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ABSTRACT Intuitionistic fuzzy sets, as extensions of fuzzy sets, are described by intuitionistic fuzzy
numbers (IFNs) that describe the uncertain concepts with the membership and non-membership degrees
together. Three-way decisions are effective classification methods, which are always utilized for solving
uncertain problems with fixed cost parameter values and fixed attribute values in reality. However, under
dynamic intuitionistic fuzzy environments, three-way decisions face a great challenge for processing
uncertain problems with IFN cost parameters and IFN attribute values. In this paper, by considering
the impact of IFNs, a hierarchical three-way decision model with IFN cost parameters (H3WDIF-I) is
established in multi-granularity spaces for handling dynamic and uncertain problems first. The change rules
of H3WDIF-I are discussed to analyze the relationships of decisions based on the granularity structures.
In addition, when the IFN cost parameters and IFN attribute values arise together, a hierarchical three-way
decision model with IFNs (H3WDIF-II) is proposed to explore three-way decisions in depth under dynamic
intuitionistic fuzzy environments. Similarly, the change rules of H3WDIF-II are also discussed from the
viewpoint of classification losses in multi-granularity spaces. Finally, the presented change rules are verified
by many examples and experiments.

INDEX TERMS Intuitionistic fuzzy numbers, classification losses, uncertainty, multi-granularity spaces,
hierarchical three-way decision models.

I. INTRODUCTION
Three-way decisions (3WDs), proposed by Yao [38], [41]
have been developed greatly for dealing with uncertain
knowledge discovering recently. Three-way decision model
(3WDM) divides a universe into three disjoint regions [43],
i.e., positive region, boundary region and negative region,
which correspond to implement three actions, i.e., accep-
tance, deferment and rejection, respectively. Therefore,
3WDM supplies semantic interpretations to decision-
theoretic rough sets, which conforms to human cognition.

As a classification model, 3WDM has been successfully
applied to solve practical applications, such as engineer-
ing decisions [11], [48], information decisions [9], [24],
[25], [35], [47], [55] and medical decisions [8], [37].

The associate editor coordinating the review of this manuscript and
approving it for publication was Yonghong Peng.

Cabitza et al. [3] presented two methods based on three-way
decisions for collective knowledge extraction from question-
naires. By considering the misclassification cost and test cost,
Li et al. [14] proposed a cost-sensitive sequential 3WD strat-
egy to analyze image data. In addition, theoretic researches
have also achieved many fruits [5], [6], [18], [22], [31], [46],
[50]–[52]. Hu et al. [7] discussed the transformation from
multiple three-way decision spaces to a single three-way
decision space based on fuzzy lattices and partial ordered sets.
Li et al. [16] proposed generalized 3WDMs to evaluate sub-
sets of universe. Liu and Liang [21] presented some prop-
erties of a novel 3WDM by comparing ordered 3WDs with
decision-theoretic rough sets. In Pythagorean fuzzy informa-
tion systems, Liang et al. [20] proposed a new 3WDM as a
natural extension of 3WDs.

In practice, granular computing simulates human
thinking in processing complex problems by utilizing
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granularity structures. Yao [39] argued that granular com-
puting is a web of interacting granules which could be used
to establish multiple hierarchies for describing a universe.
In addition, Yao and Yao [45] reformulated consistent clas-
sification problems with granular computing and proposed
a more general framework of classification. Thus, by intro-
ducing granular computing, 3WDMs with sequential strategy
were presented for achieving multi-division of boundary
region [42], [44]. Li et al. [13] proposed a sequential three-
way decision method based on granularity structures to
balance conflicts between misclassification cost and insuffi-
cient high-quality facial image information. Yang et al. [34]
proposed a unified sequential 3WDM by combining granu-
larity for multilevel incremental processing. Chen et al. [4]
established a sequential three-way decision model to deal
with attribute updating in a multi-granularity universe.
In summary, combining with granular computing, 3WDMs
have been applied to deal with the complicated and uncertain
problems in many aspects [10], [12], [27], [28], [30], [54].

Intuitionistic fuzzy set (IFS), proposed by
Atanassov [1], [2], is also an important tool to deal with
uncertain, imprecise and vague information [49], [53].
IFS describes a concept by using an IFN which is con-
stituted by a membership degree and a non-membership
degree together. Naturally, to extend 3WDMs, IFSs have
been introduced [29], [33], [36]. Tan et al. [32] defined
fuzzy information granules based on intuitionistic fuzzy
relations and characterized the lower and upper approxi-
mations of intuitionistic fuzzy rough set with hierarchical
structures. Liang et al. [19] introduced the intuitionistic
fuzzy point operator into 3WDs to bring the variation of
cost parameters and discussed the decision principles under
intuitionistic fuzzy environments. Furthermore, combining
intuitionistic fuzzy sets, a new three-way decision-theoretic
model and a new rule induction algorithm were constructed
by Liu et al. [23]. By considering new IFN cost parameters,
a dynamic intuitionistic fuzzy decision-theoretic rough set
model was proposed to analyze multi-period decisions by
Liang and Liu [17]. Therefore, many successes were achieved
by utilizing intuitionistic fuzzy information to aim at actual
applications.

However, in reality, intuitionistic fuzzy environments
always provide intuitionistic fuzzy information including
IFN costs and IFN attribute values. Moreover, attribute
increments always arise under intuitionistic fuzzy environ-
ments, which lead to different decision results. Therefore,
3WDM still exists several shortcomings for effective classi-
fications currently under intuitionistic fuzzy environments:

1) how to present a 3WDM to apply intuitionistic fuzzy
information effectively with constant increasing of
attributes?

2) the relationships of different decisions in dynamic envi-
ronments should be revealed.

To overcome the two shortcomings, a H3WDIF-I is
derived in multi-granularity spaces, which targets for deal-
ing with IFN cost parameters and fixed attribute values in

this paper. Furthermore, relationships of decisions in different
granularity levels are discussed from the viewpoint of clas-
sification losses. Then, by considering IFN attribute values
and IFN cost parameter values together, a H3WDIF-II is
established in multi-granularity spaces to deal with practi-
cal issues. As prerequisites for applications, the following
relationships of decisions are discussed in detail in multi-
granularity spaces:

1) the relationships of classification losses in succes-
sive granularity levels are locally analyzed from the
membership and non-membership degree perspectives,
respectively;

2) the changing trends of classification losses are dis-
cussed globally and clearly;

3) the changing trends of three regions in multi-
granularity spaces are shown to achieve effective
classification.

The rest of this paper is organized as follows. Section II
provides many basic concepts and theories on three-way
decisions and intuitionistic fuzzy sets. In Section III,
a hierarchical three-way decisionmodel with IFN cost param-
eters is defined and the relationships of decisions in suc-
cessive granularity levels are discussed in multi-granularity
spaces. In Section IV, a new H3WDIF-II is proposed and
some change rules are analyzed in multi-granularity spaces.
Many experiments are presented to verify proposed rules
in Section V. Section VI concludes this paper.

II. PRELIMINARIES
In this section, some related theories and definitions on IFSs
and 3WDs are reviewed briefly as prerequisites of this paper.
Definition 1 (Intuitionistic Fuzzy Set [1]): Given a fixed

set U , an IFS E on U can be represented as follows,

E = {〈x, µE (x), νE (x)〉} ,

where the functions µE (x) : U → [0, 1] and νE (x) : U →
[0, 1] are the membership and non-membership degrees of
object x, respectively. Moreover, for any x ∈ U , 0 ≤ µE (x)+
νE (x) ≤ 1, then the hesitation membership degree can be
calculated as: πE (x) = 1 − µE (x) − νE (x), 0 ≤ πE (x) ≤ 1.
An IFN can be compactly denoted as E(x) = (µE (x), νE (x)).
Given two IFNs E(x1) = (µE (x1), νE (x1)), E(x2) =

(µE (x2), νE (x2)), their basic operations are:
1) E(x1) ⊕ E(x2) = (µE (x1) + µE (x2) − µE (x1)µE (x2),

νE (x1)νE (x2)),
2) E(x1) ⊗ E(x2) = (µE (x1)µE (x1), νE (x1) + νE (x2) −

νE (x1)νE (x2)),
3) kE(x1) = (1− (1− µE (x1))k , (νE (x1))k ).
Definition 2 (Equivalence Class and Equivalence

Relation) [26]: Given an information table S = (U ,AT ,
V , f ), a nonempty finite set U , an attribute set AT and an
attribute value set V . Let f : U → V be an information
function, for any attribute subset C ⊆ AT ,

IND(C) = {(x, y)|(x, y) ∈ U2,∀c∈C (c(x) = c(y))},

U/IND(C) = {[x]IND(C)|x ∈ U} is a partition, where
[x]IND(C) and IND(C) are called an equivalence class and an
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TABLE 1. Intuitionistic fuzzy cost parameter matrix.

equivalence relation, respectively. In the following sections,
equivalence class of x can be simplified as [x].
Definition 3 (Conditional Probability of Classifica-

tion) [26]: Given an information table S = (U ,AT ,V , f )
and a subset X ⊆ U . ∀x ∈ U , the conditional probability of
classification P(X |[x]) can be defined as follows,

P(X |[x]) =
|X ∩ [x]|
|[x]|

,

where | • | denotes the cardinality of a finite set.
Definition 4 (Decision Information Table) [26]: Given an

information table S = (U ,AT ,V , f ), where U is an object
set, AT is an attribute set, V is an attribute value set and
f : U → V is an information function. If AT = C ∪ D,
where C is a set of conditional attributes and D is a set of
decision attributes, then S is called a decision information
table and denoted as S = (U ,C ∪ D,V , f ).
Definition 5 (Consistent Decision Table) [15]: Given a

decision information table S = (U ,C ∪ D,V , f ). Given
an object x ∈ U and a subset X ⊆ U . S is called a
consistent decision table if and only if POSC (D) = U ,
where POSC (D) =

⋃
X⊆C/D

apr(X ), and apr(X ) =

{x|[x]IND(C) ⊆ X}.
Definition 6 (Three-Way Decisions) [40], [41]:Given a set

of states � = (X ,¬X ) and a set of actions A = {aP, aB, aN }
where aP, aB and aN represent three actions, i.e., deciding
positive region POS(X ), deciding boundary region BND(X ),
and deciding negative region NEG(X ), corresponding to
acceptance, deferment and rejection decisions, respectively.
Given a pair of thresholds (α, β) (0 ≤ β < α ≤ 1), then
decision rules of 3WDs are shown,

1) if P(X |[x]) ≥ α, then x ∈ POS(X ),
2) if β < P(X |[x]) < α, then x ∈ BND(X ),
3) if P(X |[x]) ≤ β, then x ∈ NEG(X ).

Under intuitionistic fuzzy environments, a 3WDM
with IFN cost parameters is reviewed by considering
an intuitionistic fuzzy cost parameter matrix IM =

{E(λ·k ) = (µE (λ·k ), νE (λ·k ))}3×2 (· = P,B,N and k =
P,N ) in Table 1 [17]. In Table 1, X and ¬X are comple-
mentary state sets. IFNs E(λPP), E(λBP) and E(λNP) are cost
parameter values where µE (λPP), µE (λBP) and µE (λNP) are
the membership degrees of cost, and νE (λPP), νE (λBP) and
νE (λNP) are the non-membership degrees for objects in X
taking aP, aB and aN , however, IFNs E(λPN ), E(λBN ) and
E(λNN ) are cost parameter values where µE (λPN ), µE (λBN )
and µE (λNN ) are the membership degrees, and νE (λPN ),
νE (λBN ) and νE (λNN ) are the non-membership degrees for
objects not in X taking aP, aB and aN . Therefore, the classifi-
cation losses with intuitionistic fuzzy cost parameters can be

expressed as:

R(aP|[x])

= [1− (1− µE (λPP))P(X |[x])(1− µE (λPN ))1−P(X |[x]),

νE (λPP)P(X |[x])νE (λPN )1−P(X |[x])],

R(aB|[x])

= [1− (1− µE (λBP))P(X |[x])(1− µE (λBN ))1−P(X |[x]),

νE (λBP)P(X |[x])νE (λBN )1−P(X |[x])],

R(aN |[x])

= [1− (1− µE (λNP))P(X |[x])(1− µE (λNN ))1−P(X |[x]),

νE (λNP)P(X |[x])νE (λNN )1−P(X |[x])].

The decision rules of 3WDM with IFN cost parameters
(3WDIF-I) are provided by Bayesian decision theory for
minimum loss with a pair of thresholds (α1, β1) (0 ≤ β1 <
α1 ≤ 1) from the membership degree perspective:
1) if P(X |[x]) ≥ α1, then x ∈ POS(X ),
2) if β1 < P(X |[x]) < α1, then x ∈ BND(X ),
3) if P(X |[x]) ≤ β1, then x ∈ NEG(X ),

where

α1 =
ln 1−µE (λBN )

1−µE (λPN )

ln
(
1−µE (λPP)
1−µE (λBP)

×
1−µE (λBN )
1−µE (λPN )

) ,
β1 =

ln 1−µE (λNN )
1−µE (λBN )

ln
(
1−µE (λBP)
1−µE (λNP)

×
1−µE (λNN )
1−µE (λBN )

) .
From the non-membership degree perspective with a pair

of thresholds (α2, β2) (0 ≤ β2 < α2 ≤ 1):
1) if P(X |[x]) ≥ α2, then x ∈ POS(X ),
2) if β2 < P(X |[x]) < α2, then x ∈ BND(X ),
3) if P(X |[x]) ≤ β2, then x ∈ NEG(X ),

where

α2 =
ln νE (λBN )
νE (λPN )

ln
(
νE (λPP)
νE (λBP)

×
νE (λBN )
νE (λPN )

) ,
β2 =

ln νE (λNN )
νE (λBN )

ln
(
νE (λBP)
νE (λNP)

×
νE (λNN )
νE (λBN )

) .
III. HIERARCHICAL THREE-WAY DECISION MODEL
WITH IFN COST PARAMETERS
3WDIF-I only provides a method to make three-way
decisions in a granularity level under intuitionistic fuzzy
environments. Therefore, under dynamic intuitionistic fuzzy
environments, it may be only possible to make decisions with
coarse granules. However, with coarse-decreased granules,
more detailed information is supplied, and hence establishing
multi-granularity spaces is an important method to fully use
information in decision-making. In this paper, inspired by
3WDIF-I [17], a hierarchical three-way decision model is
established from two perspectives in multi-granularity spaces
for solving attribute increment problems by Definition 7.
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FIGURE 1. Partitions of objects in multi-granularity spaces.

Definition 7 (H3WDIF-I): Given a decision information
table S = (U ,C ∪ D,V , f ). Let attribute subset Ci ⊆ C ,
Ci = {c1, c2, · · · , ci} (|C| = n and i = 1, 2, · · · , n).
If IM = {E(λ·k ) = (µE (λ·k ), νE (λ·k ))}3×2 (· = P,B,N and
k = P,N ) is an intuitionistic fuzzy cost parameter matrix,
for any object x ∈ U , a hierarchical three-way decision
model with IFN cost parameters (H3WDIF-I) can be defined
as follows,

HIFD(I ) = (HIFD1(I ),HIFD2(I ), · · · ,HIFDi(I ),
· · · ,HIFDn(I )),

where HIFDi(I ) denotes a decision based on IND(Ci).
With the refinement of granules, a multi-granularity space

is always established and granularity levels are formed.
Fig.1 shows the partitions of objects in granularity levels
of a multi-granularity space. Observably, the more refined
granules are, the more attributes are supplied. For conve-
nience, decisions with the coarsest granule are written as the
first step of hierarchical models. According to Definition 7,
the classification loss in HIFDi(I ) is expressed as

R([x],HIFDi(I )) = min
·=P,B,N

(Ri(a·|[x])),

where

Ri(a·|[x])
·=P,B,N

= (1− (1− µE (λ·P))Pi(X |[x])(1− µE (λ·N ))Pi(¬X |[x]),
(νE (λ·P))Pi(X |[x])(νE (λ·N ))Pi(¬X |[x])),

and Pi(X |[x]) is the conditional probability of classification
at the i-th step.
Let cost parameters µE (λPP) = 0, µE (λNN ) = 0,

νE (λPP) = 1, and νE (λNN ) = 1, then R([x],HIFDi(I )) can
be simplified as follows,

R([x],HISDi(I ))

=

(µi([x],R)P, νi([x],R)P), if Pi(X |[x]) ≥ αI
(µi([x],R)N , νi([x],R)N ), if Pi(X |[x]) ≤ βI
(µi([x],R)B, νi([x],R)B), if βI < Pi(X |[x]) < αI ,

where

µi([x],R)P = 1− (1− µE (λPN ))Pi(¬X |[x]),

νi([x],R)P = (νE (λPN ))Pi(¬X |[x]),

µi([x],R)N = 1− (1− µE (λNP))Pi(X |[x]),

νi([x],R)N = (νE (λNP))Pi(X |[x]),

νi([x],R)B = (νE (λBP))Pi(X |[x])(νE (λBN ))Pi(¬X |[x]),

µi([x],R)B = 1− (1− µE (λBP))Pi(X |[x])

(1− µE (λBN ))Pi(¬X |[x]).

In addition, if R([x],HISDi(I )) is discussed from the mem-
bership degree perspective, αI = α1 and βI = β1, however,
from the non-membership degree perspective, αI = α2 and
βI = β2.
In reality, more and more information is supplied by

attribute increment at continuous steps for different decision
results in multi-granularity spaces. Therefore, it is significant
to find the relationships of decisions in granularity levels.
Theorems 1 and 2 show the relative change rules of clas-
sification loss for x in the positive region from the mem-
bership degree and non-membership degree perspectives,
respectively.
Theorem 1: Given a successive decision HIFDj(I ) of

HIFDi(I ) (i < j). For any x satisfying Pi(X |[x]) ≥ α1,
1) if Pi(X |[x]) ≤ Pj(X |[x]), then µj([x],R)P ≤

µi([x],R)P,
2) if α1 ≤ Pj(X |[x]) ≤ Pi(X |[x]), then µj([x],R)P ≥

µi([x],R)P.
Proof: If Pi(X |[x]) ≤ Pj(X |[x]), then α1 ≤ Pi(X |[x]) ≤

Pj(X |[x]).

µi([x],R)P = 1− (1− µE (λPN ))Pi(¬X |[x])

= 1− (1− µE (λPN ))1−Pi(X |[x]),
µj([x],R)P = 1− (1− µE (λPN ))1−Pj(X |[x]),

then µj([x],R)P ≤ µi([x],R)P. Similarly, if α1 ≤

Pj(X |[x]) ≤ Pi(X |[x]), thus µi([x],R)P ≤ µj([x],R)P
holds.
Theorem 1 shows that the classification loss at the

i-th step is larger than it at the (i + 1)-th step when the
conditional probability of classification is smaller, however,
when the conditional probability of classification at the
i-th step is larger, the classification loss at the i-th step is
smaller. Therefore, from the membership degree perspec-
tive, the relationships of classification loss in successive
granularity levels are revealed. Meaningfully, although there
exist a non-monotonicity relationship of changes in multi-
granularity spaces, the changes of classification loss still
depend on conditional probability of classification.
Theorem 2: For any object x satisfying Pi(X |[x]) ≥ α2 in

HIFDi(I ),
1) if Pj(X |[x]) ≥ Pi(X |[x]), then νj([x],R)P ≥

νi([x],R)P,
2) if α2 ≤ Pj(X |[x]) ≤ Pi(X |[x]), then νj([x],R)P ≤

νi([x],R)P,
Proof: If Pj(X |[x]) ≥ Pi(X |[x]), then Pj(X |[x]) ≥

Pi(X |[x]) ≥ α2.

νi([x],R)P = (νE (λPN ))1−Pi(X |[x]),

νj([x],R)P = (νE (λPN ))1−Pj(X |[x]),

thus νj([x],R)P ≥ νi([x],R)P.
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TABLE 2. Influenza decision information based on H3WDIF-I.

TABLE 3. Intuitionistic fuzzy cost parameters.

Similarly, if α2 ≤ Pj(X |[x]) ≤ Pi(X |[x]), thus
νj([x],R)P ≤ νi([x],R)P holds.
Example 1: To verify Theorems 1 and 2, Table 2 shows

some decision information for judging influenza, and
Table 3 gives an intuitionistic fuzzy cost parameter matrix to
calculate two pairs of thresholds based on 3WDIF-I.

It is easy to obtain that α1 = 0.66, β1 = 0.31, α2 = 0.75
and β2 = 0.34 from the membership and non-membership
degree perspectives, respectively. The following partitions
by the equivalence relation IND(D) (decision attribute set
D = {d}) are shown.

U
/
IND(D) = {{x2, x3, x6, x7, x8}, {x1, x4, x5}} = {X ,¬X}.

Suppose C1, C2 and C3 are a series of attribute subsets, and
let C1 = {c1}, C2 = {c1, c2} and C3 = {c1, c2, c3}. For
a concept X , the conditional probabilities of classification
based on IND(C1), IND(C2) and IND(C3) are as follows,

U
/
IND(C1) = {{x1, x2, x3, x8}, {x4, x5, x6, x7}},

P1(X |[x1]) = 3
4 , P1(X |[x4]) =

1
2 .

U
/
IND(C2) = {{x1, x2, x3}, {x4, x6, x7}, {x5}, {x8}},

P2(X |[x1]) = 2
3 , P2(X |[x4]) =

2
3 , P2(X |[x5]) = 0,

P2(X |[x8]) = 1.

U
/
IND(C3) = {{x1}, {x2}, {x3}, {x4}, {x5}, {x6, x7}, {x8}},

P3(X |[x1]) = 0, P3(X |[x2]) = 1, P3(X |[x3]) = 1,
P3(X |[x4]) = 0, P3(X |[x5]) = 0, P3(X |[x6]) = 1,
P3(X |[x8]) = 1.

The relation P3(X |[x3]) ≥ P1(X |[x1]) ≥ P2(X |[x4]) ≥
0.66 is provided in successive granularity levels. From the
membership degree perspective, the classification losses are
calculated based on H3WDIF-I.

µ1([x1],R)P = 1− (1− µE (λPN ))P1(¬X |[x1])

= 1− (1− 0.8)1−
3
4 = 0.33,

µ2([x4],R)P = 1− (1− µE (λPN ))P2(¬X |[x4])

= 1− (1− 0.8)1−
2
3 = 0.42,

µ3([x3],R)P = 1− (1− µE (λPN ))P3(¬X |[x3])

= 1− (1− 0.8)1−1 = 0,

then µ3([x3],R)P ≤ µ1([x1],R)P ≤ µ2([x4],R)P.
Furthermore, 0.75 ≤ P1(X |[x1]) ≤ P2(X |[x8]) in a multi-

granularity space,

ν1([x1],R)P = (νE (λPN ))P1(¬X |[x1])

= (1− 0.1)1−
3
4 = 0.97,

ν2([x8],R)P = (νE (λPN ))P2(¬X |[x8])

= (1− 0.1)1−1 = 1.

Then ν1([x1],R)P ≤ ν2([x8],R)P.
Theorems 1 and 2 analyze the relationships in successive

granularity levels from the membership and non-membership
degree perspectives, respectively. In the positive region, non-
monotonicity changes of classification loss are found in a
multi-granularity space, which are locally discussed based
on H3WDIF-I. However, some properties are also presented
for globally discussing the trends of classification losses
by Theorems 3 and 4.
Theorem 3: Given a consistent decision table S = (U ,C ∪

D,V , f ), let n = |C| and 1 ≤ i ≤ n. For any x ∈ U , there
must exist HIFDi(I ) for classification loss µi([x],R)· = 0
(· = P,N ). Proof: Suppose S is a consistent decision
table, POSC (D) = U and U/IND(D) = {X ,¬X}. Let
[x]IND(C) = [x] where x ∈ U , thus [x] ⊆ X or [x] ⊆ ¬X .
If [x] ⊆ X , Pn(X |[x]) = 1 ≥ α1 (0 ≤ α1 ≤ 1), then

µn([x],R)P = 1− (1− µE (λPN ))1−Pn(X |[x]) = 0.

If [x] ⊆ ¬X , Pn(X |[x]) = 0 ≤ β1 (0 ≤ β1 ≤ 1), then

µn([x],R)N = 1− (1− µE (λNP))Pn(X |[x]) = 0.

Therefore µi([x],R)· = 0 when i < n or i = n.
Theorem 3 reveals that classification losses would reach

to 0 from the membership degree perspective in multi-
granularity spaces based onH3WDIF-I.Meanwhile, the trend
of classification losses is globally discussed from the non-
membership degree perspective by Theorem 4.
Theorem 4: Given a consistent decision table S = (U ,C ∪

D,V , f ), let n = |C| and 1 ≤ i ≤ n. For any x ∈ U , there
must exist HIFDi(I ) for classification loss νi([x],R)· = 1
(· = P,N ).

Proof: Suppose S is a consistent decision table, x ∈ U ,
POSC (D) = U and U/IND(D) = {X ,¬X}. Let [x]IND(C) =
[x], [x] ⊆ X or [x] ⊆ ¬X . If [x] ⊆ X , Pn(X |[x]) = 1 ≥ α2
(0 ≤ α2 ≤ 1), then

νn([x],R)P = (νE (λPN ))1−Pn(X |[x]) = 1.

If [x] ⊆ ¬X , Pn(X |[x]) = 0 ≤ β2 (0 ≤ β2 ≤ 1), then

νn([x],R)N = (νE (λNP))Pn(X |[x]) = 1.

Therefore νi([x],R)· = 1 when i < n or i = n.
Theorem 4 indicates that there must exist one decision for

classification losses reaching to 1 from the non-membership
degree perspective in multi-granularity spaces. What causes
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the differences between Theorem 3 and Theorem 4? Under-
standably, from the non-membership degree perspective,
the larger loss is, the more expected decision is. For example,
in a voting, when the loss is too large for con, the result of
voting tends to pro. Conversely, when the loss is too large
for pro, con is always chosen. Therefore the classification
losses from the membership degree prespective are hoped to
be small but to be large from the non-membership degree
perspective. In reality, a better and more correct decision
with less loss is eager by limited and effective information.
By Theorems 3 and 4, the trends of classification losses
are analyzed globally, which give the optimal decision of
H3DWIF with consistent information.
Example 1: At the 3-th step, P3(X |[x1]) = 0, P3(X |[x2]) =

1, P3(X |[x3]) = 1, P3(X |[x4]) = 0, P3(X |[x5]) = 0,
P3(X |[x6]) = 1 and P3(X |[x8]) = 1. Therefore, whatever
from the membership and non-membership degree perspec-
tives, [x1], [x4], and [x5] are separated towards the negative
region. The classification loss of [x1] is shown from the
membership degree perspective as examples.

µ3([x1],R)N = 1− (1− µE (λNP))P3(X |[x1])

= 1− (1− 0.9)0 = 0,

Meanwhile, [x2], [x3], [x6] and [x8] are classified into positive
region. Similarly, The classification loss of [x2] is only given
as follows,

µ3([x2],R)P = 1− (1− µE (λPN ))P3(¬X |[x2])

= 1− (1− 0.8)1−1 = 0.

Observably, the classification losses equal to 0 at the last
step for any objects in a multi-granularity space even though
that of some objects tend to 0 in earlier. In addition, the classi-
fication losses are also calculated from the non-membership
degree perspective as follows,

ν3([x1],R)N = (νE (λNP))P3(X |[x1])

= (1− 0.1)0 = 1,

ν3([x2],R)P = (νE (λPN ))P3(¬X |[x2])

= (1− 0.1)1−1 = 1.

Similarly, at the 3-th step, all objects are classified into the
positive and negative regions, and the classification losses of
all objects from the non-membership degree are equal to 1.
Therefore, Theorems 3 and 4 are respectively validated from
the membership and non-membership degree perspectives.

Ideally, the change rule of boundary region deserves
discussing by considering a consistent decision table.
Theorem 5 proves corresponding change rules of boundary
region based on Theorems 3 and 4. Moreover, an example is
presented to illustrate Theorem 5.
Theorem 5: Let BNDi(X ) be a boundary region of

HIFDi(I ). There must exist a step i for BNDi(X ) = ∅.
Proof:
1) From the membership degree perspective, according to

Theorem 3, µi([x],R)P = 0 or µi([x],R)N = 0 at the

i-th step. And [x] must be separated towards positive
and negative regions when i = n. Thus, there at least
exist a step i = n for BNDi(X ) = ∅.

2) Similarly, there must exist BNDi(X ) = ∅ at step i = n
from the non-membership degree perspective accord-
ing to Theorem 4.

Example 1: From the membership degree perspective,
the thresholds α1 = 0.66 and β1 = 0.31.
1) At the first step, P1(X |[x1]) = 3

4 , then [x1] is in the
positive region but [x4] is in BND1(X ).

2) At the second step, P2(X |[x1]) = 2
3 , P2(X |[x4]) =

2
3 ,

P2(X |[x5]) = 0 and P2(X |[x8]) = 1, then all objects
are separated towards the positive and negative regions.
Thus, there is no objects inBND2(X ) from themember-
ship degree perspective.

From the perspective of the non-membership degree,
α2 = 0.75 and β2 = 0.34. Thus, the classification results
of boundary regions in multi-granularity spaces are same
as results from the membership degree perspective, and the
decisions at the third step also can be as an example for
discussing BNDi(X ) = ∅.
Actually, according to Theorems 3 and 4, boundary region

will lead to be an empty set by refinement of granules with
consistent information. By Theorem 5, an optimal decision
is also revealed in multi-granularity spaces with enough
information.

IV. HIERARCHICAL THREE-WAY DECISION
MODEL WITH IFNS
Let IS = (U ,AT , IV , f ) be an information table, where U
denotes a nonempty finite set, AT denotes an attribute set,
and IV denotes an attribute value set. Given an object x ∈ U ,
if IFN E(x) = (µ(x), ν(x)) (E(x) ∈ IV ) and a function f :
U → IFV , then IS is called intuitionistic fuzzy information
table.

3WDs with IFN cost parameters and IFN attribute values
(3WDIF-II) are discussed shortly. As follows, the new clas-
sification losses are defined based on Table 1,

R(aP|x) = E(λPP)µ(x)⊕ E(λPN )ν(x),

R(aB|x) = E(λBP)µ(x)⊕ E(λBN )ν(x),

R(aN |x) = E(λNP)µ(x)⊕ E(λNN )ν(x).

To detail discuss, they are rewritten as,

R(aP|x)

= [1− (1− µE (λPP))µ(x)(1− µE (λPN ))1−π (x)−µ(x),

νE (λPP)µ(x)νE (λPN )1−π (x)−µ(x)],

R(aB|x)

= [1− (1− µE (λBP))µ(x)(1− µE (λBN ))1−π (x)−µ(x),

νE (λBP)µ(x)νE (λBN )1−π (x)−µ(x)],

R(aN |x)

= [1− (1− µE (λNP))µ(x)(1− µE (λNN ))1−π (x)−µ(x),

νE (λNP)µ(x)νE (λNN )1−π (x)−µ(x)].
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Combining with Bayesian decision theory, decision rules
of 3WDIF-II for x are defined by a pair of thresholds
(α1(x), β1(x)) (0 ≤ β1(x) < α1(x) ≤ 1) from the member-
ship degree perspective,

1) if µ(x) ≥ α1(x), then x ∈ POS(X ),
2) if β1(x) < µ(x) < α1(x), then x ∈ BND(X ),
3) if µ(x) ≤ β1(x), then x ∈ NEG(X ),

where

α1(x) = (1− π (x))
ln 1−µE (λBN )

1−µE (λPN )

ln
(
1−µE (λPP)
1−µE (λBP)

×
1−µE (λBN )
1−µE (λPN )

)
= (1− π(x))α1,

β1(x) = (1− π(x))
ln 1−µE (λNN )

1−µE (λBN )

ln
(
1−µE (λBP)
1−µE (λNP)

×
1−µE (λNN )
1−µE (λBN )

)
= (1− π(x))β1.

Furthermore, by a pair of thresholds (α2(x), β2(x)) (0 ≤
β2(x) < α2(x) ≤ 1), the decision rules are shown from the
non-membership degree perspective:

1) if µ(x) ≥ α2(x), then x ∈ POS(X ),
2) if β2(x) < µ(x) < α2(x), then x ∈ BND(X ),
3) if µ(x) ≤ β2(x), then x ∈ NEG(X ),

where

α2(x) = (1− π (x))
ln νE (λBN )
νE (λPN )

ln
(
νE (λPP)
νE (λBP)

×
νE (λBN )
νE (λPN )

)
= (1− π(x))α2,

β2(x) = (1− π(x))
ln νE (λNN )

νE (λBN )

ln
(
νE (λBP)
νE (λNP)

×
νE (λNN )
νE (λBN )

)
= (1− π(x))β2.

Definition 8 (Decision IFN): Given an intuitionistic fuzzy
information table IS = (U ,AT , IV , f ), an attribute subset
C = {c1, c2} (C ⊆ AT ) and an object x ∈ U . Given two
IFNs E(c1) = (µ(c1), ν(c1)) and E(c2) = (µ(c2), ν(c2)). Let
δc1 and δc2 (0 ≤ δc1 , δc2 ≤ 1) be two important degrees of
c1 and c2. Then a decision IFN DA(x) of x on C is defined as
DA(x) = δc1E(c1)+ δc2E(c2).
Definition 9 (H3WDIF-II): Given an intuitionistic fuzzy

information table IS = (U ,AT , IV , f ), an attribute subset
Ci ⊆ AT , and Ci = {c1, c2, · · · , ci} (|AT | = n and i =
1, 2, · · · , n). Let IM = {E(λ·k ) = (µE (λ·k ), νE (λ·k ))}3×2
(· = P,B,N and k = P,N ) be an intuitionistic fuzzy cost
parameter matrix. For any x ∈ U , a hierarchical three-way
decision with IFNs (H3WDIF-II) can be defined as follows,

HIFD(II ) = (HIFD1(II ),HIFD2(II ), · · · ,HIFDi(II ),

· · · ,HIFDn(II )),

where HIFDi(II ) is a decision at the i-th step on Ci in multi-
granularity spaces.

Given the membership degree µi(x) and the non-
membership degree νi(x) of decision IFNs at the i-th step.
Similarly, with µE (λPP) = 0, µE (λNN ) = 0, νE (λPP) = 1

and νE (λNN ) = 1, the classification losses R(x,HIFDi(II ))
in HIFDi(II ) can be simplified as follows,
R(x,HIFDi(II )) = (µi(x,R)P, νi(x,R)P), ifµi(x) ≥ αIIi(x)
(µi(x,R)N , νi(x,R)N ), ifµi(x) ≤ βIIi(x)
(µi(x,R)B, νi(x,R)B), ifβIIi(x) < µi(x) < αIIi(x)

, where

µi(x,R)P = 1− (1− µE (λPN ))1−µi(x)−πi(x),

νi(x,R)P = (νE (λPN ))1−µi(x)−πi(x),

µi(x,R)N = 1− (1− µE (λNP))µi(x),

νi(x,R)N = (νE (λNP))µi(x),

νi(x,R)B = νE (λBP))µi(x)(νE (λBN ))1−µi(x)−πi(x),

µi(x,R)B = 1−(1−µE (λBP))µi(x)(1−µE (λBN ))1−µi(x)−πi(x).

Let αIIi(x) = α1i(x) = (1 − πi(x))α1 and βIIi(x) =
β1i(x) = (1 − πi(x))β1 when R(x,HIFDi(II )) is dis-
cussed from the membership degree perspective. In addition,
αIIi(x) = α2i(x) = (1 − πi(x))α2 and βIIi(x) = β2i(x) =
(1− πi(x))β2 from the non-membership degree perspective.
With respect to the definition of H3WDIF-II, three-way

decisions are presented by the characteristic of separate
object, i.e. IFN attribute values. However, inmulti-granularity
spaces, distinctions of decision IFNs that are calculated
by IFN attribute values appear with the change of gran-
ules. To better analyze relationships of decisions based on
H3WDIF-II in two granularity levels, Theorem 6 is pro-
posed by considering the impact of INFs in multi-granularity
spaces from the membership and non-membership perspec-
tives, respectively.
Theorem 6: Let HIFDj(II ) be a successive decision of

HIFDi(II ) (i < j), for µi(x) ≥ αIIi(x),
1) if µj(x) ≥ α1j(x) and νi(x) ≤ νj(x), then µi(x,R)P ≤

µj(x,R)P,
2) if µj(x) ≥ α1j(x) and νi(x) ≥ νj(x), then µi(x,R) ≥

µj(x,R)P,
3) if µj(x) ≥ α2j(x) and νi(x) ≤ νj(x), then νi(x,R)P ≥

νj(x,R)P,
4) if µj(x) ≥ α2j(x) and νi(x) ≥ νj(x), then νi(x,R)P ≤

νj(x,R)P.
Proof: From the membership degree perspective,

because µi(x) ≥ αIIi(x), µi(x,R)P = 1 − (1 −
µE (λPN ))1−µi(x)−πi(x).
If µj(x) ≥ α1j(x), then µj(x) ≥ (1− πj(x))α1 and

µj(x,R)P = 1− (1− µE (λPN ))1−µj(x)−πj(x).

And because νi(x) ≤ νj(x), µi((x),R)P ≤ µj(x,R)P holds.
Similarly, 2), 3) and 4) could be also proven from the non-
membership degree perspective.
Compared with H3WDIF-I, the relationships of classifica-

tion losses in successive granularity levels are shown by dis-
cussing a single object instead of an equivalence class, which
is resulted from the characteristic of objects in H3WDIF-II.
Meanwhile, Theorem 6 also reflects the change rules of
classification losses effecting by decision IFNs. Similar to
H3WDIF-I, the non-monotonicity of classification losses in
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TABLE 4. Intuitionistic fuzzy information for decisions based on
H3WDIF-II.

TABLE 5. The first decision thresholds from the membership degree.

TABLE 6. The second decision thresholds from the membership degree.

the positive region still exists from the membership and
non-membership degree perspectives. Therefore, the change
rules of classification losses could be only discussed locally
by Theorem 6, and Example 2 is given to illustrate the rules.
Example 2: Given an intuitionistic fuzzy information

in Table 4 including 2 attributes and 7 objects. The cost
parameter matrix is shown in Table 3. Then the first decision
thresholds for 3WDIF-II from the membership degree per-
spective and decision IFNs DA1 are shown in Table 5 where
DA1 = c1.
Let δc1 be 0.29 and δc2 be 0.288, then the second decision

IFNs DA2 are calculated by Definition 8 in Table 6.
By Tables 5 and 6, at the first and the second steps, x1 and

x4 are always in the positive region based on decision rules
of 3WDIF-II, and x1 is given for verifying 1) of Theorem 6 as
an example.

µ1(x1) = 0.68, α11(x1) = (1− π1(x1))α1 = 0.59,
µ2(x1) = 0.62, α12(x1) = (1− π2(x1))α1 = 0.6,

then µ1(x1) ≥ α11(x1) and µ2(x1) ≥ α12(x1). In addition,
with ν1(x1) = 0.21 and ν2(x1) = 0.29, then ν2(x1) ≥ ν1(x1).

µ1(x1,R)P = 1− (1− µE (λPN ))1−µ1(x1)−π1(x1)

= 1− 0.20.21 = 0.29,

µ2(x1,R)P = 1− (1− µE (λPN ))1−µ2(x1)−π2(x1)

= 1− 0.20.29 = 0.37,

µ1(x1,R)P ≤ µ2(x1,R)P is verified.
x2 and x3 are classified into the positive region at the first

and the second steps. And their non-membership degrees

TABLE 7. The first decision thresholds from the non-membership degree.

TABLE 8. The second decision thresholds from the non-membership
degree.

of DA2 are smaller than that of DA1. Therefore, 2) of
Theorem 6 is shown by x2 as follows,

µ1(x2) = 0.78, α11(x2) = (1− π1(x2))α1 = 0.55,
µ2(x2) = 0.81, α12(x2) = (1− π2(x2))α1 = 0.56,

then µ1(x2) ≥ α11(x2) and µ2(x2) ≥ α12(x2). Moreover,
ν1(x2) = 0.06 and ν2(x2) = 0.04, then ν2(x2) ≤ ν1(x2)

µ1(x2,R)P = 1− (1− µE (λPN ))1−µ1(x2)−π1(x2)

= 1− 0.20.06 = 0.09,

µ2(x2,R)P = 1− (1− µE (λPN ))1−µ2(x2)−π2(x2)

= 1− 0.20.04 = 0.06,

µ1(x2,R)P ≥ µ2(x2,R)P.
From the non-membership degree perspective, x4, x5 and

x2 are given to verify 3) and 4) of Theorem 6, respectively.
With respect to Example 1, α2 = 0.75 and β2 = 0.34.
Tables 7 and 8 show both the first and the second decision
thresholds from the non-membership degree perspective.

µ1(x4) = 0.72, α21(x4) = (1− π1(x4))α2 = 0.58,
µ2(x4) = 0.68, α22(x4) = (1− π2(x4))α2 = 0.65,

then µ1(x4) ≥ α21(x4) and µ2(x4) ≥ α22(x4). Furthermore
ν2(x4) ≤ ν1(x4), then ν1(x4,R)P ≥ ν2(x4,R)P, with

ν1(x4,R)P = (νE (λPN ))1−µ1(x4)−π1(x4) = 0.10.05 = 0.89,

ν2(x4,R)P = (νE (λPN ))1−µ2(x4)−π2(x4) = 0.10.18 = 0.66,

Thus, 3) of Theorem 6 has been illustrated by x4 in detail,
and 4) of Theorem 6 is also explained by x2 as follows.
With µ1(x2) ≥ α21(x2), µ2(x2) ≥ α22(x2) and ν2(x2) ≤

ν1(x2), then ν1(x2,R)P ≤ ν2(x2,R)P where

ν1(x2,R)P = (νE (λPN ))1−µ1(x2)−π1(x2) = 0.10.06 = 0.87,

ν2(x2,R)P = (νE (λPN ))1−µ2(x2)−π2(x2) = 0.10.04 = 0.91.

Definition 10 (Consistent Intuitionistic Fuzzy Table):
Given an intuitionistic fuzzy information table IS =

(U ,AT , IV , f ), a subset X ⊆ U and an object x ∈ U . Let
POS(X ) and NEG(X ) be the positive and negative regions

VOLUME 7, 2019 24369



C. Yang et al.: Hierarchical Three-Way Decisions With IFNs in Multi-Granularity Spaces

FIGURE 2. Trends of µi (x,R)P for objects in the positive region.

of there-way decisions on attribute AT , if and only if U =
{x|x ∈ (POS(X ) ∪ NEG(X ))}, IS is called a consistent
intuitionistic fuzzy table.
Theorem 7: Given a consistent intuitionistic fuzzy table

IS = (U ,AT , IV , f ) and let POSi(X ) and NEGi(X ) be the
positive and negative regions of HIFDi(II ),
1) ∀x ∈ POSi(X ), if µi(x)→ 1, then µi(x,R)P → 0 and

νi(x,R)P→ 1,
2) ∀x ∈ NEGi(X ), if µi(x)→ 0, then µi(x,R)N → 0 and

νi(x,R)N → 1.
Proof: Suppose IS is a consistent intuitionistic fuzzy

table and U = {X ,¬X}. For x ∈ U , x ∈ X or x ∈ ¬X .
If x ∈ POSi(X ) and µi(x) → 1, then µi(x) ≥ αIIi(x) (0 ≤
αIIi(x) ≤ 1). For any x,

lim
µi(x)→1

νi(x,R)P = lim
µi(x)→1

(νE (λPN ))1−µi(x)−πi(x) = 1,

lim
µi(x)→1

µi(x,R)P = 0.

If x ∈ NEGi(X ) and µi(x) → 0, µi(x) ≤ βIIi(x) (0 ≤
βIIi(x) ≤ 1). For any x,

lim
µi(x)→0

νi(x,R)N = lim
µi(x)→0

(νE (λNP))µi(x) = 1,

lim
µi(x)→0

µi(x,R)N = 0.

Theorem 7 has globally proven the trends of classifi-
cation losses in the multi-granularity space. According to
Theorem 7, when µi(x) closes to 1, the classification losses
µi(x,R)P and νi(x,R)P of objects in the positive region
tend to 0 and 1, respectively. Actually, µi(x,R)P = 0 and
νi(x,R)P = 1 with a prerequisite of µi(x) = 1. Correspond-
ingly, classification losses of objects in the negative region
satisfy the similar change rules when µi(x) closes to 0.
Figs.2 and 3 describe the trends of classification losses

from the membership and non-membership degree perspec-
tives, respectively. Observably, the lowest point of Fig.2 is
µi(x) = 1 and the highest point of Fig.3 is µi(x) = 1 in the
positive region. Similarly, the minimum value of classifica-
tion losses is obtained whenµi(x) = 0 for the negative region
by Fig.4, and the maximum value exists with µ(x)i = 0
by Fig.5. Thus, Theorem 7 is also verified by the figures of
function µi(x,R)P, µi(x,R)N , νi(x,R)P and νi(x,R)N .

FIGURE 3. Trends of νi (x,R)P for objects in the positive region.

FIGURE 4. Trends of µi (x,R)N for objects in the negative region.

FIGURE 5. Trends of νi (x,R)N for objects in the negative region.

Theorem 8: Given an intuitionistic fuzzy information table
IS = (U ,AT , IV , f ), a positive region POSi(X ) and a nega-
tive regionNEGi(X ) inHIFDi(II ), correspondingly, POSj(X )
and NEGj(X ) in HIFDj(II ).

1) For x ∈ POSi(X ), if µj(x) ≥ µi(x) and νj(x) ≤ νi(x),
then x ∈ POSj(X ),

2) For x ∈ NEGi(X ), if µj(x) ≤ µi(x) and νj(x) ≥ νi(x),
then x ∈ NEGj(X ).
Proof: For any x ∈ U and x ∈ POSi(X ), the threshold of

the positive region satisfies with µi(x) ≥ (1− πi(x))α1 from
the membership degree perspective, thus α1 ≤ 1

1+(νi(x)/µi(x)) .
Because µj(x) ≥ µi(x) and νj(x) ≤ νi(x),

α1 ≤
1

1+ (νi(x)
/
µi(x))

≤
1

1+ (νj(x)
/
µj(x))

.

Naturally, µj(x) ≥ (1 − πj(x))α1, and x ∈ POSj(X ) holds.
Similarly, for x ∈ NEGi(X ), x ∈ NEGj(X ) holds from other
perspectives.
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TABLE 9. A new intuitionistic fuzzy information table.

TABLE 10. The first decision thresholds from the membership degree.

TABLE 11. The second decision thresholds from the membership degree.

Example 3: Given an intuitionistic fuzzy information
in Table 9 including 7 objects and 3 attributes. Thus,
Theorem 8 is discussed from themembership degree perspec-
tive as an example. For convenience, the example from the
non-membership degree is not shown in this paper.

Tables 10 and 11 show the thresholds of the first and
the second decisions where the first decision IFN DA1 = c1.
Furthermore, the second and the third decision IFNsDA2 and
DA3 are calculated by Definition 8, respectively. From the
membership degree perspective, objects x3, x4 and x5 are in
the positive region at the first step because µ1(x3) ≥ 0.59,
µ1(x4) ≥ 0.65 and µ1(x5) ≥ 0.60 (Table 10).

In addition, according to Tables 11 and 12, the µ1(x3) ≤
µ2(x3) and ν2(x3) ≤ ν1(x3) which satisfy the condition of 1)
of Theorem 8. Observably, x3 is in the positive region at
the second step. At the third step, x3 is also in the positive
region, and satisfies with µ2(x3) ≤ µ3(x3) and ν3(x3) ≤
ν2(x3). Therefore, 1) of Theorem 8 has been verified with
3 successive decisions of x3. Object x4 can reflect 1) of
Theorem 8, however, x5 in the positive region at the first step
is not in the same region who satisfies with µ1(x5) ≤ µ2(x5)
but ν2(x5) ≥ ν1(x5) at the second step.
Furthermore, to verify 2) of Theorem 8,
1) at the first step, x2 and x6 are in the negative region with

µ1(x2) ≤ 0.25 and µ1(x6) ≤ 0.24,
2) at the second step, x2 and x6 who respectively satisfying

with µ1(x2) ≥ µ2(x2), ν2(x2) ≥ ν1(x2), µ1(x6) ≥
µ2(x6) and ν2(x6) ≥ ν1(x6) are still classified into the
negative region (Fig.11),

TABLE 12. The third decision thresholds from the membership degree.

3) at the third step, x1 and x2 are in the negative region
with µ3(x1) ≤ 0.23 and µ3(x2) ≤ 0.25, however, x6 is
not in the negative region because µ2(x6) ≤ µ3(x2) but
ν3(x1) ≥ ν2(x1).

Theorem 8 discusses the relationships between decision
regions and decision IFNs. If decision IFNs satisfy the pre-
requisites of Theorem 8, the decision regions are confirmed
directly from the membership and non-membership degree
perspectives.

Generally, the relationships of decisions based on
H3WDIF-II have been discussed by considering the impact of
IFN cost parameters and IFN attribute values in this section.
With respect to Theorems 6, 7 and 8, H3WDIF-II can be
refined in a certain for dealing with uncertain problem under
dynamic intuitionistic fuzzy environments, which results in
a simplifier decision process and a more efficient work in
practical.

V. EXPERIMENT ANALYSIS
In this section, several simulation experiments have been
designed to verify the validity of theorems based on
H3WDIF-I and H3WDIF-II, respectively. These experiments
are under the environments of 4GB RAM, 2.4GHz CPU
and windows 10 system. Besides, the program language is
MATLAB. Subsection A shows experimental results based
on H3WDIF-I, and Subsection B exhibits the results based
on H3WDIF-II.

A. EXPERIMENTS OF H3WDIF-I
To illustrate Theorems 1, 3 and 5 (Theorems 2 and 4 can be
verified similarly.), experiments with an UCI dataset (Bank
including 4521 objects, 14 condition attributes and 1 decision
attribute) are given from the membership degree perspective.
As follows, the procedures of H3WDIF-I are presented.

1) Input the original dataset and intuitionistic fuzzy cost
parameter matrix.

2) Select the attribute subset Ui (i = 1, 2, · · · , |AT |) as
the current granularity level.

3) Select the attribute subset Ui+1, and make three-way
decisions with IFN cost parameters from the member-
ship degree perspective.

4) Repeat 2) and 3) until i = |AT |.
5) Search for x in POSi(X ), and obtain Pi(X |[x]) and

µi([x],R)P where i from 1 to |AT | at the i-th step.
Tables 13 and 14 show the conditional probabilities of clas-

sification and classification losses at steps 4-9 of H3WDIF-I
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TABLE 13. Change rules of classification losses with information table
from the 4-th step to 6-th step.

TABLE 14. Change rules of classification losses with information table
from the 4-th step to 6-th step.

FIGURE 6. Classification losses of x1.

in a multi-granularity space. Let [x1]-[x5] represent the cor-
responding equivalence classes, thus the experimental results
of 5 equivalence classes are provided in Tables 13 and 14.
As an example, 0.8251 and 0.2453 in the first line of
Table 13 denote the conditional probability of classifica-
tion and classification loss of [x1] at the 4-th step, respec-
tively (The meanings of Tables 15 and 16 are similar to
Tables 14 and 15).

Tables 13 and 14 reveal that classification losses of equiv-
alence classes decrease with increasing of conditional proba-
bility and increase with its decreasing in the positive regions
conversely in a multi-granularity space as [x3]. In addition,
the equivalence classes [x1], [x2], [x4] and [x5] in the pos-
itive regions also intuitively reflect these two change rules
(Figs.6-9). These change rules of classification losses match
to Theorem 1. Therefore, Theorem 1 is verified by an exper-
iment with UCI dataset.

For effective validations, a consistent dataset has been
transformed from Bank. Tables 15 and 16 show that classifi-
cation losses of all equivalence classes equate to 0 eventually
except for [x7] and [x10]. The reason of the difference is that
there are 14 attributes (including 13 conditional attributes and
1 decision attribute) in Bank. However, the results of 6 steps
(steps 2-7) are only exhibited in Tables 15 and 16, which do
not include decisions in the optimal granularity level for [x7]
and [x10]. Generally, classification losses will globally equate
to 0 at one step. Accordingly, the validation of Theorem 3 is
analyzed with a consistent dataset.

FIGURE 7. Classification losses of x2.

FIGURE 8. Classification losses of x4.

FIGURE 9. Classification losses of x5.

TABLE 15. Change rules of classification losses with consistent decision
table from the 2-th step to 4-th step.

TABLE 16. Change rules of classification losses with consistent decision
table from the 5-th step to 7-th step.

Theorem 5 discusses a trend of boundary region with con-
sistent information, and the number of object in the boundary
region is shown in Table 17. Evidently, it illustrates that
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TABLE 17. Number of objects in the boundary region based on
5 consistent decision tables.

TABLE 18. Change rules of classification losses with intuitionistic fuzzy
information table from the 1-th step to 3-th step.

TABLE 19. Change rules of classification losses with intuitionistic fuzzy
information table from the 4-th step to 6-th step.

FIGURE 10. Number of objects in the boundary region.

boundary region exists no objects at the last step. Further-
more, the changes of object numbers in the boundary region
are also shown based on H3WDIF-I in multi-granularity
spaces (Figs.10 and 11). Figs.10 and 11 exhibit the trends
of 5 datasets that boundary regions become empty sets in
the process of decisions with finer granules, and these results
satisfy with Theorem 5.

B. EXPERIMENTS OF H3WDIF-II
In order to verify Theorem 6, two experiments are given with
100 objects and 6 attributes from the membership degree
perspective based on H3WDIF-II. As follows, the procedures
of experiment are shown.

1) Input the original data, important degrees of attributes
and cost parameter matrix.

2) Select the attribute subset Ui (i = 1, 2, · · · , |AT |) as
the current granularity level.

FIGURE 11. Number of objects in the boundary region.

3) Select the attribute subset Ui+1, and calculate decision
IFNs DAi+1(x) for each object x.

4) Execute 3WDIF-II from the membership degree per-
spective for each x.

5) Repeat 2) to 4) until i = |AT |.
6) Search for x in POSi(X ), and obtain µi(x), νi(x) and

µi(x,R)P where i from 1 to |AT |.

Both Tables 18 and 19 show classification losses and deci-
sion IFNs of 5 objects in different granularity levels. For
example, the 0.5962, 0.2050 and 0.0447 are the membership
degree, non-membership degree and classification loss of x1,
respectively. For specific details, x1 is classified into the
positive region at the first and the second steps. Meanwhile,
classification loss of x1 is increasing with the increment of the
membership degrees. Therefore, x1-x5 are in accord with 1)
of Theorem 6.

VI. CONCLUSIONS
Currently, with the rapid development of age, information
results in a lot of uncertain problems. Intuitionistic fuzzy set is
described by the membership and non-membership degrees,
and it is an important mathematic tool for dealing with
uncertainty problems. Three-way decision theory divides a
universe into three regions involving three actions, which is
in accordance with human cognitive habits for complex prob-
lem solving. To excavate more effective information under
dynamic intuitionistic fuzzy environments, a H3WDIF-I
model is established inmulti-granularity spaces with IFN cost
parameters and fixed attribute values. To analyze the rela-
tionships of decisions in two successive granularity levels,
the change rules are discussed from the viewpoint of classifi-
cation losses based on H3WDIF-I. In addition, a H3WDIF-II
is also presented to solve problems with both IFN cost
parameters and IFN attribute values. To better obtain inner
relationships, a H3WDIF-II model is also discussed in multi-
granularity spaces. According to change rules of classifica-
tion losses, there is non-monotonicity between classification
losses and the conditional probability of classification based
on two proposed models, respectively. Globally, the trends
of classification losses and the division relationships of three
regions are proven in a multi-granularity space. In the future,
a new three-way decisionmodelmay be establishedwith hier-
archical structures to solve themultiple hierarchy problems in
the intuitionistic fuzzy information systems.
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