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ABSTRACT

This article describes one of the first successful examples of multisensor, multivariate land data assimilation,

encompassing a large suite of soil moisture, snow depth, snow cover, and irrigation intensity environmental data

records (EDRs) from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave

Imager (SSM/I), Advanced Scatterometer (ASCAT), Moderate-Resolution Imaging Spectroradiometer

(MODIS), Advanced Microwave Scanning Radiometer (AMSR-E andAMSR2), Soil Moisture Ocean Salinity

(SMOS)mission, and SoilMoistureActive Passive (SMAP)mission. The analysis is performed using theNASA

Land Information System (LIS) as an enabling tool for the U.S. National Climate Assessment (NCA). The

performance of the NCA Land Data Assimilation System (NCA-LDAS) is evaluated by comparing it to a

number of hydrological reference data products. Results indicate that multivariate assimilation provides sys-

tematic improvements in simulated soil moisture and snow depth, with marginal effects on the accuracy of

simulated streamflow and evapotranspiration. An important conclusion is that across all evaluated variables,

assimilation of data from increasingly more modern sensors (e.g., SMOS, SMAP, AMSR2, ASCAT) produces

more skillful results than assimilationof data fromolder sensors (e.g., SMMR,SSM/I,AMSR-E). The evaluation

also indicates the high skill of NCA-LDAS when compared with other LSM products. Further, drought in-

dicators based on NCA-LDAS output suggest a trend of longer and more severe droughts over parts of the

western United States during 1979–2015, particularly in the southwestern United States, consistent with the

trends from the U.S. Drought Monitor, albeit for a shorter 2000–15 time period.

1. Introduction

Land data assimilation systems (LDASs) are environ-

ments where land surface models (LSMs) are driven by

observation-based meteorology in an offline (uncoupled

to the atmosphere)manner to generate high-quality long-

term and near-term estimates of land surface states and
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fluxes. There is a long legacy of such systems at global

[Global Land Data Assimilation System (GLDAS;

Rodell et al. 2004)], continental [North American Land

Data Assimilation System (NLDAS; Mitchell et al.

2004; Xia et al. 2012a], and regional [Famine Early

Warning Systems Network (FEWSNET) Land Data

Assimilation System (FLDAS; McNally et al. 2017)]

scales. These offline LDASs have enabled focused

evaluation and improvement of land surface models and

are often used to support a variety of end-use applica-

tions. The outputs of GLDAS, NLDAS, and FLDAS

systems, for example, are routinely used for agricul-

tural and water resources management, operational

drought monitoring, and food security applications,

among others.

A stated emphasis of the LDASs is the incorporation

of observational constraints on the modeled estimates

through data assimilation (DA) methods. Most LDAS

environments to date, however, have only included a

limited assimilation of terrestrial remote sensing mea-

surements. Recent studies have focused on addressing

this limitation through the assimilation of remotely

sensed soil moisture (Reichle et al. 2007; Bolten et al.

2009; Q. Liu et al. 2011; Han et al. 2014; Kumar et al.

2014; Pipunic et al. 2014; Lievens et al. 2015; de Lannoy

et al. 2015), snow depth (de Lannoy et al. 2012; Kumar

et al. 2014; Dziubanski and Franz 2016), snow cover

(Zaitchik and Rodell 2009; Fletcher et al. 2012; Zhang

et al. 2014; Kumar et al. 2015), vegetation (Barbu et al.

2014; Fairbairn et al. 2017), and terrestrial water storage

(Su et al. 2010; Houborg et al. 2012; Li et al. 2012;

Tangdamrongsub et al. 2015; Girotto et al. 2016; Kumar

et al. 2016) retrievals within LDAS configurations.

Many of these LDAS configurations have been im-

plemented using the NASA Land Information System

(LIS; Kumar et al. 2006; Peters-Lidard et al. 2007;

Kumar et al. 2008) software, which includes a compre-

hensive set of tools for enabling concurrent instances of

multisensor, multivariate land data assimilation. This

article describes the development of a continental scale

LDAS using LIS in the NLDAS configuration, known as

the National Climate Assessment (NCA) LDAS

(NCA-LDAS). The primary goal of NCA-LDAS is to

develop an integrated water analysis through the as-

similation of multiple remote sensing measurements

of the terrestrial water cycle.

The NCA is an interagency effort of the U.S. Global

Change Research Program (USGCRP) to understand

the impact of changing climate in order to support

decision-making across the United States. The key

objectives of NCA include the development of in-

formation about the current status and anticipated

trends of the climate through the integration of

information from available observational and modeling

platforms. The NCA effort focuses on evaluating the

impact of climate change in several sectors, including

human health, energy, agriculture, and water, among

others. Recently, a set of indicators was developed

(Kenney et al. 2016), with the primary goal of supporting

the sustainedU.S. NCA (Buizer et al. 2016) by providing

long-term information that is regularly updated about

key U.S. impacts on systems and sectors, such as water

cycle and water management (required by the 1990

Global Change Research Act or of broad concern to the

U.S. public). TheNCA-LDAS has been developed as an

end-to-end enabling tool for the water sector of the

NCA to develop an integrated water analysis by

leveraging the terrestrial modeling, remote sensing, and

data assimilation capabilities of the NASA LIS. The

NCA-LDAS leverages the advancements made through

univariate data assimilation studies to enable a unique,

first-of-its-kind land surface reanalysis over the conti-

nental United States (CONUS) for the past 301 years.

Reanalysis methods help to generate comprehensive

climatic data products over an extended time period by

combining available observations and numerical model

estimates through consistent assimilation schemes. The

development of such products has been invaluable for

climate monitoring and research. Most reanalysis efforts

(Kalnay et al. 1996; Uppala et al. 2005; Onogi et al. 2005;

Saha et al. 2010; Rienecker et al. 2011; Bosilovich et al.

2017), however, are focused on atmospheric analysis

where the observations are assimilated into an atmo-

spheric general circulation model. The need to extend

such analysis to reflect observations of other Earth sys-

tem components of ocean, sea ice, and land has been

well established (Trenberth et al. 2008). Though derived

land surface components of the reanalysis that employ

the forcings from the atmospheric reanalysis products

have been developed (Reichle et al. 2011; Balsamo et al.

2015; Reichle et al. 2017), these products often do not

include the direct assimilation of land remote sensing

data products. The NCA-LDAS, on the other hand,

uses a large suite of land remote sensing retrieval

products to produce a one-of-a-kind multivariate, mul-

tisensor land reanalysis for the CONUS spanning

36 years from 1979 to 2015.

NCA-LDAS has been developed by leveraging the

advancements made in the development of LDASs that

integrate land surface model and hydrological observa-

tions. Specifically, NCA-LDAS consolidates the capa-

bilities of the NASA LIS software to assimilate water

availability environmental data records (EDRs) from

remote sensing platforms from 1979 to 2015 over North

America, using the Noah land surface model. The

analysis employs soil moisture products from a number of
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microwave instruments, including the Scanning Multi-

channel Microwave Radiometer (SMMR; 1978–87), the

Special Sensor Microwave Imager (SSM/I; since 1987),

the Advanced Microwave Scanning Radiometer for

Earth Observing System (AMSR-E; 2002–11), the Ad-

vanced Scatterometer (ASCAT; 2007–15), the Soil

Moisture and Ocean Salinity (SMOS; 2012–15) mission,

and NASA’s Soil Moisture Active Passive (SMAP; 2015

onward) mission. Similarly, snow depth retrievals from a

number of passive microwave instruments including

SMMR, SSM/I, AMSR-E, and Advanced Microwave

Scanning Radiometer 2 (AMSR2; 2012–15) are em-

ployed in the reanalysis. In addition, snow cover products

from the Interactive Multisensor Snow and Ice Mapping

System (IMS; 1998–2015) and Moderate Resolution Im-

aging Spectroradiometer (MODIS; 2000–2015) aboard

the NASA Aqua satellite are employed in NCA-LDAS.

MODIS retrievals rely on visible spectrum retrievals

whereas IMS data are a blend of visible data from

geostationary and polar-orbiting satellites and passive

microwave data. Finally, NCA-LDAS also include for-

mulations of irrigation simulation using the irrigated area

records derived fromMODISwith an image classification

algorithm.

The primary objective of this article is to document

the performance of NCA-LDAS in terms of its utility

to develop an improved characterization of the

continental-scale water budget. The impact of assimi-

lating the abovementioned remote sensing retrievals on

the terrestrial water states and fluxes is quantified by a

comparison to a large suite of available reference data.

The article also presents a comparison of the perfor-

mance of theNCA-LDAS relative to outputs from other

LDASs and land analysis efforts. In addition to quanti-

fying the value of terrestrial remote sensing data for

improving the mean estimates of fluxes and states, the

article also examines the utility of NCA-LDAS for

representing hydrological extremes and climate-relevant

water availability applications such as drought moni-

toring. This article builds on prior univariate studies

(Kumar et al. 2014, 2016) that have quantified the pos-

itive impacts from land data assimilation for drought

monitoring and examines the trends of the hydrologic

indicators that encapsulate the dry extremes of the

water budget.

The paper is organized as follows. Section 2 provides a

brief description of the model configuration, data sour-

ces, and details about the assimilation setup. Section 3

presents the evaluation of key water budget components

from NCA-LDAS, and section 4 examines the utility of

NCA-LDAS–based drought indicators. Finally, section 5

provides the summary and main conclusions.

2. Approach

a. Model configuration

The NCA-LDAS uses a model domain configuration

similar to the one used in the NLDAS project. Themodel

simulations are conducted on an equidistant cylindrical

grid spanning the CONUS (25–538N and 125–678W) at
1/88 spatial resolution. All model integrations are forced

with the NLDAS phase 2 (NLDAS-2) meteorology (Xia

et al. 2012a), which is primarily derived from the North

American Regional Reanalysis (NARR; Mesinger et al.

2006). The satellite derived radiation products (Pinker

et al. 2003) are used to bias correct the downward

shortwave radiation fields. TheNLDAS-2 precipitation is

generated by temporally disaggregating the daily NOAA

Climate Prediction Center’s (CPC) unified daily gauge

analysis of precipitation to hourly time scales. The

temporal disaggregation is performed (primarily) using

the NCEP Stage II Doppler radar data (Baldwin

and Mitchell 1997). The NLDAS-2 precipitation also in-

cludes orographic adjustments based on the Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM; Daly et al. 1994).

The Noah LSM (version 3.3; Ek et al. 2003) im-

plemented within the NASA LIS is used in the NCA-

LDAS simulations. The simulations are conducted with a

15-min time step during the time period from 1 January

1979 to 1 January 2016. The LSM is initialized with uni-

form conditions and run from 1979 to 2015 twice. A cli-

matological initial condition is generated from this

model spinup to initialize the NCA-LDAS runs begin-

ning on 1 January 1979. The streamflow estimates are

generated using the Hydrological Modeling and

Analysis Platform (HyMAP; Getirana et al. 2012)

model. The gridded surface runoff and baseflow fields

from the LSM are used by HyMAP to derive

streamflow estimates. HyMAP also models the in-

teraction between rivers and floodplains, floodplain

water flow among grid cells, and evaporation from

open water. HyMAP is configured within NCA-LDAS

to run at the same spatial and temporal resolutions

and extents as that of the Noah LSM.

b. Satellite retrievals

Figure 1 shows a chronological schematic of all

the retrievals employed for data assimilation within

NCA-LDAS. They include four categories of satellite

EDRs: 1) soil moisture, 2) snow depth, 3) snow cover, and

4) irrigation intensity. Soil moisture retrievals from six

satellite microwave instruments exploiting the sensitivity

to soil moisture in the low-frequency microwave range are

used in the NCA-LDAS. Soil moisture retrievals (based

AUGUST 2019 KUMAR ET AL . 1573

Unauthenticated | Downloaded 04/27/21 03:46 PM UTC



onCandXbands) from theSMMR instrument aboard the

Nimbus-7 satellite are used from 1979 to 1987. From 1987

to 2002, retrievals from SSM/I instrument (based on Ku

band) aboard the Defense Meteorological Satellite Pro-

gram (DMSP) satellites are used, whereas retrievals from

AMSR-E (based on C and X bands) on the NASAAqua

satellite are used from 2002 to 2011. From 2007 onward,

retrievals from multiple platforms are used concurrently,

with ASCAT (aboard the MetOp-A satellite) retrievals

(based on C-band backscatter) from 2007, SMOS re-

trievals from 2010, and SMAP retrievals from 2015 on-

ward. SMOS and SMAP are dedicated soil moisture

missions relying on L-band (1.4GHz) passive microwave

measurements. The retrievals from each of these in-

struments are obtained through different retrieval algo-

rithms and systems. The multisensor, blended soil

moisture product developed by the European Space

Agency (ESA) [known as the ESA Climate Change Ini-

tiative (CCI) data; Y. Liu et al. 2011; Dorigo et al. 2017] is

used to include the retrievals from SMMR and SSM/I

during the time period of 1979–2002. The AMSR-E

retrievals are generated using the Land Parameter Re-

trieval Model (LPRM; Owe et al. 2008). The Soil Mois-

ture Operational Products System (SMOPS; Liu et al.

2012) of NOAA/NESDIS is used to obtain the back-

scatter measurements acquired by the C-band active mi-

crowave measurements of ASCAT as well as the L-band

radiometer measurements of SMOS. The level 3 SMAP

retrieval products (L3_SM_P; O’Neill et al. 2015)

available through the National Snow and Ice Data

Center (NSIDC) are also used in the DA integrations.

A similar suite of passive microwave radiometry–

based snow depth retrievals are used for assimilation

within NCA-LDAS. From 1979 to 1987, retrievals from

FIG. 1. Chronological schematic of the satellite remote sensing retrievals and the satellite sources used in NCA-

LDAS. The dashed lines for irrigation represent the fact that irrigation is applied throughout the NCA-LDAS time

period, though the irrigation intensity map from MODIS was derived for the single year of 2001 (shown as

a solid box).
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SMMR using the 19- and 37-GHz channels (Chang et al.

1987) are used. A similar set of retrievals from SSM/I are

assimilated from 1987 to 2002. The AMSR-E retrievals

(Kelly 2009; Kelly et al. 2003), exploiting measurements

from several channels (10, 18, 23, 36, and 89GHz), are

employed during the time period from 2002 to 2011.

Finally, the AMSR2 retrievals (Oki et al. 2010; Kachi

et al. 2013) are employed for assimilation from July 2012

onward. As AMSR-E stopped functioning in October

2011, there is a period of 8 months with no snow depth

retrievals during 2011–12. Based on the strategy de-

veloped by Kumar et al. (2015), visible-spectrum-based

snow cover area (SCA) measurements are used in

NCA-LDAS to provide snow detection constraints

during the assimilation of snow depth retrievals. Two

different sources of SCA observations are employed: 1)

the NOAA IMS (Ramsay 1998), which is a blend of

visible data from geostationary and polar-orbiting sat-

ellites and passivemicrowave data, and 2)MODISTerra

SCA retrievals (MOD10C1; Hall and Riggs 2016). The

IMS and MODIS data are used from 1998 and 2000

onward, respectively. Passive microwave snow depth

retrievals are assimilated only if both IMS and MODIS

data indicate valid, nonzero snow cover.

To include representations of human-managed agri-

cultural landscapes, NCA-LDAS uses a demand-driven,

sprinkler irrigation scheme (Ozdogan et al. 2010). A

1-km irrigation gridcell fraction map, derived by merg-

ing gridded climate datasets and MODIS data through

an image classification algorithm (Ozdogan andGutman

2008), is used to provide representations of irrigated

areas over the CONUS. In the sprinkler irrigation

scheme, irrigation is triggered when the root-zone soil

moisture falls below the transpiration stress threshold

for a given grid cell. The irrigation requirement is

computed as an equivalent height of water and is in-

cluded as part of the precipitation input to the LSM. The

irrigation scheme is only applied over cropland and

grassland vegetation types and is only enabled during

the growing season, daily between 0600 and 1000 local

time. Though the MODIS-based irrigation intensity

map was derived for a single year (2001), we use it

throughout the NCA-LDAS time period of 1979–2015

to represent irrigated areas over the CONUS.

c. Data assimilation method

Similar to previous univariate data assimilation stud-

ies in the NLDAS configuration (Kumar et al. 2014,

2015), the NCA-LDAS employs a one-dimensional en-

semble Kalman filter (EnKF; Reichle et al. 2002) for the

concurrent assimilation of satellite EDRs into the Noah

LSM. Various satellite EDRs are assimilated in a se-

quential manner, where the ensemble ofmodel forecasts

are propagated forward in time by the LSM followed by

the analysis step that updates them based on observa-

tions. When multiple satellite EDRs are available, they

are incorporated based on their respectivemeasurement

or overpass times. The general form of the analysis step

can be written as

x1k 5 x2k 1K
k
(y

k
2H

k
x2k ) , (1)

where x2 is the model state vector prior to the update,

x1 is the posterior state vector, yk is the observation

vector, and Hk is the observation operator that relates

the model states to the observations. The subscript k

indicates time, and the superscripts 2 and 1 refer to

the state estimates, before and after the update, re-

spectively. Matrix Kk is the gain matrix, which repre-

sents the weighting factor that determines the degree to

which the model forecast is adjusted toward the

observation.

The term (yk 2Hkx
2
k ) represents the innovation vec-

tor, which is the difference between the observations

and the model’s prediction of the observations. The

representation of yk and Hk must be done carefully to

ensure consistency with respect to a number of factors:

1) both yk and Hk terms should be specified in the same

physical space, with the observations and the model

forecasts collocated on the same geographical space,

and 2) observations and model forecasts should be un-

biased relative to each other, as DA systems are de-

signed to work primarily with unbiased errors (Dee and

da Silva 1998). In most prior DA studies, observa-

tions were spatially interpolated to the model resolu-

tion to address the spatial-resolution mismatches. In

NCA-LDAS, we follow a different strategy by upscaling

or interpolating the Hk term to match the resolution of

the observations. If the observations are at a coarser

resolution than 1/88, the Hk term is upscaled through

simple averaging to match the observation EDR space.

On the other hand, if the observations are at a finer

resolution than 1/88, the Hk term is spatially interpolated

to the observation resolution.

Consistent with prior univariate studies (Reichle et al.

2007, 2010; Q. Liu et al. 2011; Kumar et al. 2012b, 2014)

to address the bias issues in the DA configurations,

NCA-LDAS employs a number of strategies so that the

observations yk and themodel forecastsHk are generally

unbiased relative to each other. For soil moisture DA,

the observations are rescaled to the model climatology

using cumulative density function (CDF) matching

(Reichle and Koster 2004). The CDF matching is per-

formed separately for each satellite soil moisture EDR,

where the observation CDFs are computed separately

for each EDR in their respective geographical grid.
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Similarly, themodel CDFs are also computed separately

at each EDR observation grid. The CDF computations

use the entire available archive of each data record. The

input observation error standard deviations for the un-

scaled soil moisture retrievals are set to 0.05, 0.08, 0.08,

0.04, and 0.04m3m23 for ESA CCI, AMSR-E, ASCAT,

SMOS, and SMAP, respectively. These settings are

based on a combination of values from prior studies

(Q. Liu et al. 2011; Kumar et al. 2014), a comparison of

the dynamic range of these products, and the reported

error levels of retrievals. Spatially distributed observa-

tion error standard deviations are generated by scaling

these input error standard deviations by the ratio of

the soil moisture time series standard deviation of the

Noah LSM to that of the soil moisture retrievals (Q. Liu

et al. 2011; Kumar et al. 2014). The scaled observation

error standard deviations are generally comparable

across different sensors, with the domain-averaged error

roughly between 0.03 and 0.05m3m23 (shown in Fig. S1

in the online supplementary material). The snow depth

EDRs are bias corrected using available in situ mea-

surements of the Global Historical Climate Network

(GHCN; Menne et al. 2012) using the Cressman objec-

tive analysis (Cressman 1959). The bias correction is

conducted separately for SMMR, SSM/I, AMSR-E, and

AMSR2 snow depth EDRs. The objective analysis up-

dates the satellite EDRs by weighting the residuals

between the station and satellite EDRs at each grid

point. The weighting functions are based on the differ-

ences in horizontal and vertical distances between the

station location and themodel grid point, as described in

Kumar et al. (2014). The observation error standard

deviation is assumed to be 50mm for all bias-corrected

snow depth retrievals. Studies such as de Rosnay et al.

(2014) have documented that Cressman analysis could

lead to spurious patterns in the snow analysis, particu-

larly when the density of stations used in the analysis

is small. Such artifacts were not observed in the current

analysis, likely because of the sufficient spatial density

of the GHCN stations (Kumar et al. 2014). As future

NCA-LDAS configurations employ model configura-

tions at finer spatial resolutions, the snow analysis will

be improved by the use of methods such as optimal

interpolation (OI).

Note that the soil moisture DA configuration essen-

tially incorporates the anomaly information whereas

snow DA assimilates the direct geophysical quantities.

Direct assimilation for soil moisture is difficult because

of the significant differences in the model estimates and

satellite retrievals in their geophysical definitions and

spatial (both horizontal and vertical) representative-

ness. The model soil moisture is essentially an index of

wetness (Koster et al. 2009) and is generally inconsistent

with the satellite soil moisture retrievals. As a result,

direct assimilation of soil moisture retrievals is mean-

ingless, unless explicit care is done to resolve their rel-

ative inconsistencies. De Lannoy et al. (2012) examined

the use of both anomaly and direct assimilation strate-

gies for snow DA and found that direct assimilation

is more effective in improving snow states through

DA. Therefore, we employ anomaly assimilation for

soil moisture DA and direct assimilation for snow

depth DA.

The DA simulations use an ensemble size of 20 with

perturbations applied to meteorological fields and

model prognostic fields to maintain ensemble spreads

representing the uncertainty in model estimates. The

precipitation P and downward shortwave radiation

(SW) meteorological fields are perturbed, with multi-

plicative perturbations with a mean of 1 and stan-

dard deviations of 0.3 and 0.5, respectively. In addition,

additive perturbations with a standard deviation of

50Wm22 are applied to the longwave (LW) radiation

fields. For soil moisture DA, the model state vector

consists of the total soil moisture prognostic variables

for each of the four soil layers (SMi, i5 1, . . . , 4). The

surface soil moisture layer is perturbed with an additive

noise of 0.001m3m23. Similarly, for snow DA, the

model fields of snow water equivalent (SWE) and snow

depth (SD) are perturbed with multiplicative noise of

0.005 and 0.01, respectively. Time series correlations

are employed through a first-order regressive model

[AR(1)] with time scales of 24 and 12 h for the forcing

variables and model fields, respectively. The forcing

fields are perturbed hourly, whereas the model fields

are perturbed every 3 h. To enable a realistic balance

in the perturbations of related variables (Reichle et

al. 2007), cross correlations r to perturbations between

state variables [r(SWE, SD)5 0:9, r(SM1, SM2)5 0:6,

r(SM1, SM3)5 0:4, r(SM1, SM4)5 0:2] and forcing fields

[r(SW, P)520:8, r(SW, LW)520:5, r(LW, P)5 0:5]

are also imposed, based on Kumar et al. (2014).

A number of observation thinning procedures are

also employed in the DA configurations to account for

the sensing limitations of the remote sensing mea-

surements. The soil moisture retrievals are excluded

for being at the edge of the swath or near water bodies

and when impacted by dense vegetation, precipitation,

frozen ground, snow cover, or radio frequency in-

terference (RFI) based on the information provided in

the EDRs. Both active and passive microwave re-

trievals are susceptible to contamination from man-

made RFI (Njoku et al. 2003; Soldo et al. 2016; Ticconi

et al. 2017). In addition, the soil moisture observations

are screened out when the LSM indicated active pre-

cipitation, nonzero snow cover, frozen soil, or dense

1576 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 04/27/21 03:46 PM UTC



vegetation. Similarly, the snow depth retrievals are

excluded over dense vegetation and when the model

skin temperature or the top layer soil temperature is

higher than 58C. Finally, the snow cover observations

from MODIS are considered valid if the associated

cloud cover is less than 10% and the observation of

snow cover fraction is greater than 25%. These ob-

servation thinning strategies are based on the ap-

proaches developed in prior univariate studies

(Kumar et al. 2014, 2015). Figure 2 shows the total

number of soil moisture, snow depth, and snow cover

observations ingested each year in NCA-LDAS after

the observation thinning procedures. The number of

assimilated soil moisture observations increases

gradually from 1979 to 2015, as the quality and

availability of soil moisture retrievals increase. The

number of assimilated snow depth observations also

increases from the SMMR (1979–1987) to the SSM/I

(1987–2002) time period. During the 1998–2011 time

period, there is a marginal reduction in the number of

assimilated snow depth observations due to the added

constraint of snow cover observations. The large de-

crease in the number of snow depth observations in

years 2011 and 2012 is due to the loss of AMSR-E in

late 2011 and because the AMSR2 data became

available only in August 2012. The increase in the

snow cover observations from the year 2000 onward

are due to the added use of MODIS data starting

in 2000.

3. Evaluation of the NCA-LDAS analysis

The primary goal of NCA-LDAS is to produce an

integrated terrestrial water analysis for the CONUS

informed by remote sensing observations. In this

section, a comprehensive evaluation of the key ter-

restrial water budget components of soil moisture,

snow depth, streamflow, and evapotranspiration (ET)

is presented through comparison against a large suite

of available reference data products. For each vari-

able, the impact of data assimilation is evaluated by

comparing the performance improvement relative to

the ensemble open-loop (OL) integration that does

not include any data assimilation, but includes the

perturbations to meteorological and model state var-

iables. The overall quality of the NCA-LDAS esti-

mates is also evaluated by a comparison with eight

other land analysis products. The evaluation is con-

ducted using the NASA Land Surface Verification

Toolkit (LVT; Kumar et al. 2012a), which is a

formal land surface verification and benchmarking

environment.

a. Soil moisture evaluation

The NCA-LDAS soil moisture estimates are evalu-

ated using three different in situ soil moisture network

data: 1) USDA Agricultural Research Service (ARS)

experimental watersheds (Jackson et al. 2010), 2)

the USDA Soil Climate Analysis Network (SCAN;

Schaefer et al. 2007), and 3) the NOAA U.S. Climate

Reference Network (USCRN;Diamond et al. 2013; Bell

et al. 2013). The USDA ARS experimental watersheds

provide surface soil moisture measurements at seven

locations in the CONUS, whereas the SCAN and

USCRN networks provide hourly soil profile measure-

ments at depths of 5, 10, 20, 50, and 100 cm wherever

possible. After careful quality control, the details of

which are described inQ. Liu et al. (2011), data from 123

SCAN stations and 86 USCRN stations are employed in

the evaluations. As the measurements tend to be sparse

in the deeper layers (particularly at 50-and 100-cm

depths), we use a depth-weighted average of the first

three layers (5, 10, and 20 cm) as the observed root-zone

soil moisture. This approach is consistent with the

strategy used in the prior studies (Q. Liu et al. 2011;

Kumar et al. 2014). The USDA ARS data are available

from 2001, SCAN from 2000, and USCRN from 2011

onward. Similar to prior studies, the anomaly corre-

lation R metric is used as the metric for evaluating

NCA-LDAS soil moisture estimates, as climatology

differences between model and in situ observations

make a direct comparison difficult (Koster et al. 2009).

At each grid point, the anomaly values are computed by

subtracting the monthly mean soil moisture values from

the daily averages, for in situ observations and the

model. The anomaly R values are then computed as the

FIG. 2. Annual number of soil moisture, snow depth, and snow

cover measurements (aggregated from daily observations across

the modeling domain) employed for analysis within NCA-LDAS.
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correlation of the daily anomalies from the two data

sources.

Figure 3 shows anomaly R ‘‘improvement maps’’ for

surface and root-zone soil moisture (anomaly R from

NCA-LDASminus the anomaly R from the OL), where

warm colors indicate locations where NCA-LDAS es-

timates are improved relative to the OL. The root-zone

soil moisture values are computed as a weighted average

of soil moisture values in the top 1m of soil. The bottom

row of Fig. 3 shows the comparison of the anomaly

R values for the entire simulation period (2000–15)

where ground reference datasets are available.

The domain-averaged anomaly R values for surface

and root-zone soil moisture from the OL are 0.57

and 0.55, respectively. The multivariate assimilation

provides a marginal, domain-averaged improvement in

FIG. 3. Comparison of the anomalyR improvements in (left) surface and (right) root-zone soil moisture, relative to USDAARS, NRCS

SCAN, and USCRN station network data. (bottom) The improvement maps for the entire evaluation time period. The evaluation

stratified by three time periods: (top) 2000–06, (second row) 2007–09, and (third row) 2010–15. The warm and cool colors indicate

improvements and degradations from DA, respectively.
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NCA-LDAS, where the domain-averaged anomaly R

values are 0.58 and 0.59 for surface and root-zone soil

moisture, respectively. For surface soil moisture, there

are more significant regional improvements over the

Great Plains and the Arkansas–Red and lower Mis-

sissippi basins; little impact over the Northeast, South-

east, and West Coast; and degradations over the

Southwest (especially over Utah). Similar trends are

also seen in the root-zone soil moisture comparison,

with significant improvements over most locations ex-

cept over the Southwest. In addition to anomaly R, the

unbiased RMSE (ubRMSE; Entekhabi et al. 2010) es-

timates are also computed to evaluate the impact of DA

on soil moisture states. The improvements (reductions)

in the domain-averaged ubRMSE for surface and root-

zone soil moisture are 0.03 and 0.01m3m23, which are

barely statistically significant. Larger differences similar

to the spatial patterns of improvements and degrada-

tions of Fig. 3 were observed for ubRMSE (not shown).

To quantify the impact of assimilating EDRs from

different sensors, the anomaly R comparisons are

stratified into three time periods. Years 2000–06 repre-

sent the assimilation of SSM/I and AMSR-E, 2007–09

represent the impact of AMSR-E and ASCAT, and

2010–15 primarily represent the impact of ASCAT,

SMOS, and SMAP. Though the density of in situ sta-

tions vary during these time periods, the stratification of

the improvements in Fig. 3 is helpful in assessing the

added impact of data from newer sensors. Generally the

regions with patterns of improvements and degradations

are consistent in these temporal stratifications. Larger

improvements over the high plains and Missouri River

basin can be observed with the use of modern sensors,

whereas the skills are comparable over the lower Mis-

sissippi and Arkansas–Red River basins.

b. Snow depth evaluation

Snow depth estimates from the NCA-LDAS are

evaluated by comparing them to the spatially distributed

snow depth estimates from the Canadian Meteorologi-

cal Centre (CMC) daily snow depth analysis (Brown and

Brasnett 2010; available daily from 1998 at approxi-

mately 25-km spatial resolution) and the NOAA

National Weather Service’s National Operational Hy-

drologic Remote Sensing Center (NOHRSC) Snow

Data Assimilation System (SNODAS; Barrett 2003;

available daily from 2003 at 1-km spatial resolution).

Both these data products are generated by combining

ground-based, airborne, meteorological aviation re-

ports, World Meteorological Organization (WMO)

special aviation reports, and satellite-derived observa-

tions with estimates from a snow model. Since the

available ground measurements of snow depth from

GHCN are already used in the bias correction of snow

depth EDRs, we rely on the use of CMC and SNODAS,

which are also modeled analysis products.

A comparison of the improvements in snow depth

RMSE of NCA-LDAS estimates relative to CMC and

SNODAS is shown in the bottom row of Fig. 4. The

RMSE difference map is computed as the RMSE of the

OL integration minus the RMSE of the NCA-LDAS

simulation, so that positive differences indicate im-

provements and negative differences indicate degrada-

tions caused by DA. Overall, the patterns in Fig. 4

indicate that the NCA-LDAS estimates are improved

relative to the OL estimates in both comparisons.

Though the domain-averaged improvements in RMSE

are small (2.3 and 6.2mm relative to CMC and

SNODAS, respectively), larger regional improve-

ments are seen in Fig. 4. There are significant im-

provements in the midwestern United States, parts of

the Rocky Mountains, and the northeastern United

States. Areas of degradation, especially in the CMC

comparison, are also seen in the region near the

Great Lakes and parts of the western United States.

These results are consistent with the univariate

studies (Kumar et al. 2014), validating the DA

strategy to employ bias-corrected snow depth EDRs.

Figure 4 also shows the evaluation of the NCA-LDAS

snow depth estimates stratified into three time periods,

1998–2002, 2003–12, and 2013–15, associated with the

assimilation of SSM/I, AMSR-E, and AMSR2 snow

depth EDRs. The improvement map (compared to

CMC) for the 1998–2002 time period indicates that only

marginal improvements are obtained with the use of

SSM/I snow depth EDRs. Comparatively, larger im-

provements (and smaller degradations) are seen with

the use of AMSR-E andAMSR2. For example, over the

U.S. Midwest, high plains, and Northeast, the NCA-

LDAS shows significant improvements during the

AMSR-E and AMSR2 time periods, whereas the as-

similation of SSM/I frequently leads to less skillful snow

depth estimates over these regions. Similar patterns are

also seen in the SNODAS evaluations. The assimilation

of AMSR2 provides stronger enhancements in snow

depth relative to the improvements obtained with

AMSR-E. These results indicate that the use of more

modern snow depth sensors provide increased utility in

data assimilation.

Note that, generally, the time periods of soil moisture

and snow DA are mutually exclusive. It is, however,

difficult to attribute the improvements in snow states

solely to snow DA, as improvements in soil moisture

characterization at the beginning of the snow season

could impact the snow evolution and assimilation. In

addition, there are time periods during both fall and
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spring where soil moisture and snow observations are

simultaneously assimilated. Conversely, the changes to

the moisture states from snowDA could also impact the

soil moisture states, especially during the transition time

periods (spring and fall).

c. Streamflow evaluation

The streamflow estimates from NCA-LDAS are

evaluated by comparing them to daily streamflow data

from the U.S. Geological Survey (USGS; http://nwis.

waterdata.usgs.gov/nwis) over 572 small unregulated

basins during the 1979–2015 time period. This subset of

basins is selected for model evaluation as they have no

visible signs of reservoir operations and are larger in size

than the typical footprint of the passive microwave

sensors (Xia et al. 2012b; Kumar et al. 2014).

Improvement maps of the NCA-LDAS streamflow es-

timates are shown in Fig. 5. The streamflow improvement

FIG. 4. Comparison of the improvements in snow depth RMSE (mm) using (left) CMC and (right) SNODAS as the reference data.

(bottom) TheRMSE improvementmaps for the entire evaluation time period. The evaluation stratified by three time periods: (top) 1998–

2002, (second row) 2003–12, and (third row) 2013–15, which represent the SSM/I, AMSR-E, and AMSR2 assimilation time periods,

respectively. The warm and cool colors indicate improvements and degradations from DA, respectively.
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FIG. 5. Comparison of the improvements in streamflow NSE (as NSE NIC) using

the USGS daily streamflow observations as the reference. (bottom) The im-

provement maps for the entire evaluation time period. The evaluation stratified

by three time periods: (top) 1979–2002, (second row) 2003–09, and (third row)

2010–15. Positive values represent improvements from DA and negative values

indicate degradations from DA.
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maps are computed as follows: First, Nash–Sutcliffe

efficiency (NSE) values are computed for the OL and

NCA-LDAS simulations by comparing the streamflow

estimates from these integrations to USGS gauge mea-

surements. A normalized information contribution (NIC;

Kumar et al. 2009) measure is then computed to quantify

the improvement or degradation due to data assimilation.

The NSE NIC values are computed as

NIC
NSE

5
(NSE

a
2NSE

o
)

(12NSE
o
)

, (2)

where the subscripts o and a denote OL and analysis,

respectively. The NIC metric provides a normalized

measure of the improvement through data assimilation

(NSEa 2NSEo) as a fraction of the maximum possi-

ble skill improvement (12NSEo). Thus, positive and

negative NIC values indicate improvements and degra-

dations in NCA-LDAS relative to OL streamflow esti-

mates, respectively.

The bottom panel of Fig. 5 shows the NIC values

computed for the entire NCA-LDAS time period

of 1979–2015. Overall, the impact of assimilation on

streamflow estimates is small, with the domain-averaged

NIC showing a degradation of 0.21. Regionally, im-

provements in NIC are seen over the Arkansas–Red and

parts of the lower Colorado and upper Mississippi basins,

and degradations are seen in the western U.S. basins and

parts of the upper Missouri basin. Data assimilation

provides little added impact over most of the eastern

United States and theWest Coast. The top three panels of

Fig. 5 show the NIC values stratified for three time pe-

riods that primarily represent the assimilation of SMMR

andSSM/I (1979–2002);AMSR-EandASCAT(2003–09);

and ASCAT, SMOS, SMAP, and AMSR2 (2010–15).

During the 1979–2002 time period, the impact of as-

similation is small and often disadvantageous, with

degradations seen over the western U.S. basins. The use

of AMSR-E and ASCAT improves the streamflow es-

timates during the 2003–09 time period, where en-

hancements in streamflow are observed over the upper

Missouri, Arkansas–Red, and upper Mississippi. Addi-

tional improvements in streamflow are observed over

regions such the southeastern and northeastern United

States during the 2010–15 time period. Though the

overall evaluation (1979–2015) is dominated by the

SMMR and SSM/I time period (1979–2002), it is en-

couraging to see more significant improvements in

streamflow with the use of newer sensor EDRs. The

streamflow evaluation also indicates consistent degra-

dations over the western U.S. basins, suggesting that the

remote sensing EDRs may need improvements over

these areas. It is also likely that the deficiencies in the

data assimilation configuration may be contributing to

the degradations from DA over these areas.

The NICmetric, instead of a simple difference metric, is

used to quantify the impact of DA on streamflow, as the

magnitude and skill of the streamflow varies significantly

depending on the basin. The NICmetric helps to present a

normalized representation of improvements and degra-

dations in streamflow across the modeling domain. The

focus here is to quantify the changes due toDA, though the

underlying skill of the streamflow simulation could still be

poor, as noted in prior studies (Lohmann et al. 2004; Xia

et al. 2012b; Kumar et al. 2014).

d. ET evaluation

The NCA-LDAS ET estimates are evaluated by

comparing them to three ET products: 1) the 1/28 gridded
ET estimates based on eddy covariance FLUXNET

measurements processed through a multitree ensemble

(MTE) approach (available monthly from 1982 to 2009;

Jung et al. 2009), 2) 4-km resolution thermal-infrared-

based ET estimates from the Atmosphere–Land Ex-

change Inverse (ALEXI; available daily from 2001;

Anderson et al. 2007) model, and 3) 5-km-resolution

MODIS-based ET estimates from the University of

Washington (UW; available monthly from 2003 to 2009;

Tang et al. 2009). Note that none of these products can

be considered ‘‘truth,’’ because all involve significant

and imperfect model/calibration assumptions, and un-

like the NCA-LDAS estimates, they are not constrained

by the water balance.

Nevertheless, Fig. 6 shows difference maps using RMSE

[RMSE(OL) 2 RMSE(DA)] and anomaly R [anomaly

R(DA)2 anomaly R(OL)] metrics based on comparisons

to the three reference datasets (computed across the

available data period of each dataset). Overall, the RMSE

differences between theOLandNCA-LDASestimates are

small, with the most prominent differences observed over

locations with significant application of irrigation, including

parts of the Great Plains, central California, and lower

Mississippi. All three comparisons show that the ET

estimates from NCA-LDAS are improved relative

to the OL over central California, though at the domain-

averaged scale, the improvements are marginal (0.1, 1.2,

and 3.5Wm22 compared to FLUXNET, ALEXI, and

UW, respectively). Over the irrigated areas in the central

plains, the results are mixed. The FLUXNET MTE and

ALEXI evaluations mostly show increased RMSEs for

NCA-LDAS, whereas the UW comparison indicates im-

provements in the NCA-LDAS ET. Both comparisons

indicate small improvements over the lower Mississippi

region. These trends are also observed in the anomaly R

comparisons. Overall, the anomaly R values decrease

over the irrigated areas relative to the OL, with more
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prominent degradations observed in the comparisons

against the UW datasets. Overall, these com-

parisons reflect the inherent biases in each of these

reference datasets and the difficulties involved in

properly evaluating ET estimates over irrigated agri-

cultural areas.

e. Estimates of irrigated water use

As noted earlier, NCA-LDAS computes the irrigation

water use or requirement over the agricultural landscapes

over the CONUS. Figure 7 shows a map of the average

annual water use and the average seasonal cycle of irri-

gation water requirements for the CONUS and three

different regions of the United States. Similar to the

spatial patterns of irrigation reported in Ozdogan et al.

(2010), the NCA-LDAS also shows high average irriga-

tion water use estimates over regions such as the plains of

Nebraska, central California, the lower Mississippi, and

parts of Pacific Northwest. The agricultural regions of the

central United States (1108–958W) have the largest esti-

mated irrigation requirements, followed by the western

(1248–1108W)and eastern (958–678W)United States. The

average irrigation requirements estimated by the

NCA-LDAS are smaller than the corresponding esti-

mates for the year 2003 reported by Ozdogan et al.

(2010) because of a number of factors. First, there is

significant interannual variability in the irrigation wa-

ter requirements due to changing precipitation, tem-

perature, and demand for different crops, and in the

sum the requirements for 2003 (not shown) were rela-

tively large. Second, the short-term changes in soil

moisture caused by the assimilation updates likely re-

duce the simulated application of irrigation. The eval-

uation of simulated ET estimates presented in section

3d suggests that the irrigation water requirements from

NCA-LDAS are reasonable, as larger water use

FIG. 6. Comparison of the improvements in evapotranspiration (left) RMSE (Wm22) and (right) anomalyR using the FLUXNETMTE (1982–

2009), ALEXI (2001–15), and UW (2003–09) reference datasets. The warm and cool colors indicate improvements and degradations from DA,

respectively.
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applications will lead to higher ET estimates in NCA-

LDAS.

f. Comparison to LSM products

In this section, the skill of soil moisture, snow depth,

ET, and total runoff estimates from NCA-LDAS

is compared against those from a number of other

LSMproducts, including theModern-Era Retrospective

Analysis for Research and Applications version 2

(MERRA-2; Reichle et al. 2017), ERA-Interim-Land

(Balsamo et al. 2015), NLDAS-2 (Xia et al. 2012a), and

GLDAS version 1 (GLDAS1; Rodell et al. 2004). As the

NLDAS and GLDAS projects employ multiple LSMs,

we use the outputs from three LSMs in NLDAS-2

(Noah, Mosaic, and VIC) and GLDAS1 (Noah, Mosaic,

and CLM2). The surface soil moisture estimates from

each of these eight LSM products are compared against

the in situ SCAN soil moisture measurements. Similarly,

the snow depth skills are evaluated by comparing them

against CMC, comparing ET against FLUXNET MTE,

and comparing streamflow against the USGS gauge

measurements. Note that the snow depth evaluation

does not include GLDAS1, which provides snow water

equivalent, but not snow depth.

Figure 8 presents the distribution of skill metrics (using

anomaly R for surface soil moisture, RMSE for snow

depth,R for total runoff, and RMSE for ET) for the eight

LSM products and NCA-LDAS. Generally, the NCA-

LDAS estimates provide consistently high skills for

these water budget components. NCA-LDAS–based

FIG. 7. (a) Spatial distribution of the average annual irrigated water use (mmyr21) and

(b) average seasonal cycle of modeled daily total irrigation amounts (km3 day21) accumu-

lated over the CONUS and the eastern (958–678W), central (1108–958W), and western

(1248–1108W) United States.
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estimates show the best median skills for snow depth and

ET. For surface soilmoisture and total runoff, themedian

skill is highest for NLDAS2-Mosaic and NLDAS2-VIC,

respectively, followed by NCA-LDAS. Note that the

NLDAS2-Noah is closest to the NCA-LDAS in

terms of the model configuration and that NCA-

LDAS consistently shows higher skill thanNLDAS2-

Noah in these comparisons. Further, none of the eight

LSM products consistently show high skill across the

evaluations of different water budget terms. For example,

the NLDAS2-VIC shows high skill for simulating total

runoff and ET, but low skill for soil moisture and snow

depth. Similarly, the ERA-Interim-Land skill is high for

soil moisture, ET, and snow depth, but low for total runoff.

On the other hand, the NCA-LDAS estimates show con-

sistently high skill in all these evaluations.

4. NCA-LDAS based drought indicators

The evaluation of the NCA-LDAS outputs presented

in the previous section indicates that the concurrent

assimilation of land remote sensing EDRs provides

beneficial enhancements in improving key terrestrial

water budget components such as soil moisture, snow

depth, and streamflow over the CONUS. In this section,

we evaluate the utility of NCA-LDAS toward the esti-

mation of climate-relevant water availability indicators

for themonitoring and assessment of droughts.We focus

on the estimation of drought as LDAS outputs are often

used to support retrospective assessments and experi-

mental monitoring of drought conditions (Houborg

et al. 2012; Xia et al. 2014; Kumar et al. 2014; Li and

Rodell 2015; Kumar et al. 2016).

Physical-process-based typology of droughts usually

classifies them into three types: meteorological drought

representing precipitation deficits, agricultural drought

related to soil moisture deficits, and hydrological

drought resulting from streamflow shortages (Keyantash

and Dracup 2002; Mo 2008; Shukla and Wood 2008).

Drought estimates are typically computed through

normalized indices that capture the deficits of the rele-

vant variable (e.g., precipitation, soilmoisture, streamflow)

from average conditions. Numerous metrics for drought

measurement have been developed (Heim 2002), each

FIG. 8. Box plot comparison of surface soil moisture, snow depth, runoff, and evapotranspiration skills from eight

LSM products and NCA-LDAS.
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with its own strengths and limitations. Here we compute

drought estimates through percentile-based indices used

in the NLDAS drought monitoring system (Ek et al.

2011; Sheffield et al. 2012). The percentiles are calcu-

lated based on the NCA-LDAS root-zone soil moisture

estimates by first assembling the 36-yr climatology and

then by calculating the daily percentile values by rank-

ing each day’s soil moisture estimate against the clima-

tology, including a 5-day moving window. As before, the

root zone is defined as the top 1m of soil.

Drought events of varying intensity are classified

based on different thresholds for these metrics. Consis-

tent with the categorization used in the U.S. Drought

Monitor (USDM; Svoboda et al. 2002) maintained by

the National Drought Mitigation Center (NDMC),

drought intensity is classified into five categories: D0

(abnormally dry, percentile # 30), D1 (moderate

drought, percentile # 20), D2 (severe drought, percen-

tile# 10), D3 (extreme drought, percentile# 5), andD4

(exceptional, percentile # 2). The digitized, weekly

categorical drought intensity maps from the USDM

(available from 2000 onward) are used for comparison

to the NCA-LDAS percentile-based drought indices.

As discussed in Tallaksen et al. (1997) and Byun and

Wilhite (1999), the characterization of drought events

must also consider consecutive occurrences of deficits

indicated by the drought indices. As shown in Fig. 9,

drought severity Si is defined as the total deficit volume

associated with a drought event i (Thomas et al. 2014).

The consecutive length of time under deficit is defined as

the drought duration Di, and the elapsed time between

such mutually exclusive drought events defines the fre-

quency of drought. Using these definitions, we charac-

terize drought events at each grid point across the entire

NCA-LDAS time period to examine the trends in

drought severity and duration. Drought percentiles

are computed using the NCA-LDAS outputs during

the 1979–2015 time period and consecutive drought

occurrences are grouped together to calculate the as-

sociated drought severity and duration. The severity

for a given drought Si is computed as

S
i
5 �

L

k51

(12 p
k
) , (3)

where L is the duration of drought (in days), and pk is

the drought percentile for day k. The average drought

duration D and severity S are then computed across all

drought events N during the entire simulation period.

Figure 10 shows maps of average drought duration

from the NCA-LDAS and the USDM and the average

drought severity from NCA-LDAS over the CONUS.

For simplicity, we focus primarily on the D2 drought

category, as it also represents the threshold of the severe

drought classification. The USDM estimates are based

on the archived weekly reports of drought intensities

(D0–D4), which are available only from the year 2000

onward. In these maps, the average drought duration is

expressed in days. Note that as USDMonly provides the

drought category values, the calculation of drought

deficit volume yields the exact same spatial patterns as

that of the average drought duration map. In other

words, within a certain drought category, further dis-

crimination of drought intensity is not possible from

USDM. Therefore, we exclude the comparison of

drought severity from USDM. On the other hand, the

drought deficit volume for NCA-LDAS is calculated

based on the (continuous) percentile values.

Figure 10 essentially maps the water-stressed regions

of theUnited States based on the patterns of agricultural

drought distribution from NCA-LDAS and drought

quantification from the USDM. In Fig. 10, there is a

general contrast between the eastern and western

United States with more severe and more long-lasting

droughts occurring in the western United States. The

comparison of the drought intensities fromNCA-LDAS

and USDM is meant to be qualitative, due to a number

of differences between the two estimates. As noted

above, the USDM estimates are categorical (between

D0 and D4), whereas the NCA-LDAS estimates pro-

vide nondiscrete percentile values. The NCA-LDAS–

based drought intensity maps are estimated solely using

FIG. 9. Schematic of drought events, where consecutive drought

occurrences are grouped together. Drought severity Si is the total

deficit volume associated with a drought event i and the consecutive

length of time under deficit is defined as the drought duration Di.
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root-zone soil moisture, whereas the USDM estimates

are generated using a blend of drought indicators from

several sources as well as subjective inputs from analysts

(Svoboda et al. 2002). The average drought duration and

severity maps that we calculated from USDM data are

based on a shorter time period of record (2000–15)

compared to that of NCA-LDAS. The drought in-

tensities from USDM are computed based on weekly

averages, whereas the NCA-LDAS estimates are based

on daily drought percentiles, allowing for more granu-

larity in the drought event categorizations. As discussed

above, the use of the percentiles also allows for more

granularity in the deficit volume calculations. Overall, the

average drought duration from the USDM is generally

higher, likely due to the reasons mentioned above. De-

spite these differences, the comparison in Fig. 10 confirms

that the climatological trends in drought duration and

severity from NCA-LDAS are generally consistent with

those reported inUSDM. Note also that we purposely do

not make an attempt to reconcile the temporal span dif-

ferences between NCA-LDAS and USDM, as the goal

here is to quantify and report the overall trends from

NCA-LDAS for the entire 36-yr time period.

Figures 11 and 12 show time series of average drought

duration and severity (and their linear trend lines), re-

spectively, computed on an annual basis from 1979 to

2015 for six NCA regions for the D2 drought category

(the USDM-based drought severity calculations are

omitted). The temporal trends are computed for six

geographical regions (Northeast, Southeast, Midwest,

Great Plains, Southwest, and Northwest) over the

CONUS, as defined in the Third NCA (Melillo et al.

2014, chapters 16–21). In Fig. 11, there is a trend of in-

creasing annual drought duration in all regions except

over the Northeast. The lack of a positive trend in

drought intensity over the Northeast is likely related to

the reported trend of increased heavy precipitation

events over this region in the Third NCA. Similar trends

in the annual drought duration were observed for all

drought categories (not shown), though the slope of the

trend lines generally decreases for more extreme cate-

gories. Among the NCA regions, the trend-line slopes

are highest over the Southwest region, followed by

Northwest and Southeast. Over the Midwest and Great

Plains, there are marginal increases in the trend-line

slopes. As the USDM data encompass a shorter time

period, a direct comparison of the trend lines from

NCA-LDAS and USDM is difficult. The interannual

patterns are generally consistent between NCA-LDAS

and USDM, especially over the Southwest, Northwest,

Midwest, and Southeast regions. Over the Northeast,

the average drought duration (and intensities) is more

magnified for drought events in the early 2000s in USDM

whereas NCA-LDAS shows comparable drought in-

tensities for events post-2000. Similarly, NCA-LDAS

shows larger drought duration for 2014–15 droughts

over the Great Plains compared to that of USDM. The

patterns in Fig. 12 indicate that the annual average

FIG. 10.Maps of average drought duration (days) and average

drought severity from NCA-LDAS (based on root-zone soil

moisture percentiles) and USDM.
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severity of droughts also shows increasing trends in most

regions, more prominently over the Southwest, North-

west, and Southeast. The trend of increasing drought

severity is less prominent for more extreme drought

categories (not shown).

5. Summary and conclusions

This article describes the development and perfor-

mance of the NCA-LDAS, which is an offline terres-

trial land analysis developed as an enabling tool for the

NCA. NCA-LDAS is built upon NASA’s LIS software

framework, employing the Noah land surface model

and the HyMAP streamflow routing model forced

with the NLDAS-2 meteorology. Importantly, NCA-

LDAS is one of the first successful examples of a land-

oriented multivariate data assimilation analysis that

simultaneously incorporates satellite-based EDRs of

soil moisture, snow depth, snow cover, and irrigation

intensity. Soil moisture EDRs from SMMR, SSM/I,

AMSR-E, ASCAT, SMOS, and SMAP and snow depth

EDRs from SMMR, SSM/I, AMSR-E, and AMSR2 are

employed in the analysis using a one-dimensional EnKF.

Snow cover EDRs from the IMS product and MODIS are

employed as snow detection constraints for the passive

microwave snow depth assimilation. MODIS-based

FIG. 11. Time series of average annual drought duration (solid lines) and the corresponding linear trend line

(dotted lines) from NCA-LDAS (based on the root-zone soil moisture percentiles) and USDM (for drought cat-

egory D2), shown for six geographical regions (Northeast, Southeast, Midwest, Great Plains, Southwest, and

Northwest) over the CONUS.
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irrigation intensity estimates are used to simulate a

demand-driven irrigation scheme to incorporate repre-

sentations of human managed landscapes.

The added impact of the multivariate land analysis is

evaluated by comparing it against a large suite of ref-

erence data products. The soil moisture enhancements

from DA were evaluated by comparing them against

in situ measurements from USDA ARS, SCAN, and

USCRN. The overall impact from data assimilation of

various soil moisture EDRs on improving surface and

root-zone soil moisture skills is small and regionally

dependent. The soil moisture skills showed improve-

ments over regions such as the Great Plains and the

Arkansas–Red and lower Mississippi basins with deg-

radations over the southwestern United States. When

the changes in soil moisture skills are stratified tempo-

rally, larger improvements are seen in most regions

during the 2010–15 time period, indicating the beneficial

impact of modern soil moisture sensors and EDRs.

These improvements can be attributed to the improved

quality and frequency of the sensors and improvements

to the retrieval algorithms. The retrievals from the older

sensors are from the Ku, X, and C bands, whereas

SMOS and SMAP retrievals are from L band, which is

known to have improved sensitivity for soil moisture

detection (Xu et al. 2017). The snow depth estimates

from NCA-LDAS showed improved skill over the

OL estimates when evaluated against the CMC and

SNODAS datasets. The use of AMSR-E and AMSR2

retrievals are found to provide more significant

FIG. 12. As in Fig. 11, but for average annual drought severity. The drought deficit volume for NCA-LDAS is

computed based on percentile values.
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improvements within DA compared to that of SMMR

and SSM/I. Though the overall impact of multivariate

DA on streamflow (compared to USGS gauge mea-

surements) is small, larger improvements in streamflow

are observed with the use of newer sensor EDRs. Over

the westernU.S. basins, the impact of DAon streamflow

is mostly disadvantageous, suggesting a possible need

for improving the remote sensing retrievals over these

regions. The ET estimates from NCA-LDAS showed

the most significant differences compared to the OL

over irrigated areas in central California, the Great

Plains, and lower Mississippi. The skill of NCA-LDAS

estimates of soil moisture, snow depth, ET, and runoff is

compared against that from eight other LSM products.

Generally, the NCA-LDAS products are found to have

high skill for these key water budget terms.

The article also explores the utility of theNCA-LDAS

simulation outputs for drought monitoring and assess-

ment using root-zone soil-moisture-based percentiles.

The consecutive drought occurrences are grouped to-

gether to compute the trends in drought severity and

drought duration. Similar metrics are computed using

the digitized data from theUSDM. The results show that

relative to the eastern United States, more severe and

longer-lasting droughts occur over the western United

States, consistent with the trends seen fromUSDM. The

temporal trends in annual drought duration and severity

also show an increasing trend in most regions of the

United States, except over the Northeast, where there

is a decreasing trend. The most prominent trend of in-

creasing average drought duration and severity is seen

over the southwestern United States.

The results presented in this article demonstrate that

the assimilation of terrestrial land remote sensing prod-

ucts within NCA-LDAS provides a high-quality, first-

of-its-kind multivariate land analysis. The integrated

terrestrial water analysis from NCA-LDAS provides a

comprehensive, observation-informed data product to

the community for developing climate indicators for

water fluxes and states. The multivariate data as-

similation enhancements and capabilities developed

through this effort are also expected to augment

near-real-time LDAS efforts such as GLDAS and

NLDAS and applications such as drought monitoring

that rely on the outputs from these systems.
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