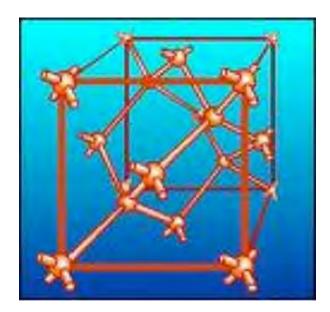
MSE200 Lecture 19 (CH. 11.6, 11.8) Ceramics Instructor: Yuntian Zhu

Objectives/outcomes: You will learn the following:

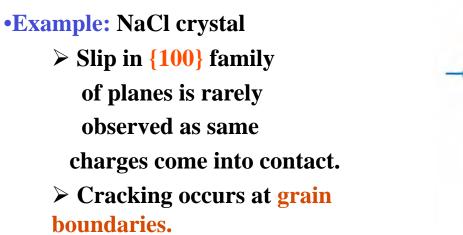
Mechanical properties: Deformation mechanism, strength, toughness, Transformation toughening, Fatigue.
Glasses: The glass transition temperature. Structure of glass. Network formers, modifiers, and intermediates. Mechanical properties of glass. Strengthening of glasses by tempering and chemical treatment

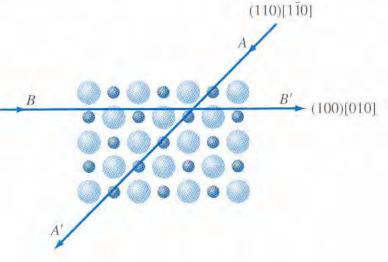
Mechanical Properties of Ceramics


- Ceramics are generally brittle.
- <u>Tensile strength is lower than compressive strength.</u>
- <u>Toughness is the most important parameter</u>

Material	Density (g/cm ³)	Compressive strength		Tensile strength		Flexural strength		Fracture toughness	
		MPa	ksi	MPa	ksi	MPa	ksi	MPa√m	ksi√m
Al ₂ O ₃ (99%)	3.85	2585	375	207	30	345	50	4	3.63
Si ₃ N ₄ (hot-pressed)	3.19	3450	500			690	100	6.6	5.99
Si ₃ N ₄ (reaction-bonded)	2.8	770	112			255	37	3.6	3.27
SiC (sintered)	3.1	3860	560	170	25	550	80	4	3.63
ZrO ₂ , 9% MgO (partially stabilized)	5.5	1860	270			690	100	8+	7.26+

Comparison: Steel usually have a strength of 500 -1000 MPa

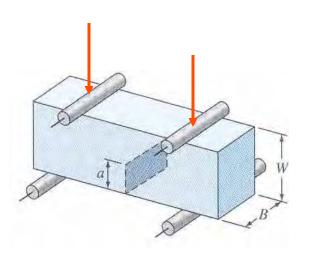

Mechanism of deformation: Covalently bonded ceramics


• Brittle fracture due to separation of electron-pair bonds

Ionically bonded ceramics

- <u>Single crystal show considerable plastic deformation</u> <u>under compression</u>
- <u>Polycrystalline ceramics are brittle</u>

Factors Affecting Strength


- Failure occurs mainly from surface defects.
- Pores gives rise to stress concentration and cracks.
- Finer size ceramics have smaller flaws and hence are stronger.
- **Composition, microstructure, surface condition,** temperature and environment also determine strength.

The strength of ceramics is usually determined by the largest flaw

Toughness of ceramic Materials

- Ceramics have low strength
- Improving toughness is most important
- K_{IC} values (toughness) obtained by *four point bend test*.

$$K_{IC} = Y\sigma_f \sqrt{\pi a}$$

- σ_f = fracture stress (MPa)
- a = half size of target internal flaw
- **Y** = dimensionless constant

Size effect

$$K_{IC} = Y\sigma_f \sqrt{\pi a} \longrightarrow \sigma_f = \frac{K_{Ic}}{Y\sqrt{\pi a}}$$

 K_{Ic} is a material value, and can be usually regarded as a constant for the same ceramic material

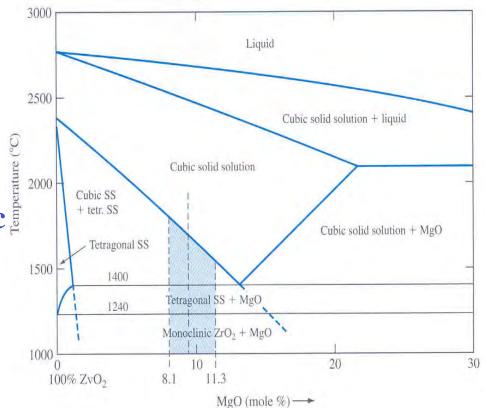
• <u>Larger parts has a higher probability of</u> <u>containing a larger flaw</u>

• Larger parts are likely to have a lower strength

Transformation Toughening of Partially Stabilized ZrO₂

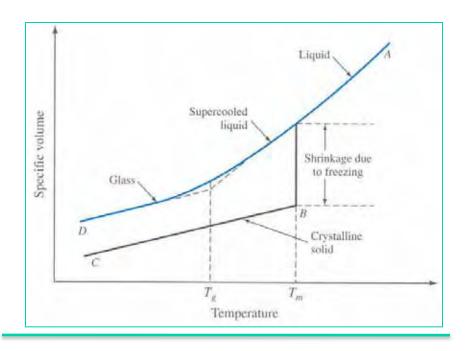
- Transformation of Zirconia combined with some other refractory oxides (MgO) can produce very high toughness ceramics.
- ZrO₂ exists in 3 structures.

> Monoclinic \longrightarrow Up to 1170°C

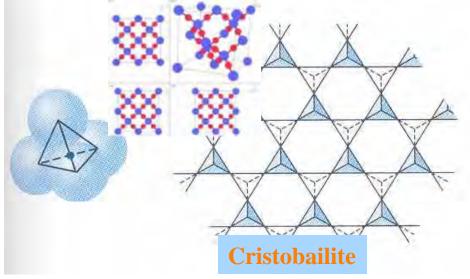

➤ Tetragonal → 1170 – 2370°C

➤ Cubic → above 2370°C

• Adding 10% mol of MgO stabilizes cubic form so that it can exist in metastable state in room condition.


Toughness of Zirconia (Cont..)

- If a mixture of ZrO₂ 9 mol% MgO is sintered at about 1800°C and rapidly cooled, it will be in metastable state.
- If reheated to 1400°C and held for sufficient time tetragonal structure precipitates.
- Under action of stress, this tetragonal structure transforms to monoclinic increasing volume and hence retarding crack growth.


Glasses

- Combination of transparency, strength, hardness and corrosion resistance.
- Glass is an amorphous ceramic material
- Up on cooling, it transforms from rubbery material to rigid glass.

Structure of Glasses

- Fundamental subunit of glass is SiO₄⁴⁻ tetrahedron.
- Si ⁴⁺ ion is covalently ionically bonded to four oxygen atoms.
- In cristobalite, Si-O tetrahedra are joined corner to corner to form long range order.
- In simple silica glass, tetrahedra are joined corner to corner to form loose network.

http://www.mse.ncsu.edu/zhu/ Department of Materials Sci. & Eng.

Glass Modifying Oxides and Intermediate Oxides

- Network modifiers: Oxides that breakup the glass network.
 - > Added to glass to increase workability.
 - \succ Examples:- Na₂O, K₂O, CaO, MgO.
 - Oxygen atom enters network and other ion stay in interstices.
- Intermediate oxides: Cannot form glass network by themselves but can join into an existing network.
 - > Added to obtain special properties.
 - **Examples:** Al2O3, Lead oxide.

Composition of Glasses

Soda lime glass: Very common glass (90%).
 ▶ 71-73% SiO₂, 12-14% Na₂O, 10-12% CaO.
 ▶ Easier to form and used in flat glass and containers.

Borosilicate glass

Alkali oxides are replaced by boric oxide (B₂O₃) in silica glass network.

Known as Pyrex glass and is used for lab equipments and piping.

http://www.mse.ncsu.edu/zhu/ Department of Materials Sci. & Eng.

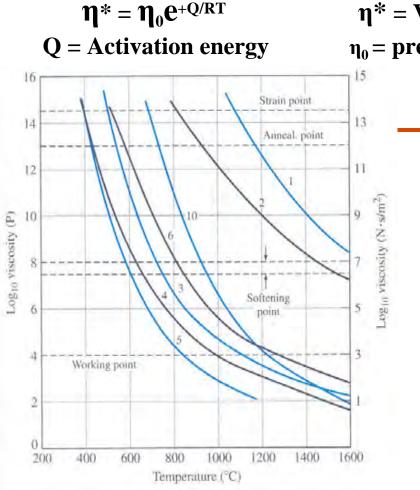
NC STATE UNIVERSITY

Lead glass

Lead oxide acts as network modifier and network former.

> Low melting point – used for solder sealing.

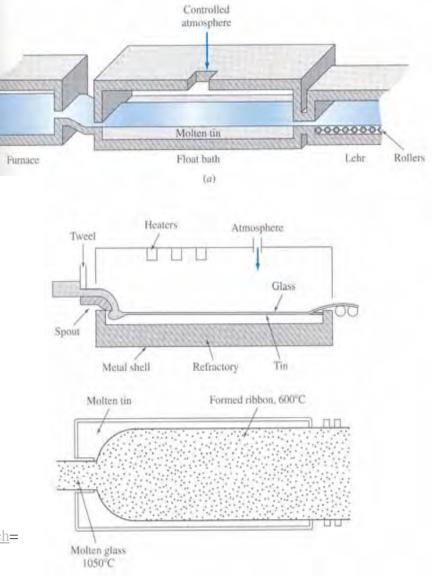
Used in radiation shields, optical glass and TV bulbs.



Viscous Deformation of glasses.

• Viscous above Tg and viscosity decreases with increase in temperature.

 η^* = Viscocity of glass (PaS) η_0 = preexponential constant (PaS)

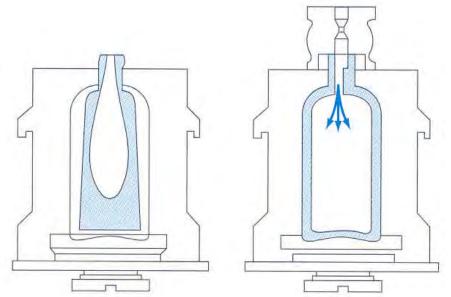

- **1. Working point:** 10³ PaS glass fabrication can be carried out
- 2. Softening point: 10⁷ PaS glass flows under its own weight.
- **3.** Annealing point: 10¹² PaS Internal stresses can be relieved..
- 4. Strain point: 10^{13.5} PaS glass is rigid below this point.

Forming Methods

• Forming sheet and plate glass:

Ribbon of glass moves out of furnace and floats on a bath of molten tin.

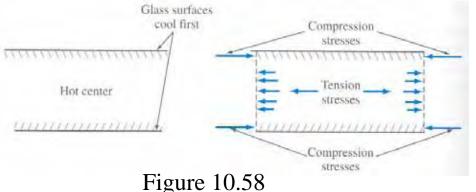
- Glass is cooled by molten tin.
- After it is hard, it is removed and passed through a long annealing furnace.



NC STATE UNIVERSITY

http://video.google.com/videosearch?q=glass+blowing&hl=en&sitesearch=

Blowing, Pressing and Casting


- **Blowing:** Air blown to force molten glass into molds.
- Pressing: Optical and sealed beam lenses are pressed by a plunger into a mold containing molten glass.
- Casting: Molten glass is cast in open mold.

• Centrifugal casting: Glass globs are dropped into spinning mold.

Tempered Glass

- Glass is heated into near softening point and rapidly cooled.
- Surface cools first and contracts.
- Interior cools lastand contracts causing tensile stresses in the interior and compressive stress on the surface.

- Tempering strengthens the glass.
- Examples: Auto side windows and safety glasses.

Chemically Strengthened Glass

- Special treatment increases chemical resistance of glasses.
- Example:- Sodium aluminosilicate glasses are immersed in a bath of potassium nitrate at 50°C for 6 to 10 hours
 - Large potassium ions are induced into surface causing compressive stress.
 - Compressive layer is much thinner than that in thermal tempering.
 - Used for supersonic aircraft glazing and ophthalmic lenses.

HW

- Reading assignment: 12.1-12.3
- HW: download from web
- Example problems: 11.9, 11.10