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Abstract

Dietary fibers and their microbial fermentation products short-chain fatty acids 
promote metabolic benefits, but the underlying mechanisms are still unclear. Recent 
studies indicate that intestinal lipid handling is under regulatory control and has broad 
influence on whole body energy homeostasis. Here we reported that dietary inulin and 
propionate significantly decreased whole body fat mass without affecting food intake 
in mice fed with chow diet. Meanwhile, triglyceride (TG) content was decreased and 
lipolysis gene expression, such as adipose triglyceride lipase (Atgl), hormone-sensitive 
lipase (Hsl) and lysosomal acid lipase (Lal) was elevated in the jejunum and ileum of 
inulin- and propionate-treated mice. In vitro studies on Caco-2 cells showed propionate 
directly induced enterocyte Atgl, Hsl and Lal gene expression and decreased TG content, 
via activation of phosphorylation of AMP-activated protein kinase (p-AMPK) and 
lysine-specific demethylase 1 (LSD1). Moreover, inulin and propionate could increase 
intestinal lipolysis under high-fat diet (HFD)-fed condition which contributed to the 
prevention of HFD-induced obesity. Our study suggests that dietary fiber inulin and its 
microbial fermentation product propionate can regulate metabolic homeostasis through 
regulating intestinal lipid handling, which may provide a novel therapeutic target for 
both prevention and treatment of obesity. 

Introduction

Metabolic disorders such as obesity and type 2 diabetes 
have become major threats to human health worldwide 
(Franks et al. 2016). It is well recognized that dietary fiber 
intervention is one of the most efficient strategies for 
improving metabolic health (Parnell et al. 2009, Dewulf 
et al. 2013, Kovatcheva-Datchary et al. 2015, Zhao et al. 
2018). However, the mechanisms for dietary fibers on 
metabolic regulation still need further investigation. 

These beneficial effects of dietary fibers are, at least 
partially, attributed to their fermentation end products 
by gut microbiota, short-chain fatty acids (SCFAs) (Koh 
et al. 2016, Makki et al. 2018). Among SCFAs, propionate 
has been identified as principal hepatic gluconeogenic 
substrate and studies showed that the total amount 
of fecal propionate was higher in the obese subjects 
compared with lean subjects (Schwiertz et  al. 2010, 
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Rahat-Rozenbloom et  al. 2014). However, emerging 
evidence shows propionate has beneficial effects on 
metabolic regulation (Lin et  al. 2012, Chambers et  al. 
2015, Den Besten et al. 2015a, Lu et al. 2016, Chambers 
et  al. 2018). When transplanting fecal microbiota from 
human twin donors discordant for obesity into germfree 
mice, results showed there was a significant negative 
correlation between adiposity and caecal propionate 
content (Ridaura et  al. 2013). Moreover, recent studies 
in obese humans suggested long-term propionate 
administration prevented body weight gain and reduced 
lipid accumulation (Chambers et  al. 2015, Chambers 
et  al. 2018). Dietary propionate supplementation also 
protected against high-fat diet (HFD)-induced obesity and 
insulin resistance in mice (Den Besten et al. 2015a). These 
beneficial effects could attribute to appetite reduction 
and increased resting energy expenditure via promoting 
lipid oxidation by propionate (Chambers et al. 2015, Den 
Besten et al. 2015a). Therefore, conflicting results suggest 
the mechanisms of propionate in metabolic regulation 
need further investigation.

Recent evidence suggests propionate can regulate 
metabolic homeostasis in gut. The study by Vadder et al. 
showed propionate activated intestinal gluconeogenesis 
to improve whole body glucose metabolism (De Vadder 
et  al. 2014). Meanwhile, lipid handling by the gut is 
being recognized as under regulatory control and has 
broad ramifications for whole body energy homeostasis 
(Abumrad et al. 2012). Recent studies showed that lipid 
storage might be present within enterocytes, primarily 
as triglyceride (TG). Intestinal triglyceride goes through 
resynthesis, cytoplasmic storage and mobilization as 
well as secretion in chylomicron particles (Xiao et  al. 
2018). Regulation of intestinal lipid metabolism could 
affect enterocyte lipid content and whole body fat 
accumulation (Cao et al. 2004, Uchida et al. 2013, Nelson 
et  al. 2014, Luo et  al. 2018). Catabolism of lipid in the 
intestine includes two aspects, cytoplasmic lipolysis and 
autophagic lipolysis which is termed lipophagy (Singh 
et al. 2012, Young et al. 2013). Adipose triglyceride lipase 
(ATGL) is the first rate-limiting enzyme in lipolysis 
and evidence showed intestine-specific Atgl deficiency 
increased the accumulation of triglyceride in enterocyte 
(Obrowsky et  al. 2013). Lysosomal acid lipase (Lal) is 
the enzyme that breaks down triglyceride via lipophagy 
(Ward et  al. 2016). LAL deficiency in mice also resulted 
in massive accumulation of triglyceride and cholesteryl 
ester in small intestine (Du et al. 2001). Whether SCFAs, 
especially propionate, have an effect on intestinal lipid 
metabolism is worth studying.

One important mechanism for SCFA-mediated 
regulation is via free fatty acid receptors, FFAR2 and FFAR3 
(preferentially activated by propionate) (Samuel et  al. 
2008, Kimura et  al. 2013). However, evidence suggested 
FFAR-independent mechanisms could also be involved for 
propionate, as Ffar3-deficient mice were still sensitive to 
SCFA metabolic regulation (Lin et al. 2012, Christiansen 
et  al. 2018). Propionate, as an energy substrate, could 
affect intracellular energy status. In vitro studies showed 
propionate activated the phosphorylation of AMPK, a 
master sensor of energy, in HepG2, 3T3-L1, Caco-2 as 
well as HCT116 cells (Tang et al. 2011, Eamin et al. 2013, 
Den Besten et  al. 2015a). AMPK is a vital regulator of 
lipid metabolism in multiple organs (Daval et  al. 2005, 
Ahmadian et al. 2011, Mottillo et al. 2016). Meanwhile, 
propionate also acts as a modulator of epigenome by 
altering histone acetylation (Johnstone 2002). Lysine-
specific demethylase 1 (LSD1), an epigenetic regulator by 
altering histone methylation, particularly plays a key role 
in lipid metabolism in adipose tissue (Duteil et al. 2014, 
2017). Recent study demonstrated that intestinal AMPK 
deficiency in mice and Caco-2 cell regulated LSD1 activity 
(Sun et  al. 2017), indicating an intrinsic link between 
AMPK and LSD1 in intestines.

In this study, we showed that inulin and propionate 
decreased whole body fat mass in chow diet -fed mice 
without affecting food intake. Meanwhile, propionate 
and inulin induced intestinal lipolysis and decreased 
intracellular TG content. Propionate directly increased 
lipolysis genes expression such as Atgl, hormone-sensitive 
lipase (Hsl) and Lal in Caco-2 cells via activation of 
phosphorylation of AMPK and LSD1. These beneficial 
effects of propionate and inulin on intestinal lipolysis 
were also present in HFD-fed mice to contribute to the 
prevention of diet-induced obesity (DIO). Thus, we report 
a mechanism linking microbial fermentation metabolite 
propionate and host energy homeostasis through 
intestinal lipid handling, which could provide novel 
therapeutic target for both prevention and treatment of 
metabolic diseases such as obesity.

Materials and methods

Animals experiments

All procedures were performed in accordance with the 
Guidelines for Care and Use of Laboratory Animals 
of South China Agricultural University (Guangzhou, 
China) and experiments were approved by the Animal 
Ethics Committee of South China Agricultural University 
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(Guangzhou, China). C57BL/6J mice were purchased 
from Guangdong Medical Laboratory Animal Center and 
housed in a light- and temperature-controlled facility 
(12-h light/12-h dark, 22–24°C) with free access to water 
and food. For SCFA treatment studies, 8-week-old male 
mice were fed on chow diet and were dividedly gavaged 
with sodium acetate (S2889, Sigma), sodium propionate 
(P1880, Sigma), sodium butyrate (303410, Sigma) or 
inulin (BENEO-Orafti, Belgium) at 2000 mg/kg body 
weight in saline solution every day for 2 weeks. For DIO 
studies, 8-week-old male mice were pre-treated with HFD 
(D12451, 45% fat, Research Diets) for 3 weeks and then 
were dividedly gavaged with propionate or inulin at 
2000 mg/kg body weight every day with HFD feeding for 
2 weeks. Food intake and body weight were monitored 
every other day. Final body composition was determined 
in mice using quantitative magnetic resonance (QMR, 
Niumag Corporation, Shanghai, China). By the end of the 
experiments, all mice were killed after 6 h fasting and tissue 
samples and plasma were collected for further analysis. 

Tissue, fecal and serum lipid analysis

Lipids were extracted from tissues following the method 
of Folch et  al. by a minor modification (Folch-Pi 
et  al. 1957). Briefly, tissues were homogenized with 
chloroform:methanol (2:1) to a final volume 20 times 
of the tissue sample. After dispersion, the whole mixture 
was agitated for a minimum of overnight at room 
temperature. Then, the solvent was added with 0.2 
volume of 0.9% NaCl. After vortex and spin at 2000 g for 
10 min, the bottom chloroform phase containing lipids 
was evaporated under a nitrogen stream. Finally, the dry 
content was dissolved in butanol:Triton X-100:methanol 
(0.6:0.267:0.133). Final lipid content was normalized 
to protein concentrations. To determine the amount of 
fecal lipid, feces was collected 3 days before the end of 
the experiment and measured following the method of 
Kraus et al. (Kraus et al. 2015). Triglyceride contents in the 
tissues, feces and blood were assayed using a triglyceride 
assay kit (Nanjing Jiancheng, A110-2).

Cell culture

The human adenocarcinoma cell line Caco-2 cells were 
purchased from the Type Culture Collection of the 
Chinese Academy of Sciences (Shanghai, China). Caco-2 
cells were maintained in Dulbecco’s modified Eagle’s 
medium supplemented with 10% fetal bovine serum 
(Gibco), 50 μg/mL penicillin and 4 μg/mL streptomycin in 

a humidified atmosphere of 5% CO2 at 37°C. For SCFA 
treatment experiments, Caco-2 cells were treated with 
sodium acetate, sodium propionate, sodium butyrate, 
compound C (HY-13418A, MCE) or GSK2879552 
(HY-18632, MCE). After 24-h incubation, cells were 
collected for further analysis.

RNA extraction and quantitative RT-PCR

Total RNA was extracted from tissues and cells using TRIzol 
reagent (Invitrogen), according to the manufacturer’s 
instructions. Total RNA (1 μg) was reverse transcribed 
with Revert-Aid first strand cDNA synthesis kit (Thermo 
Scientific; #K1622) for quantitative RT-PCR with Power 
SYBR Green PCR master mix (Applied Biosystems, 
1708040) and Q6 real-time PCR system (Applied 
Biosystems). The relative abundance of mRNA was 
standardized with Tata-binding protein (TBP) or β-Actin 
as the invariant control. Primer sequences are given in 
Supplementary Table 1 (see section on supplementary 
data given at the end of this article).

Western blotting

The tissues and cells were homogenized in the lysis buffer 
(RIPA, BioTeke) containing 1 mmol/L protease inhibitor 
PMSF (P7626, Sigma) and centrifuged at 12,000 g for 
15 min. The supernatant was collected and protein 
concentration was determined by BCA Protein Assay 
Kit (Thermo Fisher Scientific, 23227). Equal amounts of 
protein were separated on 10% SDS-PAGE gels and blotted 
onto PVDF membranes. Antibodies, anti-AMPK (#2532, 
1/1000), anti-phospho-AMPK (#2535, 1/1000), anti-LSD1 
(#2184, 1/1000) were purchased from Cell Signaling 
Technology; anti-β-actin (bs-0061R) and rabbit-anti-IgG 
(BS13278) were obtained from Biosynthesis Technology 
(Beijing, China). The proteins were visualized with the 
Clarity Max Western ECL Substrate (Bio-Rad, #1705062S) 
and quantified in the Image Lab system (Bio-Rad).

Oil Red O staining

Fresh tissue samples were isolated and fixed with 3.7% 
formaldehyde for 48 h at 4°C. The samples were then 
incubated in 30% sucrose for 12 h and embedded in 
Tissue-Tek O.C.T. Compound. Serial sections (8 μM) were 
made and stained with 0.3% oil Red O (Sigma, O0625) for 
10 min. Caco-2 cells were washed with pre-cold PBS three 
times and fixed with 3.7% formaldehyde for 30 min. 0.3% 
oil Red O in isopropanol was then added directly to the 
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fixed cells and incubated for 1 h. The red lipid droplets 
were visualized by microscopy (NIS-Elements; Nikon) 
and dissolved in isopropanol to quantify by a microplate 
reader (Thermo Fisher Scientific).

Statistical analysis

The data were processed with SPSS software version 19.0 
(SPSS Inc.). The results were analyzed with Student’s t test 
and one-way ANOVA by a least significant difference test. 
Differences among groups were considered statistically 
significant if P < 0.05. Data are expressed as the mean ± s.e.m.

Results

Dietary propionate and inulin reduce whole body fat 
mass and intestinal triglyceride content in chow 
diet-fed mice

We first examined the effects of dietary SCFAs and inulin, 
which is a fiber source that results in a rapid, extensive 
generation of SCFAs after fermentation, on body weight 
and fat mass in chow diet-fed mice. Our results showed 
that body weight gain was not affected after 2-week 
gavage feeding with 2000 mg/kg of SCFAs (Xiong et  al. 
2004) or inulin comparing to control group (Fig. 1A and 
Supplementary Fig. 1A), however, whole body fat mass 
was decreased by propionate and inulin (10.3–7.2% and 
10.3–8.7%, respectively) (Fig. 1B). Importantly, there was 
no change of food intake (Fig. 1C) or fecal triglyceride 
level (Fig. 1D) under propionate or inulin treatment, 

suggesting dietary lipid absorption might not be affected. 
Then we examined the tissue weight and results showed 
that inguinal and epididymal white adipose tissue weights 
were decreased (Supplementary Fig. 1C and D), liver and 
muscle weights were not affected (data not shown), and the 
unit length weights of jejunum and ileum were increased 
(Fig. 1E and F). Histology analysis showed villus length of 
small intestines was increased by propionate and inulin 
which could attribute to the unit length weight increase 
(Supplementary Fig. 1E and F). Meanwhile, results showed 
triglyceride levels in jejunum and ileum as well as serum 
and adipose tissue were significantly lower in propionate 
and inulin groups (Fig. 1G, H and I and Supplementary 
Fig. 1I and J); however, triglyceride level in liver was 
unaffected (Supplementary Fig. 1G and H). These results 
showed dietary propionate and inulin decreased whole 
body fat mass and intestinal triglyceride content without 
affecting food intake.

Propionate and inulin induce intestinal lipolysis  
gene expression

We next measured the expression of lipid metabolism key 
enzymes in tissues. Results showed Atgl and Hsl, which are 
key lipases that catalyze cytoplasmic lipolysis (Holm 2003), 
and rate-limiting fatty acid oxidation enzyme Cpt1a 
expression were not affected by propionate or inulin in 
liver and adipose tissue (Supplementary Fig. 2A and B). 
Meanwhile, cluster of differentiation 36 (Cd36) and fatty 
acid transporter member 4 (Fatp4) mRNA expressions 
were not affected in liver (Supplementary Fig.  2A), 

Figure 1
Effect of propionate and inulin on metabolic phenotype in mice fed a chow diet. (A, B and C) Body weight gain (A), fat mass (B) and food intake (C) of mice 
treated with propionate or inulin for 2 weeks. (D) Fecal triglyceride content. (E and F) The unit length weight of jejunum (E) and ileum (F). (G and H) 
Triglyceride content in the jejunum (G) and ileum (H). (I) Triglyceride content in serum. Data are mean ± s.e.m. and statistical analyses were performed 
using two-tailed Student’s t test, n = 8 per group. Ctrl, control; NaP, sodium propionate. *P < 0.05 versus control.
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together with unaffected TG content (Supplementary 
Fig. 1G and H), suggesting that liver lipid metabolism 
was not significantly regulated by propionate or inulin. 
Although Fatp4 was unaffected, CD36 mRNA expression 
was decreased in adipose tissue (Supplementary Fig. 2B), 
which could indicate the lipid uptake in adipose tissue 
was lower by propionate or inulin to decrease the TG 
content (Supplementary Fig. 1I and J) since lipolysis and 
fatty acid oxidation were not affected.

Notably, the expression of Atgl and Hsl was 
significantly increased in the jejunum (Fig. 2A) and 
ileum (Fig. 2B) after propionate and inulin treatment. 
Autophagic lipolysis enzyme Lal expression was also 
elevated in the jejunum (Fig. 2A). Cd36 and Fatp4 
expression was not affected (Supplementary Fig. 2C 
and D), suggesting enterocyte lipid uptake was not 
significantly regulated. Intestinal triglyceride resynthesis 
enzymes monoacylglycerol acyltransferase 2 (Mgat2) and 
diacylglycerol acyltransferase 1 (Dgat1) expression were 
not changed in response to propionate or inulin (Fig. 2C 
and D), suggesting intestinal triglyceride resynthesis was 
not affected. Meanwhile, Cpt1a was elevated, suggesting 
an increase of fatty acid oxidation (Fig. 2E and F). 
Together, these results suggested propionate and inulin 
could increase intestinal lipolysis to reduce intestinal 
triglyceride content which contributed to the decreased 
whole body fat mass.

Propionate directly induces lipolysis gene expression 
and decreases lipid content in Caco-2 cells

We next investigated the direct effects of propionate 
on intestinal lipolysis using Caco-2 cells, which have 
a phenotype that resembles the enterocytes of small 
intestines (Borchardt 2011). Oil Red O staining of Caco-2 
cells showed a decreased number of lipid droplets after 
24-h incubation with 0.1 and 0.5 mmol/L propionate, 

while no change with acetate or butyrate incubation 
at the same dose (Fig. 3A and Supplementary Fig. 3A). 
Caco-2 cell vitality was not affected (Supplementary 
Fig. 3B). Triglyceride content in Caco-2 cells was 
also significantly decreased by 0.1 and 0.5 mmol/L 
propionate (Fig. 3B). The expression of Atgl, Hsl and Lal 
was significantly increased in Caco-2 cells incubated 
with 0.5 mmol/L propionate, while no change in acetate 
or butyrate treatment (Fig. 3C, D and E). Meanwhile, 
Cd36 was not affected (Supplementary Fig. 3C), 
suggesting lipid uptake might not be a contributing 
factor to decreased lipid content under propionate 
treatment. Dagt1 expression was not changed by SCFAs 
(Supplementary Fig. 3D), suggesting SCFAs also did not 
affect triglyceride synthesis in Caco-2 cells. These data 
indicated that propionate was able to directly promote 
intestinal lipolysis gene expression and decrease 
enterocytes triglyceride content.

Propionate induces intestinal lipolysis through 
phosphorylation of AMPK

Since SCFAs are endogenous ligands for FFARs, we first 
tested whether propionate increased intestinal lipolysis 
through FFARs in vivo. Results showed neither Ffar2 nor 
Ffar3 was affected by propionate or inulin treatment in 
the jejunum (Supplementary Fig. 4A and B). Instead, 
immunoblot analyses showed that phosphorylation of 
AMPK (p-AMPK, Thr172) in the jejunum and ileum was 
significantly elevated (Fig. 4A and B). In vitro studies also 
showed propionate directly increased p-AMPK dose-
dependently in Caco-2 cells (Fig. 4C). To investigate 
the role of AMPK signaling in propionate regulation of 
intestinal lipolysis, we used a specific inhibitor of p-AMPK 
(compound C, Cc). 10 μmol/L Cc treatment to Caco-2 
cells was able to inhibit p-AMPK protein expression 
(Supplementary Fig. 5B), meanwhile, significantly 

Figure 2
Effect of propionate and inulin on small intestinal 
lipid metabolism gene in mice. (A and B) Relative 
mRNA expression of Atgl, Hsl and Lal in the 
jejunum (A) and ileum (B). (C and D) Relative 
mRNA expression of Mgat2 and Dgat1 in the 
jejunum (C) and ileum (D). (E and F) Relative 
mRNA expression of Cpt1α in the jejunum (E) and 
ileum (F). Data are mean ± s.e.m. and statistical 
analyses were performed using two-tailed 
Student’s t test, n = 8 per group. *P < 0.05 versus 
control.
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increased triglyceride content (Supplementary Fig. 5A) 
and decreased Atgl, Hsl and Lal mRNA expression after 
24-h incubation (Fig. 4E, F and G). More importantly, 
when elevation of p-AMPK by propionate was blocked by 
Cc (Supplementary Fig. 5B), the reduction of triglyceride 
content by propionate treatment was blocked 
simultaneously in Caco-2 cells (Fig. 4D) as well as the 
increase of ATGL, HSL and LAL expression (Fig.  4E, F 
and G). These data suggested that AMPK signaling had 
a direct role in propionate regulation on intestinal 
lipolysis and lipid content. 

Propionate upregulates LSD1 downstream of p-AMPK 
to induce intestinal lipolysis

Previous studies showed AMPK could regulate LSD1 
in Caco-2 cells, and LSD1 has important role in lipid 
metabolism regulation (Sun et  al. 2017). We measured 
the protein expression of LSD1 in the jejunum and 
ileum and results showed that propionate and inulin 
significantly increased LSD1 expression in both jejunum 
and ileum (Fig. 5A and B). In vitro studies also showed 
propionate directly increased LSD1 dose-dependently 

Figure 3
Effect of SCFAs on lipid metabolism in Caco-2 
cells. (A) Triglyceride content was assessed in 
Caco-2 cells treated with 0.1 and 0.5 mmol/L 
SCFAs for 24 h by Oil Red O staining. (B) 
Triglyceride content of Caco-2 cells treated with 
0.1 and 0.5 mmol/L SCFAs for 24 h. (C, D and E) 
Relative mRNA expression of Atgl (C), Hsl (D) and 
Lal (E) in Caco-2 cells by 24 h incubation with 0.1 
and 0.5 mmol/L SCFAs. Data are means ± s.e.m. 
and statistical analyses were performed using 
one-way ANOVA, n = 6 per group. Ctrl, control; 
NaA, sodium acetate; NaB, sodium butyrate; NaP, 
sodium propionate. *P < 0.05 indicates a 
significant difference.

Figure 4
Propionate regulates lipolysis dependent on p-AMPK in Caco-2 cells. (A and B) Protein expression of p-AMPK and AMPK in the jejunum (A) and ileum (B) 
of mice treated with propionate or inulin, n = 6 mice per group. (C) Protein expression of p-AMPK and AMPK in Caco-2 cells treated with 0.1 and 
0.5 mmol/L propionate for 24 h, n = 4 per group. (D) Triglyceride content of Caco-2 cells when stimulated with compound C (Cc, 10μmol/L) in the presence 
of propionate for 24 h, n = 6 per group. (E, F and G) Relative mRNA expression of Atgl (E), Hsl (F) and Lal (G) in Caco-2 cells when stimulated with compound 
C (Cc, 10μmol/L) in the presence of propionate for 24 h, n = 6 per group. Data are means ± s.e.m. and and statistical analyses were performed using 
one-way ANOVA. *P < 0.05 indicates a significant difference.
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in Caco-2 cells (Fig. 5C). Inhibition of LSD1 by its 
inhibitor GSK2879552 (5 μmol/L) (Supplementary Fig. 
5C) significantly increased triglyceride level in Caco-2 
cells (Fig. 5D) and decreased Atgl, Hsl and Lal expression 
(Fig. 5E, F and G). More importantly, when elevation 
of LSD1 by propionate was blocked by GSK2879552 
treatment (Supplementary Fig. 5C), the decrease of 
triglyceride level by propionate was completely blocked 
(Fig. 5D), as well as the increase in Atgl, Hsl and Lal 
expression (Fig. 5E, F and G). Notably, inhibition of 
p-AMPK expression decreased LSD1 protein level and 
when treated with propionate, inhibition of p-AMPK 
blocked propionate-induced increase of LSD1 in Caco-2 
cell (Fig. 5H). However, inhibition of LSD1 protein 
expression by GSK2879552 did not affect either p-AMPK 
or propionate-induced increase of p-AMPK in Caco-2 
cell (Fig. 5I). Taken together, these data suggested that 
propionate upregulated LSD1 downstream of p-AMPK to 
induce intestinal lipolysis.

Propionate and inulin induce intestinal lipolysis and 
protect against HFD-induced obesity

Finally, we examined whether the beneficial effects of 
propionate and inulin still existed in HFD-fed mice. 
Mice were pre-treated with HFD for 3 weeks and gavaged 
with propionate, inulin and saline with HFD feeding; 

results showed that propionate and inulin completely 
prevented HFD-induced body weight gain (Fig. 6A), due 
to decreased fat mass by 6.6 and 8.2% (Fig. 6B). White 
adipose tissue weights were decreased consistent with 
lower fat mass (Supplementary Fig. 6A and B). Also, no 
change of food intake and fecal triglyceride level was 
observed which indicated propionate and inulin did 
not affect fat absorption by gastrointestinal tract on 
HFD (Fig. 6C and D). Liver and muscle weights were not 
affected (data unshown). TG content in liver was not 
affected (Supplementary Fig. 6E). Notably, intestines 
weights were not significantly changed by propionate 
or inulin in HFD-fed mice (Supplementary Fig. 6C and 
D). Consistent with the results in chow diet-fed mice, 
jejunal and ileal as well as serum triglyceride levels 
were significantly decreased by propionate or inulin 
treatment on HFD (Fig. 6E, F and G). The expression 
of Atgl, Hsl and Cpt1a in the jejunum and ileum was 
increased in propionate or inulin treatment (Fig. 6H, I, 
J and K), whereas Mgat2 and Dgat1 were not affected 
(Supplementary Fig. 6F and  G). In addition, protein 
expression of p-AMPK and LSD1 was significantly 
increased in the jejunum and ileum of HFD-fed mice 
treated with propionate or inulin (Fig. 6L, M, N and O). 
All together, these findings indicated that propionate 
and inulin promoted intestinal lipolysis and inhibited 
HFD-induced obesity.

Figure 5
LSD1 regulates propionate-induced lipolysis in 
Caco-2 cells. (A and B) Protein expression of LSD1 
in the jejunum (A) and ileum (B) of mice treated 
with propionate or inulin, n = 6 mice per group. (C) 
Protein expression of LSD1 in Caco-2 cells treated 
with 0.1 and 0.5 mmol/L propionate for 24 h, n = 4 
per group. (D) Triglyceride content of Caco-2 cells 
stimulated with or without GSK2879552 (GSK552, 
5 μmol/L) in the presence of propionate for 24 h, 
n = 6 per group. (E, F and G) Relative mRNA 
expression of Atgl (E), Hsl (F) and Lal (G) of Caco-2 
cells treated with or without GSK552 in the 
presence of propionate for 24 h, n = 9 per group. 
(H) Protein expression of LSD1 in Caco-2 cells 
treated with or without Cc in the presence of 
propionate for 24 h, n = 4 per group. (I) Protein 
expression of p-AMPK in Caco-2 cells stimulated 
with or without GSK552 in the presence of 
propionate for 24 h, n = 4 per group. Data are 
means ± s.e.m. and statistical analyses were 
performed using one-way ANOVA. *P < 0.05 
indicates a significant difference.
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Discussion

Here we examined the metabolic effects of dietary fiber 
inulin and its SCFA fermentation products, and found 
that inulin and propionate decreased whole body fat 
content without affecting food intake in chow diet-
fed mice. Especially, inulin and propionate induced 
intestinal lipolysis and decreased enterocyte TG content. 
In vitro studies on Caco-2 cells showed propionate directly 
increased lipolysis gene expression (such as Atgl, Hsl and 
Lal) to decrease TG content via activation of p-AMPK and 
LSD1. Moreover, inulin and propionate could also induce 
intestinal lipolysis in HFD-fed mice which could contribute 
to the prevention of DIO by inulin and propionate. 

The beneficial effects of dietary fibers and SCFAs on 
metabolic control, such as resistance to DIO, have been 
described independently (Lin et  al. 2012, De Vadder 
et  al. 2014, Den Besten et  al. 2015a,b, Lu et  al. 2016). 
The effect of propionate has been suggested to be caused 
by increasing fatty acid oxidation in liver, therefore 
increased energy expenditure (Den Besten et  al. 2015a, 
Chambers et al. 2018). Other study has also showed that 

propionate promoted lipid oxidation in the adipose tissue 
(Lu et  al. 2016). Previous studies showed the majority 
(>90%) of propionate was absorbed by the gastrointestinal 
tract (Bergman 1990). Here, our data showed dietary 
propionate significantly decreased whole body fat mass 
without affecting food intake (Fig. 1B and C and Fig. 6B 
and C); meanwhile, lipid metabolism was not significantly 
affected in either liver or adipose tissue (Supplementary 
Fig. 2A and B). Instead, propionate-induced intestinal 
lipolysis and decreased enterocytes lipid storage (Figs 2A 
and B, 3A and B). Recent studies suggest small intestine 
is an important organ in regulating whole body lipid 
metabolism. Dietary lipids go through enterocytes uptake 
and metabolism, storage to finally transport to tissues 
via lymphatics and the circulation. We thus propose 
that propionate increases enterocytes lipolysis to reduce 
lipid storage, which then decreases lipid transport to 
tissues, since data showed serum triglyceride was lower 
and Cd36 expression in adipose tissue was downregulated 
by propionate treatment (Fig. 1I and Supplementary 
Fig. 2B). In future studies, intestinal LSD1 and AMPK loss-
of-function animal models could be applied to further 

Figure 6
Effect of propionate and inulin on metabolic phenotype in HFD-fed mice. (A, B and C) Body weight gain (A), fat mass (B) and food intake (C) of HFD-fed 
mice treated with propionate or inulin for 2 weeks. (D) Fecal triglyceride content. (E and F) Triglyceride content in the jejunum (E) and ileum (F).  
(G) Triglyceride content in serum. (H and I) Relative mRNA expression of ATGL, HSL and LAL in the jejunum (H) and ileum (I). (J and K) Relative mRNA 
expression of Cpt1α in the jejunum (J) and ileum (K). (L and M) Protein expression of p-AMPK and AMPK in the jejunum (L) and ileum (M). (N and O) 
Protein expression of LSD1 in the jejunum (N) and ileum (O). n = 6 per group. Data are means ± s.e.m. and statistical analyses were performed using 
two-tailed Student’s t test. *P < 0.05 versus control.
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demonstrate the effects and mechanisms of propionate 
on intestinal lipid metabolism to regulate whole body 
energy homeostasis. 

Dietary fibers have been linked to improve gut 
function (Kieffer et  al. 2016). Our results showed unit 
length weights of jejunum and ileum were elevated as 
well as villus length (Fig. 1E and F and Supplementary Fig. 
1E and F), indicating intestinal function improvement. 
mRNA levels of Slc7a7 and Slc7a9 which mediate uptake 
and release of cationic amino acids, and Slc6a19 which 
mediates apical uptake of all neutral amino acids were 
markedly increased by propionate treatment in the 
jejunum (Supplementary Fig. 7A). To test intestinal 
absorption function, we gavage-fed mice with whey 
protein to both control and propionate-treated mice: 
results showed that the plasma arginine level was 
significantly increased after 30 min of treatment in the 
propionate group (Supplementary Fig. 7B). In addition, 
propionate did not affect the expression of genes involved 
in inflammatory response such as tumor necrosis factor-
alpha (TNFα), nuclear factor kappa beta (NFκB) and 
interleukin-6 (IL-6) (Supplementary Fig. 7C), suggesting 
small intestinal inflammatory response was not activated. 
Therefore, it is likely for propionate to have a role in 
benefiting gut function by increasing intestinal lipolysis 
and providing more energy for function improvements 
since Cpt1α was also elevated (Fig. 2E and F).

The metabolic beneficial effects of SCFAs have been 
described through activation of G-protein-coupled 
receptors, Ffar2 and Ffar3 (Samuel et al. 2008, Tolhurst 
et  al. 2012, Kimura et  al. 2013, Psichas et  al. 2015, Lu 
et  al. 2016). Here, we first tested this pathway and 
neither Ffar2 nor Ffar3 was affected by propionate 
in the intestine (Supplementary Fig. 4A and B). Our 
data suggested propionate and inulin directly induced 
enterocyte lipolysis via an increase of p-AMPK (Fig. 4A, 
B and C). Similar studies also reported that soluble 
dietary fiber could enhance the production of SCFAs 
which activated the intestinal epithelial AMPK activity 
(Li et  al. 2017). Propionate-induced AMPK activity in 
HCT116 and SW480 cells was reported to be caused by 
the reduction of intracellular ATP level and AMP/ATP 
upregulation (Tang et al. 2011). Meanwhile, there is also 
evidence showing SCFA utilization as energy substrates 
could increase ATP which in turn drives the increase of 
cAMP (Wang et al. 2012).

SCFAs are also important modulators of the 
epigenome and regulate histone acetylation (Fellows 
et  al. 2018). Here we found that propionate increased 
lipolysis gene expression in enterocytes through elevation 

of LSD1, a histone demethylase (Fig. 5A, B and C). Our 
data showed in enterocytes that treated with propionate, 
p-AMPK inhibitor completely blocked LSD1 elevation and 
LSD1 inhibitor had no effect on p-AMPK (Fig. 5H and I), 
indicating LSD1 is a downstream target of p-AMPK in 
enterocytes, as described earlier (Sun et al. 2017). Studies 
from our lab as well as several independent groups showed 
LSD1 plays a key role in energy homeostasis (Nakao et al. 
2019). For example, LSD1 significantly affects browning 
to regulate whole body lipid metabolism in adipose tissue 
(Duteil et al. 2016, Sambeat et al. 2016, Zeng et al. 2016). 
However, the role of LSD1 in the intestine on metabolic 
homeostasis is unknown. Our data indicate inhibition 
of LSD1 expression as well as p-AMPK could decrease 
lipolysis in Caco-2 cells and increase triglyceride content 
(Figs 4D and 5D). Meanwhile, LSD1 expression in gut 
could be different between chow diet and HFD (Figs 5A 
and B, 6N and O). Therefore, we hypothesize that LSD1 
could also regulate whole body energy metabolism in gut 
and the mechanisms worth further investigation. 

In summary, we report a link between dietary fiber 
and its SCFA microbial fermentation products, especially 
propionate, and host energy homeostasis through 
intestinal lipid handling. We show that propionate 
has a regulatory role in enterocyte lipolysis through 
activation of p-AMPK and LSD1. This further reveals the 
mechanisms of propionate on whole body metabolism 
regulation. Since both the positive influence of dietary 
fiber on obesity (Chambers et  al. 2015) and intestinal 
lipid handling are known to be present in humans, these 
findings may provide novel perspectives in both treatment 
and prevention of metabolic diseases such as obesity. 

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
JOE-19-0188.
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