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Abstract—The advancement of wearable eye-tracking technol-
ogy enables cognitive researchers to capture vast amounts of eye
gaze information while participants are completing specific tasks
without restrictions on their movement. However, while eye track-
ers can overlay a gaze indicator on the scene video, identifying the
specific objects being looked at and analyzing the resulting dataset
are accomplished mostly by manual annotation. This method is
a cost-prohibitive and time-consuming approach that is prone to
human error. Such analytic difficulty limits researchers’ ability
to data mine the information efficiently, ultimately restricting the
number of scenarios that can feasibly be conducted within budget.
Here, the first fully automated solution for eye-tracking data anal-
ysis is presented, which eliminates the need for manual annotation.
The proposed software architecture, gaze to object classification
(GoC), processes the gaze-overlaid video from commercially avail-
able wearable eye trackers, recognizes and classifies the specific
object a user is focusing on and calculates the gaze duration time.
GoC utilizes an image cross-correlation method to locate the gaze
indicator and an image similarity measurement to support faster
processing. The presented system has been successfully adopted
by cognitive psychologists. GoC’s exceptional performance in an-
alyzing a case study spanning over 50 h of mobile eye-tracking
is presented. The accuracy and a cost-analysis comparison be-
tween GoC and state-of-the-art manual annotation software are
provided. GoC has game-changing potential for increasing the
ecological validity of using eye-tracking technology in cognitive
research.

Index Terms—Cognitive research, eye-tracking data analy-
sis software, gaze-to-object classification (GoC), wearable eye-
tracking technology.
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Fig. 1. SMI [1] head-mounted mobile eye tracker (left), the image captured
from the infrared camera monitoring the eye (middle) and the recorded video
with the overlaid gaze captured from the front-scene camera (right).

I. INTRODUCTION

HUMAN problem solving in its most basic form requires
generating possible scenario solution paths to move be-

tween the initial problem state and the desired solution. En-
hancing our understanding of the cognitive processes involved
in evaluating scenarios requires psychologists to study problem
solving in real-world contexts. Researchers capture these vast
amounts of visual eye gaze information from eye trackers while
participants are completing specific tasks.

Eye-tracking technology can be applied in various research
contexts and scenarios with demonstrated usability in neuro-
science [10], psychology [11], sports [12], human–robot inter-
action [13], geology [14]–[16], medical diagnosis [17], [18],
and on-road driving applications [19], [20]. The rapid develop-
ment of eye-tracking systems and technology popularized eye
movement research and expanded the potential scope of research
paradigms [21].

Wearable mobile eye-tracking glasses rely on infrared cam-
eras to locate and monitor the pupil’s position to estimate where
the participant is looking. A front-facing scene camera records
the person’s field of vision, and a gaze position indicator (a cur-
sor) is subsequently overlaid over that scene video (see Fig. 1).
Hence, lightweight mobile eye-tracking technology enables the
investigation of eye movements in real world, unconstrained set-
tings, drastically improving the ecological validity of research
in cognitive science.

While there have been significant advances in technology
to capture eye movement data from participants, the ability to
automatically process, analyze, and make informed inferences
from the resulting datasets remains a challenge. The lack of
reliable and user-friendly solutions limits possibilities for uti-
lizing mobile eye-tracking technology in exploring large-sample
data, effectively limiting the scope of possible advancements in
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our understanding of how people interact with the surrounding
world.

Automated video processing analysis addresses this problem;
however, no reported work has been performed to automate the
“gaze-to-object” classification for massive mobile eye-tracking
data for cognitive research. This paper presents a novel software
architecture for automating mobile eye-tracking data analysis
and classifies the object being gazed upon.

The main contributions of the paper are as follows.
1) A solution using image analytic techniques is described

to facilitate the wearable eye-tracking data analysis and
gazed object classification. The novel software architec-
ture (gaze-to-object classification (GoC)) can recognize
which region of interest (ROI) participants are attending to
in gaze-overlaid videos, classify the specific object within
the ROI, and provide information on the gaze duration
based on frame counts.

2) A user-friendly GoC prototype is designed for automatic
identification and annotation (labeling) of object cate-
gories within gaze-overlaid videos relevant to the research
question under investigation. It is one of the most versa-
tile approaches to analyze mobile eye-tracking data with
the advantages of being position invariant, task driven,
illumination and noise tolerant (such as motion blur), and
able to operate with all commercially available mobile
eye-tracking equipment.

3) GoC’s utility in analyzing a case study spanning over 50 h
of mobile eye-tracking data is presented. During the study,
participants had to conceptualize and present a solution
path for a design problem. The detailed case study de-
scription is discussed in Section III. GoC’s outcomes are
then compared to the current standard benchmark of those
achieved through manual coding by trained and inexperi-
enced researchers.

This paper is organized as follows. Section II gives a brief
review of related work and current approaches for cognitive
scientists interested in utilizing mobile eye-tracking in their
research. A detailed laboratory setting case study created by
cognitive psychologists is described in Section III. Section IV
provides a detailed description of the automatic image process-
ing framework for the GoC. Meanwhile, GoC was tested on
a large dataset from a problem-solving study, followed by an
evaluation of time efficiency and accuracy of this approach. Fi-
nally, the conclusions and several future research directions are
presented in Section V.

II. BACKGROUND AND RELATED WORK

A. Eye Movement Properties

Eye movements are proactive. They are the conduit for gath-
ering information, which seek to provide insight into a task’s
attentional demands in anticipation of a decision required for
future actions [2], [3]. Eye movement properties such as blink
rate, fixation duration, or saccadic amplitude and velocity are
robust indicators of underlying cognitive states such as stress
or high mental workload [4] and provide insight into the cog-
nitive requirements of various tasks [5]–[7]. Analyzing the pro-
cess of how people look at things informs our understanding of

mechanisms guiding visual attention and influencing underlying
cognitive states. Combining such information with data on
where people look and what they look at provides cognitive
science researchers with unique insight into how humans in-
teract with the world to advance our understanding of human
cognitive function [8], [9].

B. Eye-Tracking Research and Applications

Wearable eye-tracking technology opens new avenues for re-
searchers to monitor eye movements and record their properties
under a variety of experimental protocols and in real-life sit-
uations [22]. This allows researchers to extend the scope of
investigation to more ecologically valid experimental designs
[23]. In analyzing where and what people look at, scientists rely
on predefined ROI within a specific stimulus or environment.
Such selection is informed by a specific research question on
hypothesis. As such, the ROI differs across studies in shape,
size, scope, and location, and can range in complexity from
large clusters of objects (an entire storefront display) to narrow
areas within a single object (a specific item on the shelf). Robust
identification and annotation of ROI within resulting data are
therefore critical.

C. Eye-Tracking Data Analysis Methodology

Existing automatic image recognition algorithms can detect
all objects within a video frame that fulfill a certain set of crite-
ria. The relative importance of objects within a visual scene is
often estimated on the basis of existing visual attention models,
such as visual salience models [24], [25]. Such detection algo-
rithms are heavily rooted in computational approaches to vision
modeling [26], and allow for informed prediction on where par-
ticipants would look [27], [28]. This allows researchers to delin-
eate which objects within the visual environment should grasp
participants’ overt attention. Highlighting all objects of interest
within a video frame is an important first step to automating eye-
tracking data analysis and as such presents incredible potential
for real-life applications [29].

It is not necessary to identify all objects of possible interest
within a visual scene in order to support automated eye-tracking
analysis. Eye-tracking equipment collects information about the
participants’ pupil position and calculates where the participant
is looking at any given time. The gaze direction can be then cross
referenced with an object within the visual scene [30]. However,
eye-tracking data accuracy is prone to drift over time, and as
such the calculated gaze point does not always overlap with the
ROI even when the participant is in fact attending to that ROI.
It is therefore necessary to introduce corrective measures [31].
Outstanding work has been done to understand the relationship
between eye movements, semantic description, and computer
vision [32], [33]. Gaze-tracking systems include examination of
eyeball features (such as pupil, eyelid, and iris), gaze direction
evaluation, a gaze mapping function, and hardware calibration as
described in [34]. A benchmark for the point of gaze detection
algorithms is presented by McMurrough et al. in [35]. The
gaze detection technique is mature and commercially available;
commercial eye trackers are able to calculate eye movement
properties and reports gaze position estimates as a series of x–y
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coordinates falling on a specific frame within an independent
scene video.

The next logical step is developing a GoC tool for automated
gaze annotation and ROI labeling.

To date, there is no commercially available software enabling
eye-tracking researchers to perform automated object recogni-
tion on the scene video, and as such, researchers do not have a
simple way of inferring what their participants are looking at.

Instead, cognitive researchers are forced to process mobile
eye-tracking data by manually delineating ROI, often frame by
frame, such as depicted in Fig. 2. This approach is a well-known
obstacle to utilizing mobile eye-tracking technology [36].

Prior research has contributed to make ROI annotation easier.
In [37], Tsang et al. introduced eSeeTrack, a visualization pro-
totype that streamlines ROI annotation and allows researchers
to estimate fixation duration falling within specific ROI content.
However, for wearable eye-tracking data, fixated ROI annota-
tion still heavily relies on manual human labor in completing the
analysis. A similar approach was presented by Kurzhals et al.
[38]. The proposed ISeeCube is a visual analytics tool specifi-
cally designed for visual analysis of recorded eye-tracking gaze
pattern information with the ROI content. The toolbox offers
the possibility of including multiple coordinated viewpoints in
converting the two-dimensional (2-D) video data to a three-
dimensional model supporting the analysis of ROI in motion,
making ISeeCube an important tool for video analysis despite
its reliance on the manual ROI annotation process. This labeling
time is reduced in recent work [39] with the introduction of a
user interface. This system uses the state-of-art image similarity
measures to decrease the number of video frames that need to be
manually annotated, but does not altogether remove the need for
extensive human labor. Finally, Pontillo et al. proposed an ob-
ject recognition-based semiautomation labeling software [40];
however, it depends heavily on manually labeling during the
process of video streamlining, and its color-histogram-oriented
object classification method fails to account for variance in
luminance.

Other works, such as gaze-guided object recognition for a
head-mounted eye tracker [41] and gaze-guided object classi-
fication utilizing deep neural networks [42], address real-time
object recognition using head-mounted eye trackers. However,
the classification depends heavily on providing extensive train-
ing data and the method is not position invariant, meaning the
viewing distance and view perspective must remain fixed.

ROI object categories selection is hypothesis driven and there-
fore relies exclusively on the researcher’s scientific goal. GoC
identifies frames within the gaze-overlaid video where the gaze
indicator overlaps with one of the predefined ROI object cate-
gories. It then automatically labels which object of interest the
participant attended to.

To the best of our knowledge, there is no software architecture
that can automate video data labeling of mobile eye-tracking
devices, especially with the occurrence of dynamic zooming
and in the presence of distortions, such as motion blurring. To
date, GoC is the only automated analytic approach that does
not rely on extensive human labor inherent to a manual ROI
labeling approach. To clarify the capabilities of the different

TABLE I
COMPARISON BETWEEN GOC AND OTHER EYE-TRACKING

DATA ANALYTIC TOOLS

tools mentioned above, we have supplied the comparison table
(see Table I).

III. CASE STUDY

A. Tool Design and Human Problem Solving

The case study explored how engineers discovered possible
solution paths in aiding completion of a mundane and repetitive
task: sorting an unorganized Lego Mindstorms NXT kit. The kit
contains different types of Lego pieces, totaling over 430 pieces
distributed across two trays with 4 and 13 compartments each.

The goal of the design problem was to optimize the sorting
process by conceptualizing a tool (a physical piece of equip-
ment) to be used by a particular end user in sorting a single
Lego NXT kit in accordance with the instructions provided.
The given instructions were to sort a disorganized Lego kit to
match a pre-existing reference image of a sorted Lego kit. The
envisioned tool will be used by one of three possible end users: a
human (end user of known physical and cognitive capabilities),
a robot (end user of unknown technical specifications), or a team
consisting of a human and a robot.

As participants were given no information about specific
abilities or capacities of their end user, they were expected
to infer that information from previous experience or through
observation.

The goal of the study was to identify the approaches that
engineers employ to fill in their knowledge gaps when faced with
a problem-solving task. The case study investigated whether
such “knowledge patches” were based on engineers’ previous
experiences (as indicated by their verbal explanations during the
task), or on visual examination of the end user (as indicated by
the eye-tracking data).

B. Current Study

Design problem: Participants were to devise a tool that would
help a specific end user sort a Lego kit more efficiently.
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Fig. 2. Example of a gaze point-inspired ROI labeling process used in cognitive science research. White rabbit on the left, child in the middle, and bird on the
right with the orange gaze indicator overlaid on the bird.

Participants: 50 undergraduate students (age mean = 19.7,
standard deviation = 2.5) from the Tufts University School of
Engineering completed the study for monetary compensation.

Experimental session: Each participant was randomly as-
signed to one of three possible end users (15 participants per
end user in total). Participants were seated at a table across from
their intended end user and were not allowed to interact with
the user in any way other than observation. Furthermore, par-
ticipants were not given any information about their end user
beyond what they could observe and infer on the basis of previ-
ous knowledge.

In each session, participants received a disorganized Lego
NXT kit that they could freely manipulate. The experimental
task consisted of three stages: first, participants brainstormed
possible solutions for 10 min. Then, they could use paper, pen-
cils, scissors, and tape to record their design idea in any form
they saw fit (sketch or model). After approximately 40 min, par-
ticipants gave a short explanation of how their proposed sorting
tool worked.

Eye tracking: Eye-tracking data were collected using SMI
eye-tracking glasses [1] (Sensomotoric Instruments, Inc.) at
30 Hz. Gaze-overlaid videos were exported using SMI BeGaze
3.7 (Sensomotoric Instruments, Inc.).

ROI: Our cognitive psychology team was interested in ob-
serving whether participants looked at four objects: the end
user, the Lego kit, the reference image of a sorted Lego kit, or
the writing utensils (see Fig. 7).

Current analytic objective: Measuring the proportion of time
spent looking at the end user versus time spent manipulating
items on the table. Such analysis informs our understanding of
how approaches to designing a tool differ as a function of the
intended end user.

Analytic challenges: As participants interact with objects
(Lego pieces or writing utensils), the resulting eye-tracking
videos are particularly difficult to analyze due to: 1) blurring
of the video resulting from a rapid shift in the field of vision
from even the slightest shift in head position; 2) object manipu-
lation and sketching during the experimental session mean that
the appearance of the areas of interest is constantly changing,
i.e., Lego pieces can be stuck together or separated or the ini-
tial blank paper provided gradually becomes covered in writing;
and 3) participants’ hand motions cross the field of vision and
therefore periodically obscure the view.

IV. GOC SYSTEM FRAMEWORK

The overview of the GoC software architecture for automat-
ing mobile eye-tracking data analysis and scene-gazed object
classification is presented in Fig. 3. There are six system pro-
cess blocks.

1) Input video: For our software solution, we directly in-
put a gaze-overlaid video generated by the commercially
available wearable eye trackers. The gaze-overlaid scene
video is converted into individual image frames. This
step aims to allow the employment of image processing
algorithms.

2) Filtering process: The number of images is reduced by
taking the advantage of temporal coherence of the video
data. This step can remove blurry and otherwise uninfor-
mative frames, which can also result in increasing pro-
cessing speed.

3) Utilize the eye tracker’s gaze indicator: Zooming in on
the focus of the visual attention will highlight where and
what the observer is looking at in each frame.

4) Gaze directed ROI cropping: The area around the gaze
indicator is selected. Due to calibration issues, the actual
gaze point may not always be in the ROI but will be close
by. Cropping the area around the detected gaze indicator
can help minimize the error introduced by the eye tracker
calibration and help better identify the gazed upon object
information.

5) Object classification: The classes of objects are user de-
fined, which depends on constructions driven by the hy-
pothesis under investigation. The goal of this step is to
automate ROI annotation.

6) Result visualization: A scarf plot and histogram genera-
tion are used for the purpose of summarizing and visualiz-
ing analysis results. Either a scarf plot demonstrating the
temporal overview for the video or a histogram showing
the occurrence of different object classes can be utilized
here.

All the process blocks will be explained in detail in this
section.

A. Video-to-Frame Conversion

The GoC architecture starts by converting the gaze-overlaid
scene video stream into frames, which means that all the sub-
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Fig. 3. Overview of GoC prototype architecture. The input mobile eye-tracking gaze-overlaid video data are (A) broken down into image frames. (B) Filtering
process reduces the size of the data by taking the advantage of the temporal coherence of the gaze data. This is followed by (C) gaze indicator detection,
(D) gaze-directed ROI cropping; (E) object classification and (F) result visualization. Step (E) involves building the training dataset; creating a bag of visual words,
obtaining the histogram for each image and using classifiers to train the produced histogram features. (F) Resulting visualization of GoC is shown using a scarf
plot demonstrating the temporal overview for the video and a histogram showing the occurrence of different object classes.

sequent image processing tools are applied directly onto the
converted frames. Hence, there is no restriction on the video
format and no limitation on the eye tracker devices used.

The video data captured by the SMI head-mounted mobile
eye-tracking glasses were 25 frames/s; thus, after converting,
there are 70 500 images in one 47-min video.

B. Filtering Process

When people focus their visual attention on a specific area,
the resulting video contains a sequence of similar image frames.
Relying on the temporal coherence of the underlying gaze video,
a downsampling processing utilizing an image similarity mea-
surement [43], [44] can reduce the number of frames.

The structural similarity between subsequent video frames is
calculated algorithmically; images are deleted when they drop
below a similarity threshold, which means that the participant
is moving quickly from one object to the other, or one of the
images is too blurry and noisy. The decision-making schematic
is shown in Fig. 4.

In [45], an image similarity measure 4-EGSSIM using en-
hanced human visual system characteristics is introduced. This

Fig. 4. Decision-making process for the filtering process to remove blurry or
noisy images due to rapid eye motion. The top image frame is compared to the
subsequent frame (bottom left) and shows severe motion blur. The blurry frame
is deleted.

similarity measure was applied because of its high distinguish-
ing ability in video processing [46].

For two conterminous video frames x and y, their correspond-
ing edge map, x′ and y′, are calculated using a Sobel edge detec-
tor [47]. Each image was first partitioned into four subregions
based on the edge information. The implementation uses the
following formulas.
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Preserved edge pixel region (R1)

log(x′ (m,n) + 1) > T1 && log (y′ (m,n) + 1) > T1 . (1)

Change edge pixel region (R2)

(log(x′ (m,n) + 1) > T1 && log (y′ (m,n) + 1) ≤ T1 ))||
(log (y′ (m,n) + 1) > T1 && log(x′ (m,n) + 1) ≤ T1)).

(2)

Smooth region (R3)

((log(x′ (m,n) + 1) > T1 && y′ (m,n) ≤ T1 ))||
(log (y′ (m,n)+1) > T2 && log(x′ (m,n) + 1) ≤ T2)) (3)

Texture Region (R4) : Otherwise. (4)

Here, T1 = 0.12 (x′max ) and T2 = 0.06 (x′max ), where x′max
is the maximum value of the gradient magnitude of x.

Then, the 4-EGSSIM value is calculated using

4 − EGSSIMRi
(x, y) =

4∑

i=1

wi

|Ri |
∑

(m,n)∈Ri

GSSIMx,y (m,n) (5)

where wi are the weights for each region Ri , i = 1, 2, 3, and
4. These parameters were obtained experimentally. The GSSIM
[48], a variant of SSIM [43], values are calculated in terms of lo-
cal luminance, contrast, and structure, and then these local sim-
ilarity measures are pooled into a single similarity 4-EGSSIM
metric; the detailed explanation and calculation can be found
in [45].

For this work, an applied measure threshold of 0.8 provided
a good filtering result, which removed redundant frames and
reduced the dataset by 10% from the original video.

The filtering process using the image similarity measure has
two significant advantages: 1) efficiency is enhanced because the
image assessment method is used to reduce the dataset size; and
2) accuracy is addressed because undergoing an image similarity
assessment also helps delete unbefitting frames.

C. Utilize the Eye Tracker’s Gaze Indicator

Normalized image 2-D cross correlation is used to localize the
human eye gaze indicator by estimating the similarity between
the cropped template of the gaze indicator [see Fig. 5(c)] and
the original video frame captured from a first-person perspective
[see Fig. 5(a)].

The gaze indicator detection step starts with extracting the
red color channel of the input RGB video frames. An example
of a red channel image from an original video frame is shown
in Fig. 5(b). Next, the 2-D normalized cross correlation be-
tween the video frame and gaze template is performed using the

Fig. 5. (a) Original video frame captured in a laboratory setting. Gaze indicator
template generated by (c) commercial eye-tracking devices that is produced by
SMI BeGaze [1]. It is an orange circle with the same size in each video frame.
(b) Representation of the extracted red channel of the original RGB video frame.

Fig. 6. Normalized 2-D correlation results for gaze indicator detection. The
left image shows the 2-D correlation coefficients matrix displayed as a surface.
The correlation coefficients (z-axis) can range in value from –1.0 to 1.0, and
the x- and y-axis show the pixel location of the original image. The peak value
indicates the image patch that is most similar to the template, which provides
the location of a gaze indicator and is displayed within a bounding box (right).

following formula [49]:

γ (u, v) =
∑

x,y

[
f (x, y) − f̄u,v

]
[t (x − u, y − v − t̄)]

{∑
x,y

[
f (x, y)−f̄u,v

]2 ∑
x,y [t(x − u, y − v − t̄)2

}0.5 (6)

where f is the image, t is the template, t̄ is the mean of the
template, and f̄u,v is the mean of f(x, y) in the region under
the template.

The resulting matrix contains the correlation coefficients
that range from –1.0 to 1.0, which is displayed in Fig. 6
(left). The detected gaze indicator is within a bounding box in
Fig. 6 (right). Note that the accuracy of this step was approx-
imately 99.5%, with the failure cases occurring when the pre-
dicted gaze indicator was not in a complete round shape. This
occurs when the gaze falls on the edge of the video frame.

D. ROI Cropping

One of the most important tasks in analyzing mobile eye-
tracking data is to distinguish between different objects in
a single frame by finding the segment boundary between
objects.

In designing the GoC framework architecture, the ROI
cropping step can be achieved using image segmentation
methods [50].

Usually, the segmentation obeys a certain criterion with re-
spect to the same characteristics, such as color, intensity, or
texture. Though many practical applications of segmentation



274 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 49, NO. 3, JUNE 2019

technology are fully explored, no segmentation algorithm is
flawless and suitable for all applications. Therefore, segmenta-
tion solutions must be chosen with respect to specific analytic
needs in order to maximize the efficiency and performance of
the algorithm.

It was challenging to find a suitable image segmentation tech-
nique that can extract the objects of interest without losing the
structural information for the subsequent scene-gazed object
classification step. Instead, in the prototype system, the area
around the detected gaze indicator is automatically cropped us-
ing a fixed size.

As one aspect of our future work, we will optimize the ROI
cropping step by using a promising image segmentation algo-
rithm. By combining the detected location of the gaze indicator
with the location of objects within a frame, the system was
able to confirm where a participant is looking during the mobile
eye-tracking experiment.

E. Object Classification

Image classification refers to training a computer to determine
whether an object belongs to a specific predefined category.
In GoC, we chose the bag-of-visual-words (BoVW) classifi-
cation [51] model (BoVW) over other computer vision clas-
sification algorithms (such as convolutional neural networks)
because BoVW requires less computational complexity without
sacrificing accuracy, needs less extensive training data, and has
advantages of orientation invariance and scale invariance.

BoVW treats every image as ‘a documentation’ with many
visual words. Visual words are small patches in an image that
are automatically detected by feature detectors based on im-
age structural information. Then, the similar visual words are
grouped together to form the visual word vocabulary. A his-
togram records the visual word occurrences that represent an
image, which is used to train an image category classifier. Fi-
nally, the system predicts the content using an image classifier
that is encoded from the training set images.

BoVW is a leading machine learning methodology with nu-
merous modules, such as feature extraction, feature description,
unsupervised clustering, and classifier selection. Examples of
selected training images are displayed in Fig. 7.

The steps for BoVW in GoC gazed object classification are
as follows.

1) Extract scale-invariant feature transform [52] (SIFT) fea-
tures from all training images with different categories.

2) Construct the visual words vocabulary by K-means clus-
tering [53] (K = 100).

3) Generate a histogram to represent each image, counting
the visual word occurrences in an image.

4) Train the classifier.
5) Predict the object’s category.
The selection of different algorithms is task driven, which

means that we set up different parameters for different applica-
tions [54]. For instance, in Step 1, we chose the SIFT feature
extraction algorithm over the regular dense [55] feature, SURF
[56] feature, and random sampling [57] feature extraction be-

Fig. 7. Image classification with the bag of visual words. Top left is the
“LegoKit” image, top right is the reference image of a sorted Lego kit, bottom
left is the “Robot” image, and bottom right is a “Sketching” image.

cause it provided more accurate classification for eye tracker
data with regard to the participants’ movement that resulted in
frequent zoom-in and zoom-out actions. Additionally, we chose
the visual vocabulary size to be 100 and used the linear SVM
classifier in the GoC prototype system.

F. Scarf Plot and Histogram Generation

For visualization purposes of summarizing and presenting
analysis results, a scarf plot was created to demonstrate the video
streaming content with a timestamp of when specific objects
are being looked at. A histogram is also output to show the
occurrence of different object classes to indicate the task time
duration [see Fig. 3(b)].

G. GoC ROI Annotation Graphical User Interface (GUI)

An accompanying GUI was designed for the purpose of op-
timizing the BoVW parameters and evaluating the accuracy of
the frame-by-frame classification. In addition, the GUI can be
considered as a semiautomatic visual analytics tool for gaze
data that is recorded using wearable eye trackers, which is an
improved approach to manual ROI annotation. The designed
GUI effectively addresses the analytic challenges and supports
their resolution by: 1) observing what participants looked at (the
end user, the Lego kit, the reference image of a sorted Lego kit,
or the writing utensils); and 2) measuring the proportion of time
spent looking at each category.

The presented GUI is shown in Fig. 8(a). The main view
of the GUI contains a text header denoting the file name of
the eye-tracking dataset currently being annotated. The image
shown in the middle of the canvas is the cropped bounding box
area with a gaze location marked as the orange circle (generated
after implementing step D in GoC). The button panel on the
right of the screen is divided into the following sections: 1)
Load and Next buttons are used to select the starting frame and
the next image frame; 2) Gaze-to-Object category buttons show
the different object categories (“LegoKit”, “referencePaper”,
“Robot” and “Sketching” image in our example case), which
the user can easily customize and modify in the source code
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Fig. 8. (a) Evaluation GUI developed for GoC for annotating each frame of
the recorded mobile eye-tracking video; the load and next button are clicked to
select image frames; four categories are displayed on the buttons; by clicking
the “Done” button, evaluation data are saved as a spreadsheet. (b) Screenshot
of using annotation software from the eye tracker’s manufacturer (SMI BeGaze
version 3.7).

for different applications; and 3) the “Done” button saves the
annotated (evaluation) data as an Excel file.

H. Accuracy Validation

There is no ground truth for the case study (described in
Section III) video annotation since no other automated pro-
cess exists. The GoC-produced histogram distribution matched
83.4% compared with the human label annotation-produced his-
togram (commercially available SMI BeGaze version 3.7). This
accuracy was consistent for case study videos spanning over
50 h (over four million image frames).

To further test the accuracy and efficiency of GoC, we con-
ducted two additional experiments described as follows.

1) The study was a real-world outdoor walking experiment
where participants’ movements are completely dynamic
and the location and/or scene is/are also changing in time.
The study involved a campus navigation task, where par-
ticipants devise routes around the Tufts University campus
and then guide the researcher along the route while wear-
ing mobile eye tracker devices. Our cognitive psychology
team was interested in observing whether participants
looked at common objects in the campus environment:
cars, people, and street scenes. The wearable eye tracker
device for data collection is described in Section III. The
proposed GoC achieved 94.6% accuracy compared to hu-
man manual annotation.

2) To prove the stability of GoC under varying illumination
conditions, we conducted a straightforward office envi-
ronment recording while the researcher was changing the
lighting intensity during mid recording. The purpose of
the recording was to investigate whether the GoC recog-
nizes common office objects (such as office utensils) and
people regardless of varying illumination conditions. We
started the recording in a low-lighting condition (the of-
fice lights were OFF during the late afternoon/twilight, and
barely any light was coming through the office window).
Then, the researcher turned ON the overhead light in the
middle of the recording. The accuracy of GoC is 99.5%,
which demonstrated that GoC could detect and recognize
objects of interest under varying illumination conditions.

Fig. 9. Comparison of annotation human labor time for an hour-long video
between manual ROI annotation (for both an experienced coder and an inexpe-
rienced coder) and the evaluation using the proposed GoC annotation.

I. Time and Cost Comparison

Perhaps, the most prohibitive aspect of manual ROI annota-
tion is the time required from researchers to complete the task.
We compared how much data an inexperienced and experienced
coder could annotate in 1 h. The inexperienced coder was an
undergraduate student who received a 30-min tutorial on using
the proprietary annotation software from the eye tracker’s man-
ufacturer [SMI BeGaze version 3.7, Sensomotoric Instruments,
Inc.; Fig. 8(b)]. The experienced coder was a graduate student
who had approximately five years of experience with mobile
eye-tracking recordings and analysis.

The inexperienced coder reported annotating approximately
2 min of video data in 1 h. The experienced coder reported
annotating approximately 3 min of video data in 1 h. On the other
hand, the GoC setup took approximately 15 min of human labor,
and the subsequent automated annotation process did not require
supervision. The annotation evaluation using the provided GUI
was possible at the rate of 500 images per hour, whereas the cost
of human manual annotation rises as the amount of data to be
analyzed increases. In the case of using GoC, the cost of human
labor remains consistent regardless of the size of dataset to be
analyzed.

The case study presented in this paper consisted of 50-h-long
videos. The benefits of using GoC over both experienced and
inexperienced human coders are compelling (see Fig. 9).

V. CONCLUSION

This paper proposed an automated solution for analyzing
the perspective visual channel extracted from the mobile eye-
tracking data. The software architecture, GoC, provides an ef-
ficient way for cognitive scientists to automate mobile eye-
tracking data analysis by completely removing the burden of
human labor. The source code of GoC can be downloaded from
http://www.karenpanetta.com/download/.

A. Contributions

GoC utilizes customized image processing algorithms, in-
cluding 2-D image cross correlation for utilizing the gener-
ated gaze point indicator within the gaze-overlaid video, the
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4-EGSSIM image similarity measurement to the downsampling
process for speeding up the procedure, and BoVW for object
classification.

The software architecture has the following advantageous
characteristics.

1) The position invariance means that GoC can successfully
analyze visual data when participants are completing tasks
without any restriction on their movement.

2) The task-driven approach ensures that cognitive re-
searchers can design any experiments based on their
needs.

3) The high tolerance to noise enables GoC to detect and
delineate noisy and blurring frames.

4) Stability is achieved under varying illumination condi-
tions because the eye tracker’s scene camera adjusts il-
lumination in under or over illuminated conditions, and
GoC can still recognize and classify the gazed object with
the camera adjustment.

5) Its independence of tracker manufacturers enables GoC
to automate the analysis of any format of gaze-overlaid
videos that are exported using the manufacturers’ eye
tracker proprietary software.

A user-friendly evaluation interface is provided to test the
GoC accuracy and to tune the BoVW object classification and
filtering algorithms parameters.

The GoC architecture testing achieved remarkable accuracy
and vastly outperformed the traditional manual annotation pro-
cess in cognitive research. Moreover, GoC has the potential to
measure the visual attention of humans across a broad range of
areas such as: psychology, cognition, usability, and marketing.

B. Future Work

In the future, the system’s accuracy can be improved by inves-
tigating image segmentation approaches for object contouring.
Furthermore, the BoVW model can be enhanced by adding ad-
ditional feature information such as the color, shape, edge, and
corner.
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