f(x), the neural model g(x,w) is a non-parametric estimator of the condi­
tional density -S[^/|x], as opposed to a parametric estimator where the functional 
form is assumed a priori, for example, in a linear model. 

A N N of non-linear autoregressive models (NAR) 

An ANN topology and dynamics define an approximator from input to output. 
The unknown function g : Km -» 5R produces the observed sample pattern pairs 
(^1, yi), (^25 2/2)3 • • • The sample data modify parameters in the neural estimator and 
bring the neural system input-output responses closer to the input-output responses 
of the unknown estimate g. In psychological terms, the neural system "learns from 
experience". In the neural estimator process, we do not ask the neural engineer to 
articulate, write down or guess the mathematical shape of the unknown function g. 
This is why we call the ANN estimation model-free. 

A central problem of non-linear autoregressive models (NAR) is to construct a 
function, h : !RP —> 5R in a dynamical system with the form 

xt = h(xt-i,xt-2,...,xt-p) (18) 

or possibly involving a mixture of chaos and randomness xt = h(xt-i,xt-2,... ,xt—p) 
+et in which h is an unknown smooth function and et denotes noise. Similar to Sec­
tion 2.1 we assume that E[et\xt-i,xt-2, ...]-=- 0, and that et has finite variance a2. 
Under these conditions the MSE optimal predictor of xt, given xt-i,xt-2,... ,xt—p 

is as shown in equation (12). 
Feedforward ANN were proposed as a NAR model for time series prediction 

by [14]. A feedforward ANN provides a non-linear approximation to h given by 

xt =h(xt-uxt-2,...,xt-p) =Y^wf]li [Ylw[$Xt-i+wpliJ ) (19) 
j=i \ t = l / 

where the function 7i(-) is a smooth bounded monotic function. (19) is similar to 
equation (14), where 71 is a sigmoide, 72 is the identity function and the output 
node has no bias. 

The parameters Wj J and w\j are estimated from a training and estimate h of h. 
Estimates are obtained by minimizing the sum of the squared residuals, similar to 
(15). This is done for example by a gradient descent procedure known as "Backprop-
agation", by Super Self-Adapting Backpropagation or by a second-order method for 
learning (see [16]). 

4. PREDICTION INTERVALS FOR ANN 

A theoretical problem of the ANN is the unidentifiability of the parameters. That 
is, there are two sets of parameters such that the corresponding distributions (x, y) 
are identical. In this section we concentrate on the case of only one hidden layer. 
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Further, we assume a nonparametric statistical model that relates y and g(x,w) as 
follows: 

y = g(x,w) + £ (20) 

where the random component e has a normal distribution with mean zero and vari­
ance o~2. The function g(x,w) is a non-linear function such as (13). 

The network is trained on the dataset Dn = {(x^yi)}1^ ; that is, these data 
are used to predict the future output at a new input xn+\ by yn+i = g(xn+llw). 
We assume that for every 1 < i < n + 1, (14) and (20) are satisfied, that is, 
y% = g(%i,w) +£i? where yn+\ is the unobservable random variable that is the target 
of prediction. Further, we assume that the x^s are independent of the _Vs and the 
(x,Si), 1 < i < n -f 1 are independent identically distributed (i.i.d.). Our aim in 
this section is to construct prediction intervals for yn+i and confidence intervals for 
g(%n+iiUL), the conditional expectation of yn+\ given xn+1. 

To discuss the identifiability (or rather the unidentifiability) of parameters, we 
first discuss two concepts (as in [41]). We say that an ANN (with a fixed set of 
parameters) is "redundant" if there exists another ANN with fewer neurons that 
represents exactly the same relationship function g(-,w). A formal definition of the 
reducibility of w, can be found in [41]. 

Definition 4 .1 . For 71 chosen as a sigmoidal function and 72 a linear function 

w is called "reducible" if one of following three cases holds for j ^ 0, (a) ur- = 0 

for some j = 1 , . . . , A; (b) w}j J = (w^J,..., w^-) = 0 for some j = 1 , . . . , A; or (c) 

[W 
[1] ,„[1] ч _ л„[H ,„[1] (__] j^m+i /) f° r s o m e 3 ¥" h where 0 denotes the zero vector of 

the appropriate size. 
If w is reducible and 71 is a sigmoidal function, then the corresponding ANN 

relative to (20) is obviously redundant. On the other hand, an irreducible w may 
not always lead to a nonredundant ANN. [41] proved that if the class of functions 
{71 (bx + bo),b > 0} U {71 __ 1} is linearly independent then the irreducibility of w 
implies that the corresponding ANN is nonredundant. 

In general note that every ANN is unidentifiable. However [24] showed that 
ANN's with certain activation functions, leave the distribution of y invariant up to 
certain family 9 of transformations of w. That is, if there exist another w* such that 
g(',U?) = g(•>:__)• then there is a transformation generated by 9 that transforms w* 
to w. Further under the assumption that 71 is continuously differentiable, the matrix 

S = E[W^g(x,w)V^g(x,w)T} (21) 

is non-singular. 

In this section we construct confidence intervals and prediction intervals based 
on an ANN and show these to be asymptotically valid using the results. 

From [41], [24], we first assume that the number of neurons A is known. Specifi­
cally we assume that our observations (x^yi), 1 < i < n satisfy (20), that is 

Vi = g(Xi,w)+£i. (22) 
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Furthermore, let y n + i denote a future unknown observation that satisfies 

Vn+\ - flfen+l, W) + £n+l • (23) 

We then construct a prediction interval for yn+i and a confidence interval for 
g(xn+i,w), the conditional mean of y n + i given x n + 1 . 

Before doing so, we state general results about an invariant statistic, where g(-,w) 
may or may not correspond to an ANN. We write the parameter space TV, a subset 
of 5Rr, as the union of IV;'s where IV; may or may not be disjoint. We assume that 
there exist differentiable functions T;, 1 < i < A, that map W\ onto W{ that is, 

Ti(W1) = Wi. (24) 

Let WJQ G W denote the true parameter and let w0
 J be the point in W\ that corre­

sponds to w0. Assume that w}1* is a consistent estimator for w^J based on a sample 
size n and 

^{w{l) -mi1]) ~ N^^viwi^)) (25) 
where a2 is a scale parameter that can be estimated consistently by an estimator 

a2 and V(w0 ' J is a square matrix (see [16]), Let w be an arbitrary estimator that 

takes value from {ur1',... ,UL } where w}1' = T^ur1'). This is to say that for every 
n and every dataset, there exists an i such that w0 = w . A real-valued function 
l(w) is said to be invariant with respect to all the transformations T{ if 

l(w) = l(Ti(w)) for every i. (20) 

One can show that the asymptotic variance of an invariant statistic is also invariant 
as stated in the following result (see [24]). Assume that l(w) is differentiable and 
invariant. Then as n —> oo, \/n[/(Ao) — K^lo)] converges to a normal with mean zero 
and variance v2(w0), where v2(w0) = o"2[V/(t^)TV(iU0)V/(w;0)]. Furthermore, the 
function v2(w0) is invariant with respect to all of the transformations T{. 

Under additional continuity assumptions it can be proved that the asymptotic 
variance can be estimated consistently by o-2[V/(^^)TV(^^)V/(^^)], which again 
by invariance equals 

^[VlimofVi^Vliuu,)} (27) 

therefore if Vl(w) and V(w) are both continuous in w, then (27) is a consistent 
estimator for the asymptotic variance of ^/n[l(w0) — 1(WQ)]. 

Returning to the neural network problem, we now apply the last results to model 
(20) and we assume that the true value w0 of w is irreducible. We may make this 
assumption without loss of generality, because otherwise the neural network is redun­
dant and we may drop one neuron without changing the input-output relationship 
at all. We may continue this process until a nonredundant network is obtained. This 
corresponds to an irreducible w^. 

Assume that IV, the parameter space, is a compact set. Furthermore, make the 
following assumptions: 
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i) Si are i.i.d. with mean zero and variance a2, and e^s are statistically indepen­
dent of Xi's. 

ii) Xi are i.i.d, samples from an unknown distribution F(x) whose support is 3Jm. 

iii) 71 in (14) is a sigmoidal function with continuous second-order derivative. Let 
j[ denote its derivative. Furthermore the class of functions {71 (bx + bO),b > 
0}U{j[(bx+bO),b > 0}U{xj[(bx+bO),b > 0}U{7i = 1} is linearly independent. 

iv) 72 in (14) is a linear function. 

v) w0 is an interior point of W. 

Let w be a global minimizer of $^ l
=1 (yi - g(Xi,w)j , which exists by the com­

pactness of W and continuity of g. Then 

0(£n+l > ™) ± ^(1-a/2);[n-(m+2)A-l]^V /5 '(^) (28) 

is a confidence interval for g(xn+1,w) with asymptotic coverage probability 1 — a. 
Here £(i-a/2);[n-(m+2)A-i] denotes the 1 — a/2 quantile of a t-Student distribution 
with [n — (m + 2) A — 1] degrees of freedom, 

[n-imlvx-l]^-9^^2 
L v J 2 = 1 

S(w) = -{\vMLg(xn+l,w)\I É-1(tó))fv.^(sn+1>ta)l . } (30) 
Ti y. L J w=w L J w=w J 

02 = г- ^ , oм n Л > - s f e , Й)]2 (29) 

and 

where 
n 1 

S(w) = ~{Y\ \Vw9(3Li,w)Vwg(Xi,w)T\ }. (31) 
n l z —' L — — J w=w J 

i=l 

Furthermore, assume that e n + i is normally distributed. Then 

Iw(yn+l) = 9(xn+1,w) ± ^(l_a/2);[n-(m+2)A-l]^V/l + 5(A) (32) 

is an asymptotic prediction interval for yn+i] that is, 

Pr[yn+1 G Ul/n+l)] -> 1 - a (33) 

the proof of these results are given in [24]. 
A practical problem that occurs in many applications of ANN's is how to choose 

the network structure. When restricted to feedforward networks with only one hid­
den layer, this problem becomes how to choose the number of hidden neurons. One 
possible approach, which can be called the "prediction interval approach", is to 
choose the number of nodes so that the prediction interval has coverage probability 
close to the nominal level (e. g. 95 % or 90 %) and has the shortest expected length. 
Because both quantities are unknown, they should be estimated. ' The delete-one 
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jackknife for the coverage probability could be used. Specifically, this involves delet­
ing a pair (x^iji) and using the rest of data together with Xi to construct a prediction 
interval for \ji. By letting i vary, we have n intervals. The coverage probability can 
then be estimated by counting the proportion of times the intervals cover y.[. One 
could also calculate the average length of n intervals and use it to estimate the ex­
pected length. Another possible approach, which can be called the "prediction error 
approach", is to choose the number of nodes to minimize the jackknife estimate of 
the prediction error. 

Finally other possible approaches are bootstrap methods, or so-called "resam­
pling techniques" that permit rather accurate estimate of finite sample distributions 
for Wn when {(xi,yi)}il

=1 is a sequence of independent identically distributed (i.i.d.) 
random variables. The basic idea is to draw a large number N of random samples of 
size n with replacement from {fe-I/i)}^--i- calculate wn for each of the N samples, 
say Wjl ; i = 1,2,...,1V, and use the resulting empirical distribution of the estimates 
wn

l\ as an estimate of the sampling distribution of wn. The bootstrap methods arc 
not recommended, because computationally they are too time-consuming. Resam­
pling techniques arc beyond the scope of this paper. 

5. APPLICATION TO DATA 

In this section the ANN will be applied to two examples, the first one is the well-
known 'airline' data and next we will deal with the 'RESEX' data. Both time 
series are monthly observations and have been analyzed by many scientists and are 
a baseline to compare different models. 

The results reported in this paper were computed by separating each set of data 
in two subsets, were the first n monthly observations (data), corresponding from 
time 1 to time T, called samples or training set were used to fit the model and then 
use the last 12, called test set, corresponding from time T + 1 to T-f-12, to make the 
forecast. The data used to fit the model are also used for the training of the neural 
network, this data were re-escaled in the interval [—1,1]. The NN used to model the 
data and then used to forecast is a feedforward with one hidden layer and a bias in 
the hidden and output layer. The number of neurons m in the input layer is the same 
as the number of lags needed, these neurons do not perform any processing, they just 
distribute the input values to the hidden layer, they serve as a sense layer. In the I 
hidden layer different number of neurons are used to choose the best architecture, 
the activation function used is the sigmoidal function ji(z) = Y+P~- One neuron 
is used in the output corresponding to the forecast, and it uses a linear activation 
function to obtain values in the real space. The forecasts were obtained using the 
data available (samples), one-step forecast a time. The sample corresponding to the 
recent forecast is included for the next forecast. The model parameters were not 
re-estimated at each step when computing the forecasts. 

The weights (parameters) to be used in the NN model are estimated from the I 
data by minimizing the mean squared error mse = n * ~2i(yi ~ #fe? w))2 °f the | 
within-sample one-step-ahead forecast errors, where neffective denotes the number of I 
effective observations used in fitting the model, because some data may be lost by 
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differentiating. To train the network a backpropagation algorithm with momentum 
was used, which is an enhancement of the backpropagation algorithm. The network 
'learns' by comparing the actual network output and the target; then it updates 
its weights by computing the first derivatives of the objective function, and uses 
momentum to avoid local minima. 

The statistics computed for each model were the following: 

— S = zCi(e*)25 the sum of squared residuals up to time T, where e; = yi — 
g(xi,w) are the residuals, and g(x^w) is the output of the NN and yi is the 
target (training set). 

— The estimate of the residual standard deviation: a = */ where r = 
V ^effective— T 

(m + 2)A + 1 is the number of parameters. 

— The Akaike information criterion (AIC): AIC = neffective -noneffective) + ^r 

— The Bayesian information criterion (BIC): BIC =- neffective -n(S/neffective) + 
T + T Ineffective) 

— Spre is the sum of squares of one-step-ahead forecast errors of the test set. 

To choose the architecture of the model that best fits the data, one can use the 
residual sum of squares, 5, but the larger the model is made (more neurons), the 
smaller becomes S and the residual standard deviation, and the model gets more 
complicated. Instead BIC and AIC as minimization criteria are used for choosing 
a 'best' model from candidates models having different number of parameters. In 
both criteria, the first term measures the fit and the rest is a penalty term to prevent 
overfitting, where BIC penalizes more severely the extra parameter than AIC does. 
Overfitting of the model is not wanted, because it produces a very poor forecast, 
giving another reason to choose AIC and BIC over S to select the best model. The 
lower value obtained by this criterion, the better is the model. 

To identify different classes of neural models as expressed by equation (13), fol­
lowing notation NN(ji , . . . , j ^ ; A) was used, which denotes a neural network with 
inputs at lags j i , . . . ,jk and with A neurons in the hidden layer. 

5.1. Artificial neural network for the airline data 

In this section we show an example of the well-known airline data, listed by Box et 
al [8], series G, and earlier by Brown [11] (see Figure 2). The data of this series have 
an upward trend, a seasonal variation called multiplicative seasonality. The airline 
data comprises monthly totals of international airline passengers from January 1949 
to December 1960. 

The airline data was modeled by a special type of seasonal autoregressive inte­
grated moving average model (ARIMA), of order (0,1,1) x (0,1, l ) i 2 as described in 
Section 2.1 which has the form (1 - J512)(l - B)xt = (1- &iB12)(l - exB)at, after 
some operations the following equation is obtained, xt = xt-i + xt-12 - xt-13 + at-
0iat-i — &iat-i2 + 0iOiat-iz, taking care of using the appropriate transformation 
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to make the seasonality additive, in this case natural logarithm is taken over the 
data. 

We will use an ANN to fit and forecast the airline data, because of the non-
linearity property of the NN models; this will allow us to deal with the multiplicative 
seasonality. 

Choosing the architecture 

Different neural network architectures were evaluated with the statistics described 
in Section 5, the best model using AIC and BIC is NN(1,12,13; 1), having the best 
forecast with a minimum 5p r ed (see Table 1), so the NN(1,12,13; 1) model was 
selected for ^further results. Using the Box-Jenkins airline model one can try to use 
the proposed lags, i.e. (xt_i,xt_i2,Xt_i3), as the input to the neural network and 
then see its performance. 

Table 1. Results obtained for the NN model chosen for the airline data. 

Lags Л т 5 desv AIC BIC •^pred AIC 

prediction 

BIC 

prediction 

1,12,13 1 6 0.2583 0.0478 -715.8 -695.1 0.1556 -40.1 -31.2 

Forecasting and prediction intervals 

After selecting the model, it is used to forecast the rest of the data (test data) 
using one-step-ahead forecast. The result is shown in Table 2 and it is represented! 
in Figure 2. By using equation (29) to (32) the asymptotic prediction interval is' 
calculated for each one-step forecast. The prediction interval computed for a = 0.05J 
and a = 0.10 is shown in Figure 3 respectively, and the values obtained are shown, 
in Table 2. 

Table 2. Prédiction of the NN, for the airline data. 

Month Target Prediction a = 0.05 Prediction a = 0.10 
133 417 428.9431 ± 26.9128 428.9431 ± 21.3724 
134 391 398.4319 ± 26.9475 398.4319 ± 21.3999 
135 419 461.1852 ± 26.8404 461.1852 ± 21.3152 
136 461 417.7294 ± 28.4284 417.7294 ± 22.5760 
137 472 482.4761 ± 29.9372 482.4761 ± 23.7742 
138 535 517.8650 ± 29.8691 517.8650 ± 23.7202 
139 622 573.9760 ± 29.9452 573.9760 ± 23.7806 
140 606 581.7285 ± 31.6975 581.7285 ± 25.1721 
141 508 598.4535 ± 32.0805 498.4535 ± 25.4763 
142 461 450.3307 ± 32.0715 450.3307 ± 25.4692 
143 390 414.2488 ± 32.0719 414.2488 ± 25.4695 
144 432 442.6636 ± 32.3828 442.6636 ± 25.7163 
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F ig. 3 . Asymptotic prediction interval for the Airline data with a = 0.05 (left) and 
a = 0.10 (right). 

5.2 . Artif ic ial N e u r a l N e t w o r k for t h e R E S E X d a t a 

In this section the procedure is applied to the Residence Telephone Extensions 
Inward Movement (Bell Canada) known as RESEX data. The chosen series is a 
monthly series of "inward movement" of residential telephone extensions of a fixed 
geographic area in Canada from January 1966 to May 1973, a total of 89 da ta points. 
This series has two extremely large values in November and December 1972 as it is 
shown in Figure 2. The two obvious outliers have a known cause, namely a bargain 
month (November) in which residence extensions could be requested free of charge. 
Most of the orders were filled during December, with the remainder being filled in 
January. 

Brubacher (1974) identified the stationary series as an ARIMA (2,0,0) x (0 ,1 ,0 ) i 2 

model, i. e., the RESEX da ta is represented by an AR(2) model after differentiating. 
As described in 2.1 it has the form (1 — (f)\B — </>2JE?2)(1 — B12)xt = at and after some 
operations xt = (j)\xt-i + $2X1-2 + xt-12 - (/>\xt-i3 - faxt-u + at-
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Choosing the Architecture 

Different architectures were tested, and the best result is obtained by NN(1,2,12,13, 
14; 1) (see Table 3), the NN using the lags of the ARIMA model. So this model was 
chosen for further results. 

Table 3. Results obtained for the NN model chosen for the RESEX data. 

Lags Л т 5 desv AIC BIC •^pred AIC 

pгediction 

BIC 

prediction 

1,2,12,13,14 * 1 8 0.6876 0.1118 -268.6 -243.5 25.6 25.1 37.0 

Forecasting and prediction intervals 

After selecting the model, it is used to forecast the rest of the data (test data) using 
one-step-ahead-forecast. The result is shown in Table 4, and it is represented in 
Figure 2. 
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Fig. 4. Asymptotic prediction interval for the RESEX data with a = 0.05 (left) and 
a = 0.10 (right). 

By using equation (29) to (32) the asymptotic prediction interval is calculated for, 
each one-step forecast.The results are shown in Table 4 and in Figure 4 for a = 0.05, | 
and a = 0.10. Both graphics in Figure 4 have a prediction interval that is large, i 
because of the huge outliers presented, giving a poor forecast with a lot of error and I 
variance. But the NN model at least tried to follow the trend of the data in the 
outlier part. 
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T a b l e 4 . Prediction of t h e N N for the RESEX data. 

month Target prediction а = 0.05 prediction Q = 0.10 

78 24309 28360.2 ± 6171.8 28360.2 ± 4976.9 

79 24998 27717.7 ± 6616.9 27717.7 ± 5335.8 

80 25996 25508.0 ± 6786.7 25508.0 ± 5472.7 

81 27583 29374.2 ± 6718.8 29374.2 ± 5418.0 

82 22068 25364.3 ± 6757.6 25364.3 ± 5449.3 

83 75344 2 2 9 9 3 A ± 6997.7 22993.4 ± 5642.9 

84 47365 39153.2 ± 31888.5 39153.2 ± 25714.7 

85 18115 39670.5 ± 31993.2 39670.5 ± 25799.2 

86 15184 28882.0 ± 34279.9 28882.0 ± 27643.1 

87 19832 19117.6 ± 35184.9 19117.6 ± 28372.8 

88 27597 29709.1 ± 34676.1 29709.1 ± 27962.6 

89 34256 35221.7 ± 34300.1 35221.7 ± 27659.4 

6. CONCLUSIONS 

It is the premise of this paper that the learning methods in ANN are sophisticated 
statistical procedures and that tools developed for the study of statistical procedures 
generally do not only yield useful insights into the properties of specific learning pro­
cedures but also suggest valuable improvements in alternatives to and generalizations 
of existing learning procedures. 

Particularly applicable are asymptotic analytical methods that describe the be­
havior of statistics when the size n of the training set is large. At present, there 
is no easy answer to the question of how large "n" must be for the approximators 
described earlier to be "good". 

The advantage of the ANN technique proposed in this paper is that it provides 
a methodology for model-free approximation; i. e. the weighted vector estimation is 
independent of any model. It has liberated us from the procedures of the model-
based selection and the sample data assumptions. When the non-linear systems are 
still in the state of development, we can conclude that the ANN approach suggests 
a competitive and robust method for the system analysis, forecast and control. The 
ANN present is a superior technique in the modeling of another non-linear time series 
such as: bilinear models, threshold autorregressive models and regression trees. And 
the connections between forecasting, data compression, and neurocomputing shown 
in this paper seems very interesting in the time series analysis. 

To decide which architecture one may use to model some time series, first, it 
is possible to try traditional methods, by using a simple autocorrelation function, 
to find the kind of time series that we are dealing with, and indeed, the lags that 
are used as input in the NN. Second, to select the number of hidden neurons, we 
start with one and then we increase it until the performance evaluated by AIC and 
BIC becomes worse. Then, we train the network with the first data, and finally use 
the last data to forecast. Asymptotic predictions intervals are computed for each 
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one-step-ahead-forecast, to show the limits where the data is moving. 
The study of the stochastic convergence properties (consistency, limiting distri­

bution) of any proposed new learning procedure is strongly recommended, in order 
to determine what it is that the ANN eventually learns and under what specific con­
ditions. Derivation of the limiting distribution will generally reveal the statistical 
efficiency of the new procedure relative to existing procedures and may suggest mod­
ifications capable of improving statistical efficiency. Furthermore, the availability of 
the limiting distribution makes possible valid statistical inferences. Such inferences 
can be of great value in the research of the optimal network architectures in partic­
ular applications. A wealth of applicable theory is already available in the statistics, 
engineering, and system identification and optimization theory literature. 

It is also evident that the fields of statistics has much to gain from the neuro-
computing techniques. Analyzing neural network learning procedures pose a host 
of interesting theoretical and practical challenges for statistical methods; all is not 
cut and dried. Most important, however, neural network models provide a novel, 
elegant and rich class of mathematical statistical methods for data analysis. 

In spite of the robust forecast performance for ANN some problems remain to 
be solved. For example: (i) How many input nodes are required for a seasonal 
time series? (ii) How to treat the outlier data? (hi) How to avoid the problem of 
overfitting? (iv) How to find the (1 - a) % confidence interval for the forecast? (v) 
How to treat the missing data? 

In general the following conclusions and guidelines can be stated concerning the 
use of statistical methods and ANN: 

1. If the functional form linking inputs and output is unknown, only known to 
be extremely complex, or of no interest to the investigator, an analysis using 
ANN may be best. The availability of large training datasets and powerful 
computing facilities are requirements for this approach. 

2. If the underlying physics of the data generating process are to be incorporated 
into the analysis, a statistical approach may be the best. Generally, fewer pa­
rameters need to be estimated and the training datasets can be substantially 
smaller. Also, if measures of uncertainty are desired, either in parameter es­
timates or forecasts, a statistical analysis is mandatory. If the models fit to 
data are to be used to delve into the underlying mechanisms, and if measures 
of uncertainty are sought, a statistical approach can give more insight. In this 
sense, statistics provides more value added to a data analysis; it probably will 
require a higher level of effort to ascertain the best fitting model, but error in 
predictions, error in parameter estimate, and assessment of model adequacy 
are available in statistical analysis. In addition to providing measures of pa­
rameter and prediction uncertainty, statistical models inherently possess more 
structure than ANN do, which are often regarded as "black boxes". This struc­
ture is manifested as specification of a random component in statistical models. 
As such, statistical methods have more limited application. If a non-linear re­
lationship exists between inputs and outputs, then data of this complexity may 
best modeled by an ANN. A summary of these considerations can be found in 
Table 7. (See Appendix C.) 
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APPENDIX A: ASYMPTOTIC DISTRIBUTION OF wn 

Under certain mild regularity assumptions, it can be shown [24] that the asymptotic 
distribution of the standardized quantity y/n(w_n — W_Q) is zero mean multivariate 
normal with covariance matrix C = A~lBA~x where w_n is the estimated and w0 

the true parameter vector and 

A=E[VVr(x,w0)] and B = E[Vr(z,w0)Vr(z,w0)
r}. 

The matrices A and B are non-singular with V and VV denoting the (r x 1) gradient 
and (r x r) Hessian operator with respect to w (r is the number of network param­
eters). However, since the true parameters WQ are not known, the weakly consistent 
estimator C = A^BnA^1 of the covariance matrix C has been used instead, where 

n 

A = n~lYJWr(zuwn) (34) 
2 = 1 

n 

Bn = n~l Y_> Vr(zi,i_n)Vr(zu__n)
T (35) 

»=i 

r(zi,wn) = -\yi - g(xi\__n)f. (36) 
To 

This has no effect on the asymptotic distribution of the network's parameters, al­
though larger n will be needed to obtain an approximation as good as if C itself 
were available. The single most important assumption made is that w_n is a locally 
unique solution, i. e. none of its parameters can be expressed in terms of the others, 
or equivalently, the network is not overparameterized. This is reflected in the natural 
requirement that matrices A and B are non-singular. 

The fact that ^/n(wn — w^) ~ N(0,C) can be used to robustly estimate the 
standard error of any complex function of wn i.e. 9 = p(wn), without the need for 
an analytic derivation. By stochastically sampling from the distribution of w_n, we 
can inexpensively create a sufficient large number r of parameter vectors wn

s', where 
s = 1, 2 , . . . , r and then compute the estimate a A of the standard error as follows: 

where 

(r-l)-1^^)-^))2]2 (37) 
s = l -I 

0(0) = r-1 £ 0 » = r"1 _rp^n])- (38) 
5 = 1 S = l 

The scheme is independent of the functional p(-) and much less computationally 
demanding, compared to bootstrap for example, since the estimate wn has to be 
obtained only once (see [34]). 
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APPENDIX B: TIME SERIES DATA 

SERIES G: International Airline Passengers: monthly totals 
(Thousands of passengers). 

Tab le 5. Series G. 

JAN FEB MAR ABR MAY JUN JUL AUG SEP OCT NOV DEC 

1949 112 118 132 129 121 135 148 148 136 119 104 118 

1950 115 126 141 135 125 149 170 170 158 133 114 140 

1951 145 150 178 163 172 178 199 199 184 162 146 166 

1952 171 180 193 181 183 218 230 242 209 191 172 194 

1953 196 196 236 235 229 243 264 272 237 211 180 201 

1954 204 188 235 227 234 264 302 293 259 229 203 229 

1955 242 233 267 269 270 315 364 347 312 274 237 278 

1956 284 277 317 313 318 374 413 405 355 306 271 306 

1957 315 301 356 348 355 422 465 467 404 347 305 336 

1958 340 318 362 348 363 435 491 505 404 359 310 337 

1959 360 342 406 396 420 472 548 559 463 407 362 405 

1960 417 391 419 461 472 535 622 606 508 461 390 432 

RESEX: Residence Telephone Extensions inward Movement (Bell Canada). 

Tab le 6. RESEX. 

JAN FEB MAR ABR MAY JUN JUL AUG SEP OCT NOV DEC 

1966 10165 9279 10930 15876 16485 14075 14168 14535 15367 13396 12606 12932 

1967 10545 10120 11877 14752 16932 14123 14777 14943 16573 15548 15838 14159 

1968 12689 11791 12771 16952 21854 17028 16988 18797 18026 18045 16518 14425 

1969 13335 12395 15450 19092 22301 18260 19427 18974 20180 18395 15596 14778 

1970 13453 13086 14340 19714 20796 18183 17981 17706 20923 18380 17343 15416 

1971 12465 12442 15448 21402 25437 20814 22066 21528 24418 20853 20673 18746 

1972 15637 16074 18422 27326 32883 24309 24998 25996 27583 22068 75344 47365 

1973 18115 15184 19832 27597 34256 
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APPENDIX C: COMPARISON BETWEEN STATISTICAL METHODS (SM) 
AND ARTIFICIAL NEURAL NETWORKS (ANN) 

Table 7. Statistical analysis versus ANN. 

Characteristics " SM ANN 

Randomness Complex, non-linear 

General Variability Input /output relationships 

Structured Model Multiple Outputs. 

Single or few outputs 

Relatively small Massive training 

Data required Training datasets Datasets needed to estimate 

May require probability weights 

Distributions 

Model specifications Physical Law Models No process Knowledge required 

Linear discrimination Non-linear discrimination 

Goodness of fit Many possibilities Few possibilities 

Criterion Best fit can be tested Least squares 

No best fit test 

Parameter Relatively few iterative training Relatively many (weights) 

Estimator for non-linear; else noniterative Iterative training 

computer time Severe demands on computer time 

Calculate uncertainties for Response surfaces (splines) can 

parameter estimates and be multivariate vectors 

Outputs predicted values. No uncertainty computations 

Residual diagnostic can provide Minimal diagnostics 

physical insight 

Computer power Low High 

Required Parallel processing possible 

Trends Evolutionary techniques not yet 

used. 

Evolutionary design possible 
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