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Abstract

A polynomial is a product of distinct cyclotomic polynomials if and only if it is a divisor

over Z[x] of xn − 1 for some positive integer n. In this thesis, we will examine two natural

questions concerning the divisors of xn− 1: “For a given n, how large can the coefficients of

divisors of xn−1 be?” and “How often does xn−1 have a divisor of every degree between 1

and n?” We consider the latter question when xn−1 is factored in both Z[x] and Fp[x]. The

primary tools used in our investigation arise from the study of the “anatomy of integers.”

We also make use of a number of results stemming from Hooley’s conditional proof of Artin’s

Primitive Root Conjecture in our work over Fp[x].
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Chapter 1

Introduction

This thesis assembles the results contained in three of the author’s papers on the divisors

of the polynomial xn− 1. In this introductory chapter, we examine the history of results on

this family of polynomials in order to provide context for our own work in the area. We also

give an overview of several of the major techniques that we employ in chapters 2, 4 and 6.

1.1 A brief history of cyclotomic polynomials

The nth cyclotomic polynomial, Φn(x), is the minimal polynomial for e2πi/n. It follows that

Φn(x) is the unique, monic irreducible polynomial in Z[x] whose roots are the primitive nth

roots of unity. Moreover, it is easy to show that Φn(x) has degree ϕ(n), which corresponds

(via Galois theory) to the size of the unit group of (Z/nZ)×. Cyclotomic polynomials are

intrinsic to our study of the divisors of xn − 1. The identity

xn − 1 =
∏
d|n

Φd(x)

shows that the irreducible divisors of xn− 1 in Z[x] are precisely the dth cyclotomic polyno-

mials, for values of d dividing n. As a result, every divisor of xn − 1 in Z[x] is a product of
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distinct cyclotomic polynomials. Moreover, every product of distinct cyclotomic polynomials

is a divisor of xn − 1 for some positive integer n.

The coefficients of cyclotomic polynomials have been studied for some time. In 1883,

Migotti [30] showed that Φ105(x) is the first cyclotomic polynomial to have coefficients that

lie outside the set {±1, 0}:

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36 + x35

+ x34 + x32 + x31 − x28 − x26 − x24 − x22 − x20 + x17 + x16 + x15

+ x14 + x13 + x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x+ 1.

The fact that the new coefficient appearing in Φ105(x) has absolute value 2 led to the natural

question, “How do the coefficients grow (in absolute value) as n increases?”

One approach has been to examine the coefficients of Φn(x) for values of n with a

certain number of distinct odd prime factors. In the same paper in which Migotti described

his observation about the coefficients of Φ105(x), he also proved that, if n = pq with p and

q distinct odd primes, then all of the coefficients of Φn(x) lie in the set {±1, 0}. In fact,

the values of the coefficients of Φpq(x) can be described completely explicitly for any pair

of primes p and q (see, for example, Theorem 2.3 in [39]). It is interesting to note that the

example discovered by Migotti has n as a product of the first three distinct, odd primes. In

general, when n = pqr where p, q, r are odd primes such that p < q < r, explicit values are

not known for the coefficients. There has been greater success with bounding the magnitude

of the largest coefficient of Φpqr(x), which is called its height. The earliest work in this area

is due to Bang [3], who proved in 1895 that the height of Φpqr(x) is at most p − 1. This

bound was subsequently improved independently by Beiter [7] and Bloom [9] in 1968, who

obtained an upper bound of (p + 1)/2 in the special case where q or r is congruent to ±1

(mod p). Beiter also conjectured [8] that this is the best possible upper bound that holds in

general. Subsequent work by Beiter [8], Möller [31] and Bachman [1] goes a long way towards
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confirming Beiter’s conjecture. There have been a number of recent developments on this

subject. In 2003, Bachman [1] provided a second infinite family of examples that support

Beiter’s conjecture, namely the cyclotomic polynomials Φpqr(x) with q or r congruent to

±2 (mod p). In 2009, Kaplan [22] obtained a periodicity result; he showed that, if s > q

is a prime with s ≡ ±r (mod pq), then A(pqr) = A(pqs). In the same paper, he proved

a technical lemma that explicitly relates the coefficients of Φpqr(x) to those of Φpq(x).

Gallott and Morree [15] used Kaplan’s lemma in order to construct an infinite family of

counterexamples to Beiter’s conjecture. They showed that A(pqr) > (p + 1)/2 holds for

each p ≥ 11 and for infinitely many values of q and r. In the same paper, they conjectured

that A(pqr) ≤ 2
3p. They showed that there exist triples p < q < r with p arbitrarily large

for which A(pqr) > ( 2
3 − ε)p for ε > 0, which means that the conjectured upper bound is

optimal if it is true. In 2010, Bzdega [6] obtained density results on polynomials Φpqr(x)

with A(pqr) ≤ cp. In particular, with p fixed, he showed that at least 25
27 + O( 1

p ) of the

polynomials Φpqr(x) satisfy the conjectured bound of Gallot and Moree.

Other work has focused on bounding the magnitude of the maximal coefficient of Φn(x)

for integers n with an arbitrary but fixed number of prime factors. We will denote this

magnitude by A(n). Bateman [4] was the first to obtain a bound for Φn(x) with n having

k distinct odd prime factors, where k ranges over all positive integers. He gave a simple

argument in 1949 which showed that the height of Φn(x) is at most n2k−1
. There were a

number of improvements on Bateman’s result in papers of Erdös [11], Vaughan [40] and

Bateman, Pomerance, and Vaughan [5], the last of which gives an upper bound of n
2k−1
k −1.

We remark that this bound is nearly best possible; in the same paper, Bateman, Pomerance

and Vaughan show that A(n) ≥ n
2k−1
k −1/(5 log n)2k−1

holds for infinitely many n with

exactly k distinct odd prime factors. Moreover, under the assumption of the prime k-tuples

conjecture, they show that for each k there exists a constant ck such that A(n) ≥ ckn
2k−1
k −1

holds for infinitely many n with exactly k distinct odd prime factors. We can re-state these

results without the dependence on k by using the fact that the maximal order of ω(n) is
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logn
log logn . This yields an upper bound of A(n) ≤ en(log 2+o(1))/ log logn

that holds for all positive

integers n, as well as a lower bound of A(n) ≥ en
(log 2+o(1))/ log logn

that holds for infinitely

many values of n.

Maier shows in [28] and [27] that stronger results can be obtained for “typical” n; that

is, for all n except for a set with asymptotic density 0. In particular, he proved that if ψ(n)

is any function defined for all positive integers such that ψ(n) tends to infinity as n tends to

infinity, then the height of Φn(x) is at most nψ(n) for almost all n. Moreover, he was able

to obtain a complementary lower bound, showing that if ε(n) is any function that tends to

0 as n tends to infinity, then the height of Φn(x) is at least nε(n) for almost all n. Maier’s

work on the upper bound will be discussed at length in Chapter 2.

1.2 Summary of later chapters

A natural generalization of the work on heights of cyclotomic polynomials is to consider

the maximal height over all divisors of xn − 1. Pomerance and Ryan [33] first examined

this problem, showing that the maximal height is at most exp{n(log 3+o(1))/ log logn}. This

inequality is “best possible,” in the sense that it can be reversed for infinitely many values

of n. In 2009, Kaplan [22] provided an explicit formula for the maximal height over all

divisors of xn − 1 when n = p2q, where p < q are primes. In the same paper, he obtained

upper and lower bounds for the maximal height when n = pqr, where p < q < r are primes.

In Chapter 2, we will discuss an analogue of Maier’s result for “typical” n that holds

in this setting. We show how Maier’s approach can be adapted in order to obtain an

improvement on Pomerance and Ryan’s upper bound that holds for “typical” n. Let τ(n)

denote the number of positive divisors of an integer n. In particular, we prove the following:

Theorem 1.1. Let ψ(n) be any function defined for all positive integers such that ψ(n)

tends to infinity as n→∞. Then, the inequality

B(n) ≤ nτ(n)ψ(n)

4



holds for almost all n.

Up until now, most of the literature on the divisors of xn − 1 has focused on describing

the size of the coefficients. In Chapter 4, we turn our attention to the degrees of the divisors

of xn − 1. We ask, “How often does xn − 1 have a divisor of every degree between 1 and n,

when factored in Z[x]?” We call an integer n with this property ϕ-practical. An elementary

argument shows that the ϕ-practical numbers are rare; in fact, they have asymptotic density

0 within the set of positive integers, which we demonstrate in Section 4.2. However, it is

more difficult to get an accurate estimate for the count of ϕ-practical numbers in a given

interval.

The ϕ-practical numbers are named for their connection with the practical numbers,

integers n for which every m with 1 ≤ m ≤ n can be written as a sum of distinct divisors

of n. We can see that the ϕ-practical numbers are analogues of the practical numbers by

using the elementary facts that xn − 1 =
∏
d|n Φd(x) and deg Φd(x) = ϕ(d). The question

of whether xn − 1 has a divisor of every degree up to n thus amounts to asking whether

every integer between 1 and n can be written as a sum of ϕ(d)’s, where the d’s come from

some subset of divisors of n. Saias [34] obtains the strongest result for the count of practical

numbers n ≤ X. He shows that #{n ≤ X : n is practical} is of order of magnitude X
logX .

The practical numbers and Saias’ work concerning their distribution will be described in

much greater depth in Chapter 3.

In Sections 4.3 - 4.5, we will demonstrate how portions of Saias’ approach can be used

in order to handle the ϕ-practical numbers. In Section 4.3, we give a necessary condition

for an integer n to be ϕ-practical and use it to obtain an upper bound of C2
X

logX for the

count of ϕ-practical numbers up to X, where C2 is a positive constant. In Sections 4.4 and

4.5, we define the strictly 2-dense integers and describe their connection to the ϕ-practical

numbers, culminating in a proof that X
logX is the true order of magnitude for the number

of ϕ-practicals up to X. In other words, we show:

Theorem 1.2. Let X ≥ 2. Let F (X) denote the number of ϕ-practical numbers in [1, X].

5



Then, there exist two positive constants, C1 and C2, such that

C1
X

logX
≤ F (X) ≤ C2

X

logX
.

We conclude chapter 4 with proofs that there are at least a constant multiple of X
logX integers

n ≤ X that are practical but not ϕ-practical, and vice versa.

The remainder of the thesis focuses on variations of the problem posed in Chapter 4.

In chapter 5, we describe the relationship between multiplicative orders and the degrees

of the irreducible factors of xn − 1 in Fp[x]. We also provide the necessary background

on Artin’s Primitive Root Conjecture, which describes the density of primes with a fixed

integer a as a primitive root. We conclude by discussing how Hooley’s conditional proof

of Artin’s Primitive Root Conjecture, which depends on the validity of the Generalized

Riemann Hypothesis, will be used indirectly in chapter 6.

In chapter 6, we consider the factorization of xn− 1 in Fp[x] and call n p-practical if the

corresponding polynomial has a divisor of every degree in Fp[x]. We give a conditional proof

(on the Generalized Riemann Hypothesis) that, in spite of the extra divisions that occur,

these polynomials still do not usually have a divisor of every degree between 1 and n.

We also define the notion of λ-practical numbers: integers that are p-practical for every

rational prime p. In Section 6.3, we demonstrate an alternative criterion for an integer

n to be λ-practical that involves Carmichael’s λ-function, which represents the universal

exponent for the multiplicative group of integers modulo n. In contrast with the definition

of a λ-practical number, we show that every positive integer n is p-practical for some prime

p. Next, we show that there are a constant multiple of X
logX integers up to X that are

λ-practical but not ϕ-practical; we also show that, for each prime p, there are at least a

constant multiple of X
logX integers in the same range that are p-practical but not λ-practical.

These proofs can be found in Sections 6.5 and 6.6, respectively.

This chapter culminates with a discussion of the order of magnitude of the count of

p-practicals up to X. Since every ϕ-practical number is λ-practical (and, hence, p-practical
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for all p), our work from Chapter 4 implies that #{n ≤ X : n is p-practical} is at least a

constant times X
logX . The difficulty lies in finding an upper bound for this count. In Section

6.7, we show:

Theorem 1.3. Let X ≥ 2 and Fp(X) = #{n ≤ X : n is p-practical}. Then, assuming that

the Generalized Riemann Hypothesis holds, we have

Fp(X) = O

(
X

√
log logX

logX

)
.

1.3 Open problems

The work discussed in the preceding section can be extended in a number of ways. First, it

would be natural to try to extend Maier’s method for obtaining a lower bound for A(n) in

order to prove a complementary result for our B(n) upper bound. Certainly, Maier’s lower

bound will also be a lower bound for B(n). However, we believe that the lower bound can

be improved:

Conjecture 1.4. Let ε(n) be any function defined for all positive integers n that tends to

0 as n tends to infinity. Then, for almost all n, we have

B(n) ≥ nτ(n)ε(n).

Second, there is an obvious parallel between the bounds that we obtain for the size of

the set of ϕ-practical numbers and the bounds given by Chebyshev’s inequality:

Theorem 1.5 (Chebyshev, 1852). Let π(X) denote the number of primes in [1, X]. There

exist positive constants c1 and c2 such that

c1
X

logX
≤ π(X) ≤ c2

X

logX
.

Of course, the story does not end with Chebyshev’s inequality; nearly half a century

7



later, the celebrated Prime Number Theorem was proven.

Theorem 1.6 (Hadamard & de la Valée Poussin, 1896). Let π(X) denote the number of

primes in [1, X]. Then, we have

lim
X→∞

π(X)
X/ logX

= 1.

It would be interesting to know whether

lim
X→∞

F (X)
X/ logX

exists and, if so, what it approaches. Using Sage, we have been able to compute the following

table of ratios:

X F (X) F (X)/(X/ logX)
102 28 1.289448
103 174 1.201949
104 1198 1.103399
105 9301 1.070817
106 74461 1.028717
107 635528 1.024350
108 5525973 1.017922
109 48386047 1.002717

Table 1.1: Ratios for ϕ-practicals

The table seems to suggest the following conjecture:

Conjecture 1.7. Let F (X) = #{n ≤ X : n is ϕ-practical}. Then, limX→∞
F (X)

X/ logX exists

and, in particular,

lim
X→∞

F (X)
X/ logX

= 1.

Proving this may be exceedingly difficult; for one thing, there does not appear to be an

L-function whose zeros correspond to the distribution of ϕ-practical numbers, so it does not

seem likely that any of the analytic approaches for proving the Prime Number Theorem will

8



be useful in this scenario.

Another natural goal would be to find a sharper estimate for the order of magnitude

of Fp(X). For example, when p = 2, we can use Sage to compute a table of ratios of

F2(X)/ X
logX .

X F2(X) F2(X)/(X/ logX)
102 34 1.565758
103 243 1.678585
104 1790 1.648651
105 14703 1.692745
106 120276 1.661674
107 1030279 1.660614

Table 1.2: Ratios for 2-practicals

The table looks similar for other small values of p. For example, when p = 3, 5 we have:

X F3(X) F3(X)/(X/ logX)
102 41 1.888120
103 258 1.782201
104 1881 1.732465
105 15069 1.734883
106 127350 1.759405
107 1080749 1.741962

Table 1.3: Ratios for 3-practicals

X F5(X) F5(X)/(X/ logX)
102 46 2.118378
103 286 1.975618
104 2179 2.006933
105 16847 1.939583
106 141446 1.954149
107 1223577 1.972173

Table 1.4: Ratios for 5-practicals

The fact that the sequence of ratios appears to be bounded suggests the following con-

jecture:

9



Conjecture 1.8. For each rational prime p, limX→∞ Fp(X)/ X
logX exists and is finite.

At the very least, it would be nice to establish the true order of magnitude of Fp(X).

The table seems to suggest that Fp(X) is on the order of X/ logX, which given Theorem

1.2 requires establishing:

Conjecture 1.9. For each rational prime p, we have

Fp(X)� X

logX
.

Another natural direction would be to examine the factorization of xn − 1 in other

polynomial rings; for example, with F an arbitrary number field, we could ask the same

questions in F [x]. (This problem was suggested to me by Paul Pollack.)

1.4 Notation

For ease of reference, we compile a list of the common notation that will be used throughout

the thesis.

Let n always represent a positive integer. We will use d to refer to an arbitrary divisor

of n, and 1 = d1 < d2 < · · · to refer to the increasing sequence of divisors of n.

We will use a number of arithmetic functions throughout this body of work. Let ϕ(n)

refer to the Euler totient function, i.e. ϕ(n) represents the number of positive integers m

satisfying 1 ≤ m ≤ n and gcd(m,n) = 1. We will use τ(n) to designate the number of

positive divisors of n. Furthermore, we let ω(n) denote the number of distinct prime factors

of n and Ω(n) denote the number of prime factors of n counting multiplicity. Finally, let

λ(n) denote the Carmichael λ-function, which represents the exponent of the multiplicative

group of integers modulo n.

Much of our work makes use of the prime factorization of various integers. Let p and q,

as well as any subscripted variations, represent primes. Let P (n) denote the largest prime

factor of n, with P (1) = 1, and let Ψ(X,Y ) = #{n ≤ X : P (n) ≤ Y }. We say that an
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integer n is Y -smooth if P (n) ≤ Y ; thus, Ψ(X,Y ) represents the counting function for the

Y -smooth integers up to X. Moreover, we will use P−(n) to denote the smallest prime

factor of n, with P−(1) = +∞.

We will use log(x) to denote the natural logarithm function, and logk(x) to denote the

kth iterate of the natural logarithm function.

For the sake of clarity, we will use x to denote the indeterminate in a single variable

polynomial and X to denote a positive real number. For example, f(x) = x2 + x + 1 is a

polynomial in x, and F (X) = #{n ≤ X} counts the number of positive integers up to X.

Throughout this thesis, we will make use of standard notation from analytic number

theory, such as the symbols (o(·), O(·),�,�,∼,�) for indicating orders of magnitude. We

write the Landau “Big Oh” notation, f = O(g), to indicate that there exists a constant

C > 0 such that |f | ≤ C|g|. Along the same lines, we use the Vinogradov symbol, f � g,

to indicate that there exists a positive constant C satisfying |f | ≤ C|g|. The notation f � g

indicates that f � g and g � f ; in other words, f and g have the same order of magnitude.

We write f ∼ g if limX→∞
f(X)
g(X) = 1. Finally, we write f = o(g) if limX→∞

f(X)
g(X) = 0.

11



Chapter 2

Heights of divisors of xn − 1

In this chapter, we will examine the coefficients of divisors of xn − 1. In particular, we

will obtain an upper bound for the largest coefficient (in absolute value) over all divisors of

xn − 1.

2.1 Introduction

We define the height of a polynomial with integer coefficients to be the largest coefficient in

absolute value. We will denote the height of a polynomial f by H(f). Much has been studied

about H(Φn), which shall henceforth be denoted A(n). In Section 1.1, we gave a detailed

history of the progress in this area. Related to these problems are questions concerning the

maximal height over all divisors of xn − 1. It is well-known that xn − 1 =
∏
d|n

Φd(x). Thus,

xn − 1 has τ(n) distinct monic irreducible divisors, where τ(n) is the number of divisors of

n. Therefore, xn − 1 has 2τ(n) divisors in Z[x].

Let B(n) = max{H(f) : f(x) | xn − 1, f(x) ∈ Z[x]}. In particular, A(n) ≤ B(n) since

Φn(x) divides xn−1 and B(n) is the maximum height over all divisors of xn−1. In general,

much less is known about B(n) than A(n). In 2005, Pomerance and Ryan [33] proved that
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as n → ∞, logB(n) ≤ n(log 3+o(1))/ log logn. They also showed that this inequality can be

reversed for infinitely many n.

In [27], Maier found an upper bound for A(n) that holds for most n.

Theorem 2.1 (Maier). Let ψ(n) be a function defined for all positive integers such that

ψ(n) → ∞ as n → ∞. Then A(n) ≤ nψ(n) for almost all n, i.e., for all n except for a set

with asymptotic density 0.

Maier’s upper bound has been shown to be best possible [28]. In this chapter, we consider

an upper bound for B(n) that holds for most n.

Theorem 2.2. Let ψ(n) be a function defined for all positive integers such that ψ(n)→∞

as n → ∞. Then B(n) ≤ nτ(n)ψ(n) for almost all n, i.e., for all n except for a set with

asymptotic density 0.

It is not yet known whether this upper bound for B(n) is best possible.

2.2 Proof strategy for Theorem 2.2

Since xn − 1 =
∏
d|n Φd(x), then B(n) = H

(∏
d∈D Φd(x)

)
, where D is a subset of divisors

of n for which
∏
d∈D Φd(x) has maximal height over all products of distinct cyclotomic

polynomials dividing xn − 1.

In [33], Pomerance and Ryan show that if f1, ..., fk ∈ Z[x] with deg f1 ≤ · · · ≤ deg fk

then

H(f1...fk) ≤
∏k−1
i=1 (1+degfi)

∏k
i=1H(fi). Thus, when n > 1,

B(n) = H

(∏
d∈D

Φd(x)

)
≤
∏
d∈D

(1 + ϕ(d))
∏
d∈D

A(d) ≤ n#D
∏
d∈D

A(d) ≤ nτ(n)
∏
d|n

A(d). (2.1)

Let A0(n) := max
d|n

A(d). Then from (2.1), B(n) ≤ nτ(n)A0(n)τ(n), since A(d) ≤ A0(n)
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for each d | n. So, if we show that A0(n) ≤ nψ(n) for almost all n, we will have

B(n) ≤ nτ(n)A0(n)τ(n) ≤ nτ(n) · nτ(n)ψ(n) = nτ(n)(1+ψ(n)) (2.2)

for almost all n. Since ψ(n) is any function that goes to infinity as n approaches infinity,

we will have proved the theorem.

Thus, we have reduced the proof of Theorem 2.2 to the following proposition, which

shall be proven in Section 4.

Proposition 2.3. We have A0(n) ≤ nψ(n) for almost all n.

2.3 Key Lemmas

Let ω(n) be defined as in Section 1. Write the prime factorization of n as pe11 · · · p
eω(n)

ω(n) ,

where p1 > p2 > · · · > pω(n), ek ≥ 1 for 1 ≤ k ≤ ω(n). Thus, we have functions pk = pk(n)

defined when k ≤ ω(n). If k > ω(n), we let pk(n) = 1.

To prove our proposition, we will show that for most integers, the size of the prime

factors pk decreases rapidly on a logarithmic scale as k increases.

Lemma 2.4. Let 2 < γ < e. The set {n : ω(n) ≥ log logn
log γ } has density 0.

Proof. Since 2 < γ < e then log γ ∈ (0, 1), so 1 < 1
log γ . Now, the normal order of ω(n) is

log log n [32, p.111], so for each ε > 0, ω(n) < (1+ε) log log n must hold, except for a set of n

with asymptotic density 0. In particular, since ε = 1
log γ − 1 > 0, then ω(n) < 1

log γ log log n

for almost all n.

Let µ(n) be the Möbius function. From [27, Lemma 5], we know that if 2 < γ < e then

there is a constant c(γ) > 0 such that for each natural number k <log log x/log γ,

#{n ≤ x : µ(n) 6= 0, log pk > γ−k log x} � xe−c(γ)k.

14



The following lemma says that we can remove the restriction that µ(n) 6= 0, i.e., we do

not need to assume that n is square-free.

Lemma 2.5. Let 2 < γ < e. Let x > 1. There are positive constants c0(γ), C2 such that

for each natural number k < log log x/ log γ,

#{n ≤ x : log pk > γ−k log x} ≤ C2xe
−c0(γ)k.

Proof. We adopt the same strategy as in [27]. The following is a classical result, due to

Halberstam and Richert [16, Thm 01]: Let f be a nonnegative real-valued multiplicative

function such that for some numbers A and B and for all numbers y ≥ 0, we have

∑
p≤y

f(p) log p ≤ Ay,
∑
p

∑
ν≥2

f(pν)
pν

log pν ≤ B, (2.3)

where p runs over primes and ν runs over integers. Then, for all numbers x > 1,

∑
n≤x

f(n) ≤ (A+B + 1)
x

log x

∑
n≤x

f(n)
n

. (2.4)

We apply this theorem with f(n) = bω([t,x],n), where w([t, x], n) is the number of distinct

prime factors of n in the interval [t, x], with t = xγ
−k

, b > 1 (b will be specified later). In

order to apply the theorem, we need to check that both conditions in (2.3) are satisfied.

As usual, let θ(y) =
∑
p≤y log p. Since θ(y) ≤ 2y log 2 < 2y [32, p.108] then

∑
p≤y

f(p) log p ≤ 2by

for all y. Thus, the first condition is satisfied, with A = 2b.

Next, we show that the second condition is satisfied for a suitable number B, namely

that the double sum converges. Consider the sum
∑
p

∑
ν

log pν

pν bω([t,y],pν), where p runs over
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primes, ν ≥ 2. Since ω counts only distinct prime factors, we have ω([t, y], pν) ≤ 1. So,

∑
p

∑
ν≥2

log pν

pν
bω([t,y],pν) ≤ b

∑
p

(
2 log p
p2

+
3 log p
p3

+ · · ·
)

= b
∑
p

(
2
p2

+
3
p3

+ · · ·
)

log p.

It is easy to see that

∑
p

(
2
p2

+
3
p3

+ · · ·
)

log p = 2
∑
p

log p
p(p− 1)

(2.5)

holds, and that the sum in (2.5) is less than 4. Thus, the second condition is satisfied, with

B = 4b.

Therefore, by (2.4), we have

∑
n≤x

bω([t,x],n) ≤ (2b+ 4b+ 1)
x

log x

∑
n≤x

f(n)
n
≤ 7b

x

log x

∑
n≤x

f(n)
n

. (2.6)

Now,
∑
n≤x

f(n)
n ≤

∏
p≤x

(
1 + f(p)

p + f(p2)
p2 + · · ·

)
, since f is a non-negative multiplica-

tive function (certainly all prime factors of each n ≤ x are in this product). Taking the log

of both sides, we have

log

∑
n≤x

f(n)
n

 ≤ log
∏
p≤x

(
1 +

f(p)
p

+
f(p2)
p2

+ · · ·
)

= log
∏
p≤x

(
1 + f(p)

(
1
p

+
1
p2

+ · · ·
))

= log
∏
p≤x

(
1 +

f(p)
p− 1

)
=
∑
p≤x

log
(

1 +
f(p)
p− 1

)
.

Thus,

log

∑
n≤x

f(n)
n

 ≤∑
p≤x

f(p)
p− 1

=
∑
p<t

1
p− 1

+
∑
t≤p≤x

b

p− 1
,

since f(p) = 1 when p < t and f(p) = b when t ≤ p ≤ x. By Mertens’ first theorem [32,
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p.92],

∑
p<t

1
p− 1

+
∑
t≤p≤x

b

p− 1
= log log x+ (b− 1)(log log x− log log t) +O(b).

Let α be the constant associated with O(b). After undoing the logarithms, we are left with

∑
n≤x

f(n)
n
≤ C1 log x

(
log x
log t

)b−1

, (2.7)

where C1 = eαb. Inserting (2.7) into (2.6), we have

∑
n≤x

bω([t,x],n) ≤ 7bC1x

(
log x
log t

)b−1

. (2.8)

Let C2 = 7bC1. Let

N = #{n ≤ x : ω([t, x], n) >
(1 + ε)(b− 1)

log b
(log log x− log log t)}.

Using (2.8), we have

Nb
(1+ε)(b−1)

log b (log log x−log log t) ≤
∑
n≤x

bω([t,x],n) ≤ C2x

(
log x
log t

)b−1

.

But

b
(1+ε)(b−1)

log b (log log x−log log t) = e(1+ε)(b−1)(log log x−log log t) =
(

log x
log t

)(1+ε)(b−1)

.

So

N ≤
C2x( log x

log t )b−1

( log x
log t )(1+ε)(b−1)

= C2x

(
log x
log t

)−ε(b−1)

.

In other words,

ω([t, x], n) ≤ (1 + ε)(b− 1)
log b

(log log x− log log t) (2.9)
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for all n ≤ x except for a set of cardinality at most C2x( log x
log t )−ε(b−1).

Now, fix ε > 0, b > 1 such that (1+ε)(b−1)
log b log γ ≤ 1. Let k < log log x/ log γ. Recall that

t = xγ
−k

. Then, if log pk > γ−k log x, we have

ω([t, x], n) ≥ k ≥ (1 + ε)(b− 1)
log b

k log γ. (2.10)

Since k log γ = log log x− log log t, we have ω([t, x], n) ≥ (1+ε)(b−1)
log b (log log x− log log t). But

this contradicts (2.9) except for a set of cardinality at most C2x( log x
log t )−ε(b−1). Thus, the

set of n ≤ x with log pk > γ−k log x has a cardinality of at most C2x( log x
log t )−ε(b−1). Since

t = xγ
−k

, we have

#{n ≤ x : log pk > γ−k log x} ≤ C2xe
−kε(b−1) log(γ).

Taking c0(γ) = ε(b− 1) log(γ), we obtain the desired result.

The following lemma says that, except for a sparse set of integers n, log pk is small when

k is sufficiently large.

Lemma 2.6. Let 2 < γ < e. Let ε > 0 be arbitrary and let k0 = log(ε(1−e−c0(γ))/C2)
−c0(γ) , where

c0(γ) and C2 are as in Lemma 2.5. Then, for x sufficiently large, the set {n ≤ x : log pk >

γ−k log x for some k ≥ k0} has cardinality at most 2εx.

Proof. Fix ε > 0. Let S = {n ≤ x : log pk > γ−k log x for some k ≥ k0} and let Sk = {n ≤

x : log pk > γ−k log x}. By Lemma 2.5, we have

# S ≤
b log log x

log γ c∑
k=dk0e

# Sk + #{n : ω(n) >
log log x

log γ
} ≤

∞∑
k=dk0e

C2xe
−c0(γ)k + εx

for sufficiently large x, since {n : ω(n) > log log x
log γ } has density 0 by Lemma 2.4. But the sum
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on the right is a convergent geometric series, so

# S ≤ C2xe
−c0(γ)k0

1− e−c0(γ)
+ εx.

Thus, using the definition of k0,

#{n ≤ x : log pk > γ−k log x for some k ≥ k0} ≤ 2εx.

2.4 Proof of Proposition 2.2

Proof. Maier shows in [2] that if ψ(n) is any function defined on all positive integers n such

that ψ(n)→∞ as n→∞ then A(n) ≤ nψ(n) for almost all n. Key to this proof is the fact

that

logA(n) ≤ C
ω(n)∑
k=1

2k log pk (2.11)

for all square-free integers n, where C > 0 is a constant and pk = pk(n) is as above.

We define the radical of n, denoted rad(n), to be the largest square-free divisor of n.

Since Φn(x) = Φrad(n)(xn/rad(n)), the coefficients of Φn(x) are the same as the coefficients of

Φrad(n)(x). Thus, A(n) = A(rad(n)). As a result, we can use (2.11) for any positive integer

n, since

logA(n) = logA(rad(n)) ≤ C
ω(n)∑
k=1

2k log pk.

For each d dividing n, let d = p
e1,d
1,d p

e2,d
2,d · · · p

eω(d),d

ω(d),d , where p1,d > p2,d > · · · > pω(d),d and

ek,d ≥ 1 for 1 ≤ k ≤ ω(d). Also, let pk,d = 1 for k > ω(d). Since d | n then the primes

dividing d also divide n. Thus, pk,d ≤ pk for all k, so

ω(d)∑
k=1

2k log pk,d ≤
ω(d)∑
k=1

2k log pk ≤
ω(n)∑
k=1

2k log pk.
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Thus, log A(d) ≤ C
ω(n)∑
k=1

2k log pk holds for all n and for all d | n. Since log A0(n) = logA(d)

for some d | n we then have logA0(n) ≤ C
ω(n)∑
k=1

2k log pk.

Let ε > 0 be arbitrary and let k0 be as in Lemma 2.6. Combining the above inequality

with Lemma 2.6, we have

logA0(n) ≤ C
ω(n)∑
k=1

2k log pk = C
∑

k≤bk0c

2k log pk + C

ω(n)∑
k=bk0c+1

2k log pk (2.12)

≤ C
∑

k≤bk0c

2k log pk + C

ω(n)∑
k=bk0c+1

(2/γ)k log x (2.13)

for all n ≤ x except for a set with cardinality ≤ 2εx. Since 2 < γ < e then (2/γ) < 1.

Hence,
∑ω(n)
k=bk0c(2/γ)k is part of a convergent geometric series, so it is bounded above by

some positive constant L that is independent of n.

Now, if
√
x ≤ n ≤ x then 2 log n > log x, so

ω(n)∑
k=bk0c+1

(2/γ)k log x ≤ 2 log n
ω(n)∑

k=bk0c+1

(2/γ)k = 2L log n.

Then, if n is such that (2.13) holds,

logA0(n) ≤ C
∑

k≤bk0c

2k log pk + 2L log n

≤ 2bk0cC
∑

k≤bk0c

log pk + 2L log n

= 2bk0cC log(
∏

k≤bk0c

pk) + 2L log n

≤ log(n2bk0cC) + log(n2L).
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Thus, A0(n) ≤ n2bk0cC · n2L. Then, we have

A0(n) ≤ n2
log(ε(1−e−c0(γ))/C2)

−c0(γ) ·n2L ≤ ne
log(ε(1−e−c0(γ))/C2)

−c0(γ) ·n2L = n(ε(1−e−c0(γ))/C2)−c0(γ)
·n2L.

As mentioned, this holds for all n with
√
x ≤ n ≤ x and for which (2.13) holds. Therefore,

for any ε > 0 there is a constant C3 = ( ε(1−e
−c0(γ))
C2

)−c0(γ) + 2L such that for all sufficiently

large x, every n ≤ x satisfies A0(n) ≤ nC3 , except for at most 2εx+
√
x of them. Since ε > 0

is arbitrary, this proves Proposition 2.3, which concludes the proof of our main theorem.
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Chapter 3

Practical numbers and their

anatomy

In this chapter, we will describe how ideas from the study of the “anatomy” of integers can

be used in order to answer questions about the distribution of practical numbers. We will

discuss results of Saias and Tenenbaum in this vein, which will serve as a model for our

approach to the problems considered in the chapters that follow.

3.1 Practical numbers: a brief history

A positive integer n is called practical if every integer m with 1 ≤ m ≤ n can be written as

a sum of distinct divisors of n. Srinivasan coined the term ‘practical number’ in 1948. He

attempted to classify them, remarking that:

The revelation of the structure of these numbers is bound to open some good

research in the theory of numbers... Our table shows that about 25 per cent

of the first 200 natural numbers are ‘practical.’ It is a matter for investigation

what percentage of the natural numbers will be ‘practical’ in the long run.
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Srinivasan succeeded in giving a partial classification of the practical numbers, but he did

not obtain any results concerning the distribution of practical numbers. In a 1950 paper,

Erdős asserted, without proof, that the practical numbers have asymptotic density 0; in

Section 4.2, we provide a proof that is likely to be the one that Erdős had in mind. A few

years later, in 1954, Stewart gave the full classification of practical numbers that Srinivasan

had sought:

Theorem 3.1 (Stewart). If n = pe11 p
e2
2 · · · pjej , where p1 < p2 < · · · < pj are primes and

ei ≥ 1 for i = 1, · · · , j, then n is practical if and only if for every i, pi ≤ σ(pe11 p
e2
2 · · · p

ei−1
i−1 )+

1, where σ is the sum-of-divisors function.

One can prove this theorem by the same method that we will use to prove Lemma 4.9.

The most recent efforts involving the practical numbers have focused on determining

their distribution. Let PR(X) = #{n ≤ X : n is practical}. Determining the true size of

PR(X) has been of interest for some time. In 1986, Hausman and Shapiro [19] asserted that

there exists a positive constant Cβ such that

PR(X) ≤ Cβ
X

(logX)β

for every fixed β < 2−1(1/ log 2 − 1)2 = 0.0979. Their proof contains an error (the error

appears in Lemma 3.2 in [19]); however, one can use their argument to show that

PR(X) ≤ X/(logX)α+o(1),

where α = 1 − 1+log log 2
log 2 ≈ 0.0860713. Hausman and Shapiro’s result was improved upon

by Tenenbaum [38] in the same year, who showed that for λ = 4.20002 and for X ≥ 16,

X

logX
(log logX)−λ � PR(X)� X

logX
log logX log log logX.
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Based on computational data, Margenstern [29] conjectured in 1991 that PR(X) ∼ cX/ logX,

where c is a positive constant. This conjecture was partially proven in 1997 by Saias [34],

who showed that there exist two strictly positive constants c3 and c4 such that for X ≥ 2,

we have

c3
X

logX
≤ PR(X) ≤ c4

X

logX
. (3.1)

Saias obtained these bounds by improving upon techniques that Tenenbaum [38] devel-

oped to obtain slightly weaker bounds for PR(X) in an earlier paper. The ideas used by

Saias and Tenenbaum come from the study of the “anatomy” of integers. For the remainder

of this chapter, we present a summary of their methods, which are central to our own main

argument in Chapter 4.

3.2 The anatomy of practical numbers

Let n be a positive integer with 1 = d1 < d2 < · · · < dτ(n) its increasing sequence of divisors.

We say that an integer n has Z-dense divisors if the inequality di+1
di
≤ Z holds for every

index i with 1 ≤ i ≤ τ(n). The main objective of Saias’ paper is to bound the number

of integers with Z-dense divisors in the interval [1, X]. As it turns out, the integers with

2-dense divisors are all practical numbers; thus, a lower bound for the number of integers

with 2-dense divisors in [1, X] will also be a lower bound for the count of practical numbers

up to X. Moreover, Saias is able to employ the same overarching method to find upper

bounds for the number of integers with Z-dense divisors as well as the count of practical

numbers in the interval [1, X].

In both his upper and lower bound arguments, Saias uses a method that was initially

developed by Tenenbaum in [37]. Let H(X) denote a specified set of integers that are all

less than or equal to X; for example, we could take H(X) to represent the set of practical

numbers up to X or, if we were to fix a value of Z, we could let H(X) denote the number
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of integers in [1, X] with Z-dense divisors. In order to determine the order of magnitude of

the function H(X) := #H(X), the idea is to extend H(X) in the following manner:

H(X,Y ) = #{n ∈ H(X) : P (n) ≤ Y }.

In other words, H(X,Y ) counts the number of Y -smooth integers in H(X). When Y = X,

then we have H(X,X) = H(X); this is what we mean when we say that H(X,Y ) “extends”

H(X).

By partitioning the integers counted in H(X,Y ) into subsets according to the size of

the largest prime factor, it is easy to see that the function H(X,Y ) satisfies the following

identity:

H(X,Y ) = 1 +
∑

p≤min(Y, h(X))

H(X/p, p) + Error Term,

where the function h(X) depends on how much is swept into the error term. In his arguments

for both the practical and Z-dense bounds, Saias takes h(X) to be roughly
√
X, which yields

an inconsequential error term relative to the order of magnitude X
logX (the fact that the error

term is inconsequential for the practical numbers follows from Stewart’s Theorem). Thus,

by omitting the error term, Saias is left with the following identity:

H(X,Y ) = 1 +
∑

p≤min(Y,
√
X)

H(X/p, p) for X ≥ 1 and Y ≥ 1. (3.2)

There is an advantage to writing H(X,Y ) in this form; namely, the righthand side of the

identity lends itself particularly well to induction on the size of the range of permissible

values of X. Ignoring the base case momentarily, Saias assumes that a particular upper

bound for H(X,Y ) holds when 2 ≤ Y ≤ X ≤ 2k (for integer values of k ≥ 2), and shows

that the same bound must hold when 2 ≤ Y ≤ X ≤ 2k+1. In this manner, he is able to

prove that his upper bounds for H(X,Y ) hold over the full range of X,Y ≥ 2.

In order to determine what the bounds for H(X,Y ) should be for the base case, Saias
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instead examines a “smoothed” version of (3.2), given by the integral

H∗(X,Y ) =
∫ min(Y,

√
X)

1

H∗(X/t, t)
dt

log t
. (3.3)

Let ρ be a continuous function that satisfies the differential equation

uρ′(u) + ρ(u− 1) = 0 (3.4)

with initial conditions ρ(u) = 1 for u ≤ 1. Saias shows that the function H∗(X,Y ) =

Xρ(u− 1)/ logX satisfies the equation (3.3). The fact that the Dickman ρ-function makes

an appearance is not surprising, given that it is often used to estimate the frequency of

Y -smooth numbers of a given size. Moreover, it is natural to conjecture that H(X,Y ) �

H∗(X,Y ) and Saias establishes that such an asymptotic relationship holds. However, he is

unable to directly estimate the size of H∗(X,Y ).

Instead, Saias devises a new function H(X,Y ) that has the following properties:

(1) H(X,X) � H∗(X,X) = X/ logX

(2) H(X,Y ) ≤ 1 +
∑

p≤min(Y,
√
X)

H(X/p, p)

(3) H(X,Y ) ≥ H(X,Y )

He notes that the simplest choice for H would be to take H(X,Y ) = cH∗(X,Y ), where

c is a small constant. However, because the difference π(X) − Li(X) changes signs as X

increases, Saias is able to show that the function

cH∗(X,Y )−

1 +
∑

p≤min(Y,
√
X)

cH∗(X/p, p)


also changes signs when X and Y are large relative to c. In particular, when this function
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is negative, condition (2) from above is no longer satisfied. Saias makes a few modifications

to ensure that condition (2) is satisfied on the full range of permissible values of X and Y ,

ultimately defining

H(X,Y ) = c
X(1 + δ(X))ρ(u(1 + ε(Y ))− 1)

logX
,

where ε(Y ) is a function that tends to 0 as Y tends to infinity and δ(X) is a positive function

that decreases slowly as X tends to infinity. Note that ε and δ are specific to this context

(i.e. they are not arbitrary functions).

In summary, Saias has carefully constructed a function H(X,Y ) that satisfies

H(X,Y ) ≥ 1 +
∑

p≤min(Y,
√
X)

H(X/p, p)

≥ 1 +
∑

p≤min(Y,
√
X)

H(X/p, p)

≥ H(X,Y )

and for which H(X,X)� X
logX . Furthermore, using a process that is nearly identical to the

one described above for H, Saias was able to construct a second function H̃ that satisfies

H(X,Y ) ≤ 1 +
∑

p≤min(Y,
√
X)

H(X/p, p)

≤ 1 +
∑

p≤min(Y,
√
X)

H̃(X/p, p)

≤ H̃(X,Y )

and for which H̃(X,X) � X
logX . Again, it would be most natural to take H̃(X,Y ) =

c̃H∗(X,Y ), where c̃ is, in this case, a large constant; however, to account for the sign
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changes in π(X)− Li(X) as X increases, Saias instead defines

H̃(X,Y ) = c̃
X(1 + δ′(X))ρ(u(1 + ε′(Y ))− 1)

logX
,

where ε′(Y ) and δ′(X) satisfy the same conditions as ε(Y ) and δ(X) (respectively). The

bulk of his work lies in showing that the functions H, H∗, H and H̃ have the stated

properties. We use Saias’ methods, as well as several of the results that he produces using

these methods, in Section 4.5.
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Chapter 4

Polynomials with divisors of

every degree

In this chapter, we will begin our study of the degrees of divisors of xn − 1. In particular,

we will answer the question “How often does xn − 1 have a divisor of every degree between

1 and n when factored in Z[x]?”

4.1 Introduction and statement of results

Which polynomials with integer coefficients have integral divisors of every degree? The

trivial answer is that f(x) = 0 is the unique polynomial with this property. However, if we

clarify the problem by specifying that we are interested in polynomials f(x) with divisors

of every degree up to deg f(x), then the question becomes more interesting. Certainly,

any polynomial that splits completely into linear factors, such as f(x) = xn, satisfies this

criterion. However, there are other choices of polynomials that are not as obvious. In this

chapter, we examine polynomials of the form xn − 1, where n is a positive integer.

In order to determine the values of n for which xn − 1 has a divisor of every degree up
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to n, it will be helpful to use the following identity:

xn − 1 =
∏
d|n

Φd(x), (4.1)

where Φd(x) is the dth cyclotomic polynomial. Since deg Φd(x) = ϕ(d) and each Φd(x) is

irreducible, then the following statements are equivalent:

(1) The polynomial xn − 1 has a divisor of every degree between 1 and n.

(2) Every integer m with 1 ≤ m ≤ n can be written in the form

m =
∑
d∈D

ϕ(d),

where D is a subset of divisors of n.

We will call such a positive integer n ϕ-practical. The nomenclature stems from the

striking similarity between the statement in (2) and the definition of a practical number

given in chapter 3. In this chapter, we prove the following results on ϕ-practical numbers:

Theorem 4.1. The set of ϕ-practical numbers has asymptotic density 0.

Theorem 4.2. Let F (X) = #{n ≤ X : n is ϕ-practical}. There exist two positive constants

c1 and c2 such that for X ≥ 2, we have

c1
X

logX
≤ F (X) ≤ c2

X

logX
. (4.2)

While Theorem 4.2 immediately implies Theorem 4.1, there is a much simpler proof of

Theorem 4.1 that we will present in Section 4.2. In order to prove Theorem 4.2, we will rely

on several results and tools from the literature on practical numbers discussed in chapter 3.

In particular, we will make use of Stewart’s Condition (Theorem 3.1) and Saias’ methods

for producing the bounds for PR(X) given in (3.1).

It is interesting to note that our work on the ϕ-practical integers allows us to classify a

second family of polynomials with divisors of every degree. Namely, xn + 1 has an integral
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divisor of every degree up to n if and only if n is odd and ϕ-practical. This follows from the

fact that, when n is even, xn + 1 has no divisor of degree 1. On the other hand, when n is

odd, we have xn + 1 = −((−x)n − 1), hence xn + 1 has divisors of all of the same degrees

as those of xn − 1.

4.2 Proof of Theorem 4.1

Below we present our proof of Theorem 4.1, which we believe is likely to be similar to the

argument that Erdős had in mind for the practical numbers.

Proof. From the definitions of the functions ω(n), τ(n),Ω(n), it is clear that 2ω(n) ≤ τ(n) ≤

2Ω(n). Fix ε = 1/1000. Since ω(n) and Ω(n) both have normal order log log n (cf.[17,

Theorem 431]), then for all n except for a set with asymptotic density 0, we have

2(1−ε) log logn ≤ τ(n) ≤ 2(1+ε) log logn = (log n)(1+ε) log 2 < (log n)0.7. (4.3)

We can factor the polynomial xn − 1 =
∏
d|n Φd(x), where Φd(x) is the dth cyclotomic

polynomial. Since each Φd(x) is irreducible, the number of monic divisors of xn − 1 in Z[x]

is 2τ(n), since every divisor is uniquely determined by deciding whether or not to include

each Φd(x) with d | n in its factorization. Thus, in order for n to be ϕ-practical, we need

n ≤ 2τ(n); otherwise, xn−1 would not have a divisor of every degree less than or equal to n.

Taking the logarithm of both sides of this inequality and combining it with (4.3), we have

log n ≤ τ(n) log 2 < τ(n) < (log n)0.7.

But this is impossible, so the numbers n that are ϕ-practical are in the set with asymptotic

density 0 where (4.3) does not hold.
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4.3 Proof of the upper bound of Theorem 4.2

Stewart’s Condition (Theorem 3.1) shows the form that every practical number must take.

The key to proving this is a recursive argument showing that each practical number M can

be used to generate new practical numbers via the following set of conditions:

Lemma 4.3 (Stewart). If M is a practical number and p is a prime with (p,M) = 1, then

M ′ = pkM is practical (for k ≥ 1) if and only if p ≤ σ(M) + 1.

Stewart’s Condition would be a simple corollary of Lemma 4.3 if it were not for the

following subtlety: while Lemma 4.3 provides a method for building an infinite family of

practical numbers, it is not immediately obvious that all practical numbers arise in the

prescribed manner. Stewart’s Condition confirms our suspicions.

The simple necessary-and-sufficient condition in Lemma 4.3 turns out to be a powerful

tool. In addition to being an important component in the proof of Stewart’s condition, it

is also used in Saias’ proofs of the upper and lower bounds for the size of PR(X). Unfortu-

nately, we have not found such a simple statement for the ϕ-practical numbers. Stewart’s

Condition implies that each practical number M ′ > 1 can be constructed by multiplying

a smaller practical number M by a prime power pk, where p > P (m). However, the same

cannot be said for the ϕ-practical numbers. For example, 315 = 32 · 5 · 7 is ϕ-practical, but

45 = 32 · 5 is not, since there are no totient-sum representations for 22 and 23.

A more natural means of classifying the ϕ-practical numbers would be to use the following

criterion: Let w1 ≤ w2 ≤ · · · ≤ wk be the set of totients of divisors of a positive integer n,

rearranged so that they appear in non-decreasing order. Then n is ϕ-practical if and only

if, for each i < k, we have

wi+1 ≤ 1 + w1 + · · ·+ wi.

Unfortunately, this criterion for ϕ-practicality is not particularly useful to us from a theo-

retical standpoint, since the totients of divisors of n are not monotonic in general. However,

it has proven to be quite useful in our computational work and will be discussed in greater
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detail in the Appendix.

To get around these problems, we will only give a necessary condition for a number to

be ϕ-practical, which is all that is needed in order to determine the stated upper bound for

F (X). In Section 4, we will give a necessary-and-sufficient condition for a squarefree integer

to belong to the set of ϕ-practical numbers, which will be used to obtain the lower bound

for F (X) in Section 5.

Definition 4.4. Let n = pe11 · · · p
ek
k , where p1 < p2 < · · · < pk are primes and ei ≥ 1 for

1 ≤ i ≤ k. Define mi = pe11 · · · p
ei
i for i = 0, ..., k−1. We say that such an integer n is weakly

ϕ-practical if the inequality pi+1 ≤ mi + 2 holds for i = 0, ..., k − 1.

Lemma 4.5. Every ϕ-practical number is weakly ϕ-practical.

Proof. Let n = pe11 · · · p
ek
k , with p1 < p2 < · · · < pk and ei ≥ 1 for i ≤ 1 ≤ k. Suppose that

there exists an integer i for which pi+1 > mi+2. Observe that, if i = 0, then m0 = 1. Hence,

if pi+1 > mi + 2 holds at i = 0, we must have p1 > 3. Then, n > 3 and xn− 1 has no divisor

of degree 2, so n is not ϕ-practical. Thus, we may assume that i > 0. Now, pi+1 > mi + 2

implies that ϕ(pi+1) > mi + 1. Moreover, it is always the case that mi =
∑
d|mi ϕ(d).

Hence, if d | n and d - mi, then ϕ(d) > mi + 1. In particular, xn− 1 has no divisor of degree

mi + 1. Therefore, n cannot be ϕ-practical.

The converse to Lemma 4.5 is false. For example, 45 is not ϕ-practical, but it is weakly

ϕ-practical. We can use Lemma 4.5 in order to obtain the stated upper bound for F (x).

Lemma 4.6. If n is practical and p ≤ P (n), then pn is practical. The same holds for

weakly ϕ-practical numbers.

Proof. This is immediate from Stewart’s condition and from the definition of weakly ϕ-

practical numbers.

Lemma 4.7. Every even weakly ϕ-practical number is practical.
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Proof. Let n be an even weakly ϕ-practical number with ω(n) = k. Since n is weakly ϕ-

practical, it must be the case that pi+1 ≤ mi + 2 for all i < k. Furthermore, since n is even

then mi ≥ 2 for i ≥ 1, hence mi + 2 ≤ σ(mi) + 1 holds for all such i. Therefore, each pi+1

satisfies the inequality from Lemma 4.3, so n is practical.

Theorem 4.8. There exists a positive constant c2 such that, for X ≥ 2, we have

F (X) ≤ c2
X

logX
.

Proof. If n is a ϕ-practical number then, by Lemma 4.5, n is weakly ϕ-practical. Thus, if

n is even, Lemma 4.7 implies that n is practical. If n is odd, then 2`n is practical for every

` ≥ 1, by Lemmas 4.6 and 4.7. Moreover, for each odd integer n in (0, X], there is a unique

positive integer `0 such that 2`0n is in the interval (X, 2X]. Therefore, we have

F (X) = #{n ≤ X : n even and ϕ-practical}+ #{n ≤ X : n odd and ϕ-practical}

≤ #{n ≤ X : n is practical}+ #{X < m ≤ 2X : m is practical}

= PR(2X).

By (3.1), we have

PR(X) ≤ c4
X

logX
.

Taking c2 = 2c4, we obtain F (X) ≤ PR(2X) ≤ c2 X
logX .

4.4 Preliminary lemmas for the lower bound of Theo-

rem 4.2

In order to acquire the stated lower bound for the size of the set of ϕ-practical numbers,

it suffices to find a lower bound for the size of the set of squarefree ϕ-practicals. Although

we were unable to give a necessary-and-sufficient condition that characterizes all ϕ-practical
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numbers, we are able to find such a condition for the squarefree ϕ-practical numbers. This

condition will play a crucial role in Section 5, when we give a proof for the lower bound

of F (x). In order to obtain this condition, we will need the following lemma, which is our

analogue to Lemma 4.3.

Lemma 4.9. If M is ϕ-practical and p is prime with (p,M) = 1, then M ′ = pM is ϕ-

practical if and only if p ≤M + 2. Moreover, M ′ = pkM,k ≥ 2 is ϕ-practical if and only if

p ≤M + 1.

Proof. For the first case, we take M ′ = pM . If p > M + 2, then Lemma 4.5 implies that

M ′ cannot be ϕ-practical.

For the other direction, we assume that p ≤M + 2 and M ′ = pM . Suppose that we can

write an integer n in the form n = (p − 1)q + r, with 0 ≤ q, r ≤ M . Since q, r ≤ M and

M is ϕ-practical, we can write q =
∑
d∈D ϕ(d), r =

∑
d′∈D′ ϕ(d′), for some subsets D,D′ of

divisors of M. Then

n =
∑
pd∈pD

ϕ(pd) +
∑
D∈D′

ϕ(D)

where pD = {pd : d ∈ D}. There is no overlap between pD and D′, since the first set only

contains divisors of pM that are not divisors of M . So, there exists a polynomial with degree

n that divides xpM − 1.

Thus, in order to conclude that M ′ is ϕ-practical, it remains for us to show that every

integer n ≤ M ′ can be written in the form (p − 1)q + r, with 0 ≤ q, r ≤ M . We will

break [0,M ′] into subintervals of the form [(p − 1)q, (p − 1)q + M ]. Since p ≤ M + 2 then

(p−1)q+M ≥ (p−1)q+(p−2), which is adjacent to (p−1)(q+1). Thus, all of the intervals

are overlapping or, at least, contiguous. Moreover, the first subinterval starts at 0 and the

last subinterval ends at M ′. Thus, M ′ is ϕ-practical.

For the second case, we take M ′ = pkM,k ≥ 2. We have seen that p ≤ M + 2. Now,

suppose that p = M + 2. Then, from the first case, we know that pM is ϕ-practical.
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However, the smallest irreducible divisor of xM
′ − 1 that has degree larger than pM has

degree ϕ(p2). Since p = M + 2, we have

ϕ(p2) = M2 + 3M + 2 > M2 + 2M + 1 = pM + 1,

so there is no divisor of xM
′−1 with degree pM+1. Thus, M ′ is not ϕ-practical if p = M+2.

For the other direction, we assume that p ≤M + 1. We will use induction on the power

of p, taking the case where M ′ = pM to be our base case. For our induction hypothesis, we

assume that pk−1M is ϕ-practical. Now, suppose that n ∈ [0, pkM ]. Let q1 be the largest

integer in [0,M ] with ϕ(pk)q1 ≤ n. If q1 = M, then

n− ϕ(pk)q1 = n− ϕ(pk)M ≤ (pk − ϕ(pk))M = pk−1M.

By our induction hypothesis, pk−1M is ϕ-practical, so we have

n− ϕ(pk)M =
∑
d∈D

ϕ(d)

where D is a subset of divisors of pk−1M . Thus, we can write

n =
∑
d∈D

ϕ(d) +
∑
d|M

ϕ(pkd).

Therefore, when q1 = M , we see that n is ϕ-practical. If q1 < M then, using the assumption

that p ≤M + 1, we have

n− ϕ(pk)q1 < ϕ(pk)(q1 + 1)− ϕ(pk)q1 = ϕ(pk) = pk−1(p− 1) ≤ pk−1M.

Once again, we see that our induction hypothesis implies that n is ϕ-practical.

Recall the definition of weakly ϕ-practical from Definition 4.4.
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Corollary 4.10. A squarefree integer n is ϕ-practical if and only if it is weakly ϕ-practical.

Proof. Let n = p1 · · · pk, with p1 < p2 < · · · < pk, and suppose that n is weakly ϕ-practical.

We proceed by induction on the number of prime factors of n. For our base case, we observe

that n = 1 is both weakly ϕ-practical and ϕ-practical. Suppose that all squarefree integers n

with at most k−1 prime factors that are weakly ϕ-practical are, in fact, ϕ-practical. Hence,

since n
pk

is weakly ϕ-practical, it is also ϕ-practical, according to our induction hypothesis.

But then n = pk · npk with n
pk

ϕ-practical, and pk ≤ n
pk

+ 2, since n is weakly ϕ-practical.

Therefore, by Lemma 4.9, n is ϕ-practical. The other direction of the proof is an immediate

consequence of Lemma 4.5.

4.5 Proof of the lower bound of Theorem 4.2

Throughout the remainder of this chapter, we will use the following notation. Let

F ′(X) = #{n ≤ X : n is ϕ-practical and squarefree}.

Let 1 = d1(n) < d2(n) < · · · < dτ(n)(n) = n denote the increasing sequence of divisors of

n. Let p1 < p2 < · · · < pω(n) be the increasing sequence of prime factors of n. For integers

n, we define

T (n) = max1≤i<τ(n)
di+1(n)
di(n)

.

Let

D(X,Y, Z) = #{1 ≤ n ≤ X : T (n) ≤ Z,P (n) ≤ Y and n is squarefree},

and let

D(X) = D(X,X, 2).

Definition 4.11. An integer n is called Z-dense if n is squarefree and T (n) ≤ Z.

Note: This is not the way that Saias defines 2-dense integers. His definition does not
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include the stipulation that n is squarefree. For the purposes of this chapter, we will only

need to consider squarefree integers. The results of Saias that we cite below are valid for

squarefree n.

Using the notation defined above, we see that D(X,X,Z) counts the number of Z-dense

integers up to X. Saias notes that the set of 2-dense integers is properly contained within the

set of squarefree practical numbers. As a result, if PR′(X) denotes the number of squarefree

practical numbers up to X, then a lower bound for D(X) will also be a lower bound for

PR′(X). The bulk of Saias’ work is, therefore, in obtaining a lower bound for D(X,Y, Z),

where 2 ≤ Z ≤ Y ≤ X. In the particular case when X = Y and Z = 2, he obtains

the following inequalities, the first of which immediately yields his stated lower bound for

PR(X):

Lemma 4.12 (Saias). There exist positive constants κ1 and κ2 such that

κ1
X

logX
≤ D(X) ≤ κ2

X

logX

for all X ≥ 2.

Unfortunately, the same relationship does not exist between F ′(X) and D(X). For

example, 66 is 2-dense but not ϕ-practical. In order to get around this problem, we introduce

the following modified definition of 2-dense integers:

Definition 4.13. A positive integer n is strictly 2-dense if n is squarefree, if di+1
di

< 2 holds

for all i satisfying 1 < i < τ(n) − 1, and if d2
d1

= 2 = dτ(n)

dτ(n)−1
. Note that this forces n to be

even.

Although this modification is subtle, it is sufficient for removing the non-ϕ-practical

2-dense integers from our consideration.

Lemma 4.14. Every strictly 2-dense number is ϕ-practical.

Proof. Write n = p1p2 · · · pk, where 2 = p1 < p2 < · · · < pk. If k = 1, then the only strictly

2-dense integer with exactly 1 prime factor is n = 2, which is also ϕ-practical. Assume
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that k > 1 and n is not ϕ-practical. Then, as n is squarefree, Corollary 4.10 implies that

n is not weakly ϕ-practical either. As a result, the inequality from the definition of weakly

ϕ-practical numbers must fail for some prime pj dividing n, with j > 1. Let nj =
∏
i<j pi,

so pj > nj+2. Now, the largest proper divisor of nj is nj
2 . Moreover, there are no divisors of

n between nj
2 and nj , since all of the other prime factors of n are greater than or equal to pj .

Therefore, there exist divisors di, di+1 of n with di+1
di
≥ 2, namely di = nj

2 and di+1 = nj .

Since j > 1, then di+1 = nj > 2 = d2, so i > 1. On the other hand, since nj < pj , we must

have i < τ(n)− 1. Thus, we have shown that there exists an index i with 1 < i < τ(n)− 1

such that di+1
di
≥ 2, so n is not strictly 2-dense.

Let

D′(X) = #{1 ≤ n ≤ X : n is strictly 2-dense}.

From Lemma 4.14, a lower bound for D′(X) will also serve as a lower bound for F ′(X).

One might wonder why we have only defined D′(X) in terms of a single parameter, while

Saias’ function D(X) is initially defined in terms of both X and Y . This departure stems

from a difference in our approaches. Saias’ proofs for D(X) relied on a number of iterative

arguments that restricted the size of the largest prime factor of n, but our proofs for D′(X)

will not require any similar restrictions.

In his proof of the lower bound forD(X,Y ), Saias relies heavily on the following condition

for 2-dense numbers:

Lemma 4.15 (Tenenbaum). For every integer n ≥ 1, T (n) ≤ 2 if and only if

T (n/P (n)) ≤ 2

and

P (n) ≤
√

2n.

The proof of Saias relied heavily on Lemma 4.15, while our proof will rely heavily on an
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analogue of Lemma 4.15 for strictly 2-dense integers, which we will give below. Although

the statements of these lemmas are quite similar, their proofs differ substantially. The proof

of Lemma 4.15 relies on a structure theorem of Tenenbaum [38, Lemma 2.2] that describes

all Z-dense numbers in terms of their prime factorization, while our approach will not make

use of any heavy machinery. We will prove our version of Lemma 4.15 in three parts.

Lemma 4.16. For every squarefree integer n > 1, n is strictly 2-dense if n/P (n) is strictly

2-dense and P (n) <
√
n.

Proof. Assume that n is squarefree, m = n/P (n) is strictly 2-dense, and P (n) <
√
n. In

other words we are assuming that P (n)2 < n, so P (n) < n
P (n) = m. Suppose that the

divisors of m are 1 = d1 < d2 < · · · < dk = m. Let P (n) = p. Then p = pd1 < pd2 < · · · <

pdk = pm, along with the divisors of m, form the divisors of pm. Now, since m is strictly

2-dense, it follows that m is even, hence n is even as well. As a result, we have

d2

d1
= 2 =

pdk
pdk−1

.

Thus, the only ratios that may pose an obstruction to mp being strictly 2-dense are dk
dk−1

and pd2
pd1

. In order to show that these ratios do not cause a problem, we will show that there

exist divisors di, dj of m with pdi ∈ (m2 ,m) and dj ∈ (p, 2p). The general principle behind

the argument is that, if m is strictly 2-dense and X is a real number with 1 < X < m/2,

then m has a divisor in the interval (X, 2X), since otherwise we would have two consecutive

divisors di, di+1 with 1 < i < τ(n) − 1 and di ≤ X, di+1 ≥ 2X, i.e. di+1
di
≥ 2. There are

three cases to consider:

Case 1: If p > m
2 then, since p < m, we have p < m < 2p. Moreover, since m

2 < p < m,

we see that both conditions are satisfied; that is, we can let di = 1 and dj = m.

Case 2: If m
4 < p < m

2 , then p < m
2 < 2p < m. Hence, we have p < m

2 = dk−1 < 2p and

m
2 < 2p = pd2 < m, so both conditions are met.

Case 3: If p < m
4 , consider the interval (p, 2p). Since p < m

4 , then 2p < m
2 = dk−1,

40



hence the existence of a divisor dj of m with dj ∈ (p, 2p) follows from the fact that m is

strictly 2-dense. Furthermore, since m is strictly 2-dense, there exists a divisor di of m in

the interval (m2p ,
m
p ). Therefore, pdi ∈ (m2 ,m).

Lemma 4.17. If a squarefree integer m ≥ 6 satisfies Definition 4.13 for all ratios of divisors
di+1
di

up to di+1 = P (m), then m is strictly 2-dense.

Proof. We proceed by induction on the number of distinct prime factors of m. We remark

that there is no case where there is one distinct prime factor, since m ≥ 6 and, in order for

m to be strictly 2-dense, its smallest prime factor must be 2. For our base case, we observe

that if m has 2 distinct prime factors, then the only integer m for which Definition 4.13 holds

for all divisors up to P (m) is 6, which is strictly 2-dense. For our induction hypothesis, we

suppose that if m has at most `− 1 distinct prime factors and di+1
di

< 2 holds for all pairs of

consecutive divisors (di, di+1) up to di+1 = p`−1, then m is strictly 2-dense. Now, consider

an integer m with ` distinct prime factors, i.e., m = p1 · · · p` with p1 < · · · < p`, and suppose

that the strictly 2-dense definition holds for all consecutive pairs of divisors (di, di+1) up to

di+1 = p`. If p` > m
p`

, then there is no divisor of m between m
2p`

and m
p`

. This contradicts our

assumption that all pairs of consecutive divisors (di, di+1) up to di+1 = p` satisfy di+1
di

< 2.

Thus, it must be the case that p` < m
p`

, i.e., p` <
√
m. Moreover, since P (mp` ) = p`−1 < p`,

then our induction hypothesis implies that m
p`

is strictly 2-dense. Therefore, m is strictly

2-dense by Lemma 4.16.

Lemma 4.18. For every squarefree integer n > 6, n is strictly 2-dense if and only if n/P (n)

is strictly 2-dense and P (n) <
√
n.

Proof. Let n be a squarefree integer larger than 6, let m = n/P (n), and let p = P (n).

Assume that n is strictly 2-dense. Then, n must be even, hence m is even. First, we assume

that p > m. Then, we have m
2 < m < p as consecutive divisors of n. Since n > 6 then

m = n
p >

6
3 = 2, hence m

2 > 1. Therefore, there exists some integer 1 < i < τ(n) − 1 for

which di = m
2 , di+1 = m and di+2 = p. Clearly, di+1

di
≥ 2, so n cannot be strictly 2-dense.
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Secondly, continuing with our assumption that n is strictly 2-dense, we suppose that m

is not. Then, there is some pair of divisors di, di+1 of m, with 1 < i < k − 1, for which
di+1
di
≥ 2. Without loss of generality, we may assume that di, di+1 is the smallest pair with

this property. Now, in order for n to be strictly 2-dense, it must be the case that a multiple

of p falls between di and di+1, since p is the smallest divisor of n that is not also a divisor of

m. However, since p is the largest prime divisor of n, then P (m) < p, so the strictly 2-dense

definition holds for all divisors of m up to P (m). But, if the strictly 2-dense definition holds

for all divisors of m up to P (m) then, by Lemma 4.17, m must be strictly 2-dense. However,

this contradicts our prior assumption that m is not strictly 2-dense. Therefore, if m is not

strictly 2-dense then n cannot be strictly 2-dense.

The second direction of the proof follows immediately from Lemma 4.16.

In order to obtain a lower bound for D′(X), we will use Lemmas 4.15 and 4.18 to show

that a positive proportion of 2-dense integers are strictly 2-dense. Thus, Saias’ lower bound

for D(X) will also serve as a lower bound for D′(X). Before we commence with the proof,

we will pause to discuss a technique from the study of the anatomy of integers that will be

useful in this context. For the remainder of this section, we will use the following notation.

Let u = logX
log Y . Let ρ(t) be the Dickman function defined by (3.4). As in [34], we will define

H(X,Y ) =


X log 2
logX (1− 1

log2(logX/ log 2) )ρ(u(1− 1√
log Y

)− 1) (0 < u < 3(logX)1/3),

Ψ(X,Y ) (u ≥ 3(logX)1/3).

Using the methods outlined in Section 3.2, Saias constructs H(X,Y ) to serve as a more

tractable model for D(X,Y ). After much difficult work, he shows that

D(X) � H(X,X) � X

logX
.

In addition, he proves that H(X,Y ) satisfies the following Buchstab-type inequality:
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Lemma 4.19 (Saias). For X ≥ 216, Y ≥ 2 and 0 < u < 3(logX)1/3, we have

H(X,Y ) ≥ 1 +
∑

p≤min(Y,
√

2X`(X))

H(X/p, p),

where `(X) = exp{ logX
(log2X)(log3X)3 }.

In other words, H(X,Y ) was constructed so that it has roughly the same order of magnitude

asD(X,Y ) and, likeD(X,Y ), it can be expressed recursively using a Buchstab inequality. In

fact, Saias was able to demonstrate a more explicit relationship between these two functions,

which will be useful in our lower bound argument for D′(X):

Lemma 4.20 (Saias). There exists a constant c ≥ 1 such that, under the conditions X ≥ 2

and Y ≥ 2, we have

D(X,Y ) ≤ cH(X,Y ).

Now that we have some information about the behavior of the function H(X,Y ) and

its relationship with D(X,Y ), we have all of the ingredients necessary to prove our lower

bound for D′(X).

Theorem 4.21. For X ≥ 2, we have

D′(X)� X

logX
.

Proof. We will show that a positive proportion of 2-dense integers are strictly 2-dense, except

for some possible obstructions at small primes. We will then use a counting argument to

deal with these small obstructions. We begin by counting integers n ≤ X that are 2-dense

but not strictly 2-dense. Let n = mpj, where m is a 2-dense integer, p is a prime satisfying

m < p < 2m, and j is an integer that has the following properties: j ≤ X/mp, P−(j) > p

and the prime factors of j satisfy the conditions necessary for mpj to be 2-dense. Since we

have specified that m < p < 2m then, by Lemma 4.15, mpj is 2-dense. However, we know

from Lemma 4.18 that mpj will not be strictly 2-dense for values of p in this range. Thus,
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the integers n that we have constructed are all 2-dense but not strictly 2-dense. By varying

the sizes of m and j, as well as our choice of the prime p, we can construct, in this manner,

all integers that are 2-dense but not strictly 2-dense.

Now, let C > 16 be an integer that is chosen to be large relative to the size of the

constant κ1 from Lemma 4.12. For each integer k > C, consider those 2-dense numbers

m ∈ (2k−1, 2k]. Since m < p < 2m, we must have p ∈ (2k−1, 2k+1). We will say that n

has an obstruction at k if m and p land within these intervals, i.e., if p is a prime in our

construction that prevents n from being strictly 2-dense. Thus, for values of k in this range,

the number of 2-dense integers that are not strictly 2-dense is at most

∑
k>C

∑
m∈(2k−1,2k)
m 2-dense

∑
p∈(2k−1,2k+1)

p prime
m<p<2m

∑
j≤X/mp

mpj 2-dense
P−(j)>p

1. (4.4)

Observe that, when j = 1, we are counting

#{n ≤ X : n = mp,m < p < 2m,m is 2-dense}. (4.5)

The conditions that m ≤ X/p and m < p together imply that m < X/m, i.e., m <
√
X.

Similarly, the conditions on p force us to have p <
√

2X. Thus, the quantity counted in

(4.5) is at most

1 +
∑

p<
√

2X

#{m ≤
√
X : m is 2-dense}. (4.6)

From Lemma 4.12, we have

#{m ≤
√
X : m is 2-dense} = D(

√
X)�

√
X

log
√
X
�
√
X

logX
. (4.7)

Moreover, the number of terms in the summation is at most π(
√

2X). By Chebyshev’s
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Inequality (cf. [32, Theorem 3.5]),

π(
√

2X)�
√

2X
log
√

2X
�
√
X

logX
.

Therefore, the quantity counted in (4.6) is bounded above by a constant times

√
X

logX
·
√
X

logX
=

X

log2X
,

which is negligible compared with the magnitude of D(X) given in Lemma 4.12.

Assume hereafter that j > 1 and, for now, let k be fixed. Our first order of business will

be to show that we can take m < exp{C
√

logX}, which we will now demonstrate. Instead

of estimating the full sum in j, we could ignore the stipulation that mpj is 2-dense and use

a cruder estimate for ∑
j≤X/mp

mpj squarefree
P−(j)>p

1.

Since X/mp > p, we can use Brun’s Sieve (cf. [18, Theorem 2.2]) to show that

#{j ≤ X/mp : q | j, q prime ⇒ q > p} � X

mp

∏
q≤p

(
1− 1

q

)
.

Moreover, since 2k−1 < p ≤ X, we can apply Mertens’ Theorem (cf. [32, Theorem 3.15]),

which allows us to obtain

∏
q≤2k−1

(
1− 1

q

)
� 1

log 2k−1
� 1

k
.

Thus, we have the following crude estimate for the sum in j:

X

mp

∏
q≤2k−1

(
1− 1

q

)
� X

mpk
.
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Using our crude estimate in (4.4) yields

∑
m∈(2k−1,2k)
m 2-dense

∑
p∈(2k−1,2k+1)

p prime

∑
j≤X/mp

mpj squarefree
P−(j)>p

1�
∑

m∈(2k−1,2k)
m 2-dense

x

mk

∑
p∈(2k−1,2k+1)

p prime

1
p
.

Now, the largest term in the sum in p is at most 1
2k−1 , and the number of terms in this sum

is certainly less than π(2k+1). Hence, by Chebyshev’s Inequality (cf. [32, Theorem 3.5]), we

have ∑
p∈(2k−1,2k+1)

p prime

1
p
� 1

2k−1
· 2k+1

log 2k+1
� 1

k
.

As a result, ∑
m∈(2k−1,2k)
m 2-dense

X

mk

∑
p∈(2k−1,2k+1)

p prime

1
p
� X

k2

∑
m∈(2k−1,2k)
m 2-dense

1
m
.

Similarly, we can use the fact that the largest term in the sum in m is at most 1
2k−1 and

the number of terms is less than D(2k). Thus, using the upper bound for D(X) given in

Lemma 4.12, we obtain
X

k2

∑
m∈(2k−1,2k)
m 2-dense

1
m
� X

k3
.

Summing over all values of k > Y allows us to see that

∑
k>Y

X

k3
≤ X

∫ ∞
Y−1

1
t3
dt =

X

2(Y − 1)2
.

In particular, when Y ≥ 1 + C
√

logX, we have

∑
k>Y

X

k3
≤ X

C2 logX
.

Thus, if C is large, then the number of 2-dense integers with obstructions at k ≥ C
√

logX

is small relative to the number of 2-dense integers. Hence, it suffices to take k < C
√

logX in
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our computations, which means that we can take m < exp{C
√

logX}. Now, since p < 2m

in our construction, then pm < 2m2 < 2 exp{2C
√

logX}. Therefore,

X

mp log(X/mp)
≤ X

mp log(X(2 exp{2C
√

logX})−1)
� X

mp logX
.

Next, we will bound the integers counted by the sum in j in (4.4). We have

∑
1<j≤X/mp
mpj 2-dense
P−(j)>p

1 = #{n ≤ X : mp | n, n is 2-dense, P−(n/mp) > p}

=
∑
q≤X

#{qM ≤ X : mp |M,M is 2-dense, q is prime, P (M) < q < 2M} (4.8)

≤
∑

q≤X/mp

D(X/mpq, q),

where the second line follows from Lemma 4.15 and the third line follows from the definition

of D(X,Y ). We can improve upon this final bound slightly. Namely, since we are counting

integers M with q
2 < M ≤ X

q in the second line, we see that D(X/mpq, q) = 0 when

q >
√

2X. Now, to simplify our notation, let Z = X/mp. Then, using the bound that we

just derived for q in conjunction with (4.8) yields

∑
j≤Z

mpj 2-dense
P−(j)>p

1 ≤
∑

q≤min(Z,
√

2X)

D(Z/q, q)

≤ c
∑

q≤min(Z,
√

2X)

H(Z/q, q),

where the second inequality follows from Lemma 4.20. Since j > 1 and P−(j) > p, then

j > p > 2C implies, in particular, that Z > 216. Let `(X) be defined as in Lemma 4.19. We

will show that
√

2Z`(Z) >
√

2X, (4.9)
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which will allow us to apply Lemma 4.19 in order to obtain an upper bound of cH(Z,Z)

for the sum given in the previous display. To prove 4.9, we recall that we can take m <

exp{C
√

logX} and p < 2m < 2 exp{C
√

logX}. Hence,

Z =
X

mp
>

X

2e2C
√

logX
> X1/2.

Now,

`(Z) > e(logZ)2/3 ,

so we can use the fact that Z > X1/2 to show that `(Z) > e(logX)3/5 . Thus, for sufficiently

large X, we have
√
mp <

√
2eC
√

logX < e(logX)3/5 < `(Z),

so
√

2Z`(Z) =

√
2X
mp

`(Z) >
√

2X.

As a result, we can apply Lemma 4.19 to obtain an upper bound of cH(Z,Z), since `(Z) ≥ 1

when Z ≥ 216. By appealing to the definition of the function H(X,Y ), we have

∑
j≤Z

mpj 2-dense
P−(j)>p

1� H(Z,Z)� Z

logZ
=

X

mp log(X/mp)
. (4.10)

Now, it will suffice to replace log(X/mp) with logX in the denominator of (4.10) in

order to arrive at a more precise estimate for the sum in j. In other words, we have

∑
m∈(2k−1,2k)
m 2-dense

∑
p∈(2k−1,2k+1)

p prime

∑
j≤X/mp

mpj 2-dense
P−(j)>p

1�
∑

m∈(2k−1,2k)
m 2-dense

X

m logX

∑
p∈(2k−1,2k+1)

p prime

1
p
.

Moreover, using the same estimates for the summations in m and p that we found above
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allows us to obtain

∑
m∈(2k−1,2k)
m 2-dense

X

m logX

∑
p∈(2k−1,2k+1)

p prime

1
p
� X

k2 logX
.

Summing over all values of k > C allows us to see that

X

logX

∑
k>C

1
k2
≤ X

logX

∫ ∞
C

1
t2
dt ≤ X

C logX
.

Since we have chosen C to be large relative to the size of Saias’ lower bound constant for

D(X), then our count of 2-dense integers with obstructions at k > C is negligible relative

to the full count of 2-dense integers.

All that remains, then, is for us to consider the 2-dense integers n that have no obstruc-

tions at values of k > C. Let

N = {n ≤ X : n is 2-dense with no obstructions at k > C}.

Since we chose C to be large relative to the implicit constant κ1 from Lemma 4.12, we can

use this lemma, along with our count of 2-dense integers with obstructions at k > C, to

show that for all large X,

#N ≥ κ X

logX
,

where κ > 0 is some absolute constant. Define f : N → Z+ to be a function that maps

each element n ∈ N to its largest 2-dense divisor m with all prime factors at most 2C . Let

M = Imf. By the Pigeonhole Principle, there is some m0 ∈M with at least #N
#M ≥

κ

42C
X

logX

elements in its preimage, since Chebyshev’s bound (cf. [32, pg. 108]) implies
∏
p≤2C p ≤ 42C .

In other words, m0 divides at least the average number of integers in a pre-image. For each
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n ∈ N with f−1(m0) = n, let

n′ = n
∏
p≤2C

p prime
p-m0

p.

Then, n′ is squarefree, since the only primes dividing n that are smaller than 2C are also

divisors of m0. Moreover, n′ is strictly 2-dense, since the strict inequality form of Bertrand’s

Postulate implies that the product of all primes up to 2C is strictly 2-dense. Finally, since

we multiplied every n in the pre-image of m0 by the same sequence of primes, there is a

one-to-one correspondence between the strictly 2-dense integers up to 42CX that we have

constructed and the 2-dense numbers in the pre-image of m0. Thus, at least κ

42C
X

logX of the

integers up to 42CX are strictly 2-dense. Therefore, since D′(42CX) ≥ κ

42C
X

logX , we have

the stated result.

The proof of Theorem 4.21 can be used to obtain the following results on the relationship

between the practical and ϕ-practical numbers.

Corollary 4.22. For X sufficiently large, we have

#{n ≤ X : n is practical but not ϕ-practical} � X

logX
.

Proof. As in the proof of Theorem 4.21, let

N = #{n ≤ X : n is 2-dense with no obstructions at k > C}.

We know that, for sufficiently large X, we have #N ≥ κ X
logX , where κ > 0 is some absolute

constant. As before, let f : N → Z+ map each n ∈ N to its largest 2-dense divisor m

satisfying the condition that P (m) ≤ 2C . Then, from the proof of Theorem 4.21, there

exists some m0 ∈ Imf with at least κ

42C
X

logX elements in its pre-image. For each n ∈ N
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with f−1(m0) = n, let

n′ =
2 · 72

gcd(15,m0)
n

∏
7<p≤2C

p-m0

p.

Since n is squarefree and 2-dense, then 22‖n′. Thus, we can write n′ = 28M , where M is

an integer with P−(M) ≥ 7. Observe that 28 is not ϕ-practical, since x28− 1 has no divisor

with degree 5. Moreover, as all prime divisors of M are at least 7, it follows that xn
′ − 1

has no divisor of degree 5. Hence, n′ is not ϕ-practical. On the other hand, let

l = n
∏

7<p≤2C

p-m0

p.

Since n is 2-dense, Bertrand’s Postulate implies that l is 2-dense, hence practical. In particu-

lar, this means that all of the prime factors of l must satisfy the inequality from Proposition

1.3. Now, let r = 2·72

gcd(15,m0) . Since 2 · 72 > 15 then, as each prime p dividing l satisfies

p ≤ σ(m) + 1, it must be the case that p ≤ σ(rm) + 1. Therefore, n′ is practical.

In order to construct the integers n′, we multiplied every n in the pre-image of m0 by

the same number. As a result, there is a one-to-one correspondence between the practical

numbers up to r · 42CX that we have constructed and the 2-dense numbers in the pre-

image of m0. Therefore, at least κ

42C
X

logX of the integers up to r · 42C are practical but not

ϕ-practical.

Corollary 4.23. For X sufficiently large, we have

#{n ≤ X : n is ϕ-practical but not practical} � X

logX
.

Proof. In Theorem 4.21, we showed that #{n ≤ X : n even, squarefree and ϕ-practical} �
X

logX . Now, either a positive proposition of the integers counted in this set are divisible by

7 or a positive proportion are not divisible by 7. In the first case, let n be a strictly 2-dense

number that is divisible by 7, and let n′ = 3
2n. In the second case, we can take n to be a
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strictly 2-dense number with (7, n) = 1, and n′ = 21
2 n. In either case, n′ can be re-written

in the form

n′ = 32 · 5 · 7 ·
∏

7<p≤X
p|n

p.

Since 32 · 5 · 7 is ϕ-practical and n is strictly 2-dense, then n′ is ϕ-practical by Lemmas 4.9

and 4.14. However, n′ is not practical since it is odd.

We remark that Corollary 4.23 also shows that a positive proportion of ϕ-practical

numbers are odd.
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Chapter 5

Multiplicative orders and

Artin’s conjecture

In this chapter, we highlight a few important results regarding multiplicative orders and

discuss how they fit in with the work that we will present in Chapter 6.

5.1 Introduction

There is an inextricable link between multiplicative orders and the degrees of the irreducible

divisors of xn−1 in Fp[x]. Let `a(n) denote the multiplicative order of a (mod n) for integers

a with (a, n) = 1. The following well-known proposition [10] demonstrates the important

connection between `p(d) and the factorization of Φd(x):

Proposition 5.1. The following two cases completely characterize the factorization of Φd(x)

over Fp:

1) If (d, p) = 1, then Φd(x) decomposes into a product of distinct irreducible polynomials,

each with degree `p(d) in Fp[x].

2) If d = mpk, (m, p) = 1, then Φd(x) = Φm(x)ϕ(pk) over Fp.
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In particular, this result implies that when p is a primitive root (mod d), the polynomial

Φd(x) remains irreducible in Fp[x]. Thus, as we count the integers n for which xn − 1 has a

divisor of every degree between 1 and n, it will be important to understand how often p is

a primitive root (mod d). The study of primitive roots dates back at least to Gauss, who

observed that the period of the repeating decimals in the expansion of 1
p is precisely `10(p).

His tables in articles 315-317 of Disquisitiones Arithmeticae include a number of examples of

primes p for which 1
p has a period of length p− 1; that is, primes for which 10 is a primitive

root modulo p. He conjectured that there are infinitely many primes p with this property,

but was unable to prove his conjecture.

It is natural to ask the more general question: “For which integers a are there infinitely

many primes p such that a is a primitive root modulo p?” If we exclude 2, as Gauss did,

then all of the groups (Z/pZ)× have even order; thus, squares of integers cannot be cyclic

generators. Another obvious value of a that we can exclude is −1, since −1 has order

dividing 2 in (Z/pZ)×. Thus, a necessary condition on a for there to be infinitely many

primes p with a as a primitive root would be that a cannot be a square and a 6= −1. In

1927, Artin conjectured that these trivially necessary conditions are also sufficient:

Conjecture 5.2 (Artin’s primitive root conjecture). If the integer a is not a square and

not −1, then there are infinitely many primes with a as a primitive root.

In fact, he made the following stronger conjecture:

Conjecture 5.3. If the integer a is not a square and not −1, then there is a positive

number A(a) such that the number of primes p ≤ X with primitive root a is asymptotically

A(a) · π(X) as X →∞.

For all values of a, A(a) is a rational multiple of Artin’s constant, which is defined as

follows:

A =
∏

q prime

(
1− 1

q(q − 1)

)
= 0.3739558136....
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Artin gave a heuristic argument that led him to conjecture a set of values for A(a). How-

ever, Lehmer provided numerical evidence that called some of Artin’s conjectured values

into question. According to Hooley [20] Artin’s heuristic argument was later revised by

Heilbronn, who came up with the following formula for A(a) when a is squarefree:

A(a) =


A, a 6≡ 1 (mod 4)

A

1−
∏
q|a

1
1 + q − q2

 , a ≡ 1 (mod 4)

Heilbronn’s conjectured values for A(a) appear to agree with Lehmer’s numerical com-

putations, and are currently accepted to be the “correct” values of A(a). (As we will discuss

below, a conditional proof of Artin’s primitive root conjecture was given by Hooley in 1967;

the values for A(a) that he obtained agree with Heilbronn’s conjectured values.)

5.2 A heuristic argument

To provide some intuition for why the quantitative form of Artin’s Conjecture should be

true, we will start by providing a heuristic argument.

Condition 5.4. An integer a is a primitive root (mod p) if and only if for every prime q

dividing p− 1, a is not a qth power (mod p).

Choose a squarefree a 6= 1. For each fixed q, we are interested in computing the density

of primes p for which the condition above does not hold. In other words, we wish to compute

the density of primes p such that

p ≡ 1 (mod q) (5.1)

and

a
p−1
q ≡ 1 (mod p). (5.2)

55



We will say that a pair (a, p) “fails the q-test” if it satisfies both of these conditions. It is

not difficult to determine the proportion of numbers a that “fail the q-test” when p is fixed

and q | p− 1. Namely, 1
q of all values of a will have this property.

On the other hand, it is quite difficult to determine this proportion when a is fixed and

p varies over all primes that are ≡ 1 (mod q). For each fixed prime q, the Prime Number

Theorem for Arithmetic Progressions implies that p ≡ 1 (mod q) occurs with frequency

1
ϕ(q) = 1

q−1 . Fermat’s Little Theorem implies that ap−1 ≡ 1 (mod p) if p - a. In other

words, when p - a, then a
p−1
q is a solution to the congruence

xq ≡ 1 (mod p).

This congruence has q solutions, one of which is equivalent to 1 (mod q). So, the proportion

of primes that satisfy condition (5.2) should be 1
q . As a result, if we assume that the events

“p ≡ 1 (mod q)” and “a
p−1
q ≡ 1 (mod p)” are independent, then the probability that

conditions (5.1) and (5.2) are met simultaneously is 1
q(q−1) . On the other hand, if p has a

as a primitive root, then conditions (5.1) and (5.2) cannot occur simultaneously for any q.

Thus, we would expect a natural density of

∏
q

(
1− 1

q(q − 1)

)

for primes p for which a is a primitive root (mod p). Therefore, we would expect that

#{p ≤ X : a is a generator (mod p)} =
∏
q

(
1− 1

q(q − 1)

)
X

logX
+ Some Error Term.

Assuming the Generalized Riemann Hypothesis, one can prove that this estimate is correct

when a 6≡ 1 (mod 4). In the next section, we will discuss a rigorous version of this argument,

due to Hooley [20].
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5.3 Hooley’s approach

We will now sketch Hooley’s argument in the simplest case, where a is squarefree and a 6≡ 1

(mod 4). Let Kq := Q(ζq, a1/q). From basic properties of Kummerian fields, we know that:

p splits completely in Kq ⇐⇒ p ≡ 1 (mod q) and a
p−1
q ≡ 1 (mod p).

Thus, we can translate “failing the q-test” into a problem in algebraic number theory. A

special case of the GRH-conditional Chebotarev Density Theorem implies that

∑
p≤X
p splits

completely in Kq

1 ∼ 1
[Kq : Q]

X

logX
,

as X →∞. Thus, if n(q) = [Kq : Q], we have

∑
p≤X

p does not split
completely in Kq

1 ∼
(

1− 1
n(q)

)
X

logX
. (5.3)

We want to find the density of primes p that do not split completely in any Kq. In order to

compute this, we can do a simple inclusion-exclusion. Start with:

1− 1
n(2)

− 1
n(3)

− 1
n(5)

− · · · .

The subtraction above double-counts primes that split completely in both Ki and Kj , so

we need to add back terms to account for these primes. So, we will add

1
n(6)

+
1

n(10)
+

1
n(14)

+
1

n(15)
+ · · · .
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Continuing in this fashion, we would expect to obtain something like:

#{p ≤ X : a is a generator mod p} ∼
∞∑
k=1

µ(k)
n(k)

X

logX
,

as X → ∞. Since a 6≡ 1 (mod 4), the fields Kq are linearly disjoint; this implies that, for

squarefree k,

n(k) =
∏
q|k

n(q).

Thus, we have
∞∑
k=1

µ(k)
n(k)

=
∏
q

(
1− 1

q(q − 1)

)
= A.

This suggests that

#{p ≤ x : a is a generator mod p} ∼ A X

logX
.

However, we are ignoring the accumulation of the error terms that arise from using inclusion-

exclusion on (5.3). Nevertheless, using the Chebotarev Density Theorem, one can show that

the same asymptotic estimate holds for the count of primes p ≤ X which pass all of the

q-tests for q ≤ log logX. It remains to show that o(π(X)) of these primes fail the q-test for

some q > log logX.

We split these large q into three subintervals:

(1) log logX < q ≤
√
X

log2X
,

(2)
√
X

log2X
< q ≤

√
X logX,

(3)
√
X logX ≤ q ≤ X.

For notational convenience, let η1 =
√
X

log2X
and η2 =

√
X logX. For primes q ≤ η1, the

special case of the GRH-conditional Chebotarev Density Theorem described above gives an

estimate of O(π(X)
q2 ) primes p ≤ X that fail the q-test. The sum over the primes q satisfying

log logX < q ≤ η1 is o(π(X)).
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In the case where η1 < q ≤ η2, we observe that the primes p that fail the q-test satisfy

p ≡ 1 (mod q). Thus, the number of these primes up to X is at most π(X; q, 1). The

Brun-Titchmarsh inequality yields

π(X; q, 1) ≤ 2X
ϕ(q) log(X/q)

for 1 ≤ q ≤ X. Thus,

#{p ≤ X : p splits completely in some Kq, η1 ≤ q ≤ η2} ≤
∑

η1≤q≤η2

π(X; q, 1)

= O

 X

logX

∑
η1≤q≤η2

1
q

 .

By Mertens’ Theorem:
∑
q≤X

1
q = log logX+ constant +O( 1

logX ). As a result, we have

∑
η1≤q≤η2

1
q

= O

(
log logX

logX

)
.

Therefore,

#{p ≤ X : p splits completely in some Kq, η1 ≤ q ≤ η2} = O

(
X log logX

log2X

)
.

Lastly, we consider the case where η2 < q ≤ X. If p splits completely in some Kq with

η2 ≤ q ≤ X, then a
p−1
q ≡ 1 (mod p) and p ≡ 1 (mod q), so `a(p) ≤ a

p−1
η2 ≤ a

X
η2 . Thus, p

divides am − 1 for some m <
√
X

logX . Let

M(X; η2, X) := #{p ≤ X : p splits completely in some Kq, η2 ≤ q ≤ X}.

Observe that

2M(X;η2,X) <
∏

p counted by
M(X; η2, X)

p ≤
∏

m<
√
X

logX

am − 1.
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Thus, we have

M(X; η2, X) <
log a
log 2

∑
m<

√
X

logX

m = O

(
X

log2X

)
.

This completes our sketch of Hooley’s proof.

5.4 Related work

Hooley’s ideas have been used in a number of subsequent papers concerning the function

`a(n). In this thesis, we will make use of the following lemma of Li and Pomerance [25],

which relies on components of Hooley’s argument:

Lemma 5.5 (Li, Pomerance). (GRH) Suppose that q is an odd prime and that a is not a qth

power. Let Aq denote the set of primes p ≡ 1 (mod q) with a
p−1
q ≡ 1 (mod p). The number

of integers n ≤ X divisible by a prime p ∈ Aq with p ≥ q2 log4 q is O
(

X
q log q + X log logX

q2

)
.

Consequently, several of the results proven in Section 6.7 depend on the validity of the

Generalized Riemann Hypothesis; see Lemmas 6.34 and 6.35, as well as Theorem 6.4.
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Chapter 6

Degrees of divisors of xn − 1 in

Fp[x]

In this chapter, we will examine an extension of the problem posed in the previous chapter;

we will determine how often xn − 1 has a divisor of every degree between 1 and n when

factored over Fp[x]. We will also introduce the concept of λ-practical numbers and describe

their relationship with the ϕ-practical numbers.

6.1 Introduction and statement of results

For each rational prime p, we will define an integer n to be p-practical if xn − 1 has a

divisor in Fp[x] of every degree less than or equal to n. In order to better understand the

relationship between ϕ-practical and p-practical numbers, we will define an intermediate set

of numbers which we shall call the λ-practical numbers. An integer n is λ-practical if and

only if it is p-practical for every rational prime p. Clearly each ϕ-practical number is λ-

practical. In Sections 6.2 and 6.3, we will give alternative characterizations of the p-practical

and λ-practical numbers that are often easier to work with.
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The main goal of this chapter is to examine the relative sizes of the sets of ϕ-practical,

λ-practical and p-practical numbers. Accordingly, the remainder of the chapter takes the fol-

lowing form. In Section 6.4, we will develop some theory on the structure of λ-practical num-

bers and show that there are infinitely many λ-practical numbers that are not ϕ-practical.

We will go one step further in Section 6.5 and prove:

Theorem 6.1. For X sufficiently large, the order of magnitude of λ-practicals in [1, X]

that are not ϕ-practical is X
logX .

In Sections 6.6 and 6.7, we answer a number of statistical questions concerning the

p-practical numbers. For each fixed prime p, we define

Fp(X) := #{n ≤ X : n is p-practical}.

Computational data seems to suggest an estimate for the order of magnitude of Fp(X). In

Section 1.2, we examined Fp(X)/ X
logX for p = 2, 3, 5 in Tables 1.2 – 1.4. As mentioned in

Section 1.2, the fact that the sequence of ratios appears to be bounded strongly suggests

the following conjecture:

Conjecture 6.2. For each rational prime p, limX→∞ Fp(X)/ X
logX exists.

Proving this may be exceedingly difficult; to understand why, we examine the fate of the

practical numbers. An integer n is called practical if every integer m with 1 ≤ m ≤ n can

be written as a sum of distinct divisors of n. As in Chapter 3 and 4, we define PR(X) to

be the count of practical numbers up to X. In spite of the abundance of literature on the

practical numbers, it is not even known whether limX→∞ PR(X)/ X
logX exists. In Section

6.7, we work towards the goal of showing that Fp(X) is on the order of X/ logX, which

given our lower bound for F (X), requires establishing:

Conjecture 6.3. For each rational prime p, we have

Fp(X)� X

logX
.
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The strongest bound that we have been able to prove in this vein is as follows:

Theorem 6.4. Let p be a prime number. Assuming that the Generalized Riemann Hypoth-

esis holds, we have Fp(X) = O
(
X
√

log logX
logX

)
.

6.2 Background and preliminary results

In Chapter 4, we gave the following alternative characterization for the ϕ-practical numbers,

which we state here as a lemma.

Lemma 6.5. An integer n is ϕ-practical if and only if every m with 1 ≤ m ≤ n can be

written in the form

m =
∑
d∈D

ϕ(d),

where D is a subset of divisors of n.

It is not difficult to see Lemma 6.5: since

xn − 1 =
∏
d|n

Φd(x),

where Φd(x) is the dth cyclotomic polynomial, which is irreducible in Z[x] with degree ϕ(d),

we see that divisors of xn − 1 correspond to subsets of divisors of n.

Recall the upper and lower bounds for F (X) given in (4.2). One of our primary aims

in this chapter will be to obtain similar upper bounds for the λ-practical and p-practical

numbers. As in the case of the ϕ-practical numbers, we will find it helpful to have alternative

characterizations of the λ-practical and p-practical numbers in terms of their divisors. Let

`a(n) denote the multiplicative order of a (mod n) for integers a with (a, n) = 1. If (a, n) > 1,

let n(a) denote the largest divisor of n that is coprime to a, and let `∗a(n) = `a(n(a)). In

particular, if (a, n) = 1 then `∗a(n) = `a(n).
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Lemma 6.6. An integer n is p-practical if and only if every m with 1 ≤ m ≤ n can be

written as m =
∑
d|n `

∗
p(d)nd, where nd is an integer with 0 ≤ nd ≤ ϕ(d)

`p(d) .

To see the relationship between the two characterizations of p-practical numbers, recall

the following well-known proposition (cf. [10, pg. 489, ex.20]):

Proposition 6.7. The following two cases completely characterize the factorization of Φd(x)

over Fp:

1) If (d, p) = 1, then Φd(x) decomposes into a product of distinct irreducible polynomials

of degree `p(d) in Fp[x].

2) If d = mpk, (m, p) = 1, then Φd(x) = Φm(x)ϕ(pk) over Fp.

Thus, the correspondence between the definitions follows from the fact that each cyclo-

tomic polynomial Φd(x) dividing xn − 1 factors into ϕ(d)/`∗p(d) irreducible polynomials of

degree `∗p(d) over Fp[x].

As we will discuss in the next section, the λ-practical numbers can be defined in a similar

manner. However, it takes a bit more work to prove this. Before we proceed, we will briefly

remark on a second intermediate set that lies between the ϕ-practicals and p-practicals,

which we call the p-adic practical numbers. An integer n is p-adic practical if xn − 1 has a

divisor of every degree when factored over Zp, the ring of p-adic integers. We can completely

characterize the p-adic practical numbers via the following proposition:

Proposition 6.8. Let n be a positive integer. Then:

(1) If n = pk with k ≥ 1, then n is p-adic practical if and only if n is ϕ-practical, namely

if and only if either p = 2 or k = 1 and p = 3.

(2) If (p, n) = 1, then n is p-adic practical if and only if n is p-practical.

(3) If n = pkn0, where (p, n0) = 1, then n is p-adic practical if and only if for every

integer m with 1 ≤ m ≤ n, we can write

∑
d|n

`∗p(d)ϕ(pvp(d))nd,
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where vp(d) is the exact power of p dividing d and 0 ≤ nd ≤ ϕ(d)

`∗p(d)ϕ(pvp(d))
.

The proof of Proposition 6.8 follows immediately from well-known results on the factor-

ization of cyclotomic polynomials in Zp[x] (cf. [35, pp. 77-79]).

6.3 An alternative characterization for the λ-practical

numbers

Just as we showed that the ϕ-practical and p-practical numbers have alternative charac-

terizations that resemble the definition of a practical number, we can also show that the

λ-practical numbers have such a characterization. Let λ(n) denote the universal exponent

of the multiplicative group of integers modulo n. We will show that the following theorem

gives a criterion for an integer n to be λ-practical that is equivalent to the definition that

we gave in Section 1:

Theorem 6.9. An integer n is λ-practical if we can write every integer m with 1 ≤ m ≤ n

in the form m =
∑
d|n λ(d)md, where md is an integer with 0 ≤ md ≤ ϕ(d)

λ(d) .

Before giving the proof, however, we will pause to ponder a related question. We can

think of the set of integers n that are “p-practical for all primes p” as the intersection between

all of the sets of integers that are p-practical. In addition to describing the intersection of

these sets, we can also describe their union.

Proposition 6.10. For each prime p, let Sp be the set of p-practical numbers. Then

∪∞i=1Sp = Z+.

Proof. If n = 1 then n is ϕ-practical, hence it is p-practical for all primes p. If n > 1,

then we can write n = pe11 · · · p
ek
k , with p1 < p2 < · · · < pk and ei ≥ 1 for 1 = 1, ..., k.

Let pell = max(pe11 , · · · , p
ek
k ). Since n > 1, then n will always have a maximal prime power
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dividing it. From Lemma 6.28, pell is pl-practical. Since pell > peii for all i 6= l, then

pi ≤ pell + 1. Thus, by Lemma 6.26, n is pl-practical.

In fact, we can prove a stronger result: it turns out that each integer n is p-practical

for infinitely many values of p. Namely, for a given n, Dirichlet’s Theorem on Primes in

Arithmetic Progressions [32, p. 119] implies that there are infinitely many primes p for

which p ≡ 1 (mod n). In other words, `p(n) = 1 for infinitely many primes p, so xn − 1

splits completely into linear factors in Fp[x] for infinitely many primes p. This argument

implies that each integer n is p-practical for a positive proportion of the p’s. We could also

observe that, if p ≡ −1 (mod n), then `p(n) = 2, hence all of the irreducible factors of

xn−1 have degree at most 2. Dirichlet’s Theorem also guarantees the existence of infinitely

many such primes. We remark that there are integers n for which the set of primes p ≡ ±1

(mod n) are the only primes for which xn − 1 has a divisor of every degree (n = 5 is the

smallest such integer).

We will now show that ∩∞i=1Sp is precisely the set of integers satisfying the conditions

given in Definition 6.9. In order to do so, we will need the following results from elementary

number theory (cf. [21, Theorem 4.2] and [24, proof of Proposition 4.2]):

Lemma 6.11. If p is an odd prime and e ∈ Z+, then (Z/peZ)× is cyclic.

Lemma 6.12. Let q be an odd prime and suppose that 0 ≤ f ≤ e. If a is a generator of

(Z/qeZ)×, then a also generates (Z/qfZ)×.

Lemma 6.13. For all positive integers n, there exists a prime p such that `∗p(d) = λ(d) for

all d | n.

Proof. First, we will consider the case where n = qe, where q is an odd prime. Each divisor

of n is of the form d = qf , with 0 ≤ f ≤ e. Since (Z/qfZ)× is cyclic, there must be some

element a ∈ (Z/qeZ)× such that `∗a(qe) = λ(qe). By Lemma 6.12, a is also a generator

for (Z/qfZ)×, i.e. `∗a(qf ) = λ(qf ). By Dirichlet’s Theorem on Primes in an Arithmetic
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Progression, there exists a prime p ≡ a (mod qe). Thus, we can certainly find a prime p

with `∗p(q
f ) = λ(qf ) for all f with 0 ≤ f ≤ e.

If n = 2e, we observe that, when p = 3, we have `∗p(2
j) = λ(2j) for all j ≥ 1. Hence,

`∗3(d) = λ(d) for all divisors d of 2e.

Now we consider the case where n = qe11 · · · q
ek
k , k ≥ 2. Each d | n can be written in

the form d = qf11 · · · q
fk
k , where 0 ≤ fi ≤ ei holds for i = 1, ..., k. For each i, let ai be a

primitive root (mod qeii ). (Note: If q1 = 2, we can take a1 = 3 by the previous case). Since

q1, ..., qk are pairwise relatively prime then, by the Chinese Remainder Theorem, there exists

an integer x with

x ≡ a1 (mod qe11 )

...

x ≡ ak (mod qekk ).

By Dirichlet’s Theorem on Primes in Arithmetic Progression, there exists a prime p with

p ≡ x (mod n). In other words, `∗p(q
ei
i ) = λ(qeii ) for i = 1, ..., k. By Lemma 6.12, we have

`∗p(q
fi
i ) = λ(qfii ) for all fi with 0 ≤ fi ≤ ei. Therefore, since q1, ..., qk are pairwise relatively

prime, we have

`∗p(q
f1
1 · · · q

fk
k ) = lcm[`∗p(q

f1
1 ), · · · , `∗p(q

fk
k )] = lcm[λ(qf11 ), · · · , λ(qfkk )] = λ(qf11 · · · q

fk
k ).

Below, we provide the proof of Theorem 6.9.

Proof. If n is λ-practical then, by Lemma 6.13, there exists a prime p′ such that `∗p′(d) = λ(d)

for all d | n. Since n is p-practical for all primes p then, in particular, n is p′-practical, i.e.
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for all integers m with 1 ≤ m ≤ n, we have

m =
∑
d|n

`∗p′(d)np′(d),

where np′(d) is an integer satisfying 0 ≤ np′(d) ≤ ϕ(d)
`∗
p′ (d) . Thus, for all m with 1 ≤ m ≤ n,

we have

m =
∑
d|n

λ(d)np′(d),

since `∗p′(d) = λ(d) for all d | n. Since it is necessarily the case that 0 ≤ np′(d) ≤ ϕ(d)
`∗
p′ (d) =

ϕ(d)
λ(d) , then n satisfies the condition given in Definition 6.9.

On the other hand, suppose that every integer m with 1 ≤ m ≤ n can be written in the

form m =
∑
d|n λ(d)md, where md is an integer satisfying 0 ≤ md ≤ ϕd

λ(d) . By definition,

λ(d) = maxa∈(Z/dZ)×`
∗
a(d). Since `∗a(d) ≤ λ(d) for all a in (Z/dZ)×, then certainly every

m with 1 ≤ m ≤ n can be written in the form m =
∑
d|n `

∗
p(d)nd, where p is any rational

prime and 0 ≤ nd ≤ ϕ(d)
`∗p(d) . Thus, n is λ-practical.

6.4 The relationship between ϕ-practical and λ-practical

numbers

In this section, we will examine the relationship between ϕ-practical and λ-practical num-

bers. We begin by reminding the reader of some useful results on the ϕ-practical numbers.

In Chapter 4, we proved the following necessary condition for an integer n to be ϕ-practical:

Lemma 6.14. Suppose that n = pe11 · · · p
ek
k is ϕ-practical, where p1 < p2 < · · · < pk and

ei ≥ 1 for i = 1, ..., k. Define mi = pe11 · · · p
ei
i for i = 0, ..., k − 1. Then, the inequality

pi+1 ≤ mi + 2 must hold for all i.

We say that an integer n is weakly ϕ-practical if it satisfies the conditions given in

Lemma 6.14. We note that the inequality in Lemma 6.14 also gives a necessary condition
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for a positive integer n to be λ-practical. Namely, if pi+1 > mi + 2 for some i such that

0 ≤ i ≤ k − 1 then, since λ(pi+1) = ϕ(pi+1) = pi+1 − 1, we have λ(pi+1) > mi + 1. Since

mi =
∑
d|mi λ(d)ϕ(d)

λ(d) , then mi + 1 cannot be written as a sum of λ(d)’s, so such an n would

not be λ-practical. Thus, we have proven the following:

Lemma 6.15. Every λ-practical number is weakly ϕ-practical.

The converse to Lemma 6.15 is false. For example, n = 9 is weakly ϕ-practical but

not λ-practical. However, we can show that the converse holds for even integers and for

squarefree integers. In order to complete these proofs, we will need the following lemma on

the structure of λ-practical numbers.

Lemma 6.16. Let n = mp, where m is λ-practical, p ≤ m + 2 and (p,m) = 1. Then n is

λ-practical. Moreover, if n = pkm with k ≥ 2, then n is λ-practical if p ≤ m+ 1.

The proof of Lemma 6.16 is virtually identical to the proof of Lemma 4.1 in Chapter 4.

The idea is to use the characterization of λ-practical numbers given in Theorem 6.9 to show

that every integer l ∈ [1, n] can be expressed in the form

l =
∑
d|m

λ(d)md,

with 0 ≤ md ≤ ϕ(d)
λ(d) . In order to check that this holds when n = mp, we observe that if

every l ∈ [1, n] can be written in the form

l = (p− 1)Q+R, 0 ≤ Q,R ≤ m (6.1)

then, using our hypothesis that m is λ-practical, we have

l =
∑
d|m

(p− 1)λ(d)md +
∑
d|m

λ(d)m′d, (6.2)

where 0 ≤ md,m
′
d ≤

ϕ(d)
λ(d) . We can use the facts that λ(p) = p − 1 and λ(pe11 · · · p

ek
k ) =
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lcm[λ(pe11 ), ..., λ(pekk )] to show that we can re-write (6.2) in the following manner:

l =
∑
d|m

λ(pd)mpd +
∑
d|m

λ(d)m′d,

where 0 ≤ mpd ≤ ϕ(pd)
λ(pd) and 0 ≤ m′d ≤

ϕ(d)
λ(d) . Thus, the proof boils down to showing that every

l ∈ [1, n] can be expressed as in (6.1), which follows from breaking [1, n] into subintervals of

the form [(p− 1)Q, (p− 1)Q+m] and using the hypothesis that p ≤ m+ 2 to show that the

subintervals cover the full interval. The higher power case is similar, but requires induction

on the power of the prime p.

Proposition 6.17. Let n be an even integer. Then n is weakly ϕ-practical if and only if n

is ϕ-practical if and only if n is λ-practical.

Proof. We will begin by showing that an even integer n is weakly ϕ-practical if and only

if it is ϕ-practical. If n is even and weakly ϕ-practical, then we can write n = pe11 · · · p
ek
k ,

where 2 = p1 < p2 < · · · < pk and ei ≥ 1 for i = 1, ..., k. We will use induction on the

number of distinct prime factors of n to show that n is ϕ-practical. For our base case, we

observe that 2e1 is ϕ-practical for all positive values of e1. For our induction hypothesis, we

assume that m = pe11 · · · p
ek−1
k−1 is ϕ-practical. Since m is even and pk is odd, then pk ≤ m+2

implies that pk ≤ m + 1. Thus, by Lemma 4.9, mpekk is ϕ-practical. The other direction

follows immediately from Lemma 4.5. The proof for λ-practicals is the same, this time using

Lemma 6.16 instead of Lemma 4.9.

The conditions given in Lemma 6.14 for an integer n to be weakly ϕ-practical are nec-

essary, but not sufficient, for n to be ϕ-practical. When n is squarefree, we have shown

(cf. Corollary 4.2 in Chapter 4) that these notions are equivalent. There is an analogous

situation for λ-practical numbers.

Proposition 6.18. Let n be a squarefree integer. Then n is λ-practical if and only if it is

ϕ-practical.
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Proof. We showed in Corollary 4.2 of Chapter 4 that a squarefree integer is ϕ-practical

if and only if it is weakly ϕ-practical. From Lemma 6.15, every λ-practical number is

weakly ϕ-practical. The other direction of the proof is trivial, as all ϕ-practical numbers

are automatically λ-practical.

While it is easy to see that all ϕ-practical numbers are λ-practical, the converse does

not hold. In fact, we can show that there are infinitely many counterexamples:

Proposition 6.19. There are infinitely many λ-practical numbers that are not ϕ-practical.

Proof. Let X ≥ 1 be a real number. Let n = 45 ·
∏

23<p≤X p. It follows from Bertrand’s

Postulate that every prime p | n with p - 45 satisfies p ≤ m+ 2, where m is the product of

45 and all of the primes 23 < q < p. Then, since 45 is λ-practical, it follows from Lemma

6.16 that n is λ-practical. However, n is not ϕ-practical, since x45 − 1 has no divisor of

degree 22 and all other primes p | n are greater than 23, so λ(p) > 22. Thus, as we let X

tend to infinity, we see that this method produces an infinite family of λ-practical numbers

that are not ϕ-practical.

6.5 Density considerations for λ-practical numbers

In this section, we will answer some density questions concerning the λ-practical numbers.

We will begin by reminding the reader of the method of proof in (4.2), which will be a model

for some of the arguments that we will use to bound the number of λ-practical integers up

to X. The key to proving the upper bound in (4.2) was to use Proposition 6.17 in order to

show that all even ϕ-practical numbers are practical. To handle the case of odd ϕ-practicals,

we observed that, for every odd integer n in (0, X], there exists a unique positive integer l

such that 2ln is in the interval (X, 2X]. Moreover, we showed that 2ln is ϕ-practical if n is

ϕ-practical. As a result, we were able to construct a one-to-one map from the set of odd

ϕ-practical numbers in (1, X] to a subset of the even ϕ-practical numbers in (X, 2X].This
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allowed us to directly compare the size of the set of ϕ-practical numbers with the size of the

set of practical numbers, which we knew to be O(X/ logX) from [34, Theorem 2].

We can use the same argument to show that the upper bound given in (4.2) will also serve

as an upper bound for the number of λ-practical numbers up to X. The only modification

needed is to use Proposition 6.17 to show that all even λ-practical numbers are practical.

On the other hand, Lemma 6.15 show that, if n is an odd λ-practical number, then it is

weakly ϕ-practical. Thus, for l ≥ 1, 2ln is weakly ϕ-practical, since multiplying a weakly

ϕ-practical integer n by a power of 2 will not prevent its prime divisors from satisfying the

inequalities from Lemma 6.14. Therefore, we can use the argument given above for the odd

ϕ-practicals to obtain the same upper bound for the number of λ-practicals up to X.

In order to obtain a lower bound, we simply observe that the set of ϕ-practical numbers

is properly contained within the set of λ-practical numbers. Hence, the lower bound that

we gave in Chapter 4 for the ϕ-practical numbers will also serve as a lower bound for the

λ-practical numbers. As a result, we have:

Theorem 6.20. Let Fλ(X) = #{n ≤ X : n is λ-practical}. Then, there exist positive

constants c3 and c4 such that

c3
X

logX
≤ Fλ(X) ≤ c4

X

logX
,

for all X ≥ 2.

Note that the argument above shows that we may, in fact, take c3 = c1 and c4 = c2.

However, this does not imply that F (X) − Fλ(X) = o( X
logX ). In fact, we can show that

Fλ(X)−F (X)� X
logX . Before we prove this result, we remind the reader of some definitions

and lemmas used in the lower bound argument for the ϕ-practical numbers in Chapter 4,

which will be useful in this scenario as well.

Let 1 = d1(n) < d2(n) < · · · < dτ(n)(n) = n denote the increasing sequence of divisors
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of a positive integer n. We define

T (n) = max1≤i<τ(n)
di+1(n)
di(n)

.

Definition 6.21. An integer n is called 2-dense if n is squarefree and T (n) ≤ 2.

Note that any 2-dense number n > 1 is even. Let

D(X) = #{1 ≤ n ≤ X : n is 2-dense}.

In [34], Saias proved the following upper and lower bounds for D(X):

Lemma 6.22 (Saias). There exist positive constants κ1 and κ2 such that

κ1
X

logX
≤ D(X) ≤ κ2

X

logX

for all X ≥ 2.

In Chapter 4, we gave the following modification on the definition of 2-dense:

Definition 6.23. A 2-dense number n is strictly 2-dense if di+1
di

< 2 holds for all i satisfying

1 < i < τ(n)− 1.

We showed (cf. Lemma 5.4 in Chapter 4 that the strictly 2-dense integers have an important

relationship with the ϕ-practical numbers:

Lemma 6.24. Every strictly 2-dense number is ϕ-practical.

Recall that we showed in Proposition 6.19 that there are infinitely many λ-practicals

that are not ϕ-practical. We will use the lemmas on 2-dense and strictly 2-dense numbers

in order to strengthen this result.

Theorem 6.25. For X sufficiently large, there exists a positive constant c5 such that

Fλ(X)− F (X) ≥ c5 X
logX .
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Proof. We begin by recalling an argument given in Chapter 4. Let n = mpj, where m is

a 2-dense integer, p is a prime satisfying m < p < 2m, and j is an integer that has the

following properties: j ≤ X/mp, P−(j) > p and mpj is 2-dense. Let C > 16 be an integer

that is chosen to be large relative to the size of the constant κ1 from Lemma 6.22. For each

integer k > C, we consider those 2-dense numbers m ∈ (2k−1, 2k]. Since m < p < 2m, we

must have p ∈ (2k−1, 2k+1). We say that n has an obstruction at k if m and p land within

these intervals, i.e., if p is a prime in our construction that might prevent n from being

strictly 2-dense. In Theorem 5.11 in Chapter 4, we showed that, if C is large enough, the

number of 2-dense integers with obstructions at k > C is negligible relative to the full count

of 2-dense integers. Thus, consider the set

N = {n ≤ X : n is 2-dense with no obstructions at k > C}.

For an appropriate choice of C ≥ 5, we have

#N ≥ κ X

logX
,

where κ > 0 is some absolute constant. As in Chapter 4, we define a function f : N → Z+

to be a function that maps each element n ∈ N to its largest 2-dense divisor with all prime

factors less than or equal to 2C . Let M = Imf. The Pigeonhole Principle guarantees that

there is some m0 ∈M that has at least

#N
#M

≥ κ

42C

X

logX

elements in its preimage, since the Chebyshev bound (cf. [32, pg. 108]) implies that∏
p≤2C p ≤ 42C . In other words, m0 = f(n) for at least the average number of integers

in a pre-image.
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Now, for each n ∈ N with f−1(m0) = n, let

n′ =
15 · 295

gcd(2 · 5 · 7 · 11 · 13 · 17 · 19 · 23,m0)
n

∏
29<p≤2C

p prime
p-m0

p.

Since n is 2-dense, it must be the case that 3 | n, hence 32‖n′. Also, we must have 5‖n′,

since if 5 | n then 5 | m0, so it is removed in the denominator of n′. Thus, the only 5 that

appears in the factorization of n′ is the one dividing 15. Now, n′ does not have any other

prime factors smaller than 29, since if n is divisible by a prime q < 29, then q | m0, hence

q | gcd(2 · 5 · 7 · 11 · 13 · 17 · 19 · 23,m0). Thus, n′ is not ϕ-practical, since the absence of small

primes (aside from the divisors of 45) makes it so that xn − 1 has no divisor of degree 22.

However, we will show that n′ is λ-practical. Now, let

l = n
∏

29<p≤2C

p prime
p-m0

p.

Since n is 2-dense then 2 | n. Moreover, if we enumerate the prime factors of l in increasing

order, where pi is the ith smallest, then Bertrand’s postulate implies that all of the primes

pi dividing l that are greater than 29 satisfy pi+1 ≤ 2pi. Thus, they satisfy the inequality

given in Lemma 6.14 as well. Let

r =
15 · 295

gcd(2 · 5 · 7 · 11 · 13 · 17 · 19 · 23,m0)
,

so n′ = l · r. Multiplying l by r does not prevent the primes greater than or equal to 29 from

satisfying the inequality from Lemma 6.14, since 295 > 1
3 ·7 ·11 ·13 ·17 ·19 ·23, so that r > 1.

In other words, if a prime factor p of n′ satisfies p ≤ m + 2, then it is certainly the case

that p ≤ mr + 2. Thus, we have just shown that n′ has the following structure: n′ = 45M ,

where P−(M) = 29 and all of the prime factors of 45M satisfy the inequality from Lemma
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6.14. Since 45 is λ-practical, then Lemma 6.16 implies that n′ is λ-practical. Now, since

we multiplied every n in the pre-image of m0 by the same number, there is a one-to-one

correspondence between λ-practical numbers up to r · 42CX that we have constructed and

the 2-dense numbers in the pre-image of m0. As a result, at least κ

42C
X

logX of the integers

up to r · 42CX are λ-practical.

Note: By Lemma 6.15, all of the λ-practical numbers that we have constructed in the

proof of Theorem 6.25 are weakly ϕ-practical. As a result, this argument also shows that, for

X sufficiently large, there are� X
logX weakly ϕ-practicals in [1, X] that are not ϕ-practical.

6.6 The relationship between λ-practical and p-practical

numbers

Our next endeavor will be to describe the relationship between p-practical and λ-practical

numbers. We begin with the following analogue of Lemma 6.15, which is proven in the same

manner as its predecessor.

Lemma 6.26. Let n = mq, where m is p-practical and q is a prime satisfying `∗p(q) ≤ m+1,

with (q,m) = 1. Then n is p-practical. Moreover, if n = mqk where k ≥ 2, then n is p-

practical if `∗p(q) ≤ m.

We can use Lemma 6.26 to prove our first result relating λ-practical and p-practical

numbers:

Proposition 6.27. For each prime p, there are infinitely many p-practicals that are not

λ-practical.

Proof. Case 1: If p = 2, let n = 21 ·
∏

7<q≤x q. Since 21 is 2-practical and since each prime

q0 in the product over q satisfies the inequality q0 ≤
∏

7<q<q0
q+ 2, then n is 2-practical by

Lemma 6.26. However, n is not λ-practical, since we cannot write 4 in the form
∑
d|n λ(d)md
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with 0 ≤ md ≤ ϕ(d)
λ(d) . Thus, by letting x tend to infinity, we see that this method will generate

an infinite family of 2-practical numbers that are not λ-practical.

Case 2: For each prime p ≥ 3,we will show that there exists a prime q0 6= 3 dividing

(p2 + p + 1) and, for this q0, the number 2 · q0 is p-practical but not λ-practical. First,

observe that if such a prime exists, then q0 | (p2 + p+ 1) implies that p3 ≡ 1 (mod q0), i.e.

`∗p(q0) ≤ 3. Thus, since m0 = 2 is p-practical for all primes p and `∗p(q0) ≤ m0 + 1, then 2 · q0

is p-practical by Lemma 6.26. However, 2 · q0 is not λ-practical, since q0 > 3 implies that

λ(q0) ≥ 4. Thus, we cannot write 3 in the form
∑
d|n λ(d)md, with 0 ≤ md ≤ ϕ(d)

λ(d) .

Now, we will prove the existence of a prime q0 satisfying the conditions given above.

The argument boils down to proving that p2 + p+ 1 is not a power of 3. In the case where

p = 3, we have p2 + p+ 1 = 13. Suppose that p > 3. Then, it must be the case that p ≡ ±1

(mod 3). If p ≡ −1 (mod 3), then p2 + p+ 1 ≡ 1 (mod 3), so p2 + p+ 1 is not divisible by

3. On the other hand, if p ≡ 1 (mod 3) then, if p2 + p+ 1 were a power of 3, the fact that

p > 3 forces p2 +p+1 to be divisible by 9. However, the congruence x2 +x+1 ≡ 0 (mod 9)

has no solutions.

We remark that we could also have proven the second case in Proposition 6.27 using the

following lemma:

Lemma 6.28. If n = pk with k ≥ 0, then n is p-practical.

Proof. Let n = pk, with k ≥ 0. Using the binomial theorem, we have xp
k − 1 = (x− 1)p

k

in

Fp[x]. Hence, xn − 1 has a divisor of every degree, so n is p-practical.

In order to generate an infinite family of p-practical numbers when p ≥ 5, we could

simply have taken n = pk, where k ranges over all positive integers. By Lemma 6.28, n is

p-practical. However, when p is in this range, we have λ(p) = p − 1 ≥ 4. In other words,

the gap between 1 and λ(p) is too large for pk to be p-practical. In the case where p = 3,

we can take n = pk with k ≥ 2. Then 4 cannot be written in the form
∑
d|n λ(d)md with

0 ≤ md ≤ ϕ(d)
λ(d) .
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For each rational prime p, let Fp(X) = #{n ≤ X : n is p-practical}. We can prove the

following theorem on the relative sizes of the sets of p-practical and λ-practical numbers.

Theorem 6.29. For every rational prime p, there exists a positive constant c6 such that

Fp(X)− Fλ(X) ≥ c6 X
logX .

Proof. This proof is nearly identical to the proof of Theorem 6.25. The main difference is

in our construction of n′, which varies depending on our choice of p. If p = 2, we let

n′ =
72

gcd(10,m0)
n

∏
7<q≤2C

q-m0

q,

where C, m0 and n are defined as in the proof of Theorem 6.25. Then n′ is of the form

n′ = 21 · m, where P−(m) ≥ 7 and the primes dividing m satisfy the weakly ϕ-practical

conditions. Note that 21 is not λ-practical. Thus, since all of the prime factors of m are at

least 7, it follows that n′ is not λ-practical. To get the stated result when p = 2, we use

Lemma 6.26 in place of Lemma 6.15 to show that each n′ is 2-practical.

The arguments for p ≥ 3 follow the same line of reasoning. In the case where p = 3, we

define

n′ =
134

gcd(3 · 5 · 7 · 11 · 13,m0)
n

∏
13<q≤2C

q-m0

q.

In the case where p ≥ 5, we let

n′ =
2p2

gcd(6p,m0)
n

∏
p<q≤2C

q-m0

q.
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6.7 Proof of Theorem 6.4

In this section, we present a proof of Theorem 6.4. We shall begin by discussing a few

simple lemmas, which will be needed in order to complete the argument. Let n be a positive

integer, with d1 < d2 < · · · < dτ(n) its increasing sequence of divisors. Let Z ≥ 2. We say

that n is Z-dense if max1≤i≤τ(n)
di+1
di
≤ Z holds. The following lemma, due to Saias (cf.

[34, Theorem 1]), describes the count of integers with Z-dense divisors.

Lemma 6.30 (Saias). For X ≥ Z ≥ 2, we have

#{n ≤ X : n is Z-dense} � X logZ
logX

. (6.3)

The following lemma, due essentially to Friedlander, Pomerance and Shparlinski (cf. [14,

Lemma 2]), will also be useful to us.

Lemma 6.31. Let n and d be positive integers with d | n. Then, for any rational prime p,

we have d
`∗p(d) ≤

n
`∗p(n) .

Proof. The result is proven in [14] when (p, n) = 1. In the case where (p, n) > 1, let n(p)

and d(p) represent the largest divisors of n and d that are coprime to p, respectively. Then

d

d(p)
≤ n

n(p)
,

since the highest power of p dividing d is at most the highest power of p dividing n. After

a rearrangement, we have
d

n
≤
d(p)

n(p)
≤
`∗p(d)
`∗p(n)

,

where the final inequality follows from the coprime case.

We will also need to introduce several additional lemmas from [25]. Throughout the

remainder of this section, let a > 1 be an integer and let Aq denote the set of primes p ≡ 1

(mod q) with a
p−1
q ≡ 1 (mod p).
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Lemma 6.32 (Li, Pomerance). Let ψ(X) be an arbitrary function for which ψ(X) = o(X)

and ψ(X) ≥ log logX. The number of integers n ≤ X divisible by a prime p > ψ(X) with

`∗a(p) < p1/2

log p is O( X
logψ(X) ).

Lemma 6.33 (Li, Pomerance). The number of integers n ≤ X divisible by a prime p ≡ 1

(mod q) with
q2

4 log2 q
< p ≤ q2 log4 q

is O(X log log q
q log q ).

Below, we present a version of Proposition 1 in Li and Pomerance’s paper [25]. As in

[25], our lemma will make use of Lemma 5.5; thus, it will depend on the validity of the

Generalized Riemann Hypothesis.

Lemma 6.34. (GRH) Let a be a positive integer. Let ψ(X) be defined as in Lemma 6.32.

The number of integers n ≤ X with P ( λ(n)
`∗a(n) ) ≥ ψ(X) is O(X log logψ(X)

logψ(X) ).

Proof. Suppose that n ≤ X and q = P (λ(n)/`∗a(n)) ≥ ψ(X). We may assume that X is

large, so a is not a qth power and ψ(X) > a. Moreover, as we will now show, it must be the

case that either q2 | n or p | n for some p ∈ Aq. Observe that

q | λ(n)
`∗a(n)

|
lcmpe||n [λ(pe)]
lcmpe||n [`∗a(pe)]

| lcmpe||n

[
λ(pe)
`∗a(pe)

]
.

In particular, q must divide λ(pe)
`∗a(pe) for some prime p. If q = p, then q | λ(pe) implies that

e ≥ 2, so q2 | n. If q 6= p, then q | λ(p)
`∗a(p) , so p > q > ψ(X) > a. Thus, `∗a(p) = `a(p) | p−1

q , so

p | a
p−1
q − 1, which implies that p ∈ Aq.

To handle the case where q2 | n, we observe that

#{n ≤ X : q2 | n for some prime q ≥ ψ(X)} ≤
∑

q≥ψ(X)
q prime

⌊
X

q2

⌋

≤ X
∑

q≥ψ(X)
q prime

1
q2
� X

ψ(X)
.
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Thus, we may assume that n is divisible by a prime p ∈ Aq with p > a.

By Lemma 6.32, we may assume that `∗a(p) ≥ p1/2/ log p. However, since p ∈ Aq implies

that a
p−1
q ≡ 1 (mod p), then `a(p) ≤ p−1

q , so p > q2

(4 log2 q)
. Thus, we can use Lemmas 6.33

and 5.5 to deal with the remaining values of n ≤ X. In particular, we have

#{n ≤ X : p | n for some p ∈ Aq with p > q2/(4 log2 q)} (6.4)

≤ #{n ≤ X : p | n for some p ≡ 1 (mod q) with p ∈ (
q2

4 log2 q
, q2 log4 q]} (6.5)

+ #{n ≤ X : p | n for some p ∈ Aq with p ≥ q2 log4 q} (6.6)

� X log log q
q log q

+
X

q log q
+
X log logX

q2
, (6.7)

where the final inequality follows from Lemmas 6.33 and 5.5. Since our hypotheses specify

that q ≥ ψ(X), then the bound given in (6.7) implies

#{n ≤ X : q ≥ ψ(X) and p | n for some p ∈ Aq}

� X
∑

q≥ψ(X)

(
log log q
q log q

+
log logX

q2

)

� X log logψ(X)
logψ(X)

.

We will use Lemma 6.34 in order to prove the following.

Lemma 6.35. (GRH) Let θ be a constant satisfying 1
10 ≤ θ ≤

9
10 . Let Y = e110(logX)θ(log logX)2 .

For all a > 1 and X sufficiently large, uniformly in θ, we have

#{n ≤ X : `∗a(n) ≤ X

Y e(logX)θ
} � X

(logX)θ log logX
. (6.8)

Before we prove Lemma 6.35, we will introduce three additional lemmas, the first of

which is due to Friedlander, Pomerance and Shparlinski [14] and the last of which is due to
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Luca and Pollack [26].

Lemma 6.36. For sufficiently large numbers X and for ∆ ≥ (log logX)3, the number of

positive integers n ≤ X with

λ(n) ≤ n exp(−∆)

is at most X exp(−0.69(∆ log ∆)1/3).

Corollary 6.37. Let θ be as in Lemma 6.35. For sufficiently large X, the number of positive

integers n ≤ X with

λ(n) ≤ X

e(logX)θ

is at most X/e(logX)θ/3 .

Proof. Trivially, there are at most X/ exp((logX)θ/2) values of n ≤ X/ exp((logX)θ/2)

with λ(n) ≤ X/ exp((logX)θ). On the other hand, if X/ exp((logX)θ/2) < n ≤ X, then

X ≤ n exp((logX)θ/2). Thus, for large X, we have

#
{

X

e(logX)θ/2
< n ≤ X : λ(n) ≤ X

e(logX)θ

}
≤ #

{
n ≤ X : λ(n) ≤ ne(logX)θ/2

e(logX)θ

}

< #
{
n ≤ X : λ(n) ≤ n

e
1
2 (logX)θ

}
.

Applying Lemma 6.36 with ∆ = 1
2 (logX)θ, we see that this quantity is at mostX/ exp(2(logX)θ/3).

Therefore,

#
{
n ≤ X : λ(n) ≤ X

e(logX)θ

}
≤ X

e(logX)θ/2
+

X

e2(logX)θ/3
≤ X

e(logX)θ/3
.

Lemma 6.38. But for O( X
(logX)3 ) choices of n ≤ X, we have

Ω(ϕ(n)) < 110(log logX)2.
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We will use these lemmas in the proof of Lemma 6.35, which we present below.

Proof. Let θ be such that 1
10 ≤ θ ≤

9
10 , let B = e(logX)θ and let u(n) denote the B-smooth

part of λ(n). Let Y be defined as in the statement of Lemma 6.35. If λ(n) has a large B-

smooth part, say u(n) > Y , then so does ϕ(n), since u(n) must divide ϕ(n) as well. First,

we will estimate the number of n ≤ X for which u(n) > Y. Let Ω(u(n)) = k. By definition,

all prime factors of u(n) are at most e(logX)θ . Thus, we have

Y < u(n) ≤ (e(logX)θ )k.

Solving for k, we obtain k ≥ 110(log logX)2. However, Lemma 6.38 implies that k <

110(log logX)2 except for O( X
(logX)3 ) values of n ≤ X. Hence, we can conclude that there

are at most O( X
(logX)3 ) values of n for which the B-smooth part of λ(n) is larger than Y.

Thus, using Lemma 6.37, we have

#{n ≤ X :
λ(n)
u(n)

≤ X

Y e(logX)θ
} ≤ #{n ≤ X : λ(n) ≤ X

e(logX)θ
}+ #{n ≤ X : u(n) > Y }

� X

e(logX)θ/3
+

X

(logX)3
.

However, if we take ψ(X) = Y exp{(logX)θ} then we can use Lemma 6.34 to show that,

for all but O( X
(logX)θ log logX

) choices of n ≤ X, we have λ(n)
u(n) | `

∗
a(n). Therefore, we have

`∗a(n) ≥ λ(n)
u(n)

>
X

Y e(logX)θ
,

except for at most O( X
(logX)θ log logX

) values of n ≤ X.

We will need the following elementary lemma in order to complete our argument.

Lemma 6.39. Let X ≥ 2 and let κ ≥ 1. Then, we have

#{n ≤ X : τ(n) ≥ κ} � 1
κ
X logX.
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Proof. We observe that

∑
n≤X

τ(n) =
∑
n≤X

∑
d|n

1 ≤ X
∑
d≤X

1
d
� X logX.

The number of terms in the sum on the left-hand side of the equation that are ≥ κ is

� 1
κX logX.

Now we have the tools needed to prove Theorem 6.4. Below, we present its proof.

Proof. Let n be a positive integer with divisors d1 < d2 < · · · < dτ(n). Let p be a rational

prime with p - n. Let θ and Y be as in Lemma 6.35. In (6.3), set Z = Y 2. Assume that n

is not in the set of size O(X log Y 2/ logX) of integers with Y 2-dense divisors. Then there

exists an index j with
dj+1

dj
> Y 2. (6.9)

Moreover, we can use Lemma 6.39 to show that

#{n ≤ X : τ(n) > Y/e(logX)θ} � Xe(logX)θ logX
Y

. (6.10)

As a result, we will assume hereafter that τ(n) ≤ Y/e(logX)θ . Examining the ratios dk+1
dk

,

we remark that it is always the case that d1 = 1 and d2 = P−(n); hence, we have

#{n ≤ X :
d2

d1
> Y 2} =

∑
n≤X

P−(n)>Y 2

1� X
∏
q≤Y 2

(
1− 1

q

)
,

where the final inequality follows from applying Brun’s Sieve (cf. [18, Theorem 2.2]). By

Mertens’ Theorem (cf. [32, Theorem 3.15]), we have

X
∏
q≤Y 2

(
1− 1

q

)
� X

log Y
. (6.11)

84



Now, suppose that k > 1. On one hand, for all k > 1, we have

1 +
∑
l≤k

`∗p(dl)
ϕ(dl)
`∗p(dl)

= 1 +
∑
l≤k

ϕ(dl) ≤ kdk ≤ Y e−(logX)θdk. (6.12)

On the other hand, Lemma 6.35 implies that `∗p(n) > X

Y e(logX)θ
but for

O

(
X

(logX)θ log logX

)
(6.13)

integers n ≤ X. For such numbers n, for all i ≥ 1, we have

`∗p(dj+i) ≥
`∗p(n)dj+i

n
>

dj+i

Y e(logX)θ
>

djY
2

Y e(logX)θ
= Y e−(logX)θdj (6.14)

where the inequalities follow, respectively, from Lemma 6.31, Lemma 6.35 and the assump-

tion that there exists an index j for which (6.9) holds. As a result, we can combine the

inequality from (6.12) applied with k = j with(6.14) to show that

1 +
∑
l≤j

`∗p(dl)
ϕ(dl)
`∗p(dl)

< `∗p(dj+i)

holds for all i ≥ 1. Thus, xn − 1 has no divisor of degree 1 +
∑
l≤j ϕ(dl) in Fp[x], so n is

not p-practical. Therefore, by (6.3), (6.10), (6.11) and (6.13), we have

Fp(X)� X log Y
logX

+
Xe(logX)θ logX

Y
+

X

log Y
+

X

(logX)θ log logX
. (6.15)

Now, the only significant terms in (6.15) are X
(logX)θ log logX

and X log Y
logX . Equating these

expressions and using the fact that Y = e110(logX)θ(log logX)2 , we obtain θ = 1
2 −

3 log3X
2 log2X

as

a good choice for θ. Plugging this value of θ into the bound X
(logX)θ log logX

yields a bound

of O
(
X
√

log logX
logX

)
for the size of the set of p-practicals up to X.
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Appendix A

Appendix: Algorithms for

Computations

A.1 Theoretical Framework

The following theorem can be used to devise the most basic algorithms for checking whether

an integer is practical, ϕ-practical, p-practical, etc.

Theorem A.1. Let w1 ≤ w2 ≤ · · · ≤ wk be positive integers with
∑k
i=1 wi = s. Then, every

integer in [1, s] can be represented as a subsum of wi’s if and only if for each i < k, we have

wi+1 ≤ 1 + w1 + · · ·+ wi.

Proof. Suppose that wi+1 > 1 +w1 + · · ·+wi for some i < k. Then 1 +w1 + · · ·+wi cannot

be represented as a subsum of wi’s. Since i < k then 1 + w1 + · · · + wi < s, so not every

integer in [1, s] can be written in this manner. On the other hand, suppose that for each

i < k we have wi+1 ≤ 1 + w1 + · · ·+ wi. We proceed by induction on k. For our base case,

we take k = 1 and then w1 = 1. Then s = 1 and it is trivially the case that every integer

in [1, s] can be represented as a subsum of wi’s. Now, for k > 1, suppose that we can make
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all subsums up to w1 + · · ·+wk−1. If wk ≤ 1 +w1 + · · ·+wk−1, then the interval [1, wk) is

covered by subsums of w1, ..., wk−1 and the interval [wk, w1 + · · ·+wk−1 +wk] is covered by

wk+ subsums of w1, ..., wk−1. Thus, we can make all subsums up to w1 + · · ·+wk = s.

If d1 < d2 < · · · < dk represents the increasing sequence of divisors of an integer n,

then Theorem A.1 says that every integer in [1, σ(n)] can be represented as a subsum of

di’s if and only if for each i < k, we have di+1 ≤ 1 + d1 + · · · + di. Similarly, we can let

w1 ≤ w2 ≤ · · · ≤ wk represent the increasing sequence of totients of divisors of an integer n

and use Theorem A.1 to obtain an algorithm for determining whether n is ϕ-practical.

A.2 Algorithm for computing F (X)

In this section, we describe our algorithm for computing the data in Table A.1. The most

naive algorithm for determining whether a positive integer n is ϕ-practical makes use of

Theorem A.1. The idea is to start with a sorted list of the totients of divisors of n:

[w1, w2, ..., wτ(n)], where w1 ≤ w2 ≤ · · · ≤ wτ(n). The algorithm starts at the beginning

of the list and, for each index i, checks whether

wi ≤ w1 + · · ·+ wi−1 + 1. (A.1)

If this inequality fails at any value of i between 1 and τ(n), the program halts and returns

‘0’ to signify that n is not ϕ-practical. Otherwise, the program returns ‘1’, which indicates

that n is ϕ-practical. Unfortunately, this method is not particularly efficient, especially

when we attempt to count the ϕ-practical numbers in [1, X] for large values of X.

To speed up the process of counting the ϕ-practical numbers, we use a series of tests that

help us quickly eliminate the numbers that are poor candidates for being ϕ-practical. First,

we observe that for n to be ϕ-practical, it must be divisible by 2 or 3; otherwise, there is no

way to express 2 as a sum of totients of divisors of n. As a result, we can immediately dismiss

all integers n with gcd(n, 6) = 1. Moreover, we can use the weakly ϕ-practical condition
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given in chapter 4 in order to remove some additional candidates from our consideration,

since Theorem 6.14 tells us that every ϕ-practical number must be weakly ϕ-practical. In

fact, we can go on to use the weakly ϕ-practical condition for a second purpose: namely,

to detect all of the even ϕ-practical numbers (recall that Proposition 6.17 tells us that even

integers n are weakly ϕ-practical if and only if they are ϕ-practical as well). Thus, after

applying the weakly ϕ-practical condition, we are left with only the odd integers that pass

the weakly ϕ-practical test.

Next, we devise a test that we call the strongly ϕ-practical test. The strongly ϕ-practical

test starts with a list of ordered pairs [(p1, e1), (p2, e2), ..., (pω(n), eω(n))], where p1 < p2 <

· · · < pω(n) are distinct prime factors of n and e1, ..., eω(n) are the corresponding exponents.

As we move through the list of pairs, the strongly ϕ-practical test performs one of two tasks

at each index i:

1) If ei = 1, then the test checks whether the weakly ϕ-practical condition is satisfied.

If it fails, then n cannot be ϕ-practical.

2) If ei > 1, then the test checks whether pi satisfies the following inequality:

pi ≤
∏
j<i

p
ej
j − 2.

The strongly ϕ-practical test arises from applying Lemma 4.9 to odd integers. Namely,

Lemma 4.9 tells us that if n = pkm where k ≥ 2 and m is ϕ-practical, then p ≤ m+ 1 if and

only if n is ϕ-practical. Since the weakly ϕ-practical test handles all even values of n, we

will only apply the strongly ϕ-practical condition to odd values of n. However, if n is odd,

then p and m are both odd and m+ 1 is even. Thus, in order to apply Lemma 4.9, we only

need p ≤ m. Furthermore, since m is composite, then it is not possible to have p = m; as

a result, we may assume that p ≤ m − 2. In the case where k = 1, Lemma 4.9 states that

the weakly ϕ-practical condition provides a necessary-and-sufficient condition for mp to be

ϕ-practical.

In our algorithm, if n passes the strongly ϕ-practical test for all of its ordered pairs
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(pi, ei), then n is ϕ-practical. If not, then the strongly ϕ-practical test is inconclusive, in

which case we must apply the naive algorithm to check, once and for all, whether n is ϕ-

practical. Fortunately, by the time that we get around to using the naive algorithm, we

have already eliminated a large proportion of the integers between 1 and X from consid-

eration. If G(X) represents the number of integers that are determined to be ϕ-practical

before the program passes to the naive algorithm, then, the following table demonstrates

the relationship between F (X) and G(X):

X F (X) G(X) F (X)−G(X)
102 28 28 0
103 174 166 8
104 1198 1148 50
105 9301 8716 585
106 74461 69972 4489
107 635528 598156 37372
108 5525973 5168593 357380
109 48386047 45131358 3254689

Table A.1: Comparison of ϕ-practical counts

As one can extrapolate from the column on the right, the ϕ-practicals that are ultimately

detected via the naive algorithm only account for between 4% and 7% of the total number

of ϕ-practicals in each interval.

In what follows, we present the Sage code used in our computations of F (X). First, we

write a program that takes an integer n as input and generates a list of ordered pairs of

prime factors of n with their exact powers:

def factor_list(n):

f = factor(n)

return list(f)

Note that the output of this function is of the form [(p1, e1), (p2, e2), ..., (pω(n), eω(n)],

where p1 < p2 < · · · < pω(n). Next, we define the weakly ϕ-practical function, which takes
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an integer n as input and checks whether the weakly ϕ-practical condition is satisfied. The

function returns 1 if n is weakly ϕ-practical and 0 otherwise.

def weakly_phi_practical(n):

prod=1 #initialize the product at 1

v=factor_list(n) #set v as the factor list of n

for k in xrange(0, len(v)): #run over each index in v

for i in xrange(0,k): #for each value of i < k

prod*=v[i][0]^(v[i][1])

#multiply the previous product by p_i^e_i

if v[k][0] > prod +2: #if p_k fails weak condition

return 0 #halt and return 0

prod=1 #reset product to 1 and test the next value of k

return 1 #return 1 if every value of k satisfies the inequality

Next, we define the strongly ϕ-practical function, which takes an integer n as input and

checks whether it satisfies the strongly ϕ-practical criteria.

def strongly_phi_practical(n):

prod=1 #initialize the product to be 1

v=factor_list(n) #set v as factor list of n

for k in xrange(0, len(v)): #run over each index in v

for i in xrange(0,k): #for each value of i <k

prod*=v[i][0]^(v[i][1])

#multiply the previous product by p_i^e_i

if v[k][1] == 1: #if e_k = 1

if v[k][0] > prod +2: #if p_k fails weak condition

return 0 #halt and return 0

prod=1 #otherwise, reset the product to 1
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if v[k][1] > 1: #if e_k > 1

if v[k][0] > prod -2: #if p_k fails strong condition

return 0 #halt and return 0

prod=1 #reset the product to 1 and test next value of k

return 1 #return 1 if every value of k passes the test

We define the following helper function, which creates a list of totients of divisors of an

integer, listed in increasing order.

def increasing_totients(n):

v=divisors(n) #set v to be the increasing list of divisors of n

w = [] #initialize w to be the empty list

for k in xrange(0, len(v)): #run over each index d_k in v

w.append(euler_phi(v[k])) #add phi(d_k) to w

return sorted(w) #sort w with totients in increasing order

We use all of the previous functions in order to devise the following test, which takes an

integer n as input and returns 1 if it is ϕ-practical and 0 otherwise.

def phi_practical(n):

sum=0 #initialize the sum to be 0

v=increasing_totients(n) #set v as list of increasing totients

if gcd(n,6) == 1:

return 0 #return 0 if (n, 6) = 1

else:

if weakly_phi_practical(n) == 0:

return 0 #return 0 if n is not weakly phi-practical

else:

if n % 2 == 0:

return 1
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#return 1 if n is even and weakly phi-practical

else:

if strongly_phi_practical(n) == 1:

return 1 #return 1 if n is strongly phi-practical

else:

for k in xrange(0, len(v)):

#run over each index in v

sum=0 #initialize the sum to be 0

for i in range(0,k):

sum=sum + v[i] #add phi(d_i) to previous sum

if v[k] > sum + 1: #check naive condition

return 0 #return 0 if it fails

return 1

Finally, we use a simple counter in order to compute F (X). Our function takes an

integer n as input and returns the number of ϕ-practicals in [1, n].

def count_phi_practical(n):

c = 1

for i in xrange(2,n+1):

if phi_practical(i)==1:

c = c+1

return c

A.3 Algorithm for computing Fp(X)

Here, we discuss the methods used to compute the data in Tables 1.2 – 1.4. We will describe

the algorithm used for F2(X), but it should be noted that the algorithms for F3(X) and

F5(X) are completely analogous.

92



We begin by generating a list of the odd part of each divisor of n; that is, for each d | n,

we include d′ = d/2ν2(d) in our list, where ν2(d) represents the exact power of 2 that divides

d. Next, we construct a list of ordered pairs (`2(d′), ϕ(d)/`2(d′)), where each d′ comes from

our list of the odd parts of divisors of n. We sort this list of ordered pairs so that they

appear in increasing order according to their first components. If two pairs have identical

first components, they will be sorted according to their second components. Call this list v

and let v[i][0] and v[i][1] represent the first and second components of the ith entry in the

list, respectively.

The method for checking whether a number n is 2-practical will thus be to first use

the algorithm outlined in the previous section to check if n is ϕ-practical; if it is, then

n is automatically 2-practical. If not, then we go through our list v and check whether

each component v[i][0] satisfies v[i][0] ≤ 1 +
∑
j<i v[i][0] ∗ v[i][1]. If this inequality fails for

any ordered pair in v, then n is not 2-practical; otherwise, n is included in our count of

2-practicals.

Below, we list the code for our sage computations. Our first order of business is to

generate a list of the odd divisors of n.

def odd_part(n):

return n/(2**(valuation(n,2))) #returns the odd part of an integer n

def odd_list(n):

v=divisors(n) #sets v as the list of divisors of n

w = [] #initializes w as the empty list

for k in xrange(0, len(v)): #runs over each index of v

w.append(odd_part(v[k]))

#appends the odd part of d_k to w

return w #returns a list of odd parts of divisors of n

Next, we define a function that takes an integer n as input and returns a list of `2(d)’s,

where the d’s range over all odd divisors of n.
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def orders(n):

v=odd_list(n) #sets v as the list of odd divisors of n

w = [] #initializes w as the empty list

for k in xrange(0, len(v)): #runs over each index of v

w.append(multiplicative_order(mod(2,v[k])))

#appends ell_2(d_k) to w

return w

We need both the orders `2(d) and their corresponding multiplicities, ϕ(d)/`2(d), in

order to check whether an integer n is 2-practical. The following function computes the list

of multiplicities that correspond to `2(d), where d ranges over all divisors of n.

def multiplicity_list(n):

v=divisors(n) #sets v as the list of divisors of n

w=orders(n) #sets w as the list of orders of odd divisors of n

x = [] #initializes x as the empty list

for k in xrange(0, len(v)): #runs over each index of v

x.append(euler_phi(v[k])/w[k])

#appends ell_2(d_k)’s multiplicity to x

return x

Next, we construct a list of ordered pairs (`2(d), ϕ(d)/`2(d)) where the tuples are listed

in increasing order by component. That is, we sort the tuples according to their first

component and, if two tuples have identical first component, we sort them so that the

second components appear in increasing order.

def ordmult_list(n):

v=orders(n) #sets v as the list of orders of divisors of n

w=multiplicity_list(n) #sets w as the list of multiplicities

x = [] #initializes x as the empty list
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for k in xrange(0, len(v)): #runs over each index of v

x.append((v[k], w[k]))

#appends (ell_p(d_k), phi(d_k)/ell_p(d_k)) to x

return sorted(x, key=lambda tup: tup[0])

#sorts the list of tuples by component

The following function takes a tuple and multiplies its entries.

def tuple_prod(v): return v[0]*v[1]

Next, we borrow a function from section A.2 that constructs a list of increasing totients

of divisors of an integer n.

def increasing_totients(n):

v=divisors(n) #sets v as the list of divisors of n

w = [] #initializes w as the empty list

for k in xrange(0, len(v)): #runs over each index of v

w.append(euler_phi(v[k])) #appends phi(d_k)

return sorted(w) #sorts totients in increasing order

The following function uses the naive algorithm described in section A.2 in order to check

whether an input n is ϕ-practical.

def naive_phi_practical(n):

sum=0 #initializes the sum at 0

v=increasing_totients(n) #sets v as the list of increasing totients

for k in xrange(0, len(v)): #runs over each index of v

sum=0 #initializes the sum at 0

for i in xrange(0,k): $runs over each i < k

sum=sum + v[i] #adds the ith totient to previous sum

if v[k] > sum + 1:
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return 0 #returns 0 if naive test fails

return 1 #returns 1 if naive test never fails

We are finally equipped to construct a function that determines whether an input n is

2-practical.

def two_practical(n):

if naive_phi_practical(n) == 1:

return 1 #returns 1 if n is phi-practical

else:

sum=0 #initializes the sum at 0

v=ordmult_list(n) #sets v as the list of tuples

for k in xrange(0, len(v)): #runs over each index of v

sum=0 #initializes the sum at 0

for i in xrange(0,k):

sum=sum + tuple_prod(v[i])

#adds the product of the two components in the kth tuple

#to the previous sum

if v[k][0] > sum + 1:

return 0 #returns 0 if naive 2-practical test fails

return 1 #returns 1 if naive 2-practical test never fails

As in section A.2, we can use a simple counter to keep track of the number of 2-practicals

as we loop over all integers in a given range.

def count_two_practical(n):

c = 1

for i in xrange(2,n+1):

if two_practical(i)==1: c = c+1

return c
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