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The weakly hard real-time model is an abstraction for applications, including control systems, that can tolerate

occasional deadline misses, but can also be compromised if a sufficiently high number of late terminations

occur in a given time window. The weakly hard model allows to constrain the maximum number of acceptable

missed deadlines in any set of consecutive task executions. A big challenge for weakly hard systems is to

provide a schedulability analysis that applies to a general task model, while avoiding excessive pessimism. In

this work, we develop a general weakly hard analysis based on a Mixed Integer Linear Programming (MILP)

formulation. The analysis applies to constrained-deadline periodic real-time systems scheduled with fixed

priority and no knowledge of the task activation offsets, while allowing for activation jitter. Our analysis

considers two common policies for handling missed deadlines, i.e. (i) letting the job continue until completion

or (ii) killing its execution immediately. For this policy, ours is the first and only m-k analysis currently

available. Experiments conducted on randomly generated task sets show the applicability and accuracy of the

proposed technique as well as the improvements with respect to competing techniques.

CCS Concepts: • Computer systems organization→ Real-time system specification; Embedded soft-
ware.

Additional Key Words and Phrases: Weakly hard real-time systems, schedulability analysis, periodic real-time

tasks, activation jitter, deadline-miss handling strategies.

1 INTRODUCTION
The concept of real-time task abstracts the behavior of a software program, characterized by an

activation pattern and a deadline constraint on its execution. In hard real-time scheduling, all

jobs are required to complete before their deadlines, and a proper analysis is built to check this

property for the worst case condition. Schedulability analysis for hard real-time systems has been

investigated in the past and solutions exist for many cases of interest. However, fewer results exist

for task sets that may tolerate a limited number of deadline misses. Filling this gap is of great

interest because this behavior is indeed representative of a large number of real-world applications,

where (few) late terminations do not significantly harm the application, including control systems

[26]. Intuitively, each missed deadline will move the system state closer to a faulty condition, while

a sufficient number of timely completions will restore a safe working condition for the system.

Considering these systems as hard real-time would result in needless pessimism and possibly

over-provisioning of resources.

The weakly hard scheduling model [7, 25] gained interest as a way to describe systems that are

robust to (some) deadline violations. This requirement is usually defined using one or more pairs

(𝑚,𝐾) representing the maximum number𝑚 of missed deadlines that can be tolerated every 𝐾

activations (also known as the𝑚-𝐾 model). Analysis methods for hard-type systems do not apply

to weakly hard systems: this is mostly because the critical instant theorem does not hold anymore,

and therefore the identification of the worst case scenario on which to formulate the analysis

becomes much more difficult. Most available results apply to fixed-offset systems, i.e. when the
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initial offset of all tasks is known. However, this hypothesis can be a serious limitation, since initial

offsets are not always defined, or even possible to enforce. In addition, the analysis of fixed-offset

systems is very sensitive to time errors and drifts that may occur in the task activation pattern,

which are unfortunately difficult to prevent in real systems.

Motivated by these challenges, this paper develops a generalized weakly-hard analysis for offset-

free systems that applies to periodic tasks scheduled by fixed priority on a uniprocessor, with a

possible release jitter. The formulation is based on an MILP encoding, where the beginning of the

busy period is represented as a problem variable. Two common strategies for handling the deadline

miss event are considered: continue the job execution until completion, or immediately kill it.
The weakly hard analysis developed with our MILP model checks if a given constraint (𝑚,𝐾)

is at least an upper bound of the weakly hard properties of the task. In other words, the outcome

of the analysis guarantees that the target task will have no more than𝑚 deadline misses out of

any 𝐾 successive jobs. The efficiency of this analysis benefits from the relaxation from integers

to real-valued variables for counting the number of higher priority interfering jobs, with binary

variables used in an additional set of constraints to restore accuracy. Two formulations are presented

for each strategy. The first one leverages a limited set of variables and constraints, guaranteeing a

faster runtime but providing a bound on deadline misses which is possibly pessimistic. An advanced

(but computationally heavier) formulation is then proposed for obtaining a tighter bound on (𝑚,𝐾)
constraints, by checking schedulability properties at some selected points in time.

A preliminary version of the analysis in this paper has been presented at EMSOFT’17 [37]. The

major extensions developed in the present work are briefly summarized as follows.

• In section 5.2 we propose a refined analysis for the job-continue strategy (extending the

pessimistic one presented in [37]), which leverages additional constraints to provide a tighter

estimate of the maximum number of deadline misses.

• In Section 6 we provide an analysis for the job-kill strategy, i.e. when a job that misses the

deadline is forcibly terminated. This analysis is an original contribution w.r.t. [37] (and other

prominent works like [17, 38]) that adopts a continue strategy. A refined formulation for this

strategy (but more computationally expensive) is provided in Section 6.2. To our knowledge,

this is the first analysis for this deadline management policy to ever appear in the literature.

• In Section 7, we compare the two deadline miss handling polices, and we show the improve-

ments on the deadline miss estimate when using the refined analysis (on average an increase

in the schedulability ratio of nearly 30% compared with the original approach in [37]).

2 RELATEDWORK
Since the seminal work of Liu and Layland [24], the hard real-time model, where every job is

required to complete before its deadline, has been the subject of intensive study from the research

community. According to this model, missing a deadline is a potentially disruptive event that must

be always avoided. The reasons behind the disproportionate interest on the part of researchers in

hard analysis techniques probably lie in the simplicity of the model – both to be understood and

analyzed – and the seemingly natural fit to real-world systems, in particular safety-critical systems.

Its popularity also benefits from the existence of the critical instant, i.e., the condition where all

tasks are synchronously activated, which leads to the worst-case conditions of the response time

for every task in the system. As a result, in hard real-time systems it is sufficient to investigate

the specific pattern of task activations originating from the critical instant [12],[33]. In the case of

periodic tasks with explicit initial offsets, Leung and Whitehead [23] proved that it is necessary

and sufficient to simulate the system using the worst-case execution time for all tasks, starting

from any job activation, in a bounded time interval, since the schedule of periodic tasks will repeat



itself. However, Baruah and Burns showed in [6] that the result of this test is very sensitive to small

variations in the task parameters, including the initial offset.

While hard deadline requirements may be necessary to a restricted number of safety-critical

systems, there are many more, including control systems, that can tolerate (a limited number of)

timing violations, with some research works showing how several systems can actually benefit

from oversampling, even when this comes at the price of some deadline miss [26, 28]. In these

cases, the hard schedulability analysis may be too pessimistic. The so-called weakly hard real-time

schedulability analysis [7] was introduced for such systems, to address the problem of bounding

the maximum number of missed deadlines that may happen in a given number of activations

of a task. The fondant constraint of this analysis is defined by the pair (𝑚,𝐾), associated to

a task, which means that no more than 𝑚 deadline misses must occur for any 𝐾 consecutive

activations of that task. The (𝑚,𝐾) constraints are first used in [25], where the authors proposed a

dynamic priority assignment for streams with weakly-hard requirements to reduce the probability

of (𝑚,𝐾) violations. Anyway, the analysis presented in [7] and in many other works is based on the

assumption that the initial offset of each task in the system is known and defined. The weakly-hard

analysis is performed starting from any activation instant of one of the periodic tasks and repeated

for each other activation until a large enough time interval is covered, checking that the number of

deadline misses do not exceed the (𝑚,𝐾) constraints. While the assumption of periodic tasks is

quite reasonable when considering real applications, the requirement of knowing all activation

offsets may be too strict and potentially undermine the robustness of the analysis: in fact, even

if the weakly hard schedulability is guaranteed for given initial offsets, it may unexpectedly fail

when some of these offsets are slightly changed.

A different approach, presented in [30], consists in building a worst-case analysis by describing

the system as the superposition of activations due to typical behavior, and sporadic (rare) activations

due to overload conditions. This sporadic behavior is obtained by studying those rare events that

may happen in the behavior of the system at runtime. Building over such an assumption, [17]

and [38] proposed a two-steps method for weakly hard analysis, checking that (i) the system is

schedulable under the typical behavior (using classical hard analysis), and (ii) in case of overload

conditions, the given (𝑚,𝑘) constraint is always guaranteed. Authors in [20] follow a similar

approach, using real-time calculus to analyze the worst-case busy period (in duration and lateness)

when a temporary overload occurs because of an error in the assumptions on the task worst-

case execution time. The biggest limit of these methods is that they require the definition of a

task model that is possibly artificial, since they assume that the causes of possible overload are

identifiable and known. All works discussed so far assume that a job continues executing even

after it misses the deadline. By contrast, the weakly hard analysis in this paper also considers

the immediate termination model to handle deadline misses and includes a comparison between

the two approaches. Terminating a task upon a timing fault (and possibly enabling some fault

management routine) is not only an interesting approach on the theoretical side, but is also a quite

common fault management strategy in many practical systems.

The analysis of overload conditions is also closely related to the control-scheduling co-design

problem [5]. When a controller is implemented in a real-time system, studying how its response

time behaves in overload conditions is of particular importance since it may impact the overall

performance of the controlled system [39, 40]. In control-scheduling co-design problems, the (𝑚,𝐾)
model has generated great interest [14, 31] and has been used in [10, 11, 35, 36] as a constraint on

the maximum number of jobs that can be dropped in a given time window, where those values are

determined based on the minimum required level of quality of control. An integrated approach for

controller synthesis is presented in [4], by finding task parameters that guarantee that the system

is stable and provides the required control performance. This idea has been further extended in



[3], moving from uniprocessors to distributed cyber physical systems. In [16] a similar analysis

using communication via FlexRay is considered. Other works [13, 15, 29] studied the impact of

missed deadlines on control performance considering different strategies in case of deadline misses.

In [18], the problem of verifying the safety of a system with weakly hard bounds is addressed. A

control design which explicitly takes into account missed deadlines in a probabilistic fashion is

recently explored in [28]. Several recent papers like [1, 2, 34] elaborate the use of weakly hard

model in specific applications, including energy variable systems, finite queue platforms, cost-aware

scheduling and networked environments, showing a constantly growing interest in the topic.

3 SYSTEMMODEL
In this work, a set T = {𝜏1, . . . , 𝜏𝑛} of 𝑛 real-time periodic tasks 𝜏 is scheduled by fixed priority

with preemption on a uniprocessor platform. Tasks in T are indexed by priority, from higher to

lower (i.e., 𝜏 𝑗 has higher priority than 𝜏𝑖 if 𝑗 < 𝑖). Each task 𝜏𝑖 is defined by the tuple (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ,J𝑖 ),
where 𝐶𝑖 is its worst-case execution time (WCET), 𝑇𝑖 is the activation period, 𝐷𝑖 is the relative

deadline (with 𝐶𝑖 ≤ 𝐷𝑖 ≤ 𝑇𝑖 ) and J𝑖 is the (possible) maximum release jitter, with the constraint

that J𝑖 +𝐶𝑖 ≤ 𝐷𝑖 . The total utilization of the task set is defined as𝑈 =
∑𝑛
𝑖=1𝑈𝑖 , where𝑈𝑖 = 𝐶𝑖/𝑇𝑖 .

Each instance of 𝜏𝑖 is a job defined as 𝐽𝑖,𝑘 , where 𝑘 = 1, 2, . . . represents the job index. Each

job 𝐽𝑖,𝑘 is defined by its arrival time 𝑎𝑖,𝑘 , finish time 𝑓𝑖,𝑘 , and absolute deadline 𝑑𝑖,𝑘 . When J𝑖 = 0,

𝑎𝑖,𝑘+1 − 𝑎𝑖,𝑘 = 𝑇𝑖 for any two successive jobs 𝜏𝑖 . For J𝑖 ≥ 0, the distance between two successive

activations is in the range [𝑇𝑖 − J𝑖 ,𝑇𝑖 + J𝑖 ]. Moreover, the starting offset of each task 𝜏𝑖 is not

known and so is the value of the first job activation time 𝑎𝑖,1. A job 𝐽𝑖,𝑘 is schedulable if it finishes

its execution before its deadline (𝑓𝑖,𝑘 ≤ 𝑑𝑖,𝑘 ), otherwise it is not schedulable, and misses its deadline.
The elapsed time between a job activation and finish time (i.e., 𝑓𝑖,𝑘 − 𝑎𝑖,𝑘 ) is called response time.

The worst-case response time (WCRT), is computed as 𝑅𝑖 = max

𝑘
{𝑓𝑖,𝑘 −𝑎𝑖,𝑘 }. Similarly, the best-case

response time (BCRT) is defined as 𝑟𝑖 = min

𝑘
{𝑓𝑖,𝑘 − 𝑎𝑖,𝑘 }. A task 𝜏𝑖 is then deemed schedulable if

and only if 𝑅𝑖 ≤ 𝐷𝑖 . If 𝑅𝑖 > 𝐷𝑖 the task is non-schedulable. Note that T may contain multiple

non-schedulable tasks. To prevent trivial cases, we assume hereafter that 𝑟𝑖 ≤ 𝐷𝑖 , ∀𝜏𝑖 . Moreover,

the assumption𝑈 < 1 is enforced, meaning that each job is guaranteed to complete its requested

execution at some point in time, even if it misses its deadline. The BCRT 𝑟𝑖 and the WCRT 𝑅𝑖 of

each task are computed in advance using established techniques such as those in [9, 22, 32].

A job 𝐽𝑖,𝑘 is active at time 𝑡 if it has not completed its current execution, i.e. if 𝑎𝑖,𝑘 ≤ 𝑡 < 𝑓𝑖,𝑘 .

A level-𝑖 busy period is then defined as a time interval where, at each point in time, at least one

job with priority greater than or equal to 𝜏𝑖 is active. As an example, in Figure 1, both [𝑠0, 𝑓2) and
[𝑎3, 𝑓3) are level-3 busy periods. Note that the definition of busy period given above is indeed

a generalization of the maximal level-𝑖 busy period defined in [22]. Similarly, we introduce the

definition of level-𝑖 processor idle time as a time interval where the processor is not occupied by 𝜏𝑖
or any other higher priority task. Finally, since fixed priority scheduling analysis is sustainable [6],
if a job is not schedulable, it will not become schedulable by increasing its execution time. For this

reason, we simply assume that a task requests its WCET every time it is activated.

3.1 The Weakly Hard Model
Consider a task 𝜏𝑖 ∈ T , with 𝑖 > 1, that has 𝑅𝑖 > 𝐷𝑖 . The weakly hard schedulability properties of

𝜏𝑖 are checked by finding an upper bound on the number of missed deadlines experienced by the

task in the worst case. The outcome of the analysis is presented as a set of pairs (𝑚,𝐾), where𝑚
represents the maximum number of missed deadlines of 𝜏𝑖 considering every possible sequence of

𝐾 successive activations.
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Fig. 1. A problem window with 3 job windows

3.1.1 Strategies for handling missed deadlines. Multiple choices can be made to manage a missed

deadline. In this work, we consider two common approaches: the job-continue and the job-kill
policies. With the job-continue policy, jobs are always executed until their completion. This

approach minimizes the waste of processor time, but self-pushing effects may occur when having

multiple pending jobs at the same time, thus potentially increasing the response time of the

following instances. The other strategy considered in this work is killing the job when a deadline is

missed, i.e., the computation is discarded at the deadline instant if the job has not completed. A

schedulability analysis is presented for both strategies, allowing to compare the results.

For ease of notation, the 𝑘-th job of 𝜏𝑖 will be denoted as 𝐽𝑘 (without the task index) when the

context is clear. Similarly, given a job 𝐽𝑘 , its activation time and finish time are denoted as 𝑎𝑘 and

𝑓𝑘 , respectively. The interval [𝑎𝑘 , 𝑎𝑘+1) is the 𝑘-th job window of 𝜏𝑖 . The problem window under

analysis is [𝑠0, 𝑓𝐾 ), where 𝑠0 is the earliest instant of the level-𝑖 busy window for the first activation

𝑎1 of 𝜏𝑖 . Without loss of generality, we have 𝑠0 = 0.

As an example, consider a system of 3 tasks with no jitter: (𝐶1=1, 𝐷1=𝑇1=3), (𝐶2=3, 𝐷2=𝑇2=15)
and (𝐶3=2, 𝐷3=𝑇3=6), where 𝐾 =3 and 𝜏3 is the target task. Figure 1 shows a scenario where 2 (𝐽1
and 𝐽3) out of 3 jobs in the problem window [𝑠0, 𝑓3) miss the deadline, with 𝑎1=0.5. If the problem

window starts with all tasks synchronously activated in 𝑠0, only 𝐽1 misses its deadline.

4 THE SOLUTION MODEL
4.1 Worst-Case Schedule
A worst-case schedule of 𝜏𝑖 , defined as 𝑆𝑤 (𝐾), is a problem (time) window of 𝐾 consecutive jobs

of 𝜏𝑖 , {𝐽1, 𝐽2, . . . , 𝐽𝐾 }, such that the maximum number of them experience a deadline miss. Different
schedules of 𝐾 consecutive jobs can produce the same worst-case number of deadline misses, but,

from the schedulability analysis point of view, it is sufficient to find any one of them. In order

to reduce the problem space, we identify some properties that are necessary for those problem

windows that maximize the number of deadline misses for 𝜏𝑖 .

Lemma 1. Given 𝐾 consecutive jobs of 𝜏𝑖 , there exists at least one worst-case schedule 𝑆𝑤 (𝐾) =

{𝐽1, 𝐽2, . . . , 𝐽𝐾 } such that both the following conditions hold:
(1) the job ending before the beginning of the problem window (namely 𝐽0) is schedulable; and
(2) the first job of the problem window (𝐽1) is non-schedulable.

Proof. The proof is by contradiction. We demonstrate that if there exists a worst-case schedule

that violates either condition (1) or (2) then there must exist at least one additional schedule with

the same number of misses (therefore also worst-case) that satisfies both of them. The existence of

such schedule is proven by construction. Because of the hypotheses that 𝑅𝑖 > 𝐷𝑖 and 𝑟𝑖 ≤ 𝐷𝑖 , there

must be at least one schedule of 𝜏𝑖 where a schedulable job is followed by a non-schedulable one.



Type Variables Annotations

𝑎𝑘 Activation time of 𝐽𝑘 .

R 𝐿𝑘 Segment of busy execution of higher priority tasks before 𝑎𝑘 , when 𝑓𝑘−1 ≤ 𝑎𝑘 .
𝛼 𝑗 Offset of the first job activation of 𝜏 𝑗 w.r.t. 𝑠0.

𝜄𝑘 Level-𝑖 idle time within the 𝑘-th job window.

𝑏𝑘 𝑏𝑘 = 0 if 𝐽𝑘 is schedulable; otherwise 𝑏𝑘 = 1

B 𝑏𝑜
𝑗

𝑏𝑜
𝑗
= 0 if 𝛼 𝑗 = 0; otherwise 𝑏𝑜

𝑗
= 1.

𝛽𝑘 𝛽𝑘 = 0 if 𝑓𝑘 ≤ 𝑎𝑘+1; otherwise 𝛽𝑘 = 1.

Table 1. MILP variables that are common to both strategies.

Assume there is a worst-case schedule 𝑆 ′𝑤 (𝐾) = {𝐽𝑥 , . . . , 𝐽𝑥+𝐾−1} such that condition (1) of the

Lemma does not hold for 𝑆 ′𝑤 (𝐾), i.e., 𝐽𝑥−1 is not schedulable. By shifting the problem window one

job to the left, we obtain a sequence of 𝐾 jobs 𝑆𝐿 (𝐾) = {𝐽𝑥−1, . . . , 𝐽𝑥+𝐾−2} that has at least as many
misses as 𝑆 ′𝑤 (𝐾). If 𝑆 ′𝑤 (𝐾) is a worst-case schedule, then 𝑆𝐿 (𝐾) has the same number of misses

(cannot be higher) and must also be a worst-case schedule. However, by construction, 𝑆𝐿 (𝐾) satisfies
condition (2) of the Lemma (its first job 𝐽𝑥−1 is non-schedulable). If the last job before the beginning
of the K-job window of 𝑆𝐿 (𝐾) is not schedulable (𝑆𝐿 (𝐾) does not satisfy condition (1)), then we

can shift again the problem window by one job, obtaining another worst-case schedule of 𝐾 jobs

that satisfies condition (2). Eventually (by iteration), we find a sequence of jobs {𝐽𝑥−𝑟 , . . . , 𝐽𝑥+𝐾−𝑟−1}
that is a worst-case schedule satisfying condition (2), for which the last job before the beginning of

the window 𝐽𝑥−𝑟−1 is schedulable, thus satisfying also condition (1).

Assume condition (2) of the Lemma does not hold for 𝑆 ′𝑤 (𝐾), i.e., 𝐽𝑥 is schedulable. Then, the
sequence 𝑆𝑅 (𝐾) = {𝐽𝑥+1, . . . , 𝐽𝑥+𝐾 } has at least as many deadline misses as 𝑆 ′𝑤 (𝐾). Since 𝑆 ′𝑤 (𝐾) is a
worst-case schedule, then also 𝑆𝑅 (𝐾) must be a worst-case schedule. Additionally, 𝑆𝑅 (𝐾) satisfies
condition (1) of the Lemma (since the last job before the time window 𝐽𝑥 is schedulable). If 𝐽𝑥+1
is schedulable and 𝑆𝑅 (𝐾) does not satisfy condition (2), we can shift the window one more job

to the right, finding another worst-case schedule that still satisfies condition (1). Eventually, we

find a sequence {𝐽𝑥+𝑞, . . . , 𝐽𝑥+𝐾+𝑞−1} that is a worst-case schedule where 𝐽𝑥+𝑞 is not schedulable
(condition (2)), and 𝐽𝑥+𝑞−1 is schedulable (condition (1)). Thus, the Lemma follows. □

In the following, without loss of generality, we will consider sequences {𝐽1, . . . , 𝐽𝐾 } that satisfy
the lemma presented above (i.e., having 𝐽0 schedulable and 𝐽1 not schedulable).

4.2 Common Variables and Basic MILP Constraints
An MILP formulation requires constraints defined as linear inequalities (an equality 𝑎 = 𝑏 can be

obtained using 𝑎 ≤ 𝑏 and 𝑏 ≥ 𝑎), and a linear objective function. We use variables that can assume

positive real values (including zero), labeled by R, or Boolean variables, labeled by B, that may

assume only {0, 1}.𝑀 is a sufficiently big constant value used to encode conditional constraints

(a standard technique known as big-𝑀). In the following, we first present the constraints that are

common to both the job-continue and job-kill strategies. For sake of brevity, proofs are omitted

when trivial. A summary of the variables used in this section can be found in Table 1. Those

constraints that are specific to each policy will be presented next, in dedicated sections.

4.2.1 Starting instant of the level-𝑖 busy windows. Each job 𝐽𝑘 of 𝜏𝑖 activated at time 𝑎𝑘 can be

interfered by pending executions of higher priority tasks that are activated before 𝑎𝑘 but are not

yet completed at 𝑎𝑘 . Let 𝑎𝑘 − 𝐿𝑘 be the start of the level-𝑖 busy period that includes 𝑎𝑘 : the variable

𝐿𝑘 ∈ R represents the portion of the level-𝑖 busy period for job 𝐽𝑘 that extends to the earliest such

activation, when 𝑓𝑘−1 ≤ 𝑎𝑘 . A trivial constraint on the size of the busy windows is the following.
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Fig. 2. Notation for the definition of a problem window

Constraint 1. The size of the interval 𝐿𝑘 can be bounded as:

∀𝑘, 0 ≤ 𝐿𝑘 ≤ 𝑇𝑖 + J𝑖 − 𝑟𝑖 . (1)

If the busy period that includes 𝑎𝑘 starts earlier than 𝑎𝑘−1, it is already accounted for by the

definition of 𝐿𝑘−1. Hence, 𝐿𝑘 is well-defined only when 𝑓𝑘−1 ≤ 𝑎𝑘 . An illustrative example of the

formulation of 𝐿𝑘 is in Figure 2: here, since 𝑓1 > 𝑎2, 𝐿2 is not defined. In the following, additional

checks are provided to those constraints that involve 𝐿𝑘 , to cope with the case in which 𝑓𝑘−1 > 𝑎𝑘 .
According to condition (1) of Lemma 1 (which translates into 𝑓0 ≤ 𝑎1), 𝐿1 is always well-defined.
Thus, the start time of the problem window is 𝑠0 = 𝑎1 − 𝐿1 = 0.

4.2.2 Activation instants and jitter. An MILP variable 𝑎𝑘 ∈ R is introduced to represent the activa-

tion instant of 𝐽𝑘 . If J𝑖 = 0, the activation time of 𝐽𝑘 is a simple function of 𝐿1, i.e., 𝑎𝑘 = 𝐿1+ (𝑘 −1)𝑇𝑖
(𝐿1 is the initial offset of 𝜏𝑖 with respect to 𝑠0). In the general case, when tasks are possibly re-

leased with jitter, the distance between the activation times of two jobs is not fixed. The following

constraint then trivially holds from the definition.

Constraint 2. The value of the activation instant 𝑎𝑘 of job 𝐽𝑘 is bounded by:

∀𝑘, 𝐿1 + (𝑘 − 1) ·𝑇𝑖 ≤ 𝑎𝑘 ≤ 𝐿1 + (𝑘 − 1) ·𝑇𝑖 + J𝑖 . (2)

4.2.3 Offsets. The activation instant of the first job of a generic higher priority task 𝜏 𝑗 in the

problem window is defined by using a offset value 𝛼 𝑗 ∈ R with respect to the initial start time 𝑠0.

Constraint 3. The values of the offsets for the interfering tasks are bounded by:

∀𝑗 < 𝑖, 0 ≤ 𝛼 𝑗 ≤ 𝑇𝑗 − 𝑟 𝑗 + J𝑗 . (3)

Proof. The upper bound of the constraint is proven by contradiction. Assume that the first job

𝐽 𝑗,1 of an interfering task 𝜏 𝑗 arrives at time 𝑠0 +𝑇𝑗 − 𝑟 𝑗 + J𝑗 + 𝜖 with 𝜖 > 0. This implies that the

earliest instant where the previous job 𝐽 𝑗,0 is activated is 𝑠0 − 𝑟 𝑗 + 𝜖 . Since any job of 𝜏 𝑗 needs at

least 𝑟 𝑗 time to finish, 𝐽 𝑗,0 will be still active at 𝑠0, which contradicts the hypothesis that 𝑠0 is the

earliest time instant such that from 𝑠0 to 𝑎1 the processor is fully occupied by higher priority tasks.

Hence, the upper bound follows. The lower bound trivially comes from the definition of 𝑠0. □

In order for 𝑠0 to be the starting point of a busy period, at least one offset 𝛼 𝑗 (or 𝐿1 for 𝜏𝑖 ) must

be equal to zero. Introducing a Boolean variable 𝑏𝑜𝑗 ∈ B for each task 𝜏 𝑗 with 𝑗 ≤ 𝑖 , this constraint
is enforced using the big-M encoding as follows.

Constraint 4. The offsets are bounded as follows:
∀𝑗 < 𝑖, 0 ≤ 𝛼 𝑗 ≤ 𝑏𝑜𝑗 ·𝑀
for 𝜏𝑖 , 0 ≤ 𝐿1 ≤ 𝑏𝑜𝑖 ·𝑀,

(4)

such that also the upper bound
∑𝑖
𝑗=1 𝑏

𝑜
𝑗 ≤ 𝑖 − 1 holds.

The constraint enforces that at most (𝑖 − 1) tasks can be activated after the start point 𝑠0. This

means that at least one variable 𝑏𝑜𝑗 is zero, thus from (4) at least one offset is equal to zero.



4.2.4 Finish time 𝑓𝑘 . The variable 𝑓𝑘 ∈ R represents the finish time of job 𝐽𝑘 . For each job 𝐽𝑘 ,

the time interval [0, 𝑓𝑘 ) consists of multiple busy periods and processor idle times. The exact

computation of the finish time of a job 𝐽𝑘 requires finding the minimum fixed point (solution) of

the recursive equation [19]:

min

{
𝑓𝑘 |

∑
𝑗<𝑖

⌈
𝑓𝑘 − 𝛼 𝑗
𝑇𝑗

⌉
𝐶 𝑗 + 𝑘 ·𝐶𝑖 + 𝐼𝑑𝑙𝑒 = 𝑓𝑘

}
. (5)

This formulation cannot be easily encoded as an MILP constraint, because it would require a

minimization function for each activation 𝑘 of the task 𝜏𝑖 . A possible approach is to ignore the

minimization term and accept any solution of the fixed-point equation, thus possibly including

values larger than the correct one. This is computationally efficient, but clearly pessimistic. Addi-

tional constraints could be introduced to reduce the search space and remove (at least some of) the

incorrect solutions. The precision of the computed solution is improved at the expense of additional

execution time. The MILP encoding of the finish time equations for both approaches depends on

the deadline management policy, and will be presented in detail in the related sections.

4.2.5 Deadline misses. A Boolean variable 𝑏𝑘 ∈ B is introduced to indicate whether the job 𝐽𝑘 in

the problem window misses its deadline (𝑏𝑘 = 1) or not (𝑏𝑘 = 0). From condition (2) of Lemma 1, 𝐽1
always misses its deadline.

Constraint 5. Condition (2) of Lemma 1 is enforced by ensuring that 𝑏1 = 1.

4.2.6 Interference from pending jobs. In order to check whether a job 𝐽𝑘 of 𝜏𝑖 interferes with the

execution of the next job 𝐽𝑘+1 , i.e. when 𝑓𝑘 > 𝑎𝑘+1, a Boolean variable 𝛽𝑘 is introduced as follows:

𝛽𝑘 =

{
0 if 𝑓𝑘 ≤ 𝑎𝑘+1;
1 otherwise.

This can be re-written as an MILP constraint with a linear formulation.

Constraint 6. The variable 𝛽𝑘 representing the interference of the pending jobs of 𝜏𝑖 is bounded by:

∀𝑘 −𝑀 · 𝛽𝑘 ≤ 𝑎𝑘+1 − 𝑓𝑘 < 𝑀 · (1 − 𝛽𝑘 ). (6)

4.2.7 Total level-𝑖 idle time in a job window. In an arbitrary jobwindow [𝑎𝑘 , 𝑎𝑘+1) of 𝐽𝑘 , the processor
may experience multiple level-𝑖 idle time intervals. The variable 𝜄𝑘 ∈ R is introduced, to represent

the sum of the level-𝑖 idle times (i.e. the total amount of processor idle time) in the 𝑘-th job window.

A rough bound for 𝜄𝑘 follows.

Constraint 7. The total level-𝑖 idle time 𝜄𝑘 in a generic window [𝑎𝑘 , 𝑎𝑘+1) is bounded by:

∀𝑘 0 ≤ 𝜄𝑘 ≤ 𝑇𝑖 + J𝑖 − 𝑟𝑖 . (7)

Proof. The upper-bound of 𝜄𝑘 represents the case in which the processor is occupied for the

minimum amount of time by 𝜏𝑖 alone finishing with its BCRT 𝑟𝑖 with maximum distance between

two consecutive activations (i.e., 𝑇𝑖 + J𝑖 ). The lower bound is trivially zero. □

Note that if 𝐽𝑘 finishes executing after 𝑎𝑘+1, then the processor is never idle inside the job window

[𝑎𝑘 , 𝑎𝑘+1). This can be stated as an MILP constraint as follows.

Constraint 8. The total level-𝑖 idle time 𝜄𝑘 in the window [𝑎𝑘 , 𝑎𝑘+1) is zero if 𝛽𝑘 = 1, i.e.,:

∀𝑘, 𝜄𝑘 ≤ 𝑀 · (1 − 𝛽𝑘 ). (8)



4.2.8 Number of interfering jobs from higher priority tasks. Whenmodeling a schedulability problem

in MILP, the major complexity comes from computing the interference from higher priority tasks.

A common approach is to count the number of jobs from each higher priority task that interfere

with the execution of the task under analysis.

Given a job 𝐽𝑘 of 𝜏𝑖 and a higher priority task 𝜏 𝑗 , the number of jobs of 𝜏 𝑗 within the time

interval [0, 𝑓𝑘 ) is defined as 𝐼 𝑓𝑗,𝑘 . In case of no jitter for 𝜏 𝑗 (J𝑗 = 0), this value can be computed as

𝐼 𝑓𝑗,𝑘 =
⌈ 𝑓𝑘−𝛼 𝑗

𝑇𝑗

⌉
. In the general case (with jitter), it is a value constrained in the interval ⌈ 𝑓𝑘−𝛼 𝑗−J𝑗

𝑇𝑗
⌉ ≤

𝐼 𝑓𝑗,𝑘 ≤ ⌈ 𝑓𝑘−𝛼 𝑗+J𝑗

𝑇𝑗
⌉. This formulation using ceiling terms is well-established, but in an MILP problem

it requires to be rewritten using only linear constraints [22], as follows.

Constraint 9. The number 𝐼 𝑓𝑗,𝑘 of jobs of 𝜏 𝑗 activated in the window [0, 𝑓𝑘 ) is bounded by:

∀𝑗 < 𝑖,∀𝑘,
𝑓𝑘− 𝛼 𝑗 − J𝑗

𝑇𝑗
≤ 𝐼 𝑓𝑗,𝑘 <

𝑓𝑘− 𝛼 𝑗 + J𝑗
𝑇𝑗

+ 1, (9)

In a similar way, we define 𝐼𝐿 𝑗,𝑘 as the number of jobs of 𝜏 𝑗 within the time interval [0, 𝑎𝑘 − 𝐿𝑘 ).
Note that this value is meaningful only when 𝛽𝑘−1 = 0. In this case, considering a generic jitter

J𝑗 , 𝐼𝐿 𝑗,𝑘 is constrained by ⌈𝑎𝑘−𝐿𝑘−𝛼 𝑗−J𝑗

𝑇𝑗
⌉ ≤ 𝐼𝐿 𝑗,𝑘 ≤ ⌈𝑎𝑘−𝐿𝑘−𝛼 𝑗+J𝑗

𝑇𝑗
⌉. Again, this formulation can be

written using linear inequalities as follows.

Constraint 10. The number 𝐼𝐿 𝑗,𝑘 of jobs of 𝜏 𝑗 activated in the window [0, 𝑎𝑘 − 𝐿𝑘 ) (which is
meaningful only if 𝛽𝑘−1 = 0) is bounded by:

∀𝑗 < 𝑖,∀𝑘,
𝑎𝑘 − 𝐿𝑘 − 𝛼 𝑗 − J𝑗

𝑇𝑗
−𝑀 · 𝛽𝑘−1 ≤ 𝐼𝐿 𝑗,𝑘 <

𝑎𝑘 − 𝐿𝑘 − 𝛼 𝑗 + J𝑗
𝑇𝑗

+ 1 +𝑀 · 𝛽𝑘−1. (10)

Note that when 𝛽𝑘−1 = 1, Constraint 10 is trivially always verified. A numerical example for

both 𝐼 𝑓𝑗,𝑘 and 𝐼𝐿 𝑗,𝑘 , based on the system of Figure 1, is presented in Table 2.

By definition, the variables 𝐼 𝑓𝑗,𝑘 and 𝐼𝐿 𝑗,𝑘 count the number of jobs in window [0, 𝑓𝑘 ) and
[0, 𝑎𝑘 − 𝐿𝑘 ), respectively. For this reason, they should only assume integer values and appear as

integer variables in the MILP formulation. However, this can be computationally expensive. To

increase the computational efficiency, we can relax 𝐼 𝑓𝑗,𝑘 and 𝐼𝐿 𝑗,𝑘 to real values, i.e. 𝐼 𝑓𝑗,𝑘 ∈ R and

𝐼𝐿 𝑗,𝑘 ∈ R. In this case, their correct (integer) values must then be restored by introducing additional

constraints, as presented in the next Section.

4.2.9 Refining the interference from higher priority tasks. When 𝐼 𝑓𝑗,𝑘 and 𝐼𝐿 𝑗,𝑘 are coded as real

variables, we need to refine the constraints to let them assume only integer values. We obtain this

by introducing two arrays of Boolean variables as follows.

Firstly, for each job 𝐽𝑘 of 𝜏𝑖 consider the 𝑘-th level-𝑖 busy window, i.e. the time interval defined as

(i) [𝑎𝑘 − 𝐿𝑘 , 𝑓𝑘 ) if 𝛽𝑘−1 = 0, or (ii) [𝑓𝑘−1, 𝑓𝑘 ) if 𝛽𝑘−1 = 1. An example of such intervals is in Figure 2,

where the white boxes are level-𝑖 busy windows as defined for the case (i), while the blue box

identifies one interval for the case (ii). For every such time interval and for each higher priority

task 𝜏 𝑗 , an array Γ𝑓𝑗,𝑘 of boolean variables Γ𝑓𝑗,𝑘 [𝑝] ∈ B, is introduced. The index 𝑝 is relative to the

(higher priority) job activated in the time interval under analysis, i.e. 𝑝 = 1 corresponds to the first

job activated in the interval and so on. The value Γ𝑓𝑗,𝑘 [𝑝] = 1 (active) indicates that the 𝑝-th job of

𝜏 𝑗 in the time interval interferes with 𝐽𝑘 ; otherwise, Γ𝑓𝑗,𝑘 [𝑝] = 0 (inactive, with no interference).

In order to be as general as possible, the number of jobs considered in the array Γ𝑓𝑗,𝑘 must be

sized by considering the largest possible level-𝑖 busy window. A rough upper bound for the size of

the array Γ𝑓𝑗,𝑘 (i.e. the maximum number of job activations of 𝜏 𝑗 in the interval) is

⌈𝑅𝑖+𝑇𝑖+J𝑗−𝑟𝑖
𝑇𝑗

⌉
.

Nevertheless, the number of jobs effectively contributing to the busy window of 𝐽𝑘 may be lower
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Fig. 3. Graphical representation of the interfering jobs of 𝜏 𝑗 for different time windows. Each dot represents
an activation of 𝜏 𝑗 , while the variables in brackets count the number of jobs in the windows.

than this upper bound. As a general rule, if one job considered in the array Γ𝑓𝑗,𝑘 does not interfere
with 𝐽𝑘 , then no later job can interfere. This can be coded as follows.

Constraint 11. If the 𝑝-th element of the array Γ𝑓𝑗,𝑘 corresponds to a job of 𝜏 𝑗 that does not
interfere with 𝐽𝑘 , then no later job can interfere with 𝐽𝑘 , i.e.,

∀𝑗 < 𝑖,∀𝑘, Γ𝑓𝑗,𝑘 [𝑝] ≥ Γ𝑓𝑗,𝑘 [𝑝 + 1] . (11)

Proof. When Γ𝑓𝑗,𝑘 [𝑝] = 1, the next element can be either 0 or 1 without violating the constraint.

If Γ𝑓𝑗,𝑘 [𝑝] = 0, the inequality (11) forces Γ𝑓𝑗,𝑘 [𝑝 + 1] = 0. □

Now, Γ𝑓𝑗,𝑘 can be leveraged to compute the number of jobs of 𝜏 𝑗 interfering with the execution

of 𝐽𝑘 in the 𝑘-th level-𝑖 busy window. We introduce an auxiliary variable Δ 𝑗,𝑘 defined as Δ 𝑗,𝑘 :=∑
𝑝 Γ𝑓𝑗,𝑘 [𝑝], counting the number of jobs that interfere with 𝜏𝑖 in the 𝑘-th level-𝑖 busy window.

Since Δ 𝑗,𝑘 is a sum of Booleans (i.e., of variables that are either 0 or 1), it assumes only integer

values. When 𝛽𝑘−1 = 0, Δ 𝑗,𝑘 = 𝐼 𝑓𝑗,𝑘 − 𝐼𝐿 𝑗,𝑘 , otherwise (𝛽𝑘−1 = 1) Δ 𝑗,𝑘 = 𝐼 𝑓𝑗,𝑘 − 𝐼 𝑓𝑗,𝑘−1. To have a

consistent formulation, we enforce 𝐼𝐿 𝑗,𝑘 = 𝐼 𝑓𝑗,𝑘−1 when 𝛽𝑘−1 = 1 with the following constraint.

Constraint 12. The equivalence 𝐼𝐿 𝑗,𝑘 = 𝐼 𝑓𝑗,𝑘−1 is enforced for the case 𝛽𝑘−1 = 1 by:

∀𝑗 < 𝑖,∀𝑘, −𝑀 · (1 − 𝛽𝑘−1) ≤ 𝐼𝐿 𝑗,𝑘 − 𝐼 𝑓𝑗,𝑘−1 ≤ 𝑀 · (1 − 𝛽𝑘−1). (12)

Note that Constraint 12 is active when Constraint 10 is not active, and viceversa. Then, the

following constraint holds.

Constraint 13. Considering the number of jobs of 𝜏 𝑗 activated in the interval [0, 𝑓𝑘 ), it holds that:

∀𝑗 < 𝑖,∀𝑘, 𝐼𝐿 𝑗,𝑘 + Δ 𝑗,𝑘 = 𝐼 𝑓𝑗,𝑘 . (13)

Consider now the interval [𝑓𝑘−1, 𝑎𝑘 − 𝐿𝑘 ). This interval is meaningful only when 𝛽𝑘−1 = 0,

otherwise it is void. Similarly to Γ𝑓𝑗,𝑘 , given a job 𝐽𝑘 and a higher priority task 𝜏 𝑗 , an array Γ𝐿 𝑗,𝑘
of Boolean variables Γ𝐿 𝑗,𝑘 [𝑞] ∈ B is defined to count the number of jobs of 𝜏 𝑗 inside the interval.

These jobs occur between 𝑓𝑘−1 (thus they do not interfere with 𝐽𝑘−1) and the beginning of the

busy period for 𝐽𝑘 . Here, an active element Γ𝐿 𝑗,𝑘 [𝑞] = 1 indicates that the 𝑞-th job of 𝜏 𝑗 does not

contribute to the busy period of 𝐽𝑘 (it is before the start of its busy period). The size of the array

Γ𝐿 𝑗,𝑘 can be bounded, e.g., by

⌈𝑇𝑖−𝑟𝑖+J𝑗

𝑇𝑗

⌉
, but again the effective number of jobs may be lower. Here,

a value at 0 implies that the corresponding job of 𝜏 𝑗 is already in the busy period for 𝐽𝑘 . When this

happens, all the following values must also be 0. The corresponding constraint then follows.



𝑗 = 1 𝑗 = 2

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝐼 𝑓𝑗,𝑘 3 4 7 1 1 2

𝐼𝐿𝑗,𝑘 0 3 4 0 1 1

Δ 𝑗,𝑘 3 1 3 1 0 1

Λ 𝑗,𝑘 0 0 0 0 0 0

Table 2. Counting higher priority (interfering) jobs for the example of Figure 1

Constraint 14. If the 𝑞-th element of the array Γ𝐿 𝑗,𝑘 corresponds to a job of 𝜏 𝑗 that is already in
the busy period for 𝐽𝑘 , then all the following jobs do contribute to that busy period, i.e.:

∀𝑗 < 𝑖,∀𝑘, Γ𝐿 𝑗,𝑘 [𝑞] ≥ Γ𝐿 𝑗,𝑘 [𝑞 + 1] . (14)

Constraint 14 is valid in both cases of 𝛽𝑘−1 = 0 and 𝛽𝑘−1 = 1. However, when 𝛽𝑘−1 = 1 the

interval [𝑓𝑘−1, 𝑎𝑘 − 𝐿𝑘 ) is void and for all the elements of the array it must be Γ𝐿 𝑗,𝑘 [𝑞] = 0. This is

encoded in a constraint using the big-𝑀 formulation:

Constraint 15. If 𝛽𝑘−1 = 1 all variables Γ𝐿 𝑗,𝑘 [𝑞] are inactive, i.e.:

∀𝑗 < 𝑖,∀𝑘,∀𝑞, Γ𝐿 𝑗,𝑘 [𝑞] ≤ 𝑀 · (1 − 𝛽𝑘−1). (15)

Now, Γ𝐿 𝑗,𝑘 can be leveraged to compute the total number of jobs of 𝜏 𝑗 in the interval [𝑓𝑘−1, 𝑎𝑘−𝐿𝑘 )
that are guaranteed not to interferewith 𝐽𝑘−1 or 𝐽𝑘 .We introduce the auxiliary variableΛ 𝑗,𝑘 , counting
the jobs of 𝜏 𝑗 in [𝑓𝑘−1, 𝑎𝑘 − 𝐿𝑘 ), which is defined as Λ 𝑗,𝑘 :=

∑
𝑞 Γ𝐿 𝑗,𝑘 [𝑞] . The following constraint

then holds.

Constraint 16. Considering two successive intervals [0, 𝑓𝑘−1) and [𝑓𝑘−1, 𝑎𝑘 − 𝐿𝑘 ) when 𝛽𝑘−1 = 0,
it holds that 𝐼 𝑓𝑗,𝑘−1 + Λ 𝑗,𝑘 = 𝐼𝐿 𝑗,𝑘 . This conditional constraint is coded as:

∀𝑗 < 𝑖,∀𝑘, −𝑀 · 𝛽𝑘−1 ≤ 𝐼𝐿 𝑗,𝑘 − 𝐼 𝑓𝑗,𝑘−1 − Λ 𝑗,𝑘 ≤ 𝑀 · 𝛽𝑘−1 (16)

By combining Constraints 13 and 16, both variables 𝐼 𝑓𝑗,𝑘 and 𝐼𝐿 𝑗,𝑘 are constrained to assume

integer values only. A graphical visualization of all the variables counting the interfering tasks is

shown in Figure 3, while a numerical example for the example of Figure 1 is shown in Table 2.

4.2.10 Refining the level-𝑖 idle time in a job window. Consider a job window [𝑎𝑘 , 𝑎𝑘+1) of 𝐽𝑘 , if
𝛽𝑘 = 0 the processor can be possibly idle only in the interval [𝑓𝑘 , 𝑎𝑘+1 − 𝐿𝑘+1). We introduce the

auxiliary variable Θ𝑘 representing the total amount of higher priority workload in that interval,

which can be computed asΘ𝑘 :=
∑
𝑗<𝑖 (𝐼𝐿 𝑗,𝑘+1− 𝐼 𝑓𝑗,𝑘 ) ·𝐶 𝑗 . This variable can be leveraged to compute

the level-i idle time as follows.

Constraint 17. When 𝛽𝑘 = 0, the idle time in the 𝑘-th job window can be computed as 𝜄𝑘 =

𝑎𝑘+1 − 𝐿𝑘+1 − 𝑓𝑘 − Θ𝑘 . This conditional constraint is coded as:

∀𝑘, −𝑀 · 𝛽𝑘 ≤ 𝜄𝑘 + Θ𝑘 − (𝑎𝑘+1 − 𝐿𝑘+1 − 𝑓𝑘 ) ≤ 𝑀 · 𝛽𝑘 . (17)

Trivially, for 𝛽𝑘 = 1 the interval [𝑓𝑘 , 𝑎𝑘+1 − 𝐿𝑘+1) is meaningless and the workload (thanks to

Constraint 12) is Θ𝑘 =
∑
𝑗<𝑖 (𝐼 𝑓𝑗,𝑘 − 𝐼 𝑓𝑗,𝑘 ) ·𝐶 𝑗 = 0.

4.3 Objective Function
The goal of the analysis is to find one combination that gives the maximum number of deadline

misses over 𝐾 activations and compare it with the input constraint (𝑚,𝐾). The total number of



Type Variables Annotations

𝑓𝑘 Finish time of 𝐽𝑘 with execution time 𝐶𝑖 .

𝑠 𝑗,𝑘 Activation time of last job of 𝜏 𝑗 before 𝑓𝑘 .

R 𝐼 𝑓𝑗,𝑘 #jobs of 𝜏 𝑗 within [0, 𝑓𝑘 ).
𝐼𝐿𝑗,𝑘 #jobs of 𝜏 𝑗 within [0, 𝑎𝑘 − 𝐿𝑘 ).
𝐼𝑠𝑠,𝑗,𝑘 #jobs of 𝜏 𝑗 within [0, 𝑠), with 𝑠 ∈ 𝑆𝑘 .
Γ𝑓𝑗,𝑘 [·] Where

∑
𝑝 Γ𝑓𝑗,𝑘 [𝑝] is the #jobs of 𝜏 𝑗 within: 1) [𝑎𝑘 − 𝐿𝑘 , 𝑓𝑘 ) when 𝑘 = 1 or 𝛽𝑘−1 = 0;

2) [𝑓𝑘−1, 𝑓𝑘 ) when 𝑘 > 1 and 𝛽𝑘−1 = 1.

B Γ𝐿𝑗,𝑘 [·] Where

∑
𝑝 Γ𝐿𝑗,𝑘 [𝑝] is #jobs of 𝜏 𝑗 within [𝑓𝑘−1, 𝑎𝑘 − 𝐿𝑘 ), if it exists.

Γ𝑠𝑠,𝑗,𝑘 [·] Where

∑
𝑝 Γ𝑠𝑠 [𝑝] is #jobs of 𝜏 𝑗 within [𝑠, 𝑓𝑘 ).

Table 3. Main variables defined for the job-continue strategy.

deadline misses of 𝐾 consecutive jobs can be easily computed as nM :=
∑
𝑘 𝑏𝑘 . The objective

function is then defined accordingly as follows:

𝑚𝑚𝑎𝑥 = max(nM), (18)

where the value𝑚𝑚𝑎𝑥 is constrained inside the interval [𝑚 + 1, 𝐾]. If a value exist in that range,

the analysis ends and the (𝑚,𝐾) constraint is violated; otherwise, the constraint holds.
If no interval constraint [𝑚+1, 𝐾] is defined, the objective function (18) can be used to implement

an optimization problem that checks an upperbound of the maximum number of deadline misses

for 𝐾 successive activations.

5 FORMULATION FOR JOB-CONTINUE STRATEGY
In this section, the MILP constraints that are specific for the weakly hard analysis of systems with

a job-continue policy are presented. All the variables and constraints in this section complement

the ones of Section 4 to provide the complete formulation.

5.1 MILP Variables and Scheduling Constraints
5.1.1 Bounding the finish time. According to the job-continue strategy, each job executes until

completion. The finish time 𝑓𝑘 ∈ R of each job 𝐽𝑘 of 𝜏𝑖 , is constrained as follows.

Constraint 18. The response time of a job 𝐽𝑘 is bounded between 𝑟𝑖 and 𝑅𝑖 , i.e.,

∀𝑘, 𝑟𝑖 ≤ 𝑓𝑘 − 𝑎𝑘 ≤ 𝑅𝑖 . (19)

For any two consecutive jobs of 𝜏𝑖 , the following precedence constraint holds.

Constraint 19. The time interval between two consecutive finish times is bounded as follows:

∀𝑘, 𝐶𝑖 ≤ 𝑓𝑘+1 − 𝑓𝑘 ≤ 𝑇𝑖 + 𝑅𝑖 + J𝑖 − 𝑟𝑖 . (20)

Proof. Since each job of 𝜏𝑖 executes for𝐶𝑖 time units, the lower bound trivially holds. The upper

bound follows from the fact that the earliest completion time for 𝐽𝑘 is when it is released without

jitter and has its shortest response time 𝑟𝑖 . The latest finish time for 𝐽𝑘+1 is when it is released with

maximum jitter and completes with its WCRT (i.e., 𝑇𝑖 + J𝑖 + 𝑅𝑖 time units after 𝑎𝑘 ). □

5.1.2 Schedulability of 𝐽𝑘 . The finish time 𝑓𝑘 of each each job 𝐽𝑘 must be compared with its

(absolute) deadline 𝑑𝑘 , computed as 𝑑𝑘 = 𝐿1+ (𝑘−1)𝑇𝑖 +𝐷𝑖 , to check its schedulability. As introduced
in Section 4.2.5, a Boolean variable 𝑏𝑘 is used to model a deadline miss event. Considering the



job-continue strategy, the value of 𝑏𝑘 can be defined as follows:

𝑏𝑘 =

{
0 if 𝑓𝑘 ≤ 𝑑𝑘 ;
1 otherwise.

Leveraging the big-M technique, the value of 𝑏𝑘 is then encoded by the following linear constraint.

Constraint 20. The variable 𝑏𝑘 representing the event of missed deadline for 𝐽𝑘 is encoded as:

∀𝑘, −𝑀 · 𝑏𝑘 ≤ 𝑑𝑘 − 𝑓𝑘 < 𝑀 · (1 − 𝑏𝑘 ). (21)

5.1.3 Computing 𝑓𝑘 . The finish time 𝑓𝑘 of a job 𝐽𝑘 is computed using a relaxation of Equation (5),

as presented in the following constraint.

Constraint 21. The value of the finish time of 𝐽𝑘 satisfies the following equality:

∀𝑘,
∑
𝑗<𝑖

𝐼 𝑓𝑗,𝑘 ·𝐶 𝑗 + 𝑘 ·𝐶𝑖 +
∑
𝑘′<𝑘

𝜄𝑘′ = 𝑓𝑘 . (22)

Indeed, Equation (22) allows for multiple solutions, where the exact response time is the lowest

such solution 𝑓𝑘 , and all the others are conservative upper bounds. Using such an equation is

computationally efficient, but may result in a pessimistic estimate of 𝑓𝑘 (and thus of the number

of missed deadlines) since the optimizer is free to select any solution that satisfies Equation (22).

Additional constraints are presented later in Section 5.2, when a more refined formulation is

required, together with a more detailed discussion on the related issues and benefits.

5.1.4 Computing 𝑎𝑘−𝐿𝑘 . Similar to the computation of 𝑓𝑘 , the time instant 𝑎𝑘−𝐿𝑘 , which represents
the start of the busy period for 𝐽𝑘 (when 𝛽𝑘 = 0), can be formulated as the sum of multiple executions

of interfering jobs and idle times. This is expressed by the following constraint.

Constraint 22. The value of the time instant 𝑎𝑘 − 𝐿𝑘 (which is meaningful only when 𝛽𝑘−1 = 0)
satisfies the following inequalities:

∀𝑘, −𝑀 · 𝛽𝑘−1 ≤
∑
𝑗<𝑖

𝐼𝐿 𝑗,𝑘 ·𝐶 𝑗 + (𝑘 − 1) ·𝐶𝑖 +
∑
𝑞<𝑘

𝜄𝑞 − (𝑎𝑘 − 𝐿𝑘 ) ≤ 𝑀 · 𝛽𝑘−1. (23)

5.1.5 Busy period. If 𝐽𝑘−1 does not interfere with the execution of 𝐽𝑘 (i.e., 𝛽𝑘−1 = 0), then [𝑎𝑘−𝐿𝑘 , 𝑓𝑘 )
is the 𝑘-th busy period. The total workload from higher priority tasks in [𝑎𝑘 − 𝐿𝑘 , 𝑓𝑘 ) is defined as

Φ𝑘 :=
∑
𝑗<𝑖 (𝐼 𝑓𝑗,𝑘 − 𝐼𝐿 𝑗,𝑘 ) ·𝐶 𝑗 , and the relation 𝑓𝑘 − (𝑎𝑘 − 𝐿𝑘 ) = Φ𝑘 +𝐶𝑖 follows directly. The MILP

formulation of the latter equation follows.

Constraint 23. The busy period of the 𝑘-th job window, conditional to the case of 𝛽𝑘−1 = 0,
satisfies the following inequalities:

∀𝑘 > 1, −𝑀 · 𝛽𝑘−1 ≤ Φ𝑘 +𝐶𝑖 − 𝑓𝑘 + 𝑎𝑘 − 𝐿𝑘 ≤ 𝑀 · 𝛽𝑘−1. (24)

For the case of 𝛽𝑘−1 = 1 we consider the interval [𝑓𝑘−1, 𝑓𝑘 ) as the 𝑘-th busy period. The total

amount of workload from higher priority tasks in the interval is then Φ′
𝑘
:=

∑
𝑗<𝑖 (𝐼 𝑓𝑗,𝑘 − 𝐼 𝑓𝑗,𝑘−1) ·𝐶 𝑗 ,

and it holds that 𝑓𝑘 − 𝑓𝑘−1 = Φ′
𝑘
+𝐶𝑖 . As for the previous case, the MILP constraint follows.

Constraint 24. The busy period of the 𝑘-th job window, conditional to the case of 𝛽𝑘−1 = 1,
satisfies the following inequalities:

∀𝑘 > 1, −𝑀 · (1 − 𝛽𝑘−1) ≤ Φ′
𝑘
+𝐶𝑖 − 𝑓𝑘 + 𝑓𝑘−1 ≤ 𝑀 · (1 − 𝛽𝑘−1). (25)

Given a value for 𝛽𝑘−1, only one between Constraints 23 and 24 can be active.
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Fig. 4. An example of possible wrong values of 𝑓1 for 𝜏4 obtained solving equation (22).

5.2 Additional Constraints: Refining the Formulation of the Finish Time
As previously introduced, formulating the minimization problem of (5) using only Constraint 21

can result in an excessively pessimistic evaluation for the weakly hard analysis. An example of

what may happen is shown in Figure 4. Consider the computation of the finish time 𝑓1 of the first

job of task 𝜏4. The correct termination instant 𝑓1 is indicated with a blue arrow. However, equation

(22) is also satisfied by all the time instants indicated by the red arrows in the figure.

Unfortunately, since the weakly hard analysis is looking for the condition that produces the

worst-case number of deadline misses in a problem window, the optimizer will select the maximum
𝑓𝑘 value satisfying (22), if that value exceeds the deadline of 𝐽𝑘 . Clearly, this introduces pessimism

in the analysis, resulting in a larger worst-case number of deadline misses𝑚. In order to limit this

pessimism, and produce tighter (𝑚,𝐾) bounds, additional constraints must be defined.

Lehockzy et al. [21] provided an alternative test for schedulability. The test requires finding at

least one time interval starting at the activation of the task under analysis 𝜏 𝑗 and before its deadline

such that the available time (the interval length) is greater than or equal to the time required for

completing the execution of the task and all higher priority tasks. The endpoints of the intervals to

be considered belong to a finite set and correspond to the activation instants of all higher priority

tasks from the activation of 𝜏 𝑗 to its deadline. These points are also the local minima of the function

(5). It follows that the minimum value of 𝑓𝑘 can be found by enforcing equation (22) and checking

that there is no activation instant of any possible interfering task 𝜏 𝑗 happening before 𝑓𝑘 that

satisfies the condition in [21].

Implementing this check would require the introduction of a high number of variables in the

formulation, greatly impacting the runtime [41]. However, the results of the recent work in [27]

show how a feasibility analysis performed on a carefully chosen small subset of interval endpoints

still results in an accurate evaluation of the feasibility condition. Inspired by this result, we define

a necessary but not sufficient condition for non-schedulability, obtained by considering only the

last activation instant before 𝑓𝑘 of each higher priority task. We achieve this by introducing an

additional set of constraints that are leveraged for computing a much better approximation for the

correct (minimum solution) value of 𝑓𝑘 .

5.2.1 Constraints on the last interfering jobs for 𝐽𝑘 . For each 𝐽𝑘 and each higher priority task

𝜏 𝑗 , the variable 𝑠 𝑗,𝑘 is introduced to define the activation instant of the last interfering job of 𝜏 𝑗 ,

happening before 𝑓𝑘 . In case there is no jitter, these activation instants can be properly computed

as 𝑠 𝑗,𝑘 = (𝐼 𝑓𝑗,𝑘 − 1) ·𝑇𝑗 + 𝛼 𝑗 , while in the general case of J𝑗 > 0 each 𝑠 𝑗,𝑘 is constrained as follows.



Constraint 25. The time interval between 𝛼 𝑗 and 𝑠 𝑗,𝑘 is bounded as:

∀𝑗 < 𝑖,∀𝑘, (𝐼 𝑓𝑗,𝑘 − 1) ·𝑇𝑗 − J𝑗 ≤ 𝑠 𝑗,𝑘 − 𝛼 𝑗 ≤ (𝐼 𝑓𝑗,𝑘 − 1) ·𝑇𝑗 + J𝑗 . (26)

The job of 𝜏 𝑗 (with 𝑗 < 𝑖) that starts at a time 𝑠 𝑗,𝑘 < 𝑓𝑘 will finish before 𝑓𝑘 due to priority

ordering. This is enforced by the following constraint.

Constraint 26. The interval between 𝑠 𝑗,𝑘 and 𝑓𝑘 is bounded as:

∀𝑗 < 𝑖,∀𝑘, 𝑟 𝑗 < 𝑓𝑘 − 𝑠 𝑗,𝑘 ≤ 𝑇𝑗 + J𝑗 . (27)

Proof. As 𝜏 𝑗 starting at 𝑠 𝑗,𝑘 must finish before 𝑓𝑘 , then trivially 𝑓𝑘 − 𝑠 𝑗,𝑘 > 𝑟 𝑗 . On the other hand,

if 𝑓𝑘 − 𝑠 𝑗,𝑘 > 𝑇𝑗 + J𝑗 , this means that another activation of 𝜏 𝑗 occurs before 𝑓𝑘 , contradicting the

definition of 𝑠 𝑗,𝑘 , thus the bound follows. □

The set of all 𝑠 𝑗,𝑘 ∀𝑗 < 𝑖 for the 𝑘-th activation 𝐽𝑘 is denoted as 𝑆𝑘 . Given an element 𝑠 ∈ 𝑆𝑘 , the
number of job instances of 𝜏 𝑗 within the interval [0, 𝑠) is an integer number defined as 𝐼𝑠𝑠,𝑗,𝑘 . As

for 𝐼 𝑓𝑗,𝑘 and 𝐼𝐿 𝑗,𝑘 , we relax 𝐼𝑠𝑠,𝑗,𝑘 to real values, and the ceiling function is linearized as follows.

Constraint 27. The number 𝐼𝑠𝑠,𝑗,𝑘 of jobs of 𝜏 𝑗 activated in the window [0, 𝑠) is bounded as:

∀𝑠,∀𝑗 < 𝑖,∀𝑘,
𝑠 − 𝛼 𝑗 − J𝑗

𝑇𝑗
≤ 𝐼𝑠𝑠,𝑗,𝑘 <

𝑠 − 𝛼 𝑗 + J𝑗
𝑇𝑗

+ 1. (28)

Then, we define an array of Boolean variables Γ𝑠𝑠,𝑗,𝑘 [𝑝] ∈ B that counts the number of jobs of 𝜏 𝑗

inside the interval [𝑠, 𝑓𝑘 ). An upper bound for the size of Γ𝑠𝑠,𝑗,𝑘 is
⌈
𝑇𝑖+J𝑖
𝑇𝑗

⌉
. Once again, the number

of jobs effectively interfering may be lower than this upper bound. Γ𝑠𝑠,𝑗,𝑘 [𝑝] = 1 indicates that

the 𝑝-th job activation of 𝜏 𝑗 in the specified time interval can interfere with the execution of 𝐽𝑘
(the 𝑝-th job is activated before 𝐽𝑘 completes, otherwise, Γ𝑠𝑠,𝑗,𝑘 [𝑝] = 0). An element with 0 value

implies that all the following elements are also valued at 0 (if a job does not interfere, neither the

following jobs of the same task will do). This is encoded in the following constraint.

Constraint 28. If the 𝑝-th element of the array Γ𝑠𝑠,𝑗,𝑘 corresponds to a job of 𝜏 𝑗 that does not
interfere with 𝐽𝑘 , then no later job can interfere with 𝐽𝑘 , i.e.,

∀𝑠,∀𝑗 < 𝑖,∀𝑘, Γ𝑠𝑠,𝑗,𝑘 [𝑝] ≥ Γ𝑠𝑠,𝑗,𝑘 [𝑝 + 1] . (29)

The total number of activations of jobs of 𝜏 𝑗 , interfering with the execution of 𝐽𝑘 in [𝑠, 𝑓𝑘 ) is then
introduced as Δ𝑠𝑠,𝑗,𝑘 :=

∑
𝑝 Γ𝑠𝑠,𝑗,𝑘 [𝑝], and the constraint to enforce 𝐼𝑠𝑠,𝑗,𝑘 follows.

Constraint 29. Considering two successive intervals [0, 𝑠) and [𝑠, 𝑓𝑘 ), it holds that:
∀𝑠,∀𝑗 < 𝑖,∀𝑘, 𝐼𝑠𝑠,𝑗,𝑘 + Δ𝑠𝑠,𝑗,𝑘 = 𝐼 𝑓𝑗,𝑘 . (30)

Finally, the non-schedulability condition for every time instant 𝑠 ∈ 𝑆𝑘 is obtained by enforcing

that the time required for the execution of the task 𝜏𝑖 and all the interfering jobs is greater than the

time available in the interval ending in 𝑠 .

Constraint 30. The non schedulability condition for 𝑠 ∈ 𝑆𝑘 is enforced by the bound:

∀𝑠,∀𝑗 < 𝑖,∀𝑘,
∑
𝑗<𝑖

𝐼𝑠𝑠,𝑗,𝑘 ·𝐶 𝑗 + 𝑘 ·𝐶𝑖 +
∑
𝑘′<𝑘

𝜄𝑘′ > 𝑠 . (31)

Proof. First of all, note that the left side of inequality (31) is equivalent to the one of Equation (22)

when computed for the point 𝑠 instead of 𝑓𝑘 . Since the correct value of 𝑓𝑘 must be the minimal
solution of Equation (22), this means that no other instants before 𝑓𝑘 exist that satisfy that equation.

Then, since by definition 𝑠 < 𝑓𝑘 , ∀𝑠 ∈ 𝑆𝑘 , the inequality (31) must hold. □



Type Variables Annotations

𝛿𝑘 Execution time of 𝐽𝑘 .

𝑓𝑘 Finish time of 𝐽𝑘 , with execution time 𝛿𝑘 .

R 𝑓 𝜀
𝑘

Finish time of 𝐽𝑘 , with execution time 𝛿𝑘 + 𝜀.
𝑠𝜀
𝑗,𝑘

Activation time of last job of 𝜏 𝑗 before 𝑓
𝜀
𝑘
.

𝐼 𝑓 𝜀
𝑗,𝑘

#jobs of 𝜏 𝑗 within [0, 𝑓 𝜀
𝑘
).

𝐼𝑠𝜀
𝑠,𝑗,𝑘

#jobs of 𝜏 𝑗 within [0, 𝑠), with 𝑠 ∈ 𝑆𝜀
𝑘
.

B Γ𝑓 𝜀
𝑗,𝑘

[·] ∑
𝑝 Γ𝑓

𝜀
𝑗,𝑘

[𝑝] is #jobs of 𝜏 𝑗 within: [𝑎𝑘 − 𝐿𝑘 , 𝑓 𝜀𝑘 ).
Γ𝑠𝜀
𝑠,𝑗,𝑘

[·] ∑
𝑝 Γ𝑠

𝜀
𝑠,𝑗,𝑘

[𝑝] is #jobs of 𝜏 𝑗 within [𝑠, 𝑓 𝜀
𝑘
).

Table 4. Main variables defined for the job-kill strategy.

Consider again the example of Figure 4. If one of the incorrect finish times marked with a red

arrow is considered as a solution for 𝑓𝑘 , then at least one value 𝑠 ∈ 𝑆𝑘 (namely, the activation times

of the second jobs of 𝜏1 and 𝜏3 in the figure) exists such that inequality (31) does not hold. In this

way, the two incorrect finish times marked in red are discarded.

5.2.2 Computational complexity. By checking only the points in 𝑆𝑘 we can leverage a trade-off

between precision and computational complexity of the MILP algorithm. This check prevents the

pessimistic evaluation of 𝑓𝑘 as a possible non-minimal solution of the fixed point response time

equation (such as in the case presented in Figure 4). Our experiments show how the use of 𝑆𝑘 is

very effective in refining the bounds on the worst-case number of deadline misses, at the cost of a

higher but still acceptable runtime for the weakly hard analysis. More details are provided in the

experimental evaluation in Section 7.

6 FORMULATION FOR THE JOB-KILL STRATEGY
This section presents the weakly hard analysis under the job-kill strategy, i.e. when the execution of

a job is immediately terminated when it misses its deadline. The immediate termination condition

requires a set of different constraints, since the effective execution time of a task varies with respect

to a possible deadline miss, i.e., a job that misses a deadline executes only partially. This means

that only the processed execution before the deadline must be taken into account. In the following,

the variables and constraints of the MILP formulation that are specific for the job-kill strategy are

introduced. Again, these constraints complement the ones introduced in Section 4. In this analysis,

we assume that all the tasks with priorities higher than 𝜏𝑖 always execute with their total execution

time. Note that this a safe assumption with respect to the response time of 𝜏𝑖 (since some of them

may be terminated early because of a missed deadline).

6.1 MILP Variables and Constraints
For the job-kill case a set of new variables are defined, summarized in Table 4. In the following, the

relative constraints are presented.

6.1.1 Bounding the finish time. When using the job-kill strategy, the finish time of job 𝐽𝑘 must

be computed considering only the processed execution of 𝐽𝑘 before the deadline. The amount of

processed execution is defined as 𝛿𝑘 , where 0 ≤ 𝛿𝑘 ≤ 𝐶𝑖 . A first constraint then follows.

Constraint 31. The finish time of a job 𝐽𝑘 under job-kill strategy is bounded by its deadline, i.e.:

∀𝑘, 0 ≤ 𝑓𝑘 − 𝐿1 − (𝑘 − 1) ·𝑇𝑖 ≤ 𝐷𝑖 . (32)



Since 𝐷𝑖 ≤ 𝑇𝑖 , no self-interference may happen when using the job-kill strategy. This means that

𝐿𝑘 is always well-defined for all 𝐽𝑘 . This is enforced by the following constraint.

Constraint 32. Under job-kill strategy, 𝑓𝑘 ≤ 𝑎𝑘+1 always hold, thus it must hold that:

∀𝑘, 𝛽𝑘 = 0 (33)

6.1.2 Schedulability of 𝐽𝑘 . The Boolean variable 𝑏𝑘 introduced in Section 4.2.5 is used to evaluate

the effect of deadline misses. By leveraging this variable, when the condition 𝑏𝑘 = 0 holds (no

deadline miss), the 𝑘-th job executes entirely, and the condition 𝛿𝑘 = 𝐶𝑖 must be enforced. On the

other hand, when 𝑏𝑘 = 1, only partial execution occurs, thus 0 ≤ 𝛿𝑘 < 𝐶𝑖 . By introducing 𝜀 as an

arbitrary small positive value, this is coded in MILP constraints as follows.

Constraint 33. The bounds on 𝛿𝑘 , related to the value of 𝑏𝑘 , are coded as:

∀𝑘 (1 − 𝑏𝑘 ) ·𝐶𝑖 ≤ 𝛿𝑘 ≤ 𝐶𝑖 − 𝜀 · 𝑏𝑘 . (34)

In order to guarantee that the correct value of 𝛿𝑘 is computed when partial execution occurs, we

impose that if 𝛿𝑘 is increased by an arbitrarily small amount 𝜀, the finish time cannot be less than

the deadline. Note that, from a practical point of view, it is sufficient to consider 𝜀 equal to the time

granularity of the system (tick). Another finish time variable 𝑓 𝜀
𝑘
is then introduced for each job 𝐽𝑘 ,

and is computed considering an execution time of (𝛿𝑘 +𝑏𝑘 · 𝜀). We refer to 𝑓 𝜀
𝑘
as the extended finish

time. The value of 𝑓 𝜀
𝑘
is limited by the following constraints.

Constraint 34. The interval between 𝑎𝑘 and 𝑓 𝜀𝑘 is bounded as:

∀𝑘, 0 ≤ 𝑓 𝜀
𝑘
− 𝑎𝑘 ≤ 𝑅𝑖 , and 𝑓 𝜀

𝑘
≥ 𝑓𝑘 . (35)

The introduction of 𝑓 𝜀
𝑘
is meaningful only when the 𝑘-th deadline is missed (𝑏𝑘 = 1). Otherwise,

we force 𝑓 𝜀
𝑘
= 𝑓𝑘 . In MILP notation, the following constraint for 𝑓 𝜀

𝑘
holds.

Constraint 35. When 𝑏𝑘 = 1, 𝑓 𝜀
𝑘
lies after the deadline, while when 𝑏𝑘 = 0, 𝑓 𝜀

𝑘
lies within the

deadline (since it is equal to 𝑓𝑘 ). This conditional constraint is coded as:

∀𝑘, −𝑀 · 𝑏𝑘 ≤ 𝐿1 + (𝑘 − 1) ·𝑇𝑖 + 𝐷𝑖 − 𝑓 𝜀𝑘 < 𝑀 · (1 − 𝑏𝑘 ). (36)

6.1.3 Number of interfering jobs from higher priority tasks. The number of higher priority jobs

executing within the extended finish time 𝑓 𝜖
𝑘
can be computed using the same approach presented

in Section 4.2.8. In particular, we define the number of jobs of 𝜏 𝑗 in the interval [0, 𝑓 𝜀
𝑘
) as a value

𝐼 𝑓 𝜀
𝑗,𝑘

∈ R constrained by

⌈ 𝑓 𝜀
𝑘
−𝛼 𝑗−J𝑗

𝑇𝑗

⌉
≤ 𝐼 𝑓 𝜀

𝑗,𝑘
≤
⌈ 𝑓 𝜀

𝑘
−𝛼 𝑗+J𝑗

𝑇𝑗

⌉
, and approximated as follows.

Constraint 36. The number 𝐼 𝑓 𝜀
𝑗,𝑘

of jobs of 𝜏 𝑗 activated in the window [0, 𝑓 𝜀
𝑘
) is bounded as:

∀𝑗 < 𝑖,∀𝑘,
𝑓 𝜀
𝑘
− 𝛼 𝑗 − J𝑗
𝑇𝑗

≤ 𝐼 𝑓 𝜀
𝑗,𝑘

<
𝑓 𝜀
𝑘
− 𝛼 𝑗 + J𝑗
𝑇𝑗

+ 1. (37)

Since 𝑓𝑘 ≤ 𝑓 𝜀
𝑘
, the condition 𝐼 𝑓𝑗,𝑘 ≤ 𝐼 𝑓 𝜀

𝑗,𝑘
always holds. Again, for computational efficiency, we

have relaxed 𝐼 𝑓 𝜀
𝑗,𝑘

to be a real value. We introduce an array of Boolean variables Γ𝑓 𝜀
𝑗,𝑘
[𝑝] ∈ B

that counts the number of jobs of 𝜏 𝑗 inside the time interval [𝑎𝑘 − 𝐿𝑘 , 𝑓 𝜀𝑘 ). The value Γ𝑓
𝜀
𝑗,𝑘
[𝑝] = 1

indicates that the 𝑝-th job of 𝜏 𝑗 in the time interval interferes with 𝐽𝑘 ; otherwise, Γ𝑓𝑗,𝑘 [𝑝] = 0. A

rough bound for its size is

⌈
𝑇𝑖+𝑅𝑖+J𝑖

𝑇𝑗

⌉
, but the number of jobs effectively contributing to the busy

window of 𝐽𝑘 may be lower. The propagation of 0 values is enforced in MILP formulation as follows.

Constraint 37. If the 𝑝-th element of the array Γ𝑓 𝜀
𝑗,𝑘

corresponds to a job of 𝜏 𝑗 that does not
interfere with 𝐽𝑘 , then no later job can interfere with 𝐽𝑘 , i.e.:

∀𝑗 < 𝑖,∀𝑘, Γ𝑓 𝜀
𝑗,𝑘
[𝑝] ≥ Γ𝑓 𝜀

𝑗,𝑘
[𝑝 + 1] . (38)



The total number of activations of jobs of 𝜏 𝑗 interfering with the execution of 𝐽𝑘 in [𝑎𝑘 − 𝐿𝑘 , 𝑓 𝜀𝑘 )
is Δ𝜀

𝑗,𝑘
:=

∑
𝑝 Γ𝑓

𝜀
𝑗,𝑘
[𝑝] . The following constraint is enforced to restore the integer values of 𝐼 𝑓 𝜀

𝑗,𝑘
.

Constraint 38. Considering two successive intervals [0, 𝑎𝑘 − 𝐿𝑘 ) and [𝑎𝑘 − 𝐿𝑘 , 𝑓 𝜀𝑘 ), it holds that:
∀𝑗 < 𝑖,∀𝑘, 𝐼𝐿 𝑗,𝑘 + Δ𝜀

𝑗,𝑘
= 𝐼 𝑓 𝜀

𝑗,𝑘
. (39)

Then, considering the interval [𝑓 𝜀
𝑘−1, 𝑎𝑘 − 𝐿𝑘 ), an array Γ𝐿𝜀

𝑗,𝑘
of Boolean variables Γ𝐿𝜀

𝑗,𝑘
[𝑞]

is introduced to count the jobs of 𝜏 𝑗 in the interval. The bound for Γ𝐿 𝑗,𝑘 is

⌈
𝑇𝑖−𝐷𝑖+J𝑖

𝑇𝑗

⌉
, and the

propagation of 0 values is enforced as follows.

Constraint 39. If the 𝑞-th element of the array Γ𝐿𝜀
𝑗,𝑘

corresponds to a job of 𝜏 𝑗 that is already in
the busy period for 𝐽𝑘 , then all the following jobs do contribute to that busy period, i.e.:

∀𝑗 < 𝑖,∀𝑘, Γ𝐿𝜀
𝑗,𝑘
[𝑞] ≥ Γ𝐿𝜀

𝑗,𝑘
[𝑞 + 1] (40)

The total number of jobs of 𝜏 𝑗 in [𝑓 𝜀
𝑘−1, 𝑎𝑘 − 𝐿𝑘 ) is computed as Λ𝜀

𝑗,𝑘
:=

∑
𝑞 Γ𝐿

𝜀
𝑗,𝑘
[𝑞] . and is used

to restore the integer values of 𝐼𝐿 𝑗,𝑘 by means of the following constraint.

Constraint 40. Considering two successive intervals [0, 𝑓 𝜀
𝑘−1) and [𝑓 𝜀

𝑘−1, 𝑎𝑘 − 𝐿𝑘 ), it holds that:
∀𝑗 < 𝑖,∀𝑘, 𝐼 𝑓 𝜀

𝑗,𝑘−1 + Λ𝜀
𝑗,𝑘

= 𝐼𝐿 𝑗,𝑘 . (41)

6.1.4 Computing 𝑓𝑘 and 𝑓 𝜀𝑘 . The finish time formulation for each job 𝐽𝑘 can be computed similarly

to the job-continue case presented in Section 5.1.3. The time interval [0, 𝑓𝑘 ) consists of multiple

busy periods and processor idle times, and the contribution of each job 𝐽𝑘′ with 𝑘
′ ≤ 𝑘 is equal to

its processed execution time 𝛿𝑘′ . This can be efficiently coded as the following constraint.

Constraint 41. The value of the finish time of 𝐽𝑘 satisfies the following equality:

∀𝑘,
∑
𝑗<𝑖

𝐼 𝑓𝑗,𝑘 ·𝐶 𝑗 +
∑
𝑘′≤𝑘

𝛿𝑘′ +
∑
𝑘′<𝑘

𝜄𝑘′ = 𝑓𝑘 . (42)

The term

∑
𝑗<𝑖 𝐼 𝑓𝑗,𝑘 · 𝐶 𝑗 assumes that all higher priority tasks execute fully with 𝐶 𝑗 . This is a

conservative assumption with respect to the weakly hard analysis of 𝜏𝑖 (increasing the interference

cannot reduce the number of deadline misses suffered by 𝜏𝑖 ).

A similar constraint is formulated for the extended finish time 𝑓 𝜀
𝑘
.

Constraint 42. The value of the extended finish time of 𝐽𝑘 satisfies the following equality:

∀𝑘,
∑
𝑗<𝑖

𝐼 𝑓 𝜀
𝑗,𝑘

·𝐶 𝑗 +
∑
𝑘′≤𝑘

𝛿𝑘′ + 𝑏𝑘 · 𝜀 +
∑
𝑘′<𝑘

𝜄𝑘′ = 𝑓
𝜀
𝑘
. (43)

The extra term 𝑏𝑘 · 𝜀 only needs to be considered for the 𝑘-th step, as the effective execution time

for all jobs with index 𝑘 ′ < 𝑘 is equal to 𝛿𝑘′ . As discussed in Section 5.1.3, the formulation of both

𝑓𝑘 and 𝑓
𝜀
𝑘
without the minimization term is computationally efficient but may result in excessive

pessimism. Additional constraints to overcome this issue are presented in Section 6.2.

6.1.5 Computing 𝑎𝑘 − 𝐿𝑘 . Similarly, the time instant 𝑎𝑘 − 𝐿𝑘 , which represents the start of the

busy period for the job 𝐽𝑘 and is always well-defined for the job-kill strategy, can be formulated as

the sum of multiple interfering jobs and idle times. This is expressed as the following constraint.

Constraint 43. The value of the time instant 𝑎𝑘 − 𝐿𝑘 satisfies the following equality:

∀𝑘,
∑
𝑗<𝑖

𝐼𝐿 𝑗,𝑘 ·𝐶 𝑗 +
∑
𝑘′<𝑘

𝛿𝑘′ +
∑
𝑘′<𝑘

𝜄𝑘′ = 𝑎𝑘 − 𝐿𝑘 . (44)



6.1.6 Busy period for job 𝐽𝑘 . Considering the finish time 𝑓𝑘 , the total workload from higher priority

tasks in the busy period [𝑎𝑘 −𝐿𝑘 , 𝑓𝑘 ) is defined as Φ𝑘 :=
∑
𝑗<𝑖 (𝐼 𝑓𝑗,𝑘 − 𝐼𝐿 𝑗,𝑘 ) ·𝐶 𝑗 . The MILP constraint

directly follows.

Constraint 44. The busy period in the interval [𝑎𝑘 − 𝐿𝑘 , 𝑓𝑘 ) satisfies the following equality:
∀𝑘, Φ𝑘 + 𝛿𝑘 = 𝑓𝑘 − (𝑎𝑘 − 𝐿𝑘 ). (45)

The same reasoning holds when considering 𝑓 𝜀
𝑘
and its corresponding busy period [𝑎𝑘−𝐿𝑘 , 𝑓 𝜀𝑘 ). By

introducing the workload from higher priority tasks in that interval as Φ𝜀
𝑘
:=

∑
𝑗<𝑖 (𝐼 𝑓 𝜀𝑗,𝑘 − 𝐼𝐿 𝑗,𝑘 ) ·𝐶 𝑗 ,

the following constraint is enforced.

Constraint 45. The busy period in the interval [𝑎𝑘 − 𝐿𝑘 , 𝑓 𝜀𝑘 ) satisfies the following equality:
∀𝑘, Φ𝜀

𝑘
+ 𝛿𝑘 + 𝑏𝑘 · 𝜀 = 𝑓 𝜀𝑘 − (𝑎𝑘 − 𝐿𝑘 ). (46)

6.2 Additional Constraints: Refining the Formulation of Extended Finish Time
As discussed for the job-continue case (see Section 5.2 for more details) additional constraints are

required to reduce the pessimism in the computation of the finish time for the job-kill case. A set

of constraints on the extended finish time 𝑓 𝜀
𝑘
are defined in the following. Since the variable 𝑓𝑘

is upper bounded by the job deadline (in Equation (32)) and by the value of 𝑓 𝜀
𝑘
(in Eq. (35)), any

feasible value for 𝑓 𝜀
𝑘
will ensure that also the upper bound 𝑓𝑘 is lower than or equal to the deadline.

6.2.1 Constraints on the last interfering jobs for 𝐽𝑘 . Consider the activation instant of the last

interfering job of each higher priority task 𝜏 𝑗 , before the extended finish time 𝑓 𝜀
𝑘
. These points

in time are defined as 𝑠𝜀
𝑗,𝑘
. In case of no jitter, these activation instants can be computed as 𝑠𝜀

𝑗,𝑘
=

(𝐼 𝑓 𝜀
𝑗,𝑘

− 1) ·𝑇𝑗 + 𝛼 𝑗 , and in the general case each 𝑠𝜀
𝑗,𝑘

is constrained as follows.

Constraint 46. The time interval between 𝛼 𝑗 and 𝑠𝜀𝑗,𝑘 is bounded as:

∀𝑗 < 𝑖,∀𝑘, (𝐼 𝑓 𝜀
𝑗,𝑘

− 1) ·𝑇𝑗 − J𝑗 ≤ 𝑠𝜀𝑗,𝑘 − 𝛼 𝑗 ≤ (𝐼 𝑓 𝜀
𝑗,𝑘

− 1) ·𝑇𝑗 + J𝑗 . (47)

The job of 𝜏 𝑗 activated at 𝑠
𝜀
𝑗,𝑘

finishes before 𝑓𝑘 due to priority ordering and is enforced as follows.

Constraint 47. The time interval between 𝑠𝜀
𝑗,𝑘

and 𝑓 𝜀
𝑘
is bounded as:

∀𝑗 < 𝑖,∀𝑘, 𝑟 𝑗 < 𝑓 𝜀
𝑘
− 𝑠𝜀

𝑗,𝑘
≤ 𝑇𝑗 + J𝑗 . (48)

The set of 𝑠𝜀
𝑗,𝑘

∀𝑗 < 𝑖 is denoted as 𝑆𝜀
𝑘
, and the number of job instances 𝐼𝑠𝜀

𝑠,𝑗,𝑘
in the interval [0, 𝑠),

with 𝑠 ∈ 𝑆𝜀
𝑘
, is constrained as follows.

Constraint 48. The number 𝐼𝑠𝜀
𝑠,𝑗,𝑘

of jobs of 𝜏 𝑗 activated in the window [0, 𝑠) is bounded as:

∀𝑠,∀𝑗 < 𝑖,∀𝑘,
𝑠 − 𝛼 𝑗 − J𝑗

𝑇𝑗
≤ 𝐼𝑠𝜀

𝑠,𝑗,𝑘
<
𝑠 − 𝛼 𝑗 + J𝑗

𝑇𝑗
+ 1. (49)

Following the same approach as for the other cases, 𝐼𝑠𝜀
𝑠,𝑗,𝑘

is relaxed as a real variable and an

array of Boolean variables Γ𝑠𝜀
𝑠,𝑗,𝑘

[𝑝] ∈ B is defined, with a rough upper bound of

⌈
𝑇𝑖+J𝑖
𝑇𝑗

⌉
. Here,

Γ𝑠𝜀
𝑠,𝑗,𝑘

[𝑝] = 1 indicates that the 𝑝-th job activation of 𝜏 𝑗 in [𝑠, 𝑓 𝜀
𝑘
) interferes with the execution of

𝐽𝑘 ; otherwise, Γ𝑠
𝜀
𝑠,𝑗,𝑘

[𝑝] = 0. The following constraint guarantees the propagation of 0 values.

Constraint 49. If the 𝑝-th element of the array Γ𝑠𝜀
𝑠,𝑗,𝑘

corresponds to a job of 𝜏 𝑗 that does not
interfere with 𝐽𝑘 , then no later job can interfere with 𝐽𝑘 , i.e.,

∀𝑠,∀𝑗 < 𝑖,∀𝑘, Γ𝑠𝜀
𝑠,𝑗,𝑘

[𝑝] ≥ Γ𝑠𝜀
𝑠,𝑗,𝑘

[𝑝 + 1] . (50)



Job-continue (1, 3) Job-continue (2, 5) Job-kill (1, 3) Job-kill (2, 5)
n Av.(s) Cnf n/a Av.(s) Cnf n/a Av.(s) Cnf n/a Av.(s) Cnf n/a

5 0.10 49.75% 0% 0.29 63.25% 0% 0.15 65% 0% 0.19 83% 0%

10 0.33 34.25% 0% 0.99 50.50% 0% 0.45 43.75% 0% 1.14 64% 0%

15 0.43 32.50% 0% 4.40 48% 0% 0.82 40.5% 0% 5.16 60.50% 0%

20 0.59 31.50% 0% 27.47 47.75% 0% 1.69 39.75% 0% 21.99 55.25% 0%

30 1.82 36.50% 0% 576.28 51.25% 7.25% 7.16 43% 0% 380.40 61.25% 4.25%

Table 5. Results using the pessimistic formulation for task sets with random periods and zero jitter. The
table shows average runtime (Av.) expressed in seconds, percentage of confirmed (𝑚,𝐾) constraints (Cnf)
and percentage of not completed runs (n/a).

The number of activations of jobs of 𝜏 𝑗 that interfere with the execution of 𝐽𝑘 in [𝑠, 𝑓 𝜀
𝑘
) is defined

as Δ𝑠𝜀
𝑗,𝑘

:=
∑
𝑝 Γ𝑠

𝜀
𝑠,𝑗,𝑘

[𝑝], and the discrete value of 𝐼𝑠𝜀
𝑠,𝑗,𝑘

is enforced with the following constraint.

Constraint 50. Considering two successive intervals [0, 𝑠) and [𝑠, 𝑓 𝜀
𝑘
), it holds that:

∀𝑠,∀𝑗 < 𝑖,∀𝑘, 𝐼𝑠𝜀
𝑠,𝑗,𝑘

+ Δ𝑠𝜀
𝑗,𝑘

= 𝐼 𝑓 𝜀
𝑗,𝑘
. (51)

Finally, a necessary condition for obtaining the minimal value of 𝑓 𝜀
𝑘
is that every time instant

𝑠 ∈ 𝑆𝜀
𝑘
is not a possible candidate finish time for 𝐽𝑘 . This is obtained by enforcing that the time

required for executing 𝜏𝑖 and all the interfering jobs is greater than the interval ending in 𝑠 .

Constraint 51. The non schedulability condition for 𝑠 is enforced with the bound:

∀𝑠,∀𝑘,
∑
𝑗<𝑖

𝐼𝑠𝜀
𝑠,𝑗,𝑘

·𝐶 𝑗 +
∑
𝑘′≤𝑘

𝛿𝑘′ + 𝑏𝑘 · 𝜀 +
∑
𝑘′<𝑘

𝜄𝑘′ > 𝑠 . (52)

7 EXPERIMENTS
In this section, the analysis proposed in the paper for the job-continue and job-kill policies is evalu-

ated. For each strategy, the results of the application of the MILP weakly-hard analysis formulations

are investigated. In detail, we consider (i) a pessimistic formulation that leverages Constraints 1-24

for the job-continue strategy, and Constraints 1-17, 31-45 for the job-kill strategy; and (ii) a refined
formulation, which uses Constraints 1-30 for the continue strategy and Constraints 1-17, 31-51 for

the kill strategy, respectively. For all formulations, we will use (18) as objective function.

Experimental setup. The tasks are generated with a variety of configurations, by varying the

number of tasks (𝑛 ∈ {5, 10, 15, 20, 30}) and the total utilization factor (𝑈 ∈ {0.80, 0.85, 0.90, 0.95}).
Overall, 100 different task sets for each combination of𝑛 and𝑈 have been created using the UUnifast

algorithm [8], with periods randomly chosen in the interval [10, 1000] and Rate Monotonic ordering

of task priorities. Every task in the set has an implicit deadline. The first 𝑛 − 1 tasks have hard

deadlines, while the lowest priority task 𝜏𝑖 has𝑊𝐶𝑅𝑇𝑖 > 𝐷𝑖 . This setup guarantees that all task sets

in the experiment are not trivial (at least one deadline is missed by 𝜏𝑖 in the worst case). We present

different tests where the value of jitter of all tasks is either set to zero, or uniformly selected in the

range 0 ≤ J𝑖 ≤ 0.1 · (𝐷𝑖 −𝐶𝑖 ). When considering task sets with very high utilization, the weakly

hard bounds can be easily violated by large jitters. A small amount of jitter may represent small

time drifts and latencies in the task activations and corresponds to a sensitivity test.
To avoid biased results that can be possibly caused by random periods, we performed additional

experiments by generating task sets with pseudo-harmonic periods, which are more representative

of the period configurations found in real industrial applications. The period of each task 𝜏𝑖 in the

set is chosen randomly such that it satisfies the following equation, ∀𝑖:
𝑇𝑖 = 2

𝑗 · 3𝑘 · 5𝑙 · 10, s.t. 𝑗 + 𝑘 + 𝑙 ≤ 3, ∀𝑗, 𝑘, 𝑙 ≥ 0.



U cont (1, 3) cont (2, 5) kill (1, 3) kill (2, 5)
0.80 0.52 𝑠 6.30 𝑠 0.94 𝑠 3.68 𝑠

0.85 0.64 𝑠 29.56 𝑠 1.91 𝑠 17.21 𝑠

0.90 0.60 𝑠 34.44 𝑠 2.40 𝑠 35.65 𝑠

0.95 0.58 𝑠 39.57 𝑠 1.53 𝑠 31.40 𝑠

Table 6. Average runtime for the case of 𝑛=20 with pessimistic formulation, random periods and zero jitter.

Job-continue (1, 3) Job-continue (2, 5) Job-kill (1, 3) Job-kill (2, 5)
n Av.(s) Cnf n/a Av.(s) Cnf n/a Av.(s) Cnf n/a Av.(s) Cnf n/a

5 0.15 16.75% 0% 0.42 24.50% 0% 0.18 48.75% 0% 0.28 59.75% 0%

10 0.46 7% 0% 1.04 16% 0% 0.28 64.75% 0% 0.51 71.50% 0%

15 0.58 3.50% 0% 4.26 12.25% 0% 0.29 74% 0% 0.59 74.75% 0%

20 0.74 1% 0% 23.95 8.25% 0% 0.41 74% 0% 1.09 74.50% 0%

30 1.43 1.75% 0% 215.40 7.25% 1.5% 0.54 75% 0% 0.92 75% 0%

Table 7. Results using the pessimistic formulation and pseudo-harmonic task sets with zero jitter: average
runtime, percentage of confirmed (𝑚,𝐾) constraints and percentage of not completed runs.

Pseudo-harmonic tasksets have properties which are quite similar to the ones using harmonic

periods, such as the characteristic of easily reaching high utilization factors without any deadline

miss. Hence, we consider utilization factors of the set 𝑈 ∈ {0.95, 0.97, 0.99}. The total number of

tasks is varied as 𝑛 ∈ {5, 10, 15, 20, 30}, defining 100 task sets for each combination of 𝑛 and𝑈 .

The MILP weakly hard analysis is implemented in C++ using the CPLEX library
1
. A threshold of

3600 seconds for each CPLEX run has been set: if the weakly hard analysis for a task takes more

than this limit, it is stopped and a timeout overrun is signaled together with the biggest value of

𝑚𝑚𝑎𝑥 obtained up to that time. All tests have been performed on a machine with 128GB of memory

and 40 cores of 2x Intel Xeon(R) CPU E5-2640 v4 running at 2.40GHz.

7.1 Pessimistic MILP Formulation
7.1.1 Task sets with random periods. The first set of experiments applies to the weakly hard analysis

formulated with the simplified response time analysis, for task sets generated with random periods

and zero jitter. For every task set we tried (𝑚,𝐾) = (1, 3) and (2, 5), for both the job-continue and

the job-kill strategy. The results are summarized in Table 5. The proposed MILP formulation shows

remarkable timing performance. As expected, the runtime increases with both the number of tasks

𝑛 and the size of the window 𝐾 . In the worst case, the average time for completing the weakly hard

analysis is a few minutes. The job-kill strategy results in a runtime which is mostly comparable

with respect to the job-continue strategy. Results show how the job-kill strategy helps lower the

number of missed deadlines, as indicated by the higher number of task sets that satisfy each (m,K)

constraint in comparison with the job-continue case.

Table 6 shows the runtime distribution for the case 𝑛 = 20 for different values of the utilization

factor. The runtime of the weakly hard analysis depends on the processor utilization and the deadline

miss strategy. For the job-continue case, the solution for 𝑈 = 0.95 requires more computation time

than the other cases, while for the job-kill strategy, a longer average runtime is observed for𝑈 = 0.90.

A comparable behavior is found for all the other values of 𝑛.

Similar results are obtained for the same task sets with a random small jitter. The average runtime

is basically unaffected and comparable with the case of no jitter, while the number of confirmed

bounds decreases of nearly 19% on average for the continue and nearly 10% for the job-kill strategy.

1
CPLEX is free for students and academics https://www.ibm.com/products/ilog-cplex-optimization-studio/resources

https://www.ibm.com/products/ilog-cplex-optimization-studio/resources


Job-continue (1, 3) Job-continue (2, 5)
n Av.(s) Cnf n/a Av.(s) Cnf n/a

5 0.17 71.25% (↑21.5%) 0% 0.36 83.25% (↑20%) 0%

10 2.14 69% (↑34.75%) 0% 42.94 80% (↑29.5%) 1%

15 58.89 72 % (↑39.5%) 0% 984.66 72.5% (↑24.5%) 21.5%

20 831.22 68 % (↑31.5%) 13% – – –

Job-kill (1, 3) Job-kill (2, 5)
5 0.15 84.75% (↑19.75%) 0% 0.22 96.25% (↑13.25%) 0%

10 2.46 75.25% (↑31.5%) 0% 21.48 88% (↑24%) 0%

15 54.66 76% (↑35.5%) 0% 643.49 81.25% (↑26%) 10%

20 739.11 68 % (↑28.25%) 13% – – –

Table 8. Results using the refined formulation for task sets with random periods and zero jitter: average
runtime, percentage of confirmed (𝑚,𝐾) constraints and percentage of not completed runs. The difference of
confirmed (𝑚,𝐾) constraints w.r.t. the ones obtained with the pessimistic formulation is shown in red.

U cont (1, 3) cont (2, 5) kill (1, 3) kill (2, 5)
0.80 100% 100% 100% 100%

0.85 98% 100% 99% 100%

0.90 67% 90% 74% 95%

0.95 11% 30% 28% 57%

Table 9. Percentage of verified (𝑚,𝐾) constraints for the case of 𝑛 = 10 with the refined formulation.

7.1.2 Pseudo-harmonic task sets. The results obtained using pseudo-harmonic task sets with the

pessimistic formulation are summarized in Table 7. A noticeable difference with respect to the ones

obtained with task sets having random periods is that the percentage of confirmed constraints is

way lower for the job-continue strategy, but higher for the job-kill strategy. This gap suggests that

killing a job that misses a deadline is especially useful for restoring a correct behavior for task

sets with pseudo-harmonic periods. Moreover, the runtime for the job-kill strategy is significantly

shorter than the one for the job-continue policy, in particular for larger task sets.

7.2 Improved MILP formulation
7.2.1 Task sets with random periods. The refinedMILP formulation presented in this paper improves

the original one in [37], by providing a tighter bound on the maximum number of deadline misses.

Our experiments show how the improvement is actually significant and worth the additional

execution time in the optimization process. Table 8 shows the results, in which the improvement for

the weakly hard analysis (with respect to results in Table 5, without the refinement) is highlighted in

red. The additional constraints in the refined formulation help reduce the pessimism in the response

time analysis, thus lowering the computed number of missed deadlines. This is supported by the

fact that the percentage of confirmed (m,K) bounds increases in the average by 28.75% and 25.46%

for different combinations of 𝑛 and (𝑚,𝐾) values when the job-continue and the job-kill strategy

are used, respectively. On the other hand, the refined MILP comes with a higher computational

cost for the weakly hard analysis. As a consequence, although in most cases the runtime cost for

the refined MILP is acceptable and does not exceed the timeout, the refined analysis does not scale

to configurations with 𝑛 = 30 or larger.

The improvements on the pessimistic analysis are not uniform across all possible utilization

factors. As an example, consider the percentage of verified (𝑚,𝐾) constraints for the case of 𝑛 = 10

and different values of 𝑈 . Table 9 show the results. Figure 5 shows the difference, in percentage, of
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the verified task sets obtained with the refined formulation, with respect to the pessimistic one.

The largest improvement is for 𝑈 = 0.9 and (𝑚,𝐾) = (2, 5), with the continue strategy, and the

weakly hard schedulable sets increase by 71% when the refinement is used. Overall, given an (𝑚,𝐾)
constraint, the advantage of the refinement in the weakly hard analysis is larger for larger sets and

utilizations. When the total utilization is too high such as𝑈 = 0.95, it becomes difficult to validate

almost any type of weakly hard constraint, as illustrated by the results in Table 9 and Figure 5.

From Table 9, we also notice that the selection of the job-kill strategy instead of the continue is

particularly effective for very high utilization values (𝑈 = 0.95).

Finally, we performed tests with random jitter, using the same values of the pessimistic analysis.

The runtime results are comparable with the case of no jitter, while the number of confirmed

bounds decreases more sharply (37,5% for the continue strategy and around 23% for the kill, on

average), but still performing better than the results obtained with the pessimistic analysis for each

combination (with an increase of 7% of accepted task sets on average).

7.2.2 Pseudo-harmonic task sets. In the pseudo-harmonic case, comparing the results obtained

with the pessimistic formulation, though the runtime increases when using the refined formulation,

this increment is negligible for the job-kill strategy, while being more sensitive when using the

job-continue strategy. As a representative example, for 𝑛 = 15 and (𝑚,𝐾) = (2, 5) the average
runtime is around 1277 seconds (with 17.75% of cases executing until the timeout) for the weakly

hard analysis under job-continue strategy, and it is less than 4 seconds for the job-kill strategy.

At the same time, as shown in Figure 6, the refined MILP weakly hard analysis helps boosting



the total percentage of verified (𝑚,𝐾) constraints when the continue-strategy is used. Since the

simple MILP formulation performs already quite well for the job-kill strategy (Table 7), the further

refinement does not have much room for improvement.

8 CONCLUSIONS
In this work, we propose an improved analysis for the weakly hard schedulability of offset-free,

periodic task sets with fixed priority preemptive scheduling. The work targets analyzing weakly

hard properties in the form of (𝑚,𝐾) constraints, by extracting a tight bound on the worst-case

number of deadline misses that may happen every 𝐾 iterations. The analysis is formulated using

the MILP encoding for both the job-continue and the job-kill strategy to handle deadline misses. A

set of additional constraints is produced, with the purpose of reducing the pessimism of the original

approach presented in [37]. Runtime performance and comparison with the original formulation

have been presented with extensive tests, showing that the improved analysis provides a good

trade-off between complexity and precision.
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