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A robust two-dimensional model for highly sediment-

laden unsteady flows of variable density over movable

beds

S. Martínez-Aranda, J. Murillo and P. García-Navarro
ABSTRACT
In this work, a novel 2D depth-integrated numerical model for highly sediment-laden shallow flows

over non-uniform erodible beds is presented, including variable density and exchange between the

bed layer and the water–sediment mixture flow. The system of equations is formed by the 2D

conservation equations for the mass and momentum of the mixture, the mass conservation equation

for the different sediment size-classes transported in the flow and the bed evolution equation.

The depth-averaged mixture density varies according to the volumetric concentration of the different

sediment size-classes that can be incorporated from the bed to the flow and transported as

suspended materials. The rheological behaviour of the flow is directly controlled by the properties of

the mixture. A new x-split augmented Roe (xA-Roe) scheme is derived to solve the coupled flow and

suspended solid-phase equations in both structured and unstructured meshes. The numerical

scheme is defined to properly include density variations and momentum source terms, retaining a

well-balanced flux formulation in steady states and the correct treatment of the wet–dry fronts.

The numerical scheme is assessed with steady and transient cases involving highly sediment-laden

flows, demonstrating its accuracy, stability and robustness in the presence of complex bed

topography, wetting–drying fronts and rapid morphological changes.

Key words | augmented Roe solvers, bed-flow exchange flux, sediment-laden flows, source term

integration, variable density, well-balanced schemes
HIGHLIGHTS

• Numerical modelling of highly sediment-laden flows, such as mud or debris flows, over non-

uniform erodible beds is a current challenge due to the complexity of the physical processes

involved.

• Coupling bewteen flow depth and mixture density requires robust, accurate and efficient

numerical methods able to be applied to realistic flows.

• Realistic highly sediment-laden flow models require incorporation of complex non-Newtonian

friction formulations and robust treatments for the wet–dry fronts.

• A new x-split augmented Roe (xA-Roe) solver is proposed in this work, including transport and

exchange of different sediment size-classes, complex friction term integration and wet–dry front

treatment.

• The new xA-Row scheme is demonstrated to be robust, accurate and efficient for a wide range

of unsteady problems involving variable-density flows over non-uniform erodible beds.
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INTRODUCTION
Water–sediment mixture flows are widely present in environ-

mental and geophysical processes such as rivers and estuaries

morphodynamics. When water bodies are well mixed and the

transported suspended sediment is distributed uniformly over

the water column, assuming a single value of the mixture den-

sity along the flow depth allows the use of depth-integrated

models. In natural river modelling, the description usually

includes the transport of different suspended sediment frac-

tions with a total concentration low enough to assume that

the mixture density is equal to the density of the water.

This is no longer valid in flows dealing with highly laden

water–sediment mixtures, where the density of the mixture

can be more than twice the density of the water. These

kinds of flows are usually classified as hyperconcentrated

flows or mud/debris flows, mainly depending on the size of

the solid particles being transported.

Hyperconcentrated flow lies between clear water and

mud/debris flow. A clear water flow transitions into a hyper-

concentrated flow when particles on the bed begin to move

together and coarse sediment becomes suspended in the

flow. The water–sediment flow begins to be affected by the

suspended sediment when particle concentration reaches

about 4% by volume (Pierson ). For higher concen-

trations, the mixture starts to show a non-Newtonian

behaviour. Furthermore, fine sediment fractions have a

greater impact on the mixture rheology than coarse sedi-

ments. A hyperconcentrated flow transitions into a mud/

debris flow when rising concentrations of the sediment gener-

ate a critical yield stress in the fluid which allows coarse

particles to be suspended indefinitely in the mixture flow

(Calhoun & Clague ). Mud/debris flows are character-

ized by high sediment volume concentrations, often greater

than 60%. In debris flows, sand/gravel and coarser sediment

fractions predominate in the solid phase, whereas dominant

fine fractions (silt and clay) are typical for mud flows. The

sediment size distribution of the solid phase causes changes

in the characteristics of the flow: mud flows show high

Darcy numbers and reduced values of the modified Reynolds

number, while debris flows are characterized by high values

of modified Reynolds numbers and smaller Darcy numbers

(Iverson ). Nevertheless, these transitional processes in
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
the flow behaviour are extremely complex and continue to

be debated. Furthermore, mathematical modelling of hyper-

concentrated, mud and debris flows and their numerical

resolution is still a challenging topic, especially when dealing

with realistic applications.

Generally, natural hyperconcentrated and mud/debris

flows consist of highly unsteady shallow flows running

over non-uniform erodible beds, i.e. beds composed by

different sediment size-classes. Most of the 1D and 2D

numerical models recently reported for highly sediment-

laden flows are based on quasi-single-phase assumption

(Armanini et al. ; Cao et al. ; Xia et al. ), solving

the mass and momentum equations for the mixture flow and

the continuity equation for the suspended solid phase. Also,

some two-phase models have been reported in recent years

(Li et al. ; Greco et al. ), solving the mass and

momentum equations for the liquid and solid phases separ-

ately. Although, theoretically, the two-phase mathematical

model describes more properly the complex interaction

between fluid and sediment particles, the high uncertainty

involved in the equations and the difficulty to implement

efficient and robust numerical schemes have hindered its

application to realistic geophysical problems.

Usually, sediment-laden flows involve high levels of

energy which are related to strong flow–bed interaction and

important morphological changes at the bed. It has been

demonstrated by large-scale laboratory experiments that

mud/debris flows gain much of their mass and momentum

as they flow over steep slopes as a consequence of the

material entrainment from the erodible bed, before depo-

sition begins on flatter terrain downstream (Iverson et al.

, ). For these kinds of highly unsteady flows, the coup-

ling between the flow depth and the mixture density is one of

the challenging key points in realistic environmental pro-

cesses computation. The complexity of the numerical

resolution and the computational cost of the solvers increase

exponentially with the number of equations involved, and the

coupling between flow variables adds special features to the

mathematical model (Cao et al. ; Chen et al. ).

A novel 2D numerical model for depth-integrated hyper-

concentrated and mud/debris shallow flows, including
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variable-density and non-uniform solid-phase transport, is

presented in this work. The resulting system of equations

is formed by the 2D conservation equations for the mass

and momentum of the mixture, supplemented by the mass

conservation equation for the different sediment size-classes

suspended in the flow (Murillo et al. ) and the bed vari-

ation equation. The depth-averaged mixture density varies

according to the volumetric concentration of the different

sediment size-classes that can be incorporated from the

bed to the mixture flow and transported as suspended

materials. A pioneering first-order x-split Augmented Roe

(xA-Roe) scheme is derived to solve the flow and the sus-

pended solid-phase equations in both structured and

unstructured two-dimensional meshes. The numerical

scheme is defined to properly include the density variations

and to ensure a well-balanced flux formulation in steady

states. The global time step is dynamically controlled by the

wave celerities of the coupled system of equations, preserving

the scheme stability even for high flow–bed interaction and

reducing the computational effort required by the model.

This paper is structured as follows: in the next section,

the two-dimensional quasi-single-phase equations for the

water–sediment mixture with different suspended size-

classes over non-uniform erodible bed are presented; The

section “xA-Roe Solver for 2D Sediment-Laden Flows” is

devoted to describe the proposed xA-Roe scheme for vari-

able-density flows, paying especial attention to the

formulation of the numerical fluxes at the cell edges and

the correct integration of the momentum source terms; in

the section “Numerical results”, the numerical scheme is

validated against steady-state cases with exact solution and

idealized highly transient sediment-laden tests, demonstrat-

ing its stability and robustness in the presence of complex

bed topography, wetting–drying fronts and rapid morpho-

logical changes; finally, the conclusions are drawn in the

final section.
2D SEDIMENT-LADEN FLOW, SUSPENDED SOLID
SIZE-PHASES AND BED EVOLUTION EQUATIONS

The model presented in this work involves the following

assumptions: (i) shallow-water approach: the flow is con-

fined to a layer which is thin compared with the
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
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horizontal scale of interest, leading to the hydrostatic

pressure assumption; (ii) multicomponent flow: the mixture

of water and suspended sediment particles is described by

using the continuum approach and assuming the same vel-

ocity for the liquid and the suspended solid phase; and (iii)

the different sediment size-classes presented in the flow

are distributed uniformly in the column. Accordingly, ϕp rep-

resents the scalar depth-averaged volumetric concentration

of pth sediment size-class, with p ¼ 1, . . . , N and N the

number of sediment size-classes transported. The mixture

density is given by ρ ¼ ρwr, where ρw is the density of the

water and r represents the relative density of the bulk mix-

ture to that of the clean water:

r ¼ ρ

ρw
¼ 1þ ϕχ ϕχ ¼

XN
p¼1

χp ϕp (1)

where ϕχ is the global modified sediment concentration in

the mixture and χp ¼ (ρp � ρw)=ρw is the relative buoyant

density of the pth solid phase, ρp being the density of the

sediment particles.

The relevant formulation for the two-dimensional sedi-

ment-laden flow model (Figure 1) includes the depth-

averaged equations for the mixture mass and momentum

conservation, the mass conservation equation for the sus-

pended solid phase and the mass conservation equation

for the bed layer. The complete 2D system can be expressed

in vector form, following a global coordinate system (GCS)

(Juez et al. ), as:

@U
@t

þ @F(U)
@x

þ @G(U)
@y

¼ Sb(U)þ Sτ(U)þ Eb(U) (2)

where U is the vector of conserved variables, F(U) and G(U)

are the convective fluxes along the x and y global coordi-

nates, respectively, Sb(U) is the momentum source term

associated with the variation of the pressure force on the

bottom, Sτ(U) is the momentum dissipation due to

the boundary shear stress between the mixture flow and

the bed layer and Eb(U) accounts for the mass net exchange



Figure 1 | One-dimensional sketch of the depth-averaged components involved in sediment-laden flows over erodible bed.
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flux between the mixture flow and the bed layer:

U ¼ rh, rhu, rhv, hϕχ , zbð ÞT (3)

F(U) ¼

rhu

rhu2 þ 1
2
gψ rh2

rhuv
hu ϕχ

0

0BBBBB@

1CCCCCA G(U) ¼

rhv
rhuv

rhv2 þ 1
2
gψ rh2

hv ϕχ

0

0BBBBB@

1CCCCCA
(4)

Sb(U) ¼

0
Sb,x
Sb,y
0
0

0BBBB@
1CCCCASτ(U) ¼

0
�Sτ,x
�Sτ,x
0
0

0BBBB@
1CCCCA (5)

Eb(U) ¼

�Nr
b

0
0

�Nχ
b

Nξ
b

0BBBBB@

1CCCCCA (6)

where h represents the mixture flow depth, (u, v) are the

components of the depth-averaged flow velocity vector u

along the x and y coordinates, respectively, zb is the bed

elevation and gψ ¼ g cos2 ψ is the bed-normal projection of

the gravity in the GCS, g being the gravitational acceleration

and cosψ the direction cosine of the bed normal with

respect to the vertical axis (Juez et al. ).
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
The components of the bed slope source term vector

Sb(U) (5) along the x and y coordinates are expressed as:
Sb,x ¼ � gψ rh
@zb
@x

Sb,y ¼ � gψ rh
@zb
@y

(7)
and those of the frictional dissipation at the bottom bound-

ary Sτ(U) can be expressed as:
Sτ,x ¼ τb,x
ρw

Sτ,y ¼
τb,y
ρw

(8)
being (τb,x, τb,y) the components of the boundary shear

stress vector τb between the flow and the bed. To date,

there is not a universal closure relation for representing

the shear stress τb in hyperconcentrated and mud/debris

flows. The formulation selected to model the tangential

forces generated by the boundary stresses incorporates the

rheological behaviour of the water–sediment mixture in

motion. Different kinds of shear stresses can determinate

this complex rheology: turbulent stress τt, yield stress τy, vis-

cous stress τμ or Coulomb frictional stress τf .



Table 1 | Flow resistance formulations

Formulation Flow resistance relation

1 Pure turbulent jτbj ¼ τt

2 Turbulent & Coulomb jτbj ¼ τt þ τf

3 Turbulent & yield jτbj ¼ τt þ τy

4 Simplified Bingham jτbj ¼
3
2
τy þ 3τμ

5 Full Bingham 2jτbj3 � 3(τy þ 2τμ)jτbj2 þ τ3y ¼ 0

1142 S. Martínez-Aranda et al. | A 2D model for unsteady hyperconcentrated flows over movable beds Journal of Hydroinformatics | 22.5 | 2020

Downloaded fr
by guest
on 27 April 202
• The turbulent effects near the bed can be expressed as a

function of the Manning’s roughness coefficient n:

τt ¼ ρgh
n2juj2
h4=3

(9)

n being the Manning roughness coefficient.

• In case of a pure Newtonian fluid, the viscous stress can

be estimated as:

τμ ¼ 3μ
juj
h

(10)

μ being the dynamic viscosity.

• The Coulomb-type laws for granular material estimated

the tangential shear stress as a function of the internal

stability angle of the mixture fluid θb:

τf ¼ ρgh cosψ tan θb (11)

• Non-Newtonian Bingham-type fluids do not flow until a

threshold value of the tangential stress, the yield stress

τy, is reached. During the movement, the boundary

shear stress τb is characterized by means of a cubic

equation accounting for the plastic viscosity of the sedi-

ment–water mixture:

2jτbj3 � 3(τy þ 2τμ)jτbj2 þ τ3y ¼ 0 (12)

• If the ratio jτbj=τy is smaller than 0.5, the full Bingham

relation (12) can be reduced to:

jτbj ¼ 3
2
τy þ 3τμ (13)

All these different types of tangential stresses act simul-

taneously along the mixture column and hence participate

in the depth-averaged tangential forces in the mixture

momentum equations, i.e. jτbj ¼ f(τt, τy, τμ, τf) (Murillo &

García-Navarro ). The different friction formulations

considered in this work have been summarized in Table 1.

In the source term Eb(U) (6), the global net exchange

fluxes for the mixture, solid phase and bed layer mass
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
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conservation equations (Nr
b, N

χ
b and Nξ

b, respectively) can

be calculated as:

Nr
b ¼

XN
p¼1

rb,p ξp(Dp � Fb,pEp)

Nχ
b ¼

XN
p¼1

χp(Dp � Fb,pEp)

Nξ
b ¼

XN
p¼1

ξp(Dp � Fb,pEp)

(14)

where rb,p ¼ 1þ χp(1� pp) is the relative density of the bed

layer for the pth sediment size-class and ξp ¼ 1=(1� pp), pp
being the porosity of the pth sediment size-class (Wu

). The terms Dp and Ep are the deposition and entrain-

ment vertical fluxes, respectively, for the pth sediment size-

class, and Fb,p is the relative fraction of the pth sediment

size-class at the bed layer. The size-specific deposition and

entrainment fluxes can be expressed, respectively, as a func-

tion of the mixture depth-averaged volumetric concentration

ϕp and the capacity volumetric concentration ϕ�p for each

sediment size-class:

Dp ¼ αp ωs,p ϕp(1� ϕp)
mp (1� ϕ0)

m0

Ep ¼ αp ωs,p ϕ�p
(15)

αp being an empirical parameter representing the difference

between the near-bed sediment concentration and the

depth-averaged sediment concentration for the pth sediment

class, ωs,p the size-specific settling velocity of the sediment

particles in clear water and ϕ0 ¼PN
p¼1 ϕp the global volu-

metric concentration in the mixture. Water and suspended

sediment are generally well mixed along the flow column
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in highly sediment-laden flows; hence, it is common to

adopt αp ¼ 1. The parameters mp and m0 are two empirical

exponents accounting for the hindering effect on the settling

velocity due to high suspended concentrations. Different

empirical relationships can be found in the literature to esti-

mate the hindering exponents mp and m0, the settling

velocity ωs,p, as well as the capacity volumetric concen-

tration ϕ�p. For the sake of clarity, only the Zhang & Xie

() and Richardson & Zaki () relations have been

used for the estimation of the settling velocity and the

empirical hindering exponents, respectively:

ωs,p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13:95

ν

dp

� �2

þ 1:09χp g dp

s
� 13:95

ν

dp

mp ¼ 4:45Re�0:1
p with: Rep ¼ ωs,p dp=ν

m0 ¼ 4:45Re�0:1
0 with: Re0 ¼ ωs,p d0=ν

(16)

dp and Rep being the characteristic sediment diameter and

particle Reynolds number for the pth sediment size-class,

d0 ¼PN
p¼1 (ϕpdp)=ϕ0 and Re0 the median diameter of the

suspended sediment and the corresponding particle Rey-

nolds number, and ν the kinematic viscosity of water. The

Zhang & Xie () formula has been used to calculate the

capacity suspended concentration ϕ�p for each sediment

size-class:

ϕ�p ¼ 1
20ρp

juj3
ghωs,p

 !1:5

= 1þ 1
45

juj3
ghωs,p

 !1:15
24 35 (17)

This set of equations modelling variable-density flows

over erodible bed will be referred to as the VD model. It is

a generalized formulation which can be simplified to

model the situation of reduced complexity.
XA-ROE SOLVER FOR 2D SEDIMENT-LADEN FLOWS

This section is devoted to the derivation of a new numerical

scheme for 2D sediment-laden flows considering the net

exchange mass flux between the mixture flow and the bed

layer. System (2) is time-dependent, nonlinear and contains

source terms. Under the hypothesis of dominant advection,
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
it can be classified and numerically dealt with as belonging

to the family of hyperbolic systems. In order to obtain a

numerical solution for the five equations, the spatial

domain is divided in computational cells using a mesh

fixed in time and system (2) is integrated in each cell Ωi

using the Gauss theorem:

d
dt

ð
Ωi

U dΩþ
þ
@Ωi

En(U)dl ¼
ð
Ωi

S(U)dΩþ
ð
Ωi

Eb(U)dΩ

(18)

En(U) ¼ F(U) nx þG(U) ny being the flux normal to the Ωi

cell boundary, n ¼ (nx, ny) the outward unit normal vector

and S(U) ¼ Sb(U)þ Sτ(U) the momentum source term

vector. Assuming a constant piecewise representation of

the conserved variable U at the cell Ωi for the time t ¼ tn:

Un
i ¼ 1

Ai

ð
Ωi

U(x, y, tn) dΩ (19)

where Ai is the cell area, (18) can be expressed as:

d
dt

ð
Ωi

UdΩþ
XNE

k¼1

(En)k lk ¼
XNE

k¼1

ð
Ωi,k

S(U)dΩ

þ
ð
Ωi

Eb(U)dΩ (20)

NE being the number of edges for the i cell, (En)k the value

of the normal flux through each edge, lk the length of the

edge and Ωi,k the area of the i cell associated with the kth

edge.

Assuming a first-order reconstruction approach for the

conserved variables in (20), the theory of Riemann problems

(RPs) can be used to solve the 2D problem. For each kth cell

edge, it is possible to define a local 1D RP along the direc-

tion normal to the edge including the momentum source

terms:

@U
@t

þ @En(U)
@x̂

¼ S

U(x̂, 0) ¼ Ui if x̂< 0

Uj if x̂> 0

(
(21)



:
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x̂ being the coordinate normal to the kth cell edge. The sol-

ution of (21) provides the variation of the conserved

variables in time and space, and U(x̂, t), in time and space.

Note that the net exchange term between the mixture flow

and the bed, Eb, has been dropped in the local RP (21),

since it implies a mass source rather than a momentum

source and will be incorporated into the solution as a cell-

centred contribution.

The augmented value of the fluxes through the kth cell

edge incorporates the non-conservative contribution of the

momentum source term S into the convective fluxes (En)k.

In order to integrate (21) over a suitable control volume

[0, Δt] × [�Δx̂=2, Δx̂=2], the momentum source terms are

involved in the Riemann solver as a singular source at the

discontinuity x̂ ¼ 0 and linearized in time so that:
ðΔx̂=2
�Δx̂=2

ðΔt
0
S dx̂ dt ≈ Δt

ðΔx̂=2
�Δx̂=2

S dx̂ ¼ ΔtS∨
n (22)
where Δt ¼ tnþ1 � tn the time step and S∨
n is a suitable

numerical momentum source vector along the normal direc-

tion to the cell edge, which can be expressed in the 2D

framework (x, y) as:
S∨
n ¼ S∨

b,n þ S∨
τ,n

S∨
b,n ¼ 0, ~H nx, ~Hny, 0, 0

� �T
S∨
τ,n ¼ 0, �~T nx, �~Tny, 0, 0

� �T
:

(23)
~H and ~T being the bed slope and friction momentum contri-

butions, respectively, spatially integrated in the control

volume corresponding to each cell edge.

Furthermore, (21) satisfies the rotation invariance prop-

erty (Godlewski & Raviart ; Castro et al. ) and

hence can be expressed as a plane Riemann problem in

the local framework (x̂, ŷ), corresponding to normal and tan-

gential directions to each cell edge, respectively. Defining a
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf

1

rotation matrix T, with an inverse matrix T�1, as:

T ¼

1 0 0 0 0
0 nx ny 0 0
0 �ny nx 0 0
0 0 0 1 0
0 0 0 0 1

0BBBB@
1CCCCA T�1 ¼

1 0 0 0 0
0 nx �ny 0 0
0 ny nx 0 0
0 0 0 1 0
0 0 0 0 1

0BBBB@
1CCCCA

(24)

which satisfy the condition:

En(U) ¼ F(U)nx þG(U)ny ¼ T�1F(TU) (25)

The local RP (21) at each cell edge can be projected in

the local framework (x̂, ŷ) as (Murillo & García-Navarro

; Murillo & Navas-Montilla ):

@Û
@t

þ @F(Û)
@x̂

¼ Ŝ

Û(x̂, 0) ¼ Ûi if x̂< 0

Ûj if x̂> 0

(
:

(26)

The new set of projected conserved variables Û is

defined as:

Û ¼ TU ¼ rh, rhû, rhv̂, hϕχ , zbð ÞT (27)

where û ¼ unx þ vny and v̂ ¼ �uny þ vnx are the flow

velocities along the x̂ and ŷ coordinates, respectively. The

projected convective fluxes F(Û) can be expressed as:

F(Û) ¼

rhû

rhû2 þ 1
2
gψ rh2

rhûv̂
hûϕχ

0

0BBBBB@

1CCCCCA (28)

Following Murillo & García-Navarro () and Murillo

& García-Navarro (), the projected source vector Ŝ,

including both the bed slope and friction terms, can be

expressed in the local framework (x̂, ŷ) as:

Ŝ ¼ TS (29)
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and, applying the procedure used in (22), it is integrated in

the control volume [0, Δt] × [�Δx̂=2, Δx̂=2] corresponding to

each cell edge as:

ðΔx̂=2
�Δx̂=2

ðΔt
0
Ŝdx̂ dt ≈ Δt TS∨

n ¼ Δt(TS∨
b,n þ TS∨

τ,n) (30)

leading to express the integrated momentum source vectors

on the local framework (x̂, ŷ) as:

Ŝ
∨

n ¼ Ŝ
∨

b,n þ Ŝ
∨

τ,n

Ŝ
∨

b,n ¼ TS∨
b,n ¼ 0, ~H, 0, 0, 0

� �T
Ŝ
∨

τ,n ¼ TS∨
τ,n ¼ 0, �~T , 0, 0, 0

� �T (31)

For the left-hand side of system (26), it is possible

to define a singular Jacobian matrix M(Û) ¼ @F(Û)

@Û
as

follows:

MðÛÞ ¼

0 1 0 0 0
1
2
gψhð1þ rÞ � û2 2û 0 �1

2
gψ rh 0

�ûv̂ v̂ û 0 0
�ûϕχ=r ϕχ=r 0 û 0

0 0 0 0 0

0BBBBB@

1CCCCCA (32)

Note that the solid lines in M(Û) (32) separate the terms

associated with the bed evolution equation from the terms

linked to the mixture flow equations. Furthermore, M(Û)

has five real eigenvalues:

λ1 ¼ û�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
gψh(1þ r � ϕχ)

r
¼ û�

ffiffiffiffiffiffiffiffi
gψh

q
λ2 ¼ û

λ3 ¼ ûþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
gψh(1þ r � ϕχ)

r
¼ ûþ

ffiffiffiffiffiffiffiffi
gψh

q
λ4 ¼ û

λ5 ¼ 0

(33)

where λ1,...,4 corresponds to the mixture flow-wave structure

and λ5 relates to the contact wave associated with the bed

evolution equation.
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
Using the rotation invariance property and the

solution of the projected plane RP (26), it is possible to

rewrite (20) as:

d
dt

ð
Ωi

UdΩ ¼ �
XNE

k¼1

T�1
k (F(Û)� Ŝ

∨

n )k lk þ
ð
Ωi

Eb(U)dΩ (34)

where F(Û)k and (Ŝ
∨

n )k are the numerical flux and the inte-

grated momentum source contribution, respectively,

resulting from solving the projected plane RP (26) for the

kth edge in the local framework (x̂, ŷ).

Furthermore, the temporal and spatial integration of the

net exchange flux term are approximated by:

ðtnþ1

tn

ð
Ωi

EbðUÞdΩdt ≈ Δt
ð
Ωi

EbðUn
i ÞdΩ ≈ ΔtE�

b (35)

being E�
b ¼ AiEbðUn

i Þ. Using (19) and (35), it is possible to

express (34) as:

Unþ1
i ¼ Un

i �
Δt
Ai

XNE

k¼1

T�1
k FðÛÞ↓k lk þ

Δt
Ai

E�
b (36)

defining an augmented numerical flux F(Û)↓k for the kth cell

edge which incorporates the integrated momentum source

term into the convective numerical fluxes at each cell

edge, ensuring the well-balanced property of steady states

(Murillo & García-Navarro ):

F(Û)↓k ¼ (F(Û)� Ŝ
∨

n )k (37)

The resolution procedure is divided into two steps: first,

the augmented fluxes F(Û)↓k at the intercell edges are deter-

mined using a new upwind augmented Roe scheme based

on the x-split transformation (xA-Roe); second, the bed

mass exchange source terms E�
b are later incorporated into

the updated solution as a cell-centred contribution to the

conserved variables.
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xA-Roe solver for the mixture flow equations

The numerical fluxes at the cell edges for the mixture mass

and momentum conservation, F{1,...,4}↓
k , are computed by

means of an augmented Roe (A-Roe) Riemann solver.

The numerical flux for the bed evolution equation F{5}↓
k is

null, and hence, the bed evolution equation can be

discarded for the determination of the mass and momen-

tum fluxes of the mixture at the intercell edges.

Therefore, the plane Riemann problem (26) projected in

the local framework (x̂, ŷ) of the kth edge, separating the

left i cell and the right j cell, is reduced to the conservation

laws for the mixture flow and can be approximated by

using the following constant coefficient linear RP (Toro

):

@Û
{1...4}

@t
þeJk @Û{1...4}

@x̂
¼ (Ŝ

∨

n )
{1...4}
k

Û
{1...4}

(x̂, 0) ¼ Û
{1...4}
i if x̂< 0

Û
{1...4}
j if x̂> 0

8<:
(38)

where eJk ¼ eJk(Û{1...4}
i , Û

{1...4}
j ) is a constant coefficient matrix

yet to be defined. For the sake of clarity, the superscript

{1 . . . 4} will be removed from now on. Integrating (38)

over a suitable control volume between x̂i and x̂j leads to

the following constraint involving conservation across dis-

continuities:

δF(Û)k ¼ eJk δÛk (39)

where δÛk ¼ Ûj � Ûi is the conserved variable jump and ~Jk
is defined as:

~Jk ¼

0 1 0 0
1
2
gψ ~h(1þ ~r)� ~u2 2~u 0 �1

2
gψ ~h~r

�~u ~v ~v ~u 0
�~u ~ϕ

χ
=~r ~ϕ

χ
=~r 0 ~u

0BBBBB@

1CCCCCA (40)
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf

1

~r ¼ rihi þ rjhj

hi þ hj

~h ¼ hi þ hj

2

~u ¼ ûi

ffiffiffiffiffiffiffiffi
rihi

p
þ ûj

ffiffiffiffiffiffiffi
rjhj

pffiffiffiffiffiffiffiffi
rihi

p
þ ffiffiffiffiffiffiffi

rjhj
p ~u ¼ v̂i

ffiffiffiffiffiffiffiffi
rihi

p
þ v̂j

ffiffiffiffiffiffiffi
rjhj

pffiffiffiffiffiffiffiffi
rihi

p
þ ffiffiffiffiffiffiffi

rjhj
p

~ϕ
χ ¼ ~r

ϕχi hi
ffiffiffiffiffiffiffi
rjhj

p þ ϕχj hj

ffiffiffiffiffiffiffiffi
rihi

p
rihi

ffiffiffiffiffiffiffi
rjhj

p þ rjhj

ffiffiffiffiffiffiffiffi
rihi

p :

(41)

The approximate Jacobian matrix for the mixture flow ~Jk
is diagonalizable with four approximate real eigenvalues:

~λ1,k ¼ (~u� ~c)k ~λ2,k ¼ ~uk
~λ3,k ¼ (~uþ ~c)k ~λ4,k ¼ ~uk

(42)

where the averaged celerity ~ck is defined as:

~ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
gψ ~h ~Δ

r !
k

(43)

being ~Δk ¼ (1þ ~r � ~ϕ
χ
)k.

Therefore, using the associated orthogonal basis of

eigenvectors ~em,k, a matrix ePk ¼ (~e1, ~e2, ~e3, ~e4)k can be

built as:

~Pk ¼
1 0 1 ~r
~λ1 0 ~λ3 ~r ~u
~v ~c ~v ~r~v

~ϕ
χ
=~r 0 ~ϕ

χ
=~r 1þ ~r

0BB@
1CCA

k

(44)

with the following property:

~Jk ¼ (~P~Λ~P
�1
)keΛk ¼

~λ1 0

. .
.

0 ~λ4

0B@
1CA

k

(45)

~P
�1
k being the inverse matrix of ~Pk and ~Λk being a diagonal

matrix with approximate eigenvalues in the main diagonal.

One result of Roe’s linearization is that the approximate

Riemann solution consists of only discontinuities and Û(x, t)

is constructed as a sum of jumps or shocks. The solution for

Û(x, t) is governed by the celerities in ~Λk and consists of four
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regions connected by five waves, one of them a contact wave

with null celerity accounting for the integrated source term.

According to the Godunov-type method, it is sufficient

to provide the solution for Û(x̂, t) at the intercell position

x̂ ¼ 0 in order to obtain the updating numerical fluxes F↓
k

(37). The numerical flux at the left and right side of the

kth cell edge can be estimated using an approximate flux

function F(x̂, t):

F↓�
k ≡ F↓�

i ¼ F(Û
�
i ) F↓þ

k ≡ F↓þ
j ¼ F(Û

þ
j ) (46)

Û
�
i and Û

þ
j being the value of the approximate intermediate

states of the solution at the corresponding side of the kth

edge:

Û
�
i ¼ lim

x̂!0�
Ûi(x̂, t) Û

þ
j ¼ lim

x̂!0þ
Ûj(x̂, t) (47)

Following Toro (), the conserved variable differ-

ences δÛk and source term spatial integral (Ŝ
∨

n )k at the

intercell edge are projected on the eigenvector basis in

order to obtain the wave and source strength vectors, ~Ak

and ~Bk, respectively.

~Ak ¼ (~α1, . . . , ~α4)
T
k ¼ ~P

�1
k δÛk ! δÛk ¼

X4
m¼1

(~αm~em)k

~Bk ¼ (~β1, . . . , ~β4)
T
k ¼ ~P

�1
k (Ŝ

∨

n )k ! (Ŝ
∨

n )k ¼
X4
m¼1

(~βm~em)k:

(48)

The reconstruction of the approximated solution at the

left and right sides of the intercell edge, Û
�
i and Û

þ
j , respect-

ively, can be expressed as:

Û
�
i ¼ Ûi þ

X
m�

(~γm~em)k

Û
þ
j ¼ Ûj �

X
mþ

(~γm~em)k
(49)

where ~γm ¼ ~αm � ~βm=~λm, and the subscripts m� and mþ
under the sums indicate waves travelling inward and out-

ward from the i cell.
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
Being the solution defined as a sum of jumps or shocks

between the different intermediate states, the solution for

the approximate flux function F(x̂, t) involves the initial

unaltered fluxes at the left and right cells, Fn
i and Fn

j , and

three intermediate states. Each inner constant state involves

an intermediate constant flux function. The approximate

flux function F(x̂, t) provides the intercell fluxes at the left

and right sides of the initial discontinuity at x̂ ¼ 0, labelled

as F↓�
i and F↓þ

j (46), with:

F↓�
i ¼ lim

x̂!0�
F(x̂, t) F↓þ

j ¼ lim
x̂!0þ

F(x̂, t) (50)

The relation between the intercell approximate fluxes F↓�
i

and F↓þ
j can be analysed using the Rankine–Hugoniot (RH)

relation at x̂ ¼ 0, which includes a steady contact wave (Li

& Chen ; Rosatti & Begnudelli ) between approxi-

mate solutions Û
�
i and Û

þ
j . Following the linear case, the

approximate solution for the fluxes can be constructed defin-

ing the appropriate RH condition across each moving wave.

The telescopic property of the linear solutions for the

approximate flux function provides the definition of the

fluxes at the left and right sides of the kth cell edge:

F↓�
i ¼ Fn

i þ
X
m�

(~λm~γm~em)k

F↓þ
j ¼ Fn

j �
X
mþ

(~λm~γm~em)k
(51)

where the subscripts m� and mþ under the sums indicate

waves travelling inward and outward from the i cell. It is

worthmentioning that, due to the presence of themomentum

source terms, it is no longer possible to define a general inter-

cell flux function contrary to the homogeneous case. The

corresponding intercell flux jump for the approximate sol-

ution is given by:

F↓þ
j � F↓�

i ¼
X4
m¼1

(~βm~em)k ¼ (Ŝ
∨

n )k (52)

The correct integration of the momentum source term

(Ŝ
∨

n )k for the equivalent 1D Riemann problem associated

with the kth intercell edge ensures the well-balanced prop-

erty of the xA-Roe scheme and avoids numerical
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oscillations in the solution when large momentum sources

appear, especially associated with the friction term.

Although the computation of the approximate numeri-

cal fluxes F↓
k at each k intercell edge is the key point of the

Godunov-type methods, the whole approximated solution

participates in the updating of the values at the cells. In

order to ensure the stability of the explicitly computed

numerical solution, the time step should be small enough

to avoid the interaction of waves from neighboring Riemann

problems. The dynamical limitation of the time step at each

k edge is addressed here using the Courant–Friedrichs–Lewy

(CFL) condition and assuming that the fastest wave celerity

corresponds to the absolute maximum of the eigenvalues of

the mixture flux Jacobian matrix ~Jk (40). The limiting time

steps at kth edge are computed using:

Δt kf g ¼ min Ai; Aj
� �

lk max ~λ1;k
�� ��; j~λ4;kj� � (53)

and the global time step Δt is limited using the CFL con-

dition as:

Δt ¼ CFL min
k

(Δt{k}) (54)

with CFL <1.
Momentum source term integration and friction fix

A correct integration of both the bed slope and the bed shear

stress momentum source terms is a key point in augmented

upwind schemes (Murillo & García-Navarro ) for shal-

low flows and ensures the proper balance between

convective fluxes and source terms in steady-state cases. Fur-

thermore, friction terms can generate numerical instabilities

if they are not carefully integrated (Burguete et al. ) and

have been reported to require additional time step restric-

tions over the classical CFL condition (Murillo et al. ).

These additional time step restrictions can lead to a

marked increase of the computational time required by the

model. The consequence is a reduction of the efficiency,

regardless of how the scheme is implemented (programming

language, parallel computing, and available hardware). This

drawback has been correctly addressed for constant density
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf

1

shallow flows (Murillo & García-Navarro ), but is still

unresolved for flows including temporal and spatial density

variations. This section is devoted to the integration pro-

cedure for the momentum source terms, paying special

attention to the friction term in order to avoid additional

time step restrictions.

The integrated momentum source term (Ŝ
∨

n )k (31) is pro-

jected onto the eigenvectors basis, separating the

contribution associated with the bed slope and correspond-

ing to the friction loss. Therefore, the total source strengths

can be expressed as ~Bk ¼ ~Bb,k þ ~Bτ,k, where:

~Bb,k ¼ (~βb1, 0, ~βb3, 0)
T
k ¼ ~P

�1
k (Ŝ

∨

b,n)k

~Bτ,k ¼ (~βτ1, 0, ~βτ3, 0)
T
k ¼ ~P

�1
k (Ŝ

∨

τ,n)k:
(55)

(Ŝ
∨

b,n)k and (Ŝ
∨

τ,n)k being the integrated bed slope and friction

terms, respectively, at the kth cell edge:

(Ŝ
∨

b,n)k ¼

0
~H
0
0
0

0BBBB@
1CCCCA

k

(Ŝ
∨

τ,n)k ¼

0
�~T
0
0
0

0BBBB@
1CCCCA

k

(56)

where ~Hk ¼ (�gψ~r~h δzb)k is the integrated bed slope contri-

bution and ~Tk is the integrated shear force. Considering

(52), the source strengths should agree ~βb1,k ¼ �~βb3,k and
~βτ1,k ¼ �~βτ3,k, and hence, the first component of the numeri-

cal flux vector, i.e. the mixture mass flux, including the

homogeneous flux augmented with the source terms

remains equal at both sides of the kth edge:

F1↓�
i ¼ F1↓þ

j ¼ F1↓
k (57)

Considering positive velocity (~uk > 0) and subcritical

flow, ~λ1,k < 0 and the rest of the waves are positive (Figure 2).

The homogeneous mixture mass flux augmented with the

bed slope term F1↓
b,k can be computed as:

F1↓
b,k ¼ F1

k � ~βb1,k with: F1
k ¼ (rhu)i þ (~λ1~α1)k (58)

F1
k being the homogeneous numerical flux for the mixture

mass conservation equation. Then, the integrated shear



Figure 2 | Approximate mass flux function for the subcritical regime. The blue region

indicates the intermediate value of the mass flux considered for the proposed

friction fix. Please refer to the online version of this paper to see this figure in

colour: http://dx.doi.org/10.2166/hydro.2020.027.

Figure 3 | Approximate mass flux function for the supercritical regime. The blue region

indicates the intermediate value of the mass flux considered for the proposed

friction fix. Please refer to the online version of this paper to see this figure in

colour: http://dx.doi.org/10.2166/hydro.2020.027.
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force ~Tk is defined considering the sign of the augmented

mass flux F1↓
b,k:

~Tk ¼ sgn(F1↓
b,k)

~τb,x̂
ρw

dn,k (59)

where ~τb,x̂ is the averaged normal shear stress at the cell

edge, estimated using any resistance formulation (see

Table 1), and dn,k is the distance between the centre of the

neighbouring cells associated with the kth cell edge along

the normal direction.

Therefore, the numerical flux for the mixture mass aug-

mented with both the bed slope and the friction source

terms F1↓
k allows us to define a numerical fix to correct over-

estimated friction terms. The numerical flux is computed as:

F1↓
k ¼ F1↓

b,k � ~βτ1,k (60)

and the friction fix can be expressed as:

~βτ1,k ¼ F1↓
b,k if F1↓

b,k F1↓
k < 0

~βτ1,k otherwise

(
~βτ3,k ¼ �~βτ1,k

(61)

In the case of supercritical regime, all the waves are

positive and the augmented numerical mass flux at the cell
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
edge does not depend on the value of the momentum

source terms (Figure 3). However, in order to avoid overes-

timated source terms, it is possible to define an averaged

intermediate state of the flux function F1 ~þ
b;k at the right side

of the edge, including the bed slope term as:

F1 ~þ
b;k ¼ F1

þk þ ~βb3;k with :

F1
þk ¼ rhuð Þj� ~λ3~α3

� �
k�

~λ4
~λ3

~λ4~α4~r
� �

k
(62)

F1
þk being the averaged value of the homogeneous numerical

mass flux at the right side of the cell edge. In this case, the

integrated shear force ~Tk is defined considering the augmen-

ted mass flux F1 ~þ
b;k:

~Tk ¼ sgn F1 ~þ
b;k

� 	 ~τb;x̂
ρw

dn;k (63)

Therefore, the averaged intermediate numerical mass

flux augmented with both the bed slope and the friction

source terms F1 ~þ
k at the right side allows us to define a

numerical fix to correct overestimated friction terms. The

numerical flux is computed as:

F1 ~þ
k ¼ F1 ~þ

b;k þ ~βτ3;k (64)

http://dx.doi.org/10.2166/hydro.2020.027
http://dx.doi.org/10.2166/hydro.2020.027
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and the friction fix can be expressed as:

~βτ3;k ¼ �F1 ~þ
b;k if F1 ~þ

b;k F1 ~þ
k < 0

~βτ3;k otherwise

(
~βτ1;k ¼ �~βτ3;k

(65)

The friction fix proposed can be straightforward extended

to the case with negative velocity (~uk < 0) at the kth cell edge.
NUMERICAL RESULTS

Well-balanced equilibrium states

The idealized case with the exact solution was initially pro-

posed by Leighton et al. () for ensuring the well-

balanced character of variable-density shallow flow in the pres-

ence of bed-level variations. For a pure one-dimensional flow,

under quiescent equilibrium (null velocity), frictionless con-

ditions and null net exchange between the bed and the flow,

the mixture mass and the solid-phase mass temporal variations

reduce to zero, i.e. the equilibrium state must be maintained

along time, and the 1D momentum equation becomes:

1
2
d(rh2)
dx

¼ �rh
dzb
dx

(66)
At steady state, (66) is an ordinary differential equation

which can be reordered as:

h
r
dr
dx

þ 2
dh
dx

¼ �2
dzb
dx

(67)

In the generic solution of (67), density and flow depth

are both variable. Nonetheless, the particular variable-

depth solution with fixed density and free-surface level and

the particular variable-density solution with fixed depth

are interesting for numerical model validation and easy to

compute exactly. Following Leighton et al. (), the bed-

level profile is defined as:

zb(x) ¼ A 1� cos
2πx
L


 �
(68)
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf

1

A being the amplitude and L the length of the 1D channel.

The depth variable equilibrium equation leads to following

conditions for the suspended volumetric concentration

and the flow depth:

ϕ(x) ¼ r0 � 1
χ

h(x) ¼ h0 �A 1� cos
2πx
L


 �
(69)

whereas the density variable solution can be expressed as:

ϕ(x) ¼ 1
χ

r0 exp
2A
h0

cos
2πx
L


 �
� 1

� �
h(x) ¼ h0 (70)

r0 and h0 being the reference values for the mixture relative

density and the flow depth, respectively.

A channel of L ¼ 100 m is discretized using a 1Dmesh of

square cells with Δx ¼ 0:1 m. Values A ¼ 0:1 m, h0 ¼ 1 m,

r0 ¼ 1:8 and χ ¼ 1:65 are set. The CFL is 0.5, and the final

simulation time is 100 s. The exact depth-variable and den-

sity-variable solutions are imposed as initial conditions for

the flow depth and the suspended concentrations.

Figures 4 and 5 show the comparison of the exact depth-

variable and density-variable solutions with the correspond-

ing numerical results at t ¼ 100 s, respectively. The exact

quiescent equilibrium is maintained along the time for

both cases, demonstrating the well-balanced property of

the proposed xA-Roe scheme for the simulation of density

shallow flows involving topography variations.

Large-scale and long-term dambreak

This idealized test was first proposed by Cao et al. () and

consists of a large-scale and log-term one-dimensional dam-

break. Initially, the fluid is clear water. The channel length is

set to 50 km, the dam is initially located at the middle of the

channel, x ¼ 25 km, and the initial water surface elevation is

hL ¼ 40 m and hR ¼ 2 m at the left and right sides, respect-

ively. The movable flat bed is made of an uniform non-

cohesive sediment of diameter 4 mm. The friction term is

modelled using the turbulent Manning’s relation and assum-

ing a constant value of the roughness coefficient

n ¼ 0:03 sm�1=3. The aim of this test is to study the influence

of the suspended solid phase incorporated into the flow

from the erodible bed in the dynamics of the dambreak



Figure 4 | Exact VD quiescent equilibrium and simulation results att ¼ 100 s: (left) flow surface-level FSL and (right) suspended volumetric concentration.

Figure 5 | Exact VD quiescent equilibrium and simulation results at t ¼ 100 s: (left) flow surface level FSL and (right) suspended volumetric concentration.
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wave in a relatively long channel and over a comparatively

long period rather than under the typical laboratory scales.

A 1D mesh of squared cells is used for the simulation with

Δx ¼ 10 m and a CFL¼ 0.5 is set.

Figure 6 (left) shows the flow free surface evolution and

bed evolution at t ¼ 5 min, t ¼ 10 min and t ¼ 30 min after

the dambreak starting. For comparison with the proposed

VD model, results obtained with a fixed-bed model (FB

model) and with a passive-transport model (PT model)

have also been plotted. The PT model is a particular case

of the proposed sediment-laden model but setting the

density of the mixture equals the water density regardless

of the sediment concentration in the flow column. Sedi-

ments can be exchanged with the bed and transported as

passive solutes, i.e. without influencing the hydrodynamics

of the flow. This corresponds to (2) with r ¼ 1. The FB

model is an even simpler particular case where the net

exchange bed/flow and suspended sediment transport do

not exist. In order to allow suitable comparisons, the three

models are solved with the same numerical scheme but
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
incorporating the required restrictions to each model. This

corresponds to (2) with r ¼ 1, ϕχ ¼ 0 and Eb ¼ 0.

The bedmobility considerably affects the free surface evol-

ution comparedwith the fixed bed case. This can be significant

for flooding prediction as the dambreak wavefront progresses

faster when bed mobility is considered. Figure 6 (right) shows

the volumetric concentration profiles of the solid phase in

the flow at t ¼ 5 min, t ¼ 10 min and t ¼ 30 min after the

dambreak starting. As the dambreak wave progresses down-

stream, the mass exchange term with the bed incorporates

into the flow a high quantity of sediment, leading to important

depth-averaged sediment concentrations in the flow column.

The solid-phase volumetric concentration shows a sharp

increment at the dambreak wavefront, with values higher

than 40% compared with volumetric concentrations lower

than 0:05% at the central reach of the dambreak.

This suspended concentration change, hence a mixture

density change, between the central reach and the wavefront

leads to the appearance of an intermediate shock wave in

the flow surface upstream the dambreak wavefront due to



Figure 6 | Dambreak long-term hydraulics over the mobile flat bed: (left) flow free surface and bed surface and (right) depth-averaged solid-phase concentration in the flow. Front top to

bottom, t ¼ 5 min, t ¼ 10 min and t ¼ 30 min.
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the incorporation of the mixture density into the mathemat-

ical model. However, mathematical models, which

incorporate the suspended sediment conservation and bed

evolution equations but do not take into account density

changes, are not able to predict this intermediate shock

wave. Incorporating the bed mobility but ignoring the influ-

ence of flow properties change due to the sediment

entrainment (PT approach) leads to an overestimation of

the wavefront velocity propagation (Figure 7 (left)). More-

over, the flow-level increment caused by the intermediate

density shock wave is also unpredicted by this passive trans-

port model, with an important drawback for the hazards

determination against severe flooding (see Figure 7 (right)).
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
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Finally, Figure 8 depicts the dynamic computational

time-step evolution along the simulation for the FB model,

the PT model and the proposed VD model. The time step

is closely related to the computational time required by

the model to perform simulations and hence to its efficiency.

For the first stages after the dambreak starting, the FB

model shows higher wavefront propagation velocities, lead-

ing to smaller time steps, than the models considering bed

mobility. However, for the long-term stages, the models

incorporating the bed evolution into the equations requires

smaller time steps to ensure the computational stability

due to the higher wavefront velocity. Furthermore, as the

PT model overestimates the progression of the wavefront,



Figure 7 | Temporal evolution of the (left) wavefront position and (right) flow free surface elevation atx ¼ 35 km.

Figure 8 | Time step evolution.
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it also shows much smaller dynamical time steps than the

complete model proposed and probably leads to a loss of

computational efficiency for real-scale and long-term mor-

phodynamical computations.
Dambreak flow over non-uniform erodible beds

The aim of this idealized test is to assess the capability of the

proposed model to deal with non-uniform beds and to study

the influence of the mixture composition on the hydrodyn-

amic behaviour. The same large-scale and long-term
Table 2 | Sediment-size distribution for non-uniform beds

Bed A

Fines (Fraction 1) dp ¼ 100 μm–Fb,p ¼
Sand (Fraction 2) dp ¼ 1 mm–Fb,p ¼ 0:

Gravel (Fraction 3) dp ¼ 4:8625 mm–Fb,

Medium diameter dm ¼ 4 mm

://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
dambreak test described in the above section is again used

here but setting two different non-uniform sediment-size dis-

tributions in the bed layer. Both non-uniform beds consist of

a mix of gravel (dp > 2 mm), medium sand (dp ¼ 1 mm) and

fine material (dp ¼ 100 μm) weighted to maintain a constant

medium diameter dm ¼Pp Fb,pdp ¼ 4 mm, allowing us to

compare the results with those obtained in the above section

for uniform bed. Table 2 shows the sediment-size distri-

bution for both non-uniform beds considered. Non-

uniform bed A is composed mainly of medium gravel with

small fractions of coarse sand and fines. In the non-uniform

bed B, fine material and medium sand prevails over a small

fraction of coarse gravel.

All the other parameters in simulations are set with the

same values as in the above section.

Figure 9 (left) shows the flow free surface evolution and

bed evolution at t ¼ 5 min, t ¼ 10 min and t ¼ 30 min after

the dambreak starting, with the non-uniform beds A and

B. The results obtained in the above section with uniform

bed configuration are also depicted as references. The non-

uniform composition of the bed slightly affects the free sur-

face evolution compared with the uniform bed. The more

marked differences are detected in the density-wave region

at long-term stages for the non-uniform bed B. The
Bed B

0:10 dp ¼ 100 μm–Fb,p ¼ 0:50

10 dp ¼ 1 mm–Fb,p ¼ 0:25

p ¼ 0:80 dp ¼ 14:8 mm� Fb,p ¼ 0:25

dm ¼ 4 mm



Figure 9 | Dambreak hydraulics over non-uniform bed: (left) flow free surface and bed surface and (right) total solid concentration. Front top to bottom, t ¼ 5 min, t ¼ 10 min

andt ¼ 30 min.
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entrainment of fine materials from the bed to the flowmakes

the jump in density accompanying the wavefront smoother,

which finally causes the appearance of the density wave.

Figure 9 (right) shows the total volumetric concentration

of the solid phase in the flow. The fine material is incorpor-

ated into the mixture in the upstream region of the

dambreak wave, where the erosive flow energy is lower,

and hence, it reduces the density difference between the

wavefront and the upstream region. Furthermore, the den-

sity peak associated with the dambreak wavefront is

reduced as the presence of fine materials in the bed

increases. The main consequence is that the density-wave

becomes smeared.
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Nevertheless, the bed-level evolution shows more

marked differences than the free surface evolution,

especially as the dambreak wave progresses downstream

(see Figure 9). For the coarser non-uniform bed A, the bed

level shows significant deviations with respect to the uni-

form bed case in the wavefront, an important deposition

even appearing in the density-wave region at long-term

stages. The finer non-uniform bed B presents a more

marked erosion than the uniform bed configuration,

especially at long-term stages as a consequence of the

higher entrainment of fine material from the bed.

Figure 10 depicts the volumetric concentration of each

sediment size-class in the mixture flow for both non-uniform



Figure 10 | Volumetric concentration of each sediment size-class in the flow: (left) non-uniform bed A and (right) non-uniform bed B. Front top to bottom, t ¼ 5 min, t ¼ 10 min

andt ¼ 30 min.
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bed configurations at t ¼ 5 min, t ¼ 10 min and t ¼ 30 min

after the dambreak starting. The free surface level has also

been plotted for each case. On one hand, the coarser non-

uniform bed A shows higher concentrations of the gravel

fraction at the wavefront during all the stages of the dam-

break flow, which causes the density jump between the

wavefront and the upstream region. On the other hand,

the finer non-uniform bed configuration B presents a

higher volumetric concentration of sand material at the

wavefront during the early stages of the dambreak flow,

whereas the fine material fraction prevails along the whole

dambreak flow at the long-term stages. Moreover, the
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
volumetric concentration of the finer fraction shows a pro-

gressive transition between the upstream region and the

wavefront region, avoiding the appearance of the marked

density jump detected in the uniform bed case.

Circular mud dambreak over positive and negative

slopes

This test aims to demonstrate the robustness of the proposed

scheme with any kind of boundary shear stress formulation

(Table 1) and the correct treatment of the wet–dry fronts. A

2D circular dambreak over a completely dry bed is considered.



Table 3 | Parameters for the friction relationships used in the test “Circular mud dam-

break over positive and negative slopes”

(1) Pure
turbulent

(2) Turbulent &
Coulomb

(4) Simplified
Bingham

Manning coefficient n 0:03 sm�1=3 0:03 sm�1=3 –

Internal stability angle θb – 26� –

Plastic viscosity μ – – 0:75 Pa � s
Yield stress τy – – 7500 N=m2
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The domain is 100 × 100 m and initially, a sediment–water

mixture column is considered in the centre of the domain,

with height h0 ¼ 10 m over the bed at (x, y) ¼ (0, 0) and

radius R0 ¼ 10. Two different cases are tested with uniform

bed slopes 5% and �5%, respectively. An initial volumetric

concentration ϕ0 ¼ 0:540 of an uniform sediment (grain diam-

eter dp ¼ 0:1 mm, porosity pp ¼ 0:4 and ρp ¼ 2650 kg=m3) is

considered in the mixture column, leading to bulk density

ρ ¼ 1890 kg/m3. The domain is discretized using an unstruc-

tured triangular mesh of 65, 535 cells, the CFL is set at 0.5

and the final simulation time is t ¼ 12 s.

The (1) pure turbulent and (2) turbulent & Coulomb fric-

tion formulations have been used in this test for the

determination of the flow resistance term (see Table 1) con-

sidering a non-cohesive solid phase. Furthermore, the (4)

simplified Bingham friction formulation has also been

tested, assuming that the solid phase is composed of cohe-

sive materials. The parameters needed for each friction

formulation are presented in Table 3.

Figure 11 depicts the depth distribution after flow stops for

the positive slope case (left) and the negative slope case (right).

The flow stops between t ¼ 3 s and t ¼ 4 s for the turbulent &

Coulomb and simplified Bingham resistance formulations in

both cases, whereas for the pure turbulent friction the flow

does not stop and reaches the domain boundaries at t ≈ 4 s

for both cases. Therefore, the depth distribution as shown in

Figure 11 for the pure turbulent formulation corresponds

to t ¼ 3 s. Regardless of the flow resistance formulation

chosen, the scheme is able to maintain a concentric depth dis-

tribution, providing a correct treatment of the wet–dry

dambreak wavefront without numerical instabilities.

The positive slope case shows a larger advance of the

wavefront before the flow stops for the positive slope case

(S ¼ 5%) than for the negative slope case (S ¼ �5%),
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
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regardless of the friction formulation. Figure 12 (left) plots

the final flow depth radial profiles for the simulation assum-

ing the turbulent & Coulomb and the simplified Bingham

friction formulations, whereas for the pure turbulent friction

case the depth profile corresponds to the time t ¼ 3 s after

the initial time. Differences in the depth distribution arise

directly from the flow resistance formulation considered.

Furthermore, Figure 12 (right) shows the accumulated bed

exchange mass between the flow and the bed, being depo-

sition negative. The accumulated net exchange for the

pure turbulent case is only representative at times before

the flow reaches the domain boundaries (t< 4 s). The accu-

mulated deposition mass depends inversely on the flow

velocity and directly on the wetted area. The pure turbulent

case shows a lower deposited mass due to the higher vel-

ocity of the dambreak wavefront. Furthermore, the

turbulent & Coulomb friction case generates higher depo-

sition rates than the simplified Bingham case since the

wetted area after the flow stops is slightly larger.

The mass exchange between the bed and the flow gener-

ates a change in the solid-phase mass of the flow and hence

changes in the mixture density. Figure 13 depicts the flow

density distribution at t ¼ 4 s with both the pure turbulent

and the turbulent & Coulomb friction formulations. Den-

sities remain higher for the turbulent case than for the

turbulent & Coulomb case as the suspended solid-phase

loss due to bed exchange is lower.

Finally, in order to demonstrate the performance of the

friction term integration proposed in the section “Momen-

tum source term integration and friction fix”, the results

obtained with the turbulent & Coulomb resistance formu-

lation with and without including the fix proposed for the

friction term are compared. Figure 14 (left) shows the flow

surface level along the x-axis at time t ¼ 12 s, whereas

Figure 14 (right) depicts the u-velocity x-axis profile at the

same time. When the proposed friction fix is applied, the

flow reaches the quiescent equilibrium state (null velocity)

with free surface slope angles closed to the internal stability

angle θb of the mixture.

Furthermore, if the friction fix is not considered, residual

velocities remain even after the wavefront of the dambreak

stops, leading to transient oscillations of the flow free surface.

These residual velocities are caused by the imbalance between

the convective fluxes and the overestimated friction terms.



Figure 11 | Flow depth distribution at t ¼ 3 s for (left) positive bed slope S ¼ 5% and (right) negative bed slopeS ¼ �5%. From top to bottom: (1) pure turbulent, (2) turbulent & Coulomb

and (3) simplified Bingham friction formulations.
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Furthermore, the proposed friction fix avoids the necessity of

additional time step reductions to guarantee the stability of the

scheme (see Figure 15). As was previously stated, these

additional time step restrictions can lead to a marked increase
://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
of the computational time required by the numerical scheme.

Hence, the proposed source term integration procedure also

ensures the model remains computationally efficient when

complex friction terms are considered.



Figure 12 | (Left) Concentric depth distribution profiles after the flow stop and (right) accumulated deposition mass for all the cases tested.

Figure 13 | Flow density distribution at t ¼ 4 s with (left) pure turbulent and (right) turbulent & Coulomb resistance formulations.
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CONCLUSIONS

In the proposed 2D model for highly sediment-laden

unsteady flows over non-uniform erodible beds, two main

novelties have been presented. First, the mathematical 2D

system of conservation equations includes a new description

of the coupling between the mass and momentum of the

water–sediment mixture flow and the mass conservation

equation for the different sediment size-classes suspended

in the flow. Second, the 2D system is solved using a pioneer-

ing first-order xA-Roe scheme for sediment-laden flows,

which simplifies considerably the correct integration of the

bed slope and friction source terms. A new integration pro-

cedure is proposed to avoid numerical drawbacks and loss
om http://iwaponline.com/jh/article-pdf/22/5/1138/761585/jh0221138.pdf
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of efficiency when complex non-Newtonian friction terms

are considered.

The scheme is able to deal with structured and unstruc-

tured square and triangular two-dimensional meshes. The

proposed resolution strategy ensures the well-balanced prop-

erty for steady states and the correct estimation of the

momentum source terms at wet–dry fronts. The stability of

the scheme is ensured by a CFL condition based on the

eigenvalues of the Jacobian matrix of the coupled system

of equations. Furthermore, the procedure proposed for inte-

grating the momentum source terms avoids the necessity of

additional time step restrictions to maintain the stability of

the solution, even when complex friction terms or wet–dry

conditions are considered. Finally, the proposed numerical



Figure 14 | X-axis profile for (left) the flow level and (right) the u-velocity at time t ¼ 12 s with and without the proposed friction fix. Top: positive slope case and bottom: negative slope

case.

Figure 15 | Time step evolution with and without friction fix: (left) positive slope case and (right) negative slope case.
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model has been evaluated with four benchmarking tests,

including steady-state cases with exact solution and ideal-

ized highly transient cases with wet–dry fronts. The

proposed scheme has demonstrated its accuracy, efficiency

and robustness for all the cases tested.
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