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DART is a kinetic impactor test

DART = Double Asteroid Redirection Test

� S-type double
asteroid system

� YORP asteroids
=⇒ low cohesion
and high porosity

� Diameter of the
secondary ≈160 m

Figure 1: DART mission concept, at the point of impact. Source:
ESA.
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Crater ejecta provides the momentum enhancement, β

Figure 2: Momentum transfer and two possible outcomes for the β value.

Larger β =⇒ more deflection!

Change in velocity of the asteroid in terms of β (Holsapple and Housen,
2012):

∆v =
Pproj

M
× β (1)

β − 1 =
Pejecta

Pproj
(2)
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iSALE 2D and 3D to simulate the DART impact

Table 1: iSALE input parameters

<———– Projectile parameters ———–><———- Target parameters ———–>

radius mass velocity density strength density friction
a m U δ Y0 ρ f

(m) (kg) (km/s) (kg/m3) (kPa) (kg/m3)
0.42 310 7.0 1000 10 2120 0.6

Figure 3: Diagram of the simulation set-up.
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The vertical DART crater in 2D vs 3D

β − 1 = Cumulative ejecta momentum
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Figure 4: Ejecta distribution of a vertical DART impact modelled in 2D and in 3D.
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The 3D DART impact at 90o and 45o

Figure 5: Surface topography of the DART impact at four different times: 0.02 s, 0.10 s,
0.40 s and 0.80 s. 90o and 45o (impact direction is right to left).
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β − 1 from the 90o and the 45o impacts converge

Figure 6: Momentum enhancement, impactor momentum and target momentum vec-
tors.
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iSALE 2D simulations of the DART impact

a) homogeneous porous internal structure;
b) layered targets;
c) targets in which porosity exponentially decreases with depth.

2a

Uρ, Y0, f 
m, δ 

hRegolith

Substrate

Figure 7: Schematic representation of the Didymoon internal structure models.

For more details check out Raducan et al., 2019 (Icarus), Raducan et al.
2019 (PSS, in review)
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iSALE 2D to simulate the DART impact - a) Homogeneous structure

Table 2: iSALE input parameters, homogeneous target, case a).

<———– Projectile parameters ———–><———- Target parameters ———–>

radius mass velocity density strength porosity friction
a m U δ Y0 ρ f

(m) (kg) (km/s) (kg/m3) (kPa) (%)
0.42 310 7.0 1000 0.1–100 0–50 0.6

Figure 8: Diagram of the simulation set-up.
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iSALE 2D to simulate the DART impact - b) Layered structure

Table 3: iSALE input parameters, layered target, case b).

<——– Regolith parameters ——–><—— Substrate parameters ——>

No. strength, Yr0 porosity, φr0 strength, Ys0 porosity, φs0

(kPa) (%) (kPa) (%)
1. 1 35 100 0
2. 1 50 100 0
3. 1 35 100 10
4. 1 50 100 10

* h between 0.5a and 20a, a = impactor radius

2a

Uρ, Y0, f 
m, δ 

hRegolith

Substrate

Figure 9: Diagram of the simulation set-up.
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iSALE 2D to simulate the DART impact - c) Porosity gradient

Table 4: iSALE input parameters, exponential porosity gradient , case c).

<—— Surface parameters ——><– Minimum porosity parameters –>

No. porosity, φupper porosity, φlower

(%) (%)
1. 50 0
2. 35 10

* E-folding depth, h∗/a, between ≈2.5 and ≈20, a = impactor radius

Figure 10: Diagram of the simulation set-up.
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β will be measured by Earth-based telescopes
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Figure 11: Momentum transfer efficiency, β, for different target structures.
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Same β predicted for different target structures

Assume β = 2.9. What are the target properties?
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Figure 12: Momentum transfer efficiency, β, for different target structures.
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Same β predicted - homogeneous targets

Assume β = 2.9. What are the target properties?
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Figure 13: Momentum transfer efficiency, β, and crater radius, R/a for impacts into
homogeneous targets.
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iSALE simulations of the DART impact

a) homogeneous porous internal structure;
b) layered targets with a porous weak upper layer overlying a stronger
bedrock layer;
c) targets in which porosity exponentially decreases with depth.

Figure 14: Schematic representation of the Didymoon internal structure models.

Sabina D. Raducan, Gareth S. Collins, Thomas M. Davison

Numerical modelling of the DART impact and the importance of the Hera mission



DART iSALE 3D iSALE 2D Same β, different targets Hera Conclusions

Crater profiles differ with regolith thickness

Figure 15: iSALE crater profiles for h/a between 1 and 20.
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Same β predicted - layered targets

Assume β = 2.9. What are the target properties?
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Figure 16: Momentum transfer efficiency, β, crater radius, R/a and crater depth, d/a
for impacts into layered targets.
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iSALE simulations of the DART impact

a) homogeneous porous internal structure;
b) layered targets with a porous weak upper layer overlying a stronger
bedrock layer;
c) targets in which porosity exponentially decreases with depth.

Figure 17: Schematic representation of the Didymoon internal structure models.
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Same β predicted - porosity gradient targets

Assume β = 2.9. What are the target properties?
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Figure 18: Momentum transfer efficiency, β, crater radius, R/a and crater depth, d/a
for impacts into targets with an exponential porosity gradient.
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Same β predicted - porosity gradient targets

Assume β = 2.9. What are the target properties?
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Figure 18: Momentum transfer efficiency, β, crater radius, R/a and crater depth, d/a
for impacts into targets with an exponential porosity gradient.
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Same β predicted for different target structures

To validate our numerical models, we need:

� Morphology and size of the DART
crater

� Bulk density measurements

� Asteroid surface survey

� Surface cohesion estimate
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We need Hera to validate our numerical models

ESA’s Hera mission will arrive at Didymoon several years after the DART
impact and will perform detailed measurements that will enable us to validate
our numerical models:

� Morphology and size of the
DART crater

� Bulk density measurements

� Asteroid surface survey

� Surface cohesion estimate

Figure 19: Hera at Didymoon. Source:
ESA.
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Conclusions

� 2D numerical simulations can be used to estimate the deflection caused
by a vertical impact, but further testing is required to find if they can also
estimate the vertical component of the ejecta momentum in an oblique
impact;

� β greatly influenced by the cohesion, porosity and the target structure,
expecting values between 2 and 4 (maybe even higher if the cohesion ≈
few Pa);

� Same β values were observed for impacts into a variety of targets;

� Hera measurements are vital for validation purposes.
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Thank you
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