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Abstract

Scattering occurs as elastic waves propagate through a random polycrystalline medium,

exhibiting scattering-induced attenuation and velocity dispersion. These behaviours carry

bulk information about microstructure and can therefore be used for microstructure char-

acterisation. The purpose of this thesis is to gain knowledge about the behaviour of elastic

waves in polycrystals in order to facilitate the characterisation of microstructure. This

thesis contributes mainly in six aspects.

First, a theoretical second-order approximation (SOA) model is developed to calculate the

scattering-induced attenuation and velocity dispersion of plane elastic waves in random

polycrystals. This model provides solutions of second-order accuracy in material inhomo-

geneity that are valid across all scattering regimes and partially account for multiple

scattering. It applies to statistically equiaxed and elongated grains of arbitrary crystal

symmetries, with decoupled geometric and elastic statistics represented respectively by

the two-point correlation (TPC) function and the elastic covariance. A simple Born ap-

proximation, with a reduced accuracy considering only single scattering, is formulated

based on the SOA model, and analytical asymptotes are derived for the low-frequency

Rayleigh and high-frequency stochastic regimes.

Second, a three-dimensional (3D) finite element (FE) method is advanced to solve the

wave propagation problem in the time domain. This method uses grain-scale spatial

representation, in significant sample volumes of large numbers of grains, to describe poly-

crystalline materials. It captures the exact interactions of waves with grains without

low-order scattering approximations. The numerical errors and statistical uncertainties

of the FE method are minimized to deliver very accurate calculations of attenuation and

phase velocity. The TPC function of the FE model is accurately determined and incor-
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porated into the SOA model to enable a direct comparison of both models.

Then, the SOA and FE models are used to study the propagation of plane longitudinal

waves in polycrystals with statistically equiaxed grains and greatly differing inhomogen-

eities. Attenuation exhibits fourth- and second-power dependences on frequency in the

Rayleigh and stochastic regimes, while phase velocity is nondispersive in both regimes.

Attenuation and phase velocity also show proportionalities to material inhomogeneity, and

in the Rayleigh regime, the difference between the SOA and FE models is quadratically

related to inhomogeneity for both attenuation and velocity.

The fourth contribution relates to using the SOA and FE models to study plane longitud-

inal wave propagation in polycrystals with statistically elongated grains. The models are

found to agree very well with each other for the studied polycrystals over a wide frequency

range. In the Rayleigh regime, attenuation and phase velocity exhibit dependencies on

the fourth- and zeroth-power of frequency, show respective proportionalities to the ef-

fective volume of the grains and the mean grain radius in the direction of propagation,

and both manifest a proportionality to the mode-converted elastic scattering factor. In

the stochastic regime, attenuation and phase velocity show dependencies on the second-

and zeroth-power of frequency, demonstrate positive and negative proportionalities to

the mean grain radius in the direction of propagation, and both are proportional to the

same-mode elastic scattering factor.

Subsequently, a practical problem is addressed to represent the actual TPC statistics of

polycrystals by a single exponential. A variety of potential parameters are identified for

the single exponential and their goodness is evaluated by using the SOA and FE models.

It is found that the effective grain radius is an optimal choice for the single exponential

to represent the microstructure of a range of polycrystals with greatly differing grain

uniformities and to achieve a fairly accurate calculation of attenuation and velocity.

The last contribution concerns the theoretical discovery of three modes for elastic waves

in polycrystals. For either longitudinal or transverse propagating waves, three solutions

are found in the far-field approximation and the SOA model, indicating that three modes

may co-exist. A further study by the spectral function approach reveals that the two

non-dominant modes mostly have negligible energy in comparison to the dominant mode.
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Chapter 1

Introduction

1.1 Motivation

Polycrystalline materials are composed of crystallites, also known as grains, of varying

shapes, sizes, and orientations. They are the most commonly found materials in inorganic

solids and are being very widely used. In particular, many safety-critical components are

made from polycrystalline materials in a number of industries, such as aerospace, nuclear,

defence, and automotive. For such applications, it is crucial to ensure that the material

components perform their function in a durable and safe manner.

The durability and safety of polycrystalline components largely relies on their microstruc-

tural parameters. One of the key parameters is the grain size, which determines the total

area of grain boundaries per unit volume. Since grain boundaries are known to be pinning

points impeding dislocation propagation, a smaller grain size (i.e., a larger grain bound-

ary area) is associated with higher strength and toughness [1, 2] and better resistance to

fatigue crack initiation and propagation [3]. On the other hand, grain boundaries can in-

crease the rate of diffusional creep by facilitating the movement of lattice vacancies across

grains or along boundaries [4]. This means that a larger grain size is needed to achieve

a better creep resistance in high-temperature applications such as nickel and titanium

alloys used in aero-engines and power plants. The other two important parameters are

the shape and crystallographic orientation of the grains, which would cause anisotropy

to material performance if they have a preferred alignment or orientation [5]. Therefore,
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it is highly desirable to characterise the microstructure of polycrystals in order to ensure

that they perform as desired.

Microstructure characterisation can be achieved by using a number of techniques such

as optical and electron microscopes. Such techniques perform characterisation on a well-

prepared, two-dimensional plane through the three-dimensional component. This process

requires very time-consuming surface preparation, and microstructural statistics are thus

usually acquired from a single outer surface of the component. When these techniques are

used for volumetric characterisation, a destructive serial-sectioning procedure is needed

to cut through the component in a layer-by-layer fashion [6, 7].

By contrast, ultrasonic waves (more generally, elastic waves) can be utilized to non-

destructively characterise the bulk, volumetric microstructure of polycrystals without the

need for careful surface preparation and sample sectioning. The elastic properties within

a polycrystal are spatially varied, owing to the differently oriented crystallographic axes of

elastically anisotropic grains. Thus, elastic waves are scattered as they propagate through

a polycrystal, and the energy transmitted in the main beam of the propagating wave is

attenuated and the propagation direction of each beam is deflected, exhibiting scattering-

induced attenuation and phase velocity dispersion in the main beam [8, 9]. These wave

behaviours depend on the size, shape, and orientation of the grains, and their variations

with frequency and direction carry abundant information about these microstructural

parameters. Therefore, the microstructure of polycrystals can be inversely determined

from attenuation and velocity measurements, which are relatively simple and inexpensive

to perform [10–12].

The inverse characterisation of microstructure relies on a clear understanding of the rela-

tionship between the wave behaviours and the microstructure of polycrystals. To facilitate

microstructure characterisation, this thesis is motivated to study the propagation of elastic

waves in polycrystals and to correlate wave behaviours with microstructure.
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1.2 Literature review

Extensive research studies have been carried out to understand the behaviours of elastic

waves in polycrystals. A brief review of previous work is provided below for polycrystals

with statistically equiaxed and elongated grains.

1.2.1 Elastic waves in polycrystals with equiaxed grains

The attenuation and velocity dispersion of waves in polycrystals with statistically equiaxed

grains have received extensive attention over the past few decades. Early studies, as re-

viewed by Papadakis [13], obtained theoretical Rayleigh and stochastic asymptotes for

equiaxed grains of cubic, hexagonal and orthorhombic symmetries and described experi-

mental results mainly for cubic polycrystals. Significant progress was achieved by Stanke

and Kino [14] who, based on the Keller approximation [15,16], developed a unified second-

order approximation (SOA) model that is valid for all frequency ranges for cubic poly-

crystals with equiaxed grains. An equivalent model was later developed by Weaver [17]

based on the Dyson equation with the introduction of the first-order smoothing approx-

imation [18]. These models used a geometric autocorrelation function to describe the

microstructure of the polycrystals. They considered untextured polycrystals with single-

phase equiaxed grains of cubic crystal symmetry, but they were subsequently extended

to a variety of materials with texture, lower crystal symmetries, and duplex microstruc-

tures [11,19–28]. The theoretical models are necessarily approximate, and the Stanke and

Kino [14] and Weaver [17] models are accurate to the second order of material inhomogen-

eity perturbations, allowing for the consideration of partial forward multiple scattering.

However, only a few extensions [23, 26–28] maintained the second-order accuracy in the

final results, while others (including Weaver [17]) additionally introduced the Born ap-

proximation to deliver explicit expressions for attenuation [11, 19, 21, 22, 24, 25], limiting

their validities to even lower-order scattering at frequencies below the geometric regime.

In contrast to theoretical studies, numerical simulations can be performed without the

approximations of low order scattering. A wide range of numerical methods can be em-

ployed to achieve such numerical experiments and a summary of them can be found in
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Van Pamel et al. [29]. Among these methods, the finite element (FE) method is widely

researched for the simulation of elastic waves in complex media [30]. The use of this

method for polycrystals has long been limited, by its extreme computational demands,

to two-dimensional cases [31–35]. However, the dependence of scattering on spatial di-

mensionality at certain frequencies [36] means that three-dimensional (3D) simulation is

always desirable for understanding real-world wave phenomena. Recent advancements of

computer hardware and elastodynamic software, especially the development of the GPU-

accelerated Pogo program [37], have enabled the successes of 3D modelling [28,29,38,39].

These 3D simulation studies, with representations of polycrystals at grain scale in realistic

sample volumes, addressed a relatively simple case of plane longitudinal waves propagat-

ing in polycrystals with macroscopically isotropic elastic properties and equiaxed grains.

They have demonstrated that 3D FE simulations can accurately describe the interactions

of elastic waves with grains that involve complex multiple scattering.

Whereas this subject of wave propagation in polycrystals with equiaxed grains has received

plentiful study, two important topics remain unresolved so far: 1) A theoretical SOAmodel

has not been developed for polycrystals with crystallographic symmetry lower than cubic,

in spite of many practically-important alloys having hexagonal or even lower symmetries.

2) The accurate 3D FE method has enabled the evaluation of the approximations of the

theoretical models that show generally good quantitative agreement with the FE models

across different frequency ranges, crystal symmetries, inhomogeneity levels, and grain

size distributions [28,29,38,39]. However, there is an absence of study investigating when

the theoretical models break down by their lack of representation of high-order terms on

material inhomogeneity perturbation.

1.2.2 Elastic waves in polycrystals with elongated grains

Relatively limited studies have been conducted to understand the propagation of waves

in polycrystals with elongated grains, although the grains of most polycrystals in practice

tend to be elongated due to material processing like forging, rolling, and extrusion [5,10,

22, 40]. An early theoretical analysis was performed for elongated polycrystals of cubic

crystal symmetry by Ahmed and Thompson [40] by directly extending and numerically
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evaluating the Stanke and Kino [14] dispersion equation in its initial general form. This

was followed by extensions of the Weaver model [17] to polycrystals of lower crystal

symmetries with elongated grains [11, 21, 41] and elongated microtexture regions [24, 25]

by Rokhlin and co-authors, but they have invoked the Born approximation and thus

limited their analyses to frequencies below the geometric regime. Recently, a far-field

approximation (FFA) model was developed by Rokhlin et al. [26] for ellipsoidal grains

of general crystallographic symmetry that gives good agreement with the SOA model

in all frequency ranges. Furthermore, a spectral function approach for the SOA model

was introduced by Calvet and Margerin [42, 43] where the attenuation and velocity are

obtained by evaluating the spectral function for cubic polycrystals.

The experimental studies of attenuation in elongated polycrystals were performed in dif-

ferent frequency ranges in prior studies [24,25,44–46] where microstructure statistics were

determined in different sample directions, but the author is not aware of any experimental

study that exhibits sufficient detail and precision in velocity dispersion for elongated poly-

crystals. In general, experimental studies have a limited ability in quantitative comparison

with, and validation of, theoretical predictions. This is due to the experimental difficulty

of determining the microstructure statistics for elongated grains, and the difficulty of

performing measurements in a sufficiently large frequency range.

Two essential elements are absent in existing studies for wave propagation in polycrystals

with elongated grains: 1) A theory maintaining the exact second-order accuracy has not

been reported so far for polycrystals with elongated grains. 2) The 3D FE method does

not suffer from the above-mentioned experimental limitations because of its full control

and knowledge of microstructure statistics and its ability to perform simulations in a

large frequency range under plane wave conditions [28]. This method is thus ideal for

a better understanding of wave scattering in polycrystals with elongated grains and for

a quantitative evaluation of the theoretical models. However, a 3D FE model has not

been implemented for the simulation of wave propagation in polycrystals with elongated

grains.
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1.3 Aim and scope

This thesis aims to address the above-mentioned topics that have not been dealt with

by existing studies. This is achieved by developing a theoretical SOA model for elastic

wave propagation in polycrystals with equiaxed and elongated grains of arbitrary crystal

symmetries, and by implementing a 3D FE method for simulating the same wave propaga-

tion problem. Theoretical predictions will be compared with FE results to evaluate the

dependence of attenuation and phase velocity on frequency and material inhomogeneity

for polycrystals with equiaxed grains, and to assess the potential breakdown condition of

the theoretical model. Also, the theoretical and FE models will be employed to study the

frequency and angular reliance of attenuation and velocity in polycrystals with elongated

grains.

This thesis also aims to evaluate the possibility of representing the spatial autocorrel-

ation of a polycrystal by a single exponential. This is to address the practical need of

performing a rapid but fairly accurate calculation of attenuation and velocity based on

not-so-accurate autocorrelation data and to provide a foundation for the inverse character-

isation of microstructure. In addition, this thesis seeks to report the theoretical existence

of three modes for elastic waves in random polycrystals.

In practice, polycrystalline materials may be produced with voids or inclusions inside

grains or on grain boundaries, and they may also be generated with multiple phases

of different chemical constituents, lattice constants, or crystal structures. However, this

thesis does not involve such complex microstructures and its scope is limited to a relatively

simple case: 1) the grains of a polycrystal are densely-packed, fully-bonded, and defect-

free, 2) the polycrystal has a single phase, meaning that the grains have identical material

mass and stiffness properties but different crystallographic orientations, 3) the polycrystal

is homogeneous on the macroscopic scale and has untextured, isotropic properties in an

ensemble average sense. It is important to note that ignoring crystallographic texture

may not be practical for polycrystals with elongated grains. This is because the mater-

ial processing that produces elongated grains may also create preferred crystallographic

orientations, showing anisotropic texture. While studying elongated polycrystals with

texture is important, it is useful to separate its effect from that of the grain shape. Such
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separation is still practically important because there are application scenarios where pre-

ferred crystallographic orientation is partially eliminated by specific material processing

while grain elongation remains to affect the scattering of waves. It also allows a better un-

derstanding of the effect of model approximations when applied to scattering in elongated

grains.

1.4 Thesis outline

Chapter 2 begins with the description of the theoretical SOA model for elastic waves in

polycrystals with equiaxed and elongated grains of arbitrary crystal symmetry. Then,

the Born approximation of the SOA model is introduced and the analytical Rayleigh and

stochastic asymptotes are derived. The far-field approximation is finally outlined.

Chapter 3 reports the 3D FE method for simulating waves in polycrystals with equiaxed

and elongated grains. The approaches for determining attenuation and phase velocity

and for measuring the spatial autocorrelation function are described. The method for

quasi-static simulation is also provided.

Chapter 4 presents researches into maximising the accuracy of FE simulation. First, the

two approaches, the through-transmission and fitting, for the determination of attenu-

ation and phase velocity are evaluated. Then, the modelling errors and uncertainties

caused by FE approximations and statistical considerations are studied. This is followed

by evaluating the effect of symmetry boundary conditions on attenuation and velocity

calculations.

Chapter 5 uses the theoretical and numerical models to study wave propagation in poly-

crystals with equiaxed grains. It first uses a variety of polycrystals of cubic crystal sym-

metry to evaluate the dependences of attenuation and phase velocity on frequency and

material inhomogeneity and to assess the approximations of the theoretical models. Then,

the suitability of the theoretical models for triclinic polycrystals is investigated.

Chapter 6 uses the theoretical and numerical models to study wave propagation in poly-

crystals with elongated grains. It begins with the analysis of the dependences of atten-

uation on frequency, elastic properties, and grain elongation. Then, a similar analysis is
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performed for phase velocity and the quasi-static limit of velocity.

Chapter 7 evaluates the possibility of representing the spatial autocorrelation of a poly-

crystal by a single exponential. First, the three measurable probability functions for de-

scribing the spatial autocorrelation of polycrystals are studied and their mutual relations

are investigated. Then, five potential parameters are identified for the single exponential

function to replace the actual autocorrelation function. This is followed by evaluating the

goodness of the selected parameters in representing attenuation and phase velocity.

Chapter 8 reports the theoretical existence of three modes in the dispersion equation for

either longitudinal or transverse waves in polycrystals and discusses the possibility of their

co-existence in actual problems. It begins with the discussion of the approximate scalar

case and ends with the actual elastic case.

Chapter 9 summarises the key findings and contribution of this thesis and discusses the

potential for future work.
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Chapter 2

Theoretical models

2.1 Introduction

This chapter describes the theoretical models for the scattering-induced attenuation and

phase velocity dispersion of elastic waves in polycrystals. The models are primarily formu-

lated for polycrystals with statistically elongated grains and are conveniently degenerated

to the specific case of grains being statistically equiaxed; the crystallographic symmetry

of the grains is arbitrary. The polycrystals considered in the theories are composed of

single-phase grain aggregates which are densely-packed and fully-bonded. The mater-

ials are macroscopically homogeneous and have untextured, isotropic properties in an

ensemble average sense.

The theoretical description in this chapter focuses on one of the advanced models, the

second-order approximation (SOA) [28], that is applicable in all frequency ranges as the

Stanke and Kino model [14]. This SOA model is described in §2.2, which begins with the

presentation of its dispersion equation in §2.2.1 that provides a solution to the wave num-

ber as perturbed by grain scattering. The real and imaginary parts of this perturbed wave

number determine phase velocity and attenuation respectively. Then, the most important

term of the dispersion equation, the mass operator, is formulated in §2.2.2 to consider

the multiple scattering of waves by the grains. Eventually, §2.2.3 discusses the statistical

information, the two-point correlation (TPC) function, as required by the mass operator

to describe grain structures. This chapter also formulates the Born approximation of the
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SOA model in §2.3, from which the low-frequency Rayleigh and high-frequency stochastic

asymptotes are derived. Besides, the far-field approximation is provided in §2.4.

This chapter is largely adapted from the manuscript [P3] that has been submitted for

possible publication and [P4] with the permission of AIP Publishing. The derivation of

the theoretical models has received valuable assistance from Prof Stanislav Rokhlin and

Dr Gaofeng Sha, both are co-authors of the two submitted manuscripts.

2.2 Second-order approximation

2.2.1 Dispersion equation

Elastic wave propagation in polycrystals can be accurately described by the elastodynamic

wave equations. However, solving these equations analytically and satisfying boundary

conditions on grain interfaces is beyond current theoretical capabilities due to the random

packing of anisotropic grains and the different orientation of crystallographic axes. If the

polycrystalline medium is statistically homogeneous, i.e. the elastic properties are inde-

pendent of position on the macroscopic scale, an opportunity exists to solve the problem

approximately by replacing the polycrystal with a continuous random medium contain-

ing small spatial variations of elastic tensor and considering an ensemble-averaged wave

response. The continuous random medium spatially relates to the original polycrystal

by the proper selection of spatial TPC functions. An elastic wave propagating in such a

medium scatters on elastic perturbations and is represented by the mean field described

by a plane propagating wave with an effective perturbed wave number. For a propagat-

ing wave of mode M , it leads to the dispersion equation [14, 17] for the perturbed wave

number k of the propagating wave

ω2 − k2V 2
0M −mM(k;ω) = 0, (2.1)

where ω = 2πf is the angular frequency (f is the frequency). k = kp is the wave vector,

with k being the complex wave number and p being the unit wave vector in the wave

propagation direction as illustrated in Figure 2.1. Note that the wave mode M is implicit
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in the wave number k. In elastic solids, the incident wave mode M can be any of the

three independent modes: longitudinal (L), fast transverse (T1), and slow transverse (T2).

V0M represents the phase velocity of wave M that travels in the reference medium [28],

which is a homogenised medium with the elastic property being equal to the Voigt average

of the elastic property of the polycrystal. For polycrystals considered in this work, the

reference medium is assumed to be isotropic and therefore V0M is independent of wave

propagation direction p. mM(k;ω) is the mass operator accounting for scattering events,

and its formulation will be given in the following §2.2.2.

Figure 2.1: Coordinate system for the theoretical models of wave propagation and scattering
in polycrystals with statistically ellipsoidal grains. The radii of the ellipsoidal grains are affixed
with the axes of the global coordinate system. p = (sin θp cosϕp, sin θp sinϕp, cos θp) and s =
(sin θ cosϕ, sin θ sinϕ, cos θ) represent the propagation directions of the incident and scattered
waves, respectively. θps is the angle between the two waves.

By solving Equation 2.1, one obtains the perturbed wave number k, which is complex

due to scattering; i.e., k = Rek + iα. Then, the effective media parameters, attenuation

coefficient and phase velocity, for the plane wave are respectively obtained as αM = Imk

and VM = ω/Rek. Those parameters depend on the wave propagation direction p due to

grain elongation and are thus statistically anisotropic, even though the reference medium

with velocity V0M is considered to be isotropic.
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2.2.2 Mass operator

The mass operator mM(k;ω) in Equation 2.1 takes into account all possible multiple scat-

tering events. It is understood that [16,47] this operator cannot be obtained exactly even

for scalar cases, and the formulation is generally achieved by introducing approximations

to the operator. The second-order approximation (SOA) is adopted in this work to deliver

an approximate expression for the mass operator.

This SOA model adopts the first-order smoothing approximation [17,18] (or equivalently

the Bourret approximation [18, 47, 48]) which accounts for double scattering inside each

heterogeneity without recurrent visits [28, 47] and the corresponding forward scattering

events. The model is applicable to all frequency ranges, but its validity is generally

assumed [14,17] to be limited to cases of small elastic perturbations and short propagation

distances, assuring coherency of the incident wave. However, recent 3D FE studies [28,29,

39] have shown that the SOA model is in very good agreement with 3D FE simulations

for equiaxed polycrystals with high grain anisotropy and elastic perturbations, such as

Inconel, copper, and triclinic CSP (those conclusions are extended to polycrystals with

elongated grains in §6). The wave propagation distances in those 3D FE simulations are

on the order of 10 in terms of average grain diameter and wavelength (this translates to

about 10 mm in studied metals at the frequency of about 6 MHz).

As in Rokhlin et al. [26], an infinitely small anisotropy is introduced to the reference

medium and the mass operator in the SOA model for a given incident waveM is expressed

as a sum of three terms representing scattering into longitudinal and two transverse waves

with mutually orthogonal polarizations: mM(k;ω) =
∑

N=L,T1,T2mM→N(k;ω), where

mM→N(k;ω) denotes the scattering of waves from mode M to mode N . The incident

wave mode M can be one of longitudinal (L), fast transverse (T1), or slow transverse

(T2) waves, while all three modes exist for the scattered wave N due to mode conversion

on grain boundaries.

Since the reference medium is considered to be isotropic, the two transverse waves approx-

imately have the same velocities but mutually orthogonal polarizations. This allows the

two transverse scattering terms, mM→T1 and mM→T2 to be combined into a total trans-

verse wave scattering term mM→T. It is important to emphasise that the phase velocities

36



2. Theoretical models

of the two transverse waves are slightly different as a result of the macroscopic anisotropy

caused by grain elongation [42]. This difference is generally small [42], and therefore the

two terms degenerate into one in this thesis.

As a result, the mass operator can be expressed as mM(k;ω) =
∑

N=L,TmM→N(k;ω).

Similarly to the representation in Rokhlin et al. [26], the mass operator componentmM→N

is given in the spherical coordinate system as

mM→N (k;ω) =
k2k3

0N

ηρ2V 2
0N

{
P.V.

∫ ∞
0

[ ξ4

1− ξ2

∫ π

0

∫ 2π

0
fM→N (k, ω, ξ, θ, ϕ) sin θdϕdθ

]
dξ

−iπ
2

∫ π

0

∫ 2π

0
fM→N (k, ω, ξ = 1, θ, ϕ) sin θdϕdθ

} , (2.2)

where ρ is the mass density and it is constant because the polycrystal is assumed to

be composed of single-phase grains. k0N = ω/V0N is the wave number for mode N in

the reference medium. P.V. represents Cauchy principal value and ξ is a dimensionless

variable. The factor η is employed to give a unified expression for longitudinal (M = L;

η = 1) and transverse (M = T; η = 2) propagating waves.

The factor fM→N in Equation 2.2 is the spectral representation of the spatial correlation

function, 〈δcijkl(x)δcαβγδ(x
′)〉, between points x and x′; δcijkl(x) is a small random spatial

fluctuation of the elastic tensor cijkl(x) around its mean 〈cijkl〉. The correlation function

can be factored into 〈δcijkl(x)δcαβγδ(x
′)〉 = 〈δcijklδcαβγδ〉w(x− x′) for statistically homo-

geneous media, with the first part representing the elastic covariance and the second part

denoting the geometric two-point correlation (TPC) function. The validity of this factor-

isation has been demonstrated by the direct numerical comparison in [49] for statistically

isotropic polycrystals with equiaxed grains. The good agreement between the theoret-

ical and 3D FE models in §6 indirectly supports the applicability of the factorisation to

polycrystals with elongated grains that exhibit statistical anisotropy. Similarly, the factor

fM→N can be factored into two parts in the spectral domain

fM→N(k, ω, ξ, θ, ϕ) = IPM→N(θ, ϕ)WM→N(k, ω, ξ, θ, ϕ), (2.3)

where WM→N is the spectral representation of the geometric TPC function w(x−x′) and

it will be described in the following §2.2.3. IPM→N is the inner product accounting for the
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elastic covariance 〈δcijklδcαβγδ〉 and the propagation and polarization directions of both

incident and scattered waves. For the wave propagation setup shown in Figure 2.1, the

inner product is given by [11,26]

IPM→N(θ, ϕ) = AMN +BMN cos2 θps + CMN cos4 θps, (2.4)

where the coefficients AMN , BMN and CMN (M,N ∈ L,T) are invariants [11] and are

represented by linear combinations of the seven quadratic invariants. The coefficients are

the sums of the quadratic terms of elastic constants, their expressions can be found in

Appendix A for arbitrary crystal symmetries. θps is the angle between the incident and

scattered waves and cos θps = p · s = cos(ϕ− ϕp) sin θ sin θp + cos θ cos θp.

2.2.3 Two-point correlation function

The spectral TPC function WM→N(k, ω, ξ, θ, ϕ) is represented as w(r) in the spatial

domain, which describes the probability of two points x and x′ separated by a vector

r = x− x′ being in the same grain.

For statistically equiaxed grains, the TPC function is direction-independent, and thus

w(r) = w(r). This function was conventionally given [14, 17] in the exponential form,

w(r) = exp(−r/a), by assuming that the line intercepts (also known as chord lengths)

of equiaxed grains follow Poisson statistics [50]. a is the mean radius of the grains.

However, recent studies demonstrated that this form cannot accurately represent actual

experimental [51] and simulated [28, 39, 49] microstructures. It was suggested [28] that a

better representation can be achieved by using a generalized TPC function. This gener-

alized function is given as the sum of an exponential series: w(r) =
∑n

i=1 Ai exp(−r/ai).

The coefficients Ai and ai can be obtained by best fitting this function to the TPC data

directly measured from real or simulated polycrystals.

For polycrystals with elongated grains, the TPC function is direction-dependent and

therefore the polycrystal is statistically anisotropic. For simplicity, this work assumes that

the average shape of the elongated grains is ellipsoidal, and the grains are statistically

elongated in the same direction. As shown in Figure 2.1, the axes of the average ellipsoidal
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grain are affixed, without loss of generality, to the axes of the global coordinate system.

In this case, the generalized TPC function of the elongated grains can be given by

w(r) =
n∑
i=1

Ai exp

[
−

√
r2
x

(aix)
2

+
r2
y

(aiy)
2

+
r2
z

(aiz)
2

]
, (2.5)

where aix, aiy, aiz and Ai are the coefficients of the i-th term of the exponential series, which

are determined by fitting the actual TPC data of the polycrystal. Only the total TPC

function w(r) describes the polycrystal statistics and a physical meaning is not assigned

to the individual terms of the series [28]. The transform of the TPC function in the spatial

frequency domain [21] is presented as

W (k) =
n∑
i=1

Aia
i
xa

i
ya

i
z

π2[1 + k2
x(a

i
x)

2 + k2
y(a

i
y)

2 + k2
z(a

i
z)

2]2
, (2.6)

where kx, ky and kz are the components of the vector k. Now the spectral TPC function

WM→N(k, ω, ξ, θ, ϕ) in Equation 2.3 can be written as

WM→N(k, ω, ξ, θ, ϕ) = W (k− kS
N) =

n∑
i=1

Aia
i
xa

i
ya

i
z

π2[1 + q2
x(a

i
x)

2 + q2
y(a

i
y)

2 + q2
z(a

i
z)

2]2
, (2.7)

where kS
N = ξk0Ns is the scattered wave vector. (qx, qy, qz) = k − kS

N is the difference

between the incident and scattered wave vectors, i.e.

(qx, qy, qz) = k(sin θp cosϕp, sin θp sinϕp, cos θp)−ξk0N(sin θ cosϕ, sin θ sinϕ, cos θ). (2.8)

While a physical meaning is not assigned to each term of the representation in Equation

2.5, some insights into the meaning of the length scales aix,y,z may be gained [28] consid-

ering the spatial spectral domain representation in Equation 2.6 and comparing it to the

corresponding actual spectral TPC of the polycrystal. Each term of Equation 2.6 essen-

tially modifies the spatial spectrum of the actual TPC, which is eventually represented

by the sum of all TPC terms.
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2.3 Born approximation and analytical asymptotes

The Born approximation is introduced into the SOA model to obtain explicit expressions

for attenuation and phase velocity. This approximation significantly reduces computa-

tional complexity and allows the analytical Rayleigh and stochastic asymptotes to be

derived for attenuation and phase velocity as provided in the following §2.3.2 and §2.3.3.

2.3.1 Born approximation

In the Born approximation, the perturbed wave vector k in the mass operator (Equation

2.2) is replaced by the unperturbed reference wave vector pk0M . And the small wave

number perturbation (ω/V0M)2 − k2 in the dispersion equation (Equation 2.1) is substi-

tuted by the first-order term 2k0M(k0M − k) of its Taylor series about k = k0M . These

simplifications result in an explicit solution to the perturbed wave number

k = k0M −
mM(pk0M ;ω)

2k0MV 2
0M

, (2.9)

where the mass operator mM(pk0M ;ω) =
∑

N=L,T mM→N(pk0M ;ω). The component

mM→N(pk0M ;ω) is obtained by replacing the wave vector k in Equation 2.2 by pk0M .

Due to this replacement, the factor fM→N is now a real function, and the real and ima-

ginary parts of the mass operator can thus be conveniently separated, with the real part

being the first term with the triple integral, and the imaginary part the second term

with the double integral. This yields the separated expressions for attenuation coefficient

αM = Im(k) and phase velocity VM = ω/Re(k) as

αM =
∑
N=L,T

αM→N , (2.10)

VM =
V0M

1 +
∑

N=L,T ∆M→N
, (2.11)
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where the attenuation component αM→N and the scattering-induced relative velocity

change ∆M→N are given by

αM→N =
πω4

4ηρ2V 3
0MV

5
0N

∫ π

0

∫ 2π

0

fM→N(k0M , ω, ξ = 1, θ, ϕ) sin θdϕdθ, (2.12)

∆M→N =
−ω3

2ηρ2V 2
0MV

5
0N

P.V.

∫ ∞
0

ξ4dξ

1− ξ2

∫ π

0

∫ 2π

0

fM→N(k0M , ω, ξ, θ, ϕ) sin θdϕdθ. (2.13)

The triple integral in Equation 2.13 can be written in the following form by substituting

Equation 2.3 into the integral and re-arranging its terms

n∑
i=1

Aia
i
xa

i
ya

i
z

π2

∫ π

0

∫ 2π

0

(AMN +BMN cos2 θps + CMN cos4 θps) sin θ×

P.V.

∫ ∞
0

ξ4dξ

(1− ξ2)(Ci
0 − Ci

1ξ + Ci
2ξ

2)2
dϕdθ,

(2.14)

where the functions Ci
0, Ci

1 and Ci
2 are introduced to simplify notation

Ci0 = 1 + k2
0M{[(aix)2 cos2 ϕp + (aiy)

2 sin2 ϕp] sin2 θp + (aiz)
2 cos2 θp},

Ci1 = 2k0Mk0N{[(aix)2 cosϕ cosϕp + (aiy)
2 sinϕ sinϕp] sin θ sin θp + (aiz)

2 cos θ cos θp},

Ci2 = k2
0N{[(aix)2 cos2 ϕ+ (aiy)

2 sin2 ϕ] sin2 θ + (aiz)
2 cos2 θ}.

(2.15)

The innermost Cauchy integral in Equation 2.14 is evaluated by using the contour integral

and the residue theorem because its integrand approaches zero when ξ →∞. This leads

to the following solution χ(θ, ϕ) for the Cauchy integral

χ(θ, ϕ) =
2π(Ci

0)2

(Di)3[(Ci
1)2 − (Ci

0 + Ci
2)2]
− 2πCi

0[(Ci
0)2 − (Ci

2)2]

Di[(Ci
1)2 − (Ci

0 + Ci
2)2]2
−

π(Ci
0 + Ci

2)Di

[(Ci
1)2 − (Ci

0 + Ci
2)2]2

,

(2.16)

where Di =
√

4Ci
0C

i
2 − (Ci

1)2. Note that the evaluation result is originally complex but

only its real part is given in Equation 2.16 because its imaginary part cancels out during
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the later double integration over θ and ϕ. Now the velocity change ∆M→N is given by

∆M→N =
−ω3

2π2ηρ2V 2
0MV

5
0N

n∑
i=1

Aia
i
xa

i
ya

i
z×∫ π

0

∫ 2π

0

(AMN +BMN cos2 θps + CMN cos4 θps)χ(θ, ϕ) sin θdϕdθ.

(2.17)

The Born approximation only considers single scattering. This limits its validity to fre-

quencies below the geometric regime. To evaluate its range of validity, it is compared with

the SOA model in Figure 2.2 for longitudinal wave propagation in polycrystalline Copper

Sulfate Pentahydrate (CSP) with elongated grains of triclinic crystallographic symmetry.

The grains have an ellipsoid-of-rotation shape on average and the TPC coefficients satisfy

aix = aiy; all parameters are specified in the figure caption. The figure shows that the

Born approximation agrees very well with the SOA model at low frequencies, and the dif-

ference between the two models increases as frequency approaches the geometric regime.

It is clear from the left figure that the stochastic asymptote for the elongated direction

approaches the Born approximation only at frequencies significantly above the geometric

region transition for the SOA model. This suggests that in this case the stochastic regime

is not observed for propagation in the grain elongation direction (it is barely developed

in the shortened propagation direction).

2.3.2 Rayleigh asymptotes

Rayleigh attenuation asymptote

The expression for attenuation is simplified in the low-frequency Rayleigh scattering re-

gime. At this low-frequency limit, the wavelength is much larger than the average grain

size in any direction of a polycrystal. By considering this fact, the asymptote for atten-

uation is obtained that provides a better understanding of the scattering phenomenon at

a long wavelength.

The low-frequency Rayleigh attenuation asymptote is derived in Appendix B.1 from the

Born approximation. For polycrystals with elongated grains of statistically ellipsoidal
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Figure 2.2: Comparison of the SOA model and the Born approximation in all frequency regimes
for the normalised (a) attenuation and (b) velocity of longitudinal waves. The results are given
for polycrystalline CSP with elongated grains having an elongation ratio of 5. The mean grain
radius of the polycrystal in the elongated z-direction, az, is 5 times those of the shortened x-
and y-directions: az = 5ax = 5ay. The spatial autocorrelation of the polycrystal is represented
by the generalized TPC function with coefficients being given in Table 3.3, and in this case, the
mean grain radius in the shortened x -direction is determined from the slope at the origin of
the generalized TPC function by ax = 1/

∑n
i=1(Ai/a

i
x) (similarly for ay and az). The elastic

properties of the polycrystal are given in Table 3.2.

shape, the attenuation asymptote is given by

αR
M =

1

2π
k4

0MV
g

eff

(
Q∗MM +

V 3
0M

V 3
0N

QM→N

)
, (2.18)

where M,N ∈ {L,T} and M 6= N . V g
eff is the effective grain volume; it is given by

V g
eff = 8π

∑
iAia

i
xa

i
ya

i
z for elongated polycrystals and V g

eff = 8π
∑

iAiai for equiaxed

ones. Q∗MM = (AMM + BMM/3 + CMM/5)/(4ηρ2V 4
0M) is the elastic factor introduced

to simplify the above equation. QM→N = (AMN + BMN/3 + CMN/5)/(4ηρ2V 2
0MV

2
0N) is

the mode-converted scattering factor following the definition of Rokhlin et al. [26]. The

Q factors are for polycrystals of arbitrary crystallite symmetries and their coefficients are

summarised in Appendix A.

Equation 2.18 shows that at the low-frequency limit the attenuation obeys a fourth-power

dependence on frequency (frequency is implied in the wave number k0M). It is propor-

tional to the effective grain volume and thus independent of grain shape, meaning that
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the attenuation is the same in different wave propagation directions. Attenuation also

depends on the elastic properties of grains primarily through the scattering factors, Q∗MM

and QM→N , and the reference wave velocities, V0M and V0N . For longitudinal waves con-

sidered later in this thesis, it is worth noting that the factor Q∗LL in Equation 2.18 is small

compared to QL→TV
3

0L/V
3

0T. Thus, the longitudinal attenuation is approximately propor-

tional to QL→T and the third power of the velocity ratio V0L/V0T at the low-frequency

limit which is useful for material property normalisation as discussed in §5 and §6.

Rayleigh velocity asymptote

While the above Born approximation is given for elongated grains of generally ellipsoidal

shape, here the Rayleigh velocity asymptote (or the quasi-static limit) is only provided

for statistically ellipsoid-of-rotation grains, which is the case mainly studied later in this

thesis. Based on the Born approximation, the asymptote is given as

V R
M =

V0M

1 +
∑

N=L,T ∆M→N
, (2.19)

where ∆M→N represents the relative change of phase velocity at the Rayleigh limit. It is

derived in Appendix B.2, and its final expression, which is independent of frequency, is

given by

∆M→N =
1

32ηρ2V 2
0MV

2
0N

n∑
i=1

Ai
[
ς0 + ς2cos2(θp) + ς4cos4(θp)

]
, (2.20)

where θp is the angle between the directions of wave propagation and grain elongation,

see Figure 2.1. ς0, ς2, and ς4 are the shape factors

ς0 = 16AMN + 8BMN
R2
i − f(Ri)

(R2
i − 1)

+ 3CMN
R2
i (2R

2
i + 1)− (4R2

i − 1)f(Ri)

(R2
i − 1)

2 ,

ς2 = −8BMN
2 +R2

i − 3f(Ri)

(R2
i − 1)

− 6CMN
R2
i (2R2

i + 13)− 3 (4R2
i + 1) f(Ri)

(R2
i − 1)

2 ,

ς4 = CMN
16 + 83R2

i + 6R4
i − 15 (4R2

i + 3) f(Ri)

(R2
i − 1)

2 ,

(2.21)

44



2. Theoretical models

and f(Ri) is given by f(Ri) = Ri/
√
R2
i − 1arccoshRi. Ri = aiz/a

i
x is the ratio of the

parameters aix,z in the fitted exponential series between the elongated z and shortened x

directions; note that aix = aiy for the statistically ellipsoid-of-rotation grains considered

here.

For polycrystals with statistically equiaxed grains, the ratio Ri = aiz/a
i
x is unity for all

terms. The Rayleigh velocity limit for this equiaxed case is obtained by taking the limit

of Equation 2.20 at Ri → 1 and accounting for that lim
Ri→1

f(Ri) = 1 and the denominators

are cancelled. This results in the expression below

∆M→N =
(AMN +BMN/3 + CMN/5)

2ηρ2V 2
0MV

2
0N

=

{
2Q∗MM , N = M

2QM→N , N 6= M
. (2.22)

A simple Rayleigh velocity limit expression can thus be obtained for equiaxed polycrystals

as

V R
M =

V0M

1 + 2Q∗MM + 2QM→N
, (2.23)

where N ∈ {L,T} and N 6= M .

For the extreme case of Ri → 0 that corresponds to the infinitely thin (in the z-direction)

pancake-shaped grains, the Rayleigh velocity limit can be obtained by substituting Ri = 0

into Equation 2.20, leading to

∆M→N =
AMN +BMNcos2θp + CMNcos4θp

2ηρ2V 2
0MV

2
0N

. (2.24)

For the extreme case of Ri → ∞ that corresponds to ellipsoid-of-rotation grains with

infinitely large axial dimension, its Rayleigh velocity asymptote as obtained from Equation

2.20 is

∆M→N =
8AMN + 4BMNsin2θp + 3CMNsin4θp

16ηρ2V 2
0MV

2
0N

. (2.25)

It is important to realise that the Rayleigh velocity limit as influenced by grain elongation

is bounded by the extreme values at Ri → 0 (Equation 2.24) and Ri → ∞ (Equation
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2.25). Also, it immediately follows from Equations 2.24 and 2.25 that the velocity limit

in the larger radius direction is the same for Ri → 0 and Ri → ∞: V Ri→0
M (θp = π/2) ≡

V Ri→∞
M (θp = 0).

It is clear from Equation 2.23 that the coefficients of the TPC function cancel out for

equiaxed polycrystals, suggesting that the phase velocity limit is solely related to the

elastic properties of the polycrystals and is independent of grain geometry. As follows

from Equations 2.19 and 2.20, however, the phase velocity limit for elongated polycrystals

depends on grain shape and is thus dependent on the wave propagation direction θp,

which will be discussed later in §6. The quasi-static limit is independent of frequency

and the absolute values of the correlation radii aix,z; it depends only on their ratio. The

independence of the Rayleigh velocity limit on frequency and its dependence on grain

shape are in direct contrast to the Rayleigh attenuation that is dependent on frequency

and independent on the wave propagation direction. The analytical work provided here

may be useful for investigating the influence of grain shape on static elastic moduli of

polycrystals.

2.3.3 Stochastic asymptotes

Stochastic attenuation asymptote

The stochastic attenuation asymptote has been derived by Yang et al. [21] and provided

in a normalised form by Li and Rokhlin [11] for elongated polycrystals with TPC statistics

being represented by a single exponential (i.e., the summation over i in Equation 2.5 is

not present). The derivation was based on the facts that the same mode scattering is

dominant at the stochastic limit, namely αS
M ≈ αM→M , and the forward scattering is

dominant in αM→M . The derivation is not repeated here; readers are referred to Yang

et al. [21] for details. This work follows the normalised form of Li and Rokhlin [11] and

adapts it to the case of arbitrary crystallographic symmetry and multi-term generalized

TPC function as follows

αS
M = k2

0MaCL(θp, ϕp)QM→M , (2.26)
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whereQM→M = (AMM+BMM+CMM)/(4ηρ2V 4
0M) is the elastic scattering factor. aCL(θp, ϕp)

is the correlation length in the direction of wave propagation (θp, ϕp) as illustrated in Fig-

ure 2.1. For elongated polycrystals described by the generalized TPC function, it is given

as

aCL(θp, ϕp) =
n∑
i=1

Ai√
sin2 θp cos2 ϕp

(aix)2
+ sin2 θp sin2 ϕp

(aiy)2
+ cos2 θp

(aiz)2

, (2.27)

while for polycrystals with equiaxed grains, it is independent of propagation direction and

is expressed as

aCL =
n∑
i=1

Aiai. (2.28)

Equation 2.26 demonstrates that attenuation obeys a second-power dependence on fre-

quency at the high-frequency stochastic limit. Additionally, attenuation also depends on

the elastic scattering factor QM→M and correlation length aCL(θp, ϕp). It is important to

note that for statistically ellipsoid-of-rotation grains, attenuation asymptote only changes

with the angle θp because the correlation length aCL is now a univariate function of θp.

Stochastic velocity asymptote

In contrast to the above analytical asymptotes, the stochastic velocity asymptote is de-

rived only for polycrystals with equiaxed grains. The derivation is provided in Appendix

B.3 and the final expression for the relative change of phase velocity at the stochastic

limit is given by

∆M→N =

 5QM→M/2 N = M

2Q∗MN/(1− V 2
0M/V

2
0N) N 6= M

, (2.29)

where the elastic scattering factor QM→M has been given above, while Q∗MN = (AMN +

BMN +CMN)/(4ηρ2V 2
0MV

2
0N) is an elastic factor introduced for simplification. The phase

velocity at the stochastic limit can thus be obtained by substituting ∆M→N into Equation
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2.11

V S
M =

V0M

1 + 5QM→M/2 + 2Q∗M→N/(1− V 2
0M/V

2
0N)

, (2.30)

where N ∈ {L,T} and N 6= M .

2.4 Far-field approximation

The above-presented SOA model involves the calculation of the Cauchy integral for the

perturbed wave number. This difficulty can be eliminated by utilizing the far-field Green’s

function of scattered waves and the mean value theorem [26]. This leads to the far-field

approximation (FFA) with the mass operator being given as [26]

mM→N(k;ω) =
−k2V 2

0Mk
2
0NQM→N

π

∫
exp (ik0Nr)

r
w(r) exp (− ik · r)d3r, (2.31)

where exp(ik0Nr)/r is the far-field Green’s function for a scattered wave N . QM→N is the

elastic scattering factor as stated above. w(r) is the generalized TPC function given by

Equation 2.5. By substituting the total mass operator, mM(k;ω) =
∑

N=L,TmM→N(k;ω),

into the dispersion equation (Equation 2.1), the solutions for attenuation and phase velo-

city can be obtained. Equation 2.31 is for polycrystals with statistically ellipsoidal grains,

and the integral in the equation reduces to a one-dimensional integral [26] for statistically

ellipsoid-of-rotation grains. For equiaxed grains, Equation 2.31 further reduces to a closed

form

mM→N =
−8πa2k2V 2

0Mk
2
0NQM→N

a2k2 − (i+ ak0N)2 . (2.32)

The modification of the mass operator mainly affects the near-field part of the total

scattering field on inhomogeneities [26]. This results in a constant phase velocity shift

of V R
M − V0M across the whole frequency range. Thus, the velocity VM obtained from

the FFA model needs to be corrected by adding a constant V R
M − V0M , where V R

M is the

Rayleigh velocity limit of the SOA model as given in Equation 2.19.
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The FFA model is valid in all frequency ranges including the geometric regime. In com-

parison to the SOA model, the FFA model uses additional approximations, making it

more computationally efficient. On the other hand, the approximations to some extent

reduce the accuracy of the FFA model. The potential reduction of accuracy is evaluated

here by comparing it with the SOA model for polycrystalline CSP with elongated grains

of triclinic symmetry. The resulting attenuation and phase velocity are provided in all

frequency ranges in Figure 2.3(a) and (b) for longitudinal waves in the shortened and

elongated directions of the grains; all parameters are specified in the figure caption.
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Figure 2.3: Comparison of the SOA and FFA models in all frequency regimes for the normalised
(a) attenuation and (b) velocity of longitudinal waves. The results are given for polycrystalline
CSP with elongated grains having an elongation ratio of 5. The mean grain radius of the poly-
crystal in the elongated z-direction, az, is 5 times those of the shortened x- and y-directions:
az = 5ax = 5ay. The spatial autocorrelation of the polycrystal is represented by the generalized
TPC function with coefficients being given in Table 3.3, and in this case, the mean grain radius
in the shortened x -direction is determined from the slope at the origin of the generalized TPC
function by ax = 1/

∑n
i=1(Ai/a

i
x) (similarly for ay and az). The elastic properties of the poly-

crystal are given in Table 3.2. The velocities of the FFA model have been corrected by using the
approach provided in the context.

It is shown in the figure that the FFA model has a generally good agreement with the SOA

model in the whole frequency range for both attenuation and velocity. The stochastic

regime is not pronounced in the elongated direction due to the strong scattering that

accelerates the transition to the geometric region. When comparing the results in Figure

2.3 for elongated and shortened grain directions, one needs to remember that the axes are

normalised by the grain radius of the shortened direction, ax, and therefore the transition
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to the geometric region for propagation in the elongated grain direction occurs at about

2k0Laz = 50 (where az = 5ax is the grain radius in the elongated direction).

As implied in Equations 2.1 and 2.31, the perturbed wave number k in the FFA model

is a function of two independent elastic scattering parameters QM→L and QM→T, which

combine the effect of the 21 elastic constants that appear in the inner products of the

SOA model. The excellent agreement between the SOA and FFA models means that

the attenuation and velocity obtained from the SOA model also implicitly depend on the

same two combinations, QM→L and QM→T, of the elastic constants. As discussed later in

§6, this allows the equivalency of different material systems to be established in terms of

scattering-induced attenuation [26,46].

2.5 Summary

This chapter first presents the theoretical SOA model for elastic waves propagating in

polycrystals with equiaxed and elongated grains of arbitrary crystal symmetry. The model

takes the elastic inner product and geometric TPC function of the polycrystals as input

and calculates the attenuation and phase velocity of the propagating waves. Then, the

Born approximation is introduced into the SOA model to deliver a simpler theoretical

calculation and to derive the analytical Rayleigh and stochastic asymptotes. The Born

approximation agrees very well with the SOA model at low frequencies but deviates

as frequency approaches the geometric regime. Finally, the far-field approximation is

outlined which significantly improves calculation efficiency while maintains a very good

agreement with the SOA model across the whole frequency range.
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Chapter 3

Three-dimensional finite element model

3.1 Introduction

The three-dimensional (3D) finite element (FE) method is presented in this chapter to

numerically calculate scattering-induced attenuation and phase velocity dispersion for

plane longitudinal waves propagating through polycrystals with statistically equiaxed

and elongated grains. In comparison to the preceding theoretical models, the 3D FE

method captures the actual wave interactions with grains without low-order scattering

approximations, and it thus delivers a more accurate calculation of attenuation and velo-

city dispersion. This method is generally suitable for polycrystals with any grain shape,

but the model description in this chapter focuses on polycrystals with elongated grains of

statistically ellipsoid-of-rotation shape, of which polycrystals with statistically equiaxed

grains are special cases.

In this chapter, the representation of polycrystals at grain scale is initially introduced in

§3.2. This is followed by the description of spatial and temporal discretisation in §3.3

and the excitation of plane longitudinal waves in §3.4. Then, this chapter describes the

determination of attenuation and phase velocity for the waves in §3.5 and the measurement

of spatial autocorrelation function from the polycrystal models in §3.6. Finally, the quasi-

static simulation method is presented in §3.7. The majority of this chapter is adapted

from the manuscript [P3] that has been submitted for possible publication, while the

description in §3.7 is reproduced from [P1], with the permission of AIP Publishing.
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3. Three-dimensional finite element model

3.2 Representation of polycrystals at grain scale

The 3D FE method starts with the generation of a numerical material model with the

dimensions of dx × dy × dz along the three coordinate axes. The model is composed of

random grains created by the Voronoi tessellation method [52]. The grains are densely

packed and fully bonded, and they have statistically equiaxed shape; typical equiaxed

grains are shown in Figure 3.1(a). To simulate elongated grains, the equiaxed model is

then scaled by using the scale factors of Sx × Sy × Sz = (1 × 1 × R)/ 3
√
R, leading to a

stretched model with the dimensions of dxSx × dySy × dzSz. The constituting grains of

the stretched model are elongated in the z-direction with an elongation ratio of R and

the average shape of the grains is ellipsoid-of-rotation; typical elongated grains are shown

in Figure 3.1(b). The scale factors are chosen such that Sx ·Sy ·Sz = 1, which are used to

ensure that the volume of each grain remains unchanged during the scaling and to enable

a direct comparison between equiaxed and elongated cases.

In order to simulate the wave propagation in the off-symmetry axis direction with an

angle of θp to the grain elongation direction, the stretched model is rotated about the

x-axis with the desired angle θp. The outer surfaces of the rotated model are no longer

normal to the coordinate axes which complicates wave excitation and monitoring. This

problem is averted by creating a sufficiently large equiaxed model and then by cropping

its stretched and rotated counterpart to achieve the dimensions of dxSx × dySy × dzSz

along the coordinate axes. The models created for this thesis are listed in Table 3.1.

For equiaxed polycrystals (R = 1), the average grain diameter D in the table refers to

the cubic root of average grain volume v: D = 3
√
v; for elongated ones (R = 5), it is

direction dependent and is determined by D(Sx × Sy × Sz) for the three coordinate axes.

This dimensional parameter differs from the extensively-used mean grain radii ax,y,z of this

thesis which correspond to the slopes at the origin of the generalized two-point correlation

function in the respective directions.

The generated models are further assigned with material properties. This work employs

nine single-phase polycrystalline materials with properties being given in Table 3.2. Eight

materials possess the highest crystal symmetry of cubic and one material (CSP, copper

sulfate pentahydrate) has the lowest symmetry of triclinic; all materials have greatly
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3. Three-dimensional finite element model

Figure 3.1: Illustration of 3D FE models for polycrystalline materials with statistically (a)
equiaxed and (b) elongated grains. The equiaxed model in (a) has the dimensions of dx×dy×dz.
The elongated model in (b) is generated through 1) scaling a large equiaxed model by using the
scale factors of Sx × Sy × Sz = (1 × 1 × R)/ 3

√
R with an elongation ratio of R = 5, 2) rotating

the scaled model about the x axis with an angle of θp, and 3) cropping the rotated model to the
desired dimensions of dxSx × dySy × dzSz. The rightmost images show the cross-sections of the
grains discretised with uniform 8-node linear "brick" elements.

Table 3.1: Polycrystalline models. Elongation ratio R, dimensions dx × dy × dz (mm), average
grain diameter D (mm, cubic root of average grain volume), number of grains N , mesh size h
(mm), degree of freedom d.o.f..

Model R dx × dy × dz D N h d.o.f.

N115200 1 12× 12× 100 0.5× 0.5× 0.5 115200 0.05 349× 106

N11520 1 12× 12× 10 0.5× 0.5× 0.5 11520 0.025 278× 106

5 7.02× 7.02× 29.24 0.29× 0.29× 1.46

N16000 1 20× 20× 5 0.5× 0.5× 0.5 16000 0.02 755× 106

5 11.70× 11.70× 14.62 0.29× 0.29× 1.46

N12250 1 17.5× 17.5× 5 0.5× 0.5× 0.5 12250 0.017 967× 106

5 10.23× 10.23× 14.62 0.29× 0.29× 1.46

differing anisotropy factors. The grains of each model share the same material mass and

elastic properties but face different directions in terms of crystallographic orientation. To

enable a direct comparison with the theoretical SOA models, each FE model is made
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3. Three-dimensional finite element model

statistically homogeneous by uniformly randomly assigning crystallographic orientations

to the grains. In this case, a polycrystal model with equiaxed grains exhibits elastic

isotropy on the macro scale. However, the randomness in crystallographic orientation

does not induce the same isotropy to a polycrystal with elongated grains. Instead, an

elongated polycrystal exhibits macroscopic anisotropy as a result of grain elongation, and

it is specifically transversely isotropic for a polycrystal with ellipsoid-of-rotation grains as

addressed in the present FE model.

Table 3.2: Polycrystalline materials. Elastic constants cij (GPa), density ρ (kg/m3), Voigt
velocities VL and VT (m/s), anisotropy factor A [53], universal anisotropy factor AU [54], elastic
scattering factors QL→L and QL→T (×10−3). CSP is short for Copper Sulfate Pentahydrate
[26,55].

C
ub

ic
sy
m
m
et
ry

c11 c12 c44 ρ VL VT A AU QL→L QL→T

Aluminium 103.4 57.1 28.6 2700 6318 3128 1.24 0.05 0.08 0.33
A1.5 262.1 136.5 95.3 8000 6001 3207 1.52 0.21 0.39 1.43
A1.8 251.7 141.7 100.5 8000 6001 3207 1.83 0.45 0.76 2.79
A2.4 237.1 149.0 107.8 8000 6001 3207 2.45 1.03 1.49 5.48
Inconel 234.6 145.4 126.2 8260 6025 3366 2.83 1.42 2.26 7.59
Copper 169.6 122.4 74.0 8935 4847 2455 3.14 1.75 1.76 7.19
A5.0 210.6 162.1 121.0 8000 6000 3207 5.00 3.84 3.44 12.66
Lithium 13.4 11.3 9.6 534 6157 3402 9.14 8.70 5.44 18.70

T
ri
cl
in
ic

sy
m
m
et
ry

CSP

c11 c12 c13 ρ VL VT A AU QL→L QL→T

56.5 26.5 32.1 2286 4874 2303 - 0.95 3.23 7.19

c14 c15 c16 c22 c23 c24 c25 c26 c33 c34

-3.3 -0.8 -3.9 43.3 34.7 -0.7 -2.1 2.0 56.9 -4.4

c35 c36 c44 c45 c46 c55 c56 c66

-2.1 -1.6 17.3 0.9 0.3 12.2 -2.6 10.0

3.3 Discretisation of polycrystals in space and time

The generated models are spatially discretised in order to be solved by the FE method.

This thesis uses a structured mesh that subdivides a spatial model into uniform 8-node

linear "brick" elements. Example cross-sections of the 3D meshes are illustrated in Figure

3.1(a) and (b) for equiaxed and elongated grains, respectively. For the models involved

in this thesis, their mesh sizes h (the edge sizes of the elements) are provided in Table
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3. Three-dimensional finite element model

3.1. The choice of mesh size depends on two determining factors. The first is to minimise

numerical errors, and a satisfactory mesh size is chosen to be smaller than one tenth of

the simulated wavelength [38], which will be studied in-depth in §4. The second factor

is to ensure that grain geometries are accurately characterised by the structured mesh.

In this thesis, the element size is chosen to be twenty times smaller than the average

grain diameter D (the cubic root of average grain volume). For equiaxed grains, it has

been shown [38] that this choice makes the structured mesh perform equally as well as an

unstructured mesh that is capable of perfectly describing planar grain boundaries. For

elongated grains, however, a possibility exists that such a mesh size choice may not be

able to properly describe their sharp tips. Thus, it is essential to evaluate this possibility

in order to deliver a satisfactory representation.

The model N11520 with elongated grains is used for the evaluation because it has the

largest mesh size among the models adopted for simulating elongated polycrystals. The

evaluation utilizes grain cross-sectional area as a measure to identify the difference of grain

geometry before and after discretisation. The measured statistics are plotted in Figure

3.2. In the figure, the x-axis represents the grain cross-sectional area Ag as normalised by

the area Ae = 0.025× 0.025 mm2 of an element face. The y-axis indicates the probability

p of occurrence of a given cross-sectional area. The lines and points are measured on the

models before and after discretisation, respectively. For each coordinate direction of the

un-discretised model, 1000 cross-sections normal to this direction are randomly chosen.

The intersections of the grains and the chosen cross-sections are identified and the areas

Ag of the intersections are then counted to acquire the statistics. For each direction of the

discretised model, the acquisition visits all discrete cross-sections that are perpendicular

to the given direction and similarly counts the intersected areas between the grains and the

cross-sections. For both cases, their z-direction statistics (dash-dotted line and triangles)

are further normalised before plotting: the area Ag is multiplied by the elongation ratio

R = 5 and the probability p is divided by the same ratio.

The figure shows that the statistics for individual directions are overlapped, meaning

that the desired grain elongation has been well reproduced in both un-discretised and

discretised models. A clear difference between the lines and points can be observed from

the figure at cross-sectional areas Ag below 3Ae. This is because some very small grain
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Figure 3.2: Comparison of grain cross-sectional area statistics measured before and after dis-
cretisation. The model N11520 with elongated grains is used for the measurement of the shown
statistics. Ag represents the cross-sectional areas of the grains and Ae the area of an element
face. Lines and points are measured on the models before and after discretisation, respectively.
z-direction statistics (dash-dotted line and triangles) have been normalised: the Ag on the hori-
zontal axis is multiplied by the elongation ratio R = 5 and the probability p on the vertical axis
is divided by the same ratio.

cross-sections, closer to the sharp tips of the grains, or simply in small grains in the

un-discretised material model, are underrepresented in the discretised model, since the

elements of the discretised model are uniformly sized cubes. However, according to the

mesh convergence study by Van Pamel et al. [38], this underrepresentation of small grain

cross-sections by structured meshes only induces a very small simulation uncertainty to

attenuation and phase velocity. It was shown [38] that attenuation converges to within

1% (velocity has a better convergence) when the number of elements per average grain

diameter is approximately 10 (D/h ≈ 10), while in this work there are at least 11.70

elements per grain diameter even for the shortened direction (for N11520 with the coarsest

mesh, (D/ 3
√
R)/h = 11.70). Nonetheless, it is important to note that there might be a few

very sharp tips in the elongated direction that can hardly be represented by structured

meshes; this needs further investigation.

In addition to spatial discretisation, the sampling of time is also necessary for the elasto-

dynamic FE method. For this purpose, time is partitioned into discrete instances having

a uniform step ∆t between adjacent instances. The time step is defined by the Courant-

Friedrichs-Levy condition: ∆t = Ch/Vmax. C is the Courant number and it being not
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3. Three-dimensional finite element model

greater than unity, namely C ≤ 1. Vmax is the peak phase velocity of a polycrystalline

material. This condition designates the time step being at most equal to the smallest

propagation time within the discrete space, and it ensures incremental solution of the

elastodynamic problem, stably and accurately.

3.4 Excitation of plane longitudinal waves

This work simulates the propagation of plane longitudinal waves within the above gener-

ated polycrystal models. Without loss of generality, the wave vector direction is confined

to the z-direction. To achieve the plane wave modality, symmetry boundary conditions

(SBCs) are applied to the four outer x-z and y-z surfaces of a cuboid model to constrain

their out-of-plane motions. These mirror-like outer surfaces repeatedly mirror the FE

model along the surfaces and it effectively represents an infinite volume through which

plane waves can be transmitted.

To excite a longitudinal wave propagating in the z-direction, a three-cycle Hann-windowed

toneburst signal is applied as a uniformly distributed force in the z-direction to all of the

nodes on the x-y surface at z = 0. As mentioned in §3.2 and will be demonstrated in §6,

an FE model exhibits transverse isotropy on the macro scale as a result of grain elonga-

tion, even when the material crystallography is macro-isotropic; it will be observable also

that the effective macroscopic anisotropy caused by grain elongation is frequency depend-

ent. Thus, for the wave excitation in the off-symmetry axis directions (θp 6= 0◦, θp 6= 90◦;

see Figure 3.1(b)), the actual FE particle displacements are not aligned strictly to the

z-direction of wave propagation. As a result, the longitudinal wave manifests as a quasi-

longitudinal wave with a skew angle between the polarization and propagation direc-

tions [56]; and, in addition to the plane quasi-longitudinal wave, small amplitude quasi-

transverse modes may be excited in this setup. However, the effect of quasi-transverse

waves is negligible in the studied cases as the elastic anisotropy caused by grain elongation

is small (for reference, the largest skew angle for the studied materials is estimated to be

smaller than 0.1◦ at the quasi-static limit). In fact, we were unable to determine any

effect of this mode impurity in the results of the FE simulations. Ideally, when the z-axis

is directed off the grain elongation axis, exciting a pure longitudinal wave propagating in
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the z-direction would require the application of forces in both parallel and perpendicular

directions to the z-direction. This exact loading condition, however, is not pursued in

this work because the motion perpendicular to the z-direction has been constrained on

boundaries associated with the SBCs.

3.5 Determination of attenuation and phase velocity

The setup of the FE models is now complete and the models can be solved with the elast-

odynamic time marching method. While the spatial problem is represented by finite ele-

ment discretisation using first-order 8-node regular hexahedral elements, the time-stepping

solution is based on the finite difference method, using the well-known equilibrium equa-

tion

M
Un+1 − 2Un + Un−1

∆t2
+ KUn = F, (3.1)

where F is the dynamic load vector describing externally applied forces at individual

degrees of freedom. M and K are the mass and stiffness matrices, so KUn is the elastic

force vector, with Un representing the global displacement vector at time step n. MÜn

is the inertia force, and the acceleration vector Ün therein is represented by a standard

central difference as (Un+1 − 2Un + Un−1)/∆t2. The equilibrium equation establishes

the relation of displacements at three time steps n − 1, n, and n + 1. Re-arranging the

equation allows the displacements at step n + 1 to be determined explicitly from those

already known at the two preceding steps. Material damping is neglected in this work.

Equation 3.1 is solved by using the FE program Pogo [37], which is tailored for fast,

large-scale elastodynamic simulations via parallel GPU computing. Over the course of

simulation, the z-direction displacements are monitored across all nodes and at all time

steps on the transmitting, z = 0, and receiving, z = dz, surfaces. Spatial averaging these

two sets of displacements over the respective nodes at each time step leads to the coherent

transmitted and received signals, denoted as U(0; t) and U(dz; t). The frequency-domain

signals, U(0; f) and U(dz; f), are then obtained by Fourier transforming the windowed

time-domain signals. Frequency-dependent attenuation is then obtained by comparing
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the amplitudes of the signals: α(f) = − ln [A(dz; f)/A(0; f)]/dz, where A denotes the

amplitude part of U . Similarly, the frequency-dependent phase velocity is calculated by

comparing the phases of the signals: V (f) = 2πfdz/ [φ(0; f)− φ(dz; f)], where φ repres-

ents the unwrapped phase of U . The determination of attenuation and phase velocity will

be further studied in §4, in which typical coherent signals, attenuation and phase velocity

results will be provided.

It is important to realise that different models are used in different frequency ranges to

achieve a similar calculation accuracy across the entire frequency range; the centre fre-

quencies used for the models are provided in Table 3.1. Also, a large number of grains are

included in each FE model, ensuring the attenuation and phase velocity determined from

a single FE material model will incorporate a significant amount of scattering information.

Despite this statistical significance of a single model, a combination of multiple realiza-

tions (unless otherwise specified, this thesis uses 15 realizations) is used to get converged

phase velocity and attenuation results for a given material in a given frequency range.

For each case, the multi-realizations are generated by using the same grain structures and

re-randomizing the crystallographic orientations of the grains. This approach has been

shown to preserve the same statistical variability as the ideal approach of re-randomizing

both grain structures and grain orientations [29]. Therefore, one may be confident to use

this method to save the intensive computational costs used to re-mesh the spatial models.

3.6 Generalized representation of two-point correlation

function

It has been mentioned above that the geometric characteristics of polycrystals are repres-

ented by the two-point correlation (TPC) function. This function needs to be accurately

determined from the FE material models such that it can be incorporated into the theor-

etical models for direct comparison.

The procedure for measuring TPC data from 3D FE material models has been previously

reported for equiaxed grains [28]. The measurement randomly drops a large number of

point pairs into a polycrystal model. The two points of each pair are separated by a
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distance of r. The measurement then counts the number of pairs whose two points occur

in the same grain and compares this number to the total number of pairs to obtain the

correlation probability w(r). A significant number of tests are generally required to obtain

a statistically converged probability and a satisfactory convergence is found in the present

study by using 1 million tests per discrete r. For the model N11520 with equiaxed grains,

its TPC data is given in Figure 3.3 as rectangular points. This TPC data will also be

used to represent other equiaxed material models of this thesis, because all models have

sufficiently large numbers of grains and their TPC statistics are fundamentally the same.

This also applies to the elongated material models discussed below.

The above procedure can be easily extended to 3D FE material models with statist-

ically elongated grains. The TPC function is now a function of vector distance r =

r(sin θp cosϕp, sin θp sinϕp, cos θp). For convenience, the angles θp and ϕp describing the

direction of incident wave (see Figure 3.1) are used here to define the orientation of two

test points. For statistically axisymmetric grains simulated in this thesis, the TPC func-

tion only depends on angle θp when the elongated direction is aligned with the z-axis of

the coordinate system. As shown later in §6, this thesis simulates wave propagation at

eight different angles of 0◦, 15◦, 18.75◦, 30◦, 45◦, 60◦, 75◦, and 90◦. To maintain con-

sistency with actual simulations, the TPC function is also measured at these angles from

the FE material system. For each angle θp, the correlation probability w(r, θp, ϕp = 0) is

determined in the same way as the above equiaxed case, except that the orientation of

every test pair is confined to the given angle. For the model N11520 with elongated grains,

its TPC statistics are provided in Figure 3.3 as circular points. For a clean presentation,

the figure only provides statistics for the angles of 0◦, 15◦, 30◦, 45◦, and 90◦.

It is important to note that the measurements are performed on the FE material models

before their discretisation. §3.3 has demonstrated that the small cross-sections of the

elongated grains are not well represented by structured meshes. This raises a question of

whether the TPC data measured on an un-discretised model also accurately delivers the

information of its discretised counterpart. To answer this question, the TPC statistics

are also numerically measured from the discretised N11520 model at the angles of 0◦ and

90◦. The resulting TPC data points are indistinguishable from those shown in Figure 3.3

for both angles, indicating the validity of using the TPC data of an un-discretised model
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Figure 3.3: Two-point correlation (TPC) functions for polycrystals with equiaxed and elongated
grains. The rectangular and circular points are measured from the model N11520 with equiaxed
and elongated grains, respectively. For a clean presentation, data points are only shown for
the angles of 0◦, 15◦, 30◦, 45◦ and 90◦, and not for 18.75◦, 60◦, 75◦ although they are used as
propagation angles in FE simulations. The dash and solid lines denote the fitted TPC functions
for the equiaxed and elongated polycrystals, respectively.

to describe its discretised counterpart.

Measured TPC data needs to be fitted into a mathematical function so that it can be

incorporated into theoretical models. For equiaxed grains, a multi-term exponential series,

w(r) =
∑

iAi exp(−r/ai), was used to best fit the measured data [28]. Although special

care should be taken in using this exponential fitting [57], satisfactory coefficients Ai and

ai can be found for an equiaxed case that assure proper TPC decay outside of the fitting

range. For the model N11520, its fitted TPC function is plotted in Figure 3.3 as a dash

line and it is clear that this function matches very well with the original rectangular points

of the actual TPC. The coefficients of the fitted function are given in Table 3.3.

For elongated grains, the TPC function can be similarly obtained by fitting an exponential

series to the measured data. However, the extra dependence of the TPC function on θp

complicates the fitting process, and it generally requires a significant number of trial and

error calculations to get a good fit. This difficulty is avoided in this work by utilizing the

fact that elongated grains are generated by scaling equiaxed ones as described in §3.2. As

a result of this scaling, the TPC function of the elongated case is directly obtained from

that of the equiaxed case by using the same scaling law.
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Table 3.3: Coefficients of generalized two-point correlation functions for polycrystals with
equiaxed and elongated grains. For the elongated case, its coefficients Ai are the same as those of
the equiaxed case, while its coefficients aix, aiy, and aiz are scaled from the equiaxed counterparts
ai by (aix, a

i
y, a

i
z) = ai(1, 1, R)/ 3

√
R, R = 5.

TPC terms Equiaxed case Elongated case

Ai ai Ai aix aiy aiz

1 -2922.66 0.1157 -2922.66 0.0677 0.0677 0.3384
2 -10.62 0.1722 -10.62 0.1007 0.1007 0.5036
3 3914.37 0.1108 3914.37 0.0648 0.0648 0.3240
4 -3305.68 0.1032 -3305.68 0.0604 0.0604 0.3018
5 696.92 0.0910 696.92 0.0532 0.0532 0.2662
6 54.36 0.1523 54.36 0.0890 0.0890 0.4452
7 -42.47 0.0724 -42.47 0.0423 0.0423 0.2116
8 1616.78 0.1108 1616.78 0.0648 0.0648 0.3240

Following the scaling law, the TPC function of the elongated case is given as

w(r, θp, ϕp) =
∑
i

Ai exp

(
− r

√
sin2 θp cos2 ϕp

(aix)
2

+
sin2 θp sin2 ϕp

(aiy)
2

+
cos2 θp

(aiz)
2

)
, (3.2)

where the coefficients Ai are the same as those of the equiaxed case. The coefficients

aix, aiy, and aiz are scaled from those of the equiaxed case ai by using the scale factors:

(aix, a
i
y, a

i
z) = ai(1, 1, R)/ 3

√
R.

The resulting coefficients of the TPC function of the elongated case are given in Table 3.3.

The scaled TPC function is plotted in Figure 3.3 as solid lines for the angles θp where the

measured data points from the FE material model are also provided. The figure shows

that the scaled function agrees very well with the measured data points for the shown

angles, indicating the effectiveness of the scaling approach.

3.7 Quasi-static simulation

The quasi-static phase velocity limit of a polycrystal is related to the macroscopic effect-

ive elastic constants of the medium. This velocity limit can be determined by obtaining

effective stiffness from static FE analyses, but it requires the solution (equivalent to in-

version) of the full stiffness matrix, which is beyond possibility with the large FE models.
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However, it was previously reported [28] that the elastodynamic FE solver [37] can be ap-

plied in a special way to determine the quasi-static velocity. This thesis further elaborates

this methodology, and in particular reports on its accuracy.

In comparison to the above outlined dynamic models, four changes are made to achieve

quasi-static modelling. First, an additional boundary condition is defined for the outer

surface z = dz by constraining the z-displacements of the nodes on the surface. Second, a

distinct loading condition is used to emulate static loading and deformation while retaining

the time marching elastodynamic solution methodology. This is achieved by gradually

applying a load to the FE model and keeping the final state of this load as a constant.

The load is applied as a uniformly distributed force in the z-direction to all of the nodes

on the x-y surface at z = 0. Then, material damping is introduced to allow a steady state

to be reached after a sufficient period of time. In order to reach the desired steady state as

fast as possible, an optimal damping factor is selected such that the compression mode of

the simulated model is nearly critically damped. Lastly, the z-displacement is monitored

only on the transmitting surface, z = 0, since the opposite surface, z = dz, is now being

constrained. Typical signals for applied load and displacement response are illustrated in

Figure 3.4, which are spatially averaged over the transmitting surface. Upon obtaining

the steady-state load F and displacement u, the stress and strain of a simulated model

are determined by σ = F/A and ε = u/dz, where A is the surface area of the model at

z = 0 while dz is the length of the model. Consequently, the longitudinal modulus is

obtained as C11 = σ/ε and the longitudinal wave velocity is calculated by V st
L =

√
C11/ρ.

To illustrate its accuracy, this method is utilized to calculate the quasi-static velocity of
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Figure 3.4: A typical example of loading and displacement in quasi-static modelling for CSP.

63



3. Three-dimensional finite element model

the homogeneous, isotropic steel (E = 210 GPa, ν = 0.3, ρ = 8000 kg/m3) with the FE

model N115200 as provided in Table 3.1. The resulting quasi-static longitudinal velocity

is 5944.0796 m/s, which only has a very small relative difference of 0.0063% as compared

to the exact velocity of 5944.4544 m/s. This indicates that the quasi-static FE method

can deliver a highly accurate prediction of static velocities.

3.8 Summary

In this chapter, a 3D FE model is implemented for plane longitudinal waves propagating

in polycrystals with statistically equiaxed grains and elongated grains with an average

shape of ellipsoid-of-revolution. Each realisation represents a material volume comprising

specific randomly shaped grains that are contiguous without gaps or overlaps. It simu-

lates wave propagation in realistic sample volumes of a significant number of grains and

considers the contribution of all possible multiple scattering. It outputs the attenuation

and phase velocity of the propagating waves by post-processing the coherent signals meas-

ured during FE simulations. The spatial autocorrelation of the FE material models can

be accurately determined and mathematically represented by generalized TPC functions,

which can be further incorporated into theoretical models for a direct comparison of the

theoretical and FE models. Also, the FE model is modified in order to calculate the

quasi-static limit of phase velocity, showing a good accuracy for a homogeneous material

example.
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Chapter 4

Maximizing the accuracy of the finite

element model

4.1 Introduction

Due to the flexibility and accuracy of the 3D FE method, a surge of modelling studies

is expected in the future to understand and optimize practical inspection problems, and

to evaluate the approximations of theoretical models for model-based applications, such

as the inverse characterisation of microstructure. However, even for the relatively simple

cases addressed so far [28, 29, 38, 39], some essential topics are not yet understood well

enough to allow confidence that the best accuracy of simulation is being achieved. The

author has been investigating this challenge, and the purpose of this chapter is to report

on important topics of modelling methodology for which new knowledge will inform a

reliable quality of simulation performance.

The first topic is the determination of effective media parameters, namely attenuation

and phase velocity, from the simulation results. As stated in §3.5, one can perform the

determination in a through-transmission configuration, which is commonly used in actual

experiments where access is limited to sample surfaces and which has also seen wide

applications in previous simulations [28,29,38]. Alternatively, one can also determine the

parameters by best fitting the waves acquired on multiple surfaces within the simulation

volume that are parallel to the transmitting surface. This fitting method was first used in
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a recent work [39] and it is made possible by the intrinsic advantage of FE modelling that

waves inside a sample can be easily measured. Each of these two methods has its own

advantages: the through-transmission method is consistent with physical experimental

configurations, so it is conceptually attractive, and it requires relatively little measured

data, while the fitting method can potentially provide more abundant information about

wave-microstructure interaction. However, these two methods have not been compared in

actual simulations to identify their ranges of application and their possible advantages and

drawbacks. It is important to recognize that while the difference between these methods

would be trivial for a homogeneous material, this is not the case for a polycrystal: the

grain scattering creates high levels of noise in the measurements of the coherent signals as

well as local influences of multiple scattering, both of which bring significant uncertainty

to the measurements.

The second topic concerns the errors and uncertainties of the determined scattering para-

meters. It is known that numerical approximations, including the space and time discret-

ization in the FE method and the inexactness in finite-precision computations, can cause

numerical errors. In addition, statistical considerations, involving the random distribution

of grain structures and the stochastic pattern of wave scattering, can induce both statist-

ical errors and uncertainties. For numerical errors, studies so far were partly limited to

homogeneous and isotropic materials [58,59] and were partly qualitative when they went

to polycrystalline materials [29,38]; while for statistical errors and uncertainties, attention

has not yet been turned to the specific problem of wave propagation within polycrystals.

The third of the three topics of study involves the evaluation of the performance of theor-

etical models using the simulation data of 3D FE modelling. The simulations are ideal for

the evaluation of the effects of the approximations of theoretical models, as they can be

fully controlled, and their errors and uncertainties can to some extent be estimated. The

evaluation requires the statistical information of FE material systems being measured and

being put into theoretical models. As demonstrated in §3.6, such information is represen-

ted by the two-point correlation (TPC) function for widely used theoretical models, like

the second-order [14,17,28,39] and far-field [26] approximations. Previous studies [28,39]

have been successful in incorporating the TPC function of polycrystal models into the-

oretical models, and have shown good agreement between FE and theoretical results in
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terms of scattering parameters. However, these studies neglected in their TPC functions

the fact that symmetry boundary conditions actually mirror the boundary grains of FE

models and thus make the grains doubled in volume.

This chapter presents a thorough discussion of the above-mentioned topics, with the

aim to solve them appropriately. The discussion focuses on the propagation of plane

longitudinal waves in polycrystals with untextured properties and equiaxed grains, while

the ultimate goal is to lay a foundation for the general cases of arbitrary wave modalities in

any polycrystalline material system. §4.2 deals with the determination of effective media

parameters. §4.3 presents a systematic study of errors and uncertainties, with discussions

on how to suppress them. §4.4 provides a comprehensive discussion covering the proper

consideration of symmetry boundary conditions in the TPC function. This chapter is

reproduced from [P2], with the permission of AIP Publishing.

4.2 Determination of attenuation and phase velocity

4.2.1 Coherent waves

To calculate attenuation and phase velocity, displacements are numerically measured on

planes normal to the propagation direction. In the case of plane longitudinal waves

travelling in the z-direction as addressed in this thesis, z-displacements are acquired on

cross-sections normal to the z-direction. Note that the displacement needs to be divided

by 2 if the cross-section is the stress-free end at z = dz, as the displacement is the sum

of the incident and (equally) reflected waves. For an arbitrary cross-section z = z0,

the obtained displacement field is denoted as u(x, y, z0; t). The model length dz for the

z-direction will be used repeatedly hereafter, and for brevity, it will be simplified as d.

As a result of grain scattering, the phase of the wave u(x, y, z0; t) varies across points

on the cross-section. The coherent part of this wave can be obtained by averaging this

wave across the cross-section [60]; i.e. U(z0; t) = 〈u(x, y, z0; t)〉x,y, where 〈·〉x,y represents

the spatial average over all points on the surface z = z0. In the case of FE modelling, a

significant number of nodes across the wavefront z = z0 contribute to the average and thus
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significant wave information is included in the coherent wave. Fourier transforming this

coherent wave with respect to time t leads to its counterpart U (z0; f) in the frequency

domain. Upon obtaining the coherent waves for two or more cross-sections, the two

effective media parameters can be conveniently calculated which will be discussed in the

following subsection.

In addition to the coherent part, there is the incoherent, fluctuation part in the total field

u(x, y, z0; t) which scatters with a random phase across the wavefront and therefore its av-

erage over the cross-section is zero [60]. Although this fluctuation part is discarded in the

calculation of effective media parameters, it is used below to demonstrate the level of scat-

tering over a cross-section. For a clearer demonstration, the fluctuation part is normalised

by the coherent part and denoted as uf(x, y, z0; t) = [u(x, y, z0; t)− U(z0; t)] /U(z0; t).

Here an example is used to illustrate coherent waves and fluctuations on wavefronts. The

example simulates a plane longitudinal wave travelling in the model N11520 (Table 3.1)

using the material properties of Inconel (Table 3.2). The wave is excited with a centre

frequency of 5 MHz. The z-displacement fields are recorded and denoted as u(x, y, 0; t)

and u(x, y, d; t) for the transmitting z = 0 and receiving z = d surfaces, respectively.

In the time domain, the spatial averages of the displacement fields, namely U(0; t) =

〈u(x, y, 0; t)〉x,y and U(d; t) = 〈u(x, y, d; t)〉x,y, are calculated and plotted in Figure 4.1(a).

For these two coherent signals, Figure 4.1(b) and (c) provide their corresponding fluc-

tuations uf(x, y, 0; t1) and uf(x, y, d; t2) at the time instances of t1 = 0.30 × 10−6 s and

t2 = 1.98 × 10−6 s, respectively. As shown in Figure 4.1(a), the time instances t1 and t2

are chosen such that the coherent signals are at their maxima.

To obtain the spectral fields u(x, y, 0; f) and u(x, y, d; f), the time-domain fields are

cropped by using the time windows that span from t = 0 to the vertical marks shown

in Figure 4.1(a) and then transformed to the frequency domain by utilizing the Fourier

transform. Spatial averaging these spectral fields leads to the coherent parts U(0; f) =

〈u(x, y, 0; f)〉x,y and U(d; f) = 〈u(x, y, d; f)〉x,y, whose amplitude spectra are plotted in

Figure 4.1(d). At the frequency of f0 where the transmitting amplitude is at its max-

imum, the amplitude fluctuations uf(x, y, 0; f0) and uf(x, y, d; f0) are illustrated in Figure

4.1(e) and (f).
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Figure 4.1: Illustration of coherent waves (a, d) and wavefront fluctuations (b, c, e, f) in the
time (a-c) and frequency (d-f) domains, using the model N11520 with the material Inconel. The
z-displacements are acquired on the transmitting z = 0 and receiving z = d surfaces, leading to
wave fields u(x, y, 0; t) and u(x, y, d; t). The solid and dashed lines in (a) are the spatial averages
of these fields. (b) and (c) show normalised fluctuations uf(x, y, 0; t1) and uf(x, y, d; t2) for the
transmitting and receiving surfaces, respectively; the time instances t1 and t2 are marked in (a).
Similarly, (e) and (f) provide the normalised amplitude fluctuations at the frequency of f0, which
is marked in (d); these are obtained by performing Fourier transforms of the received signals at
all points on the two cross-sections.

It is clear from Figure 4.1(b) and (e) that the transmitting wavefront at z = 0 is not

planar. This is because forces are applied while displacements are measured on the plane

where random elastic deformations occur immediately upon application of forces. As a

result of scattering, the field fluctuation on the receiving wavefront (Figure 4.1(c) and (f))

is substantially larger than that of the source, leading to a smaller coherent wave (spatial

average) on the receiving surface, as was seen in Figure 4.1(a) and (d). As previously

explained, the change of a coherent wave with propagation distance is represented by

attenuation and dispersive phase velocity. The calculation of these parameters from the

evolution of coherent waves will be addressed in the following subsection.
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4.2.2 Determination by through transmission method

Before determining the scattering parameters, the change of coherent waves with propaga-

tion distance is illustrated. In Figure 4.2, example coherent waves in polycrystalline alu-

minium and Inconel are given as functions of propagation distances z. In the figure, a

coherent wave U(z; f) is normalised by its corresponding initiating wave U(0; f), and the

amplitude and phase parts of the normalised coherent wave, U(z; f)/U(0; f), are denoted

as A(z; f) and ϕ(z; f), respectively. These two parts are shown separately in the (a) and

(b) panels of the figure.

Despite the large wavefront fluctuations (illustrated in Figure 4.1), the figure shows that

the amplitude and phase parts of the coherent wave change exponentially and linearly with

propagation distance, respectively. It is important to emphasise that these exponential

and linear relations are nearly perfectly described by their corresponding fitted straight

lines (the goodness of fit is characterised by the annotated R2 measure, and R2 = 1

corresponds to a perfect fit). This is an essential evidence that the change of the coherent

wave with distance can be very well represented by the effective media parameters, namely

attenuation coefficient α(f) and phase velocity V (f), by the following relations

A(z; f) = e−α(f)z, ϕ(z; f) =
2πfz

V (f)
, (4.1)

It is clear from Equation 4.1 that attenuation coefficient and phase velocity can be de-

termined in two different ways. The first way is to use only U(0; f) and U(d; f), which

are collected on the transmitting z = 0 and receiving z = d surfaces, see Figure 2.1. This

method is consistent with experiments where measurements can only be made on free

boundaries. This method is named the through-transmission method in this thesis and

the two scattering parameters can be given explicitly as

α(f) = − lnA(d; f)

d
, V (f) =

2πfd

ϕ(d; f)
, (4.2)

where A(d; f) and ϕ(d; f) are the amplitude and phase parts of U(d; f)/U(0; f), respect-

ively. This method is graphically shown in Figure 4.2 as the solid (for aluminium) and

dash (for Inconel) lines connecting the transmitting points at z = 0 to the receiving ones
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Figure 4.2: Amplitude and phase of typical coherent signals of polycrystalline aluminium and
Inconel, normalised by the corresponding initiating waves U(0; f). The signals are acquired from
the model N11520 at the frequency of f = 5 MHz. (a) and (b) show the respective amplitude A
and phase ϕ parts of the coherent waves. The solid (for aluminium) and dash (for Inconel) lines
indicate the through-transmission (TT) method, and the dash-dotted (for aluminium) and dotted
(for Inconel) represent the fitting (F) method in a least-squares sense. The through-transmission
(TT) and fitting (F) lines are mostly overlapped. Part (a) of the figure uses the same legend
as (b) and it uses a logarithmic y-axis scale. R2 denotes the coefficient of determination that
measures how successful a fitting (F) line is in explaining the variation of its corresponding FEM
points (R2 = 1 means a perfect fit).

at z = d = 10 mm.

4.2.3 Determination by fitting method

The second way to measure attenuation and phase velocity is to use all the coherent waves,

measured on the free boundaries as well as inside the models. This can be fairly easily

achieved by fitting Equation 4.1 to all the coherent waves, using attenuation coefficient

α(f) and phase velocity V (f) as fitting parameters. Similarly, this method is shown in

Figure 4.2 as the dash-dotted (for aluminium) and dotted (for Inconel) lines which best

fit all the data points in a least-squares sense.

4.2.4 Comparison of the two determination methods

Previously, Lowe and co-authors [28, 29, 36, 38] used the through-transmission method,

while Ryzy et al. [39] employed the fitting method. In comparison, the results in Figure
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4.2 show a very small but visible systematic difference for Inconel. The methods are

further compared in Figure 4.3 for aluminium and Inconel over the frequency range of 3-6

MHz; details of the models are given in the caption. Subtle differences can be observed

between the two methods: for attenuation coefficient the relative difference is smaller than

2% and for phase velocity it is smaller than 0.04%. Although the differences are small,

it seems that the through-transmission method gives systematically larger attenuation

coefficients and smaller phase velocities than the fitting method. Thus, it is important to

understand the reason for this seemingly systematic difference.

There are two key differences between these methods. 1) The through-transmission

method uses waves collected on traction-free boundaries, while the majority of the waves

of its counterpart are acquired inside the models; this difference is illustrated in Figure

4.4. Examples are provided in Figure 4.5 to illustrate the difference between measure-

ments made on the boundaries and inside the models. In the figure, circular data sets

are acquired inside the model N11520 at the frequency of 5 MHz, with each point and

error bar representing the mean and standard deviation of 15 realizations. Square data

sets are collected on the same surfaces and under the same modelling conditions, but the

collection surfaces are free boundaries that are formed by truncating the model N11520 at

these measuring surfaces. Thus, the grains are identical for each of the two models under

comparison at each propagation distance. The figure shows that the signal amplitudes

on free boundaries are mostly smaller than those inside models, hence the resulting at-

tenuation coefficient from the through-transmission method is inevitably larger than that

from the fitting.

This difference is due to the fact that on the boundaries and inside the models, incoherent

waves contribute to the coherent signals differently, see Figure 4.4. It is not hard to ima-

gine that on a measuring surface the incoherent waves induced by early arrivals enter the

coherent part of the arrival signals. Inside the models, coherent waves harvest incoherent

ones in both forward- and backward-propagating directions, while on free boundaries in-

coherent backward-scattered waves are the only contributors. As a result, coherent waves

collected inside models have slightly larger amplitudes than those acquired on the cor-

responded surfaces that are traction-free. Also, additional mode conversion of scattered

waves on a free boundary may contribute to the difference. The incidence of random waves
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Figure 4.3: Longitudinal wave attenuations (a, c) and velocities (b, d) for polycrystalline
aluminium and Inconel determined by the through-transmission (TT) and fitting (F) methods.
Each material uses 15 realizations of the model N11520 to get the averaged data as shown in
the figure, and simulations are for a plane longitudinal wave with a centre frequency of 5 MHz.
The marks followed (or preceded) by percentages show the maximum discrepancies between the
through-transmission (TT) and fitting (F) methods, with the fitting method as reference.
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Figure 4.4: Illustration of collecting waves (a) on an internal cross-section and (b) on a free
boundary. The shown Voronoi diagram is the sectional view of a 3D polycrystal on the x-z
plane. The transmitted coherent wave travels in the z-direction. In (a), the coherent wave
received on the internal cross-sections acquires energy from the scattered waves that travel in
both forward and backward directions. In (b), the coherent wave received on the free end is the
sum of the incident and (equally) reflected waves, and this coherent part only incorporates the
scattered waves that travel in the backward direction. Note that the number of grains in an
actual simulation is far greater than that of the shown Voronoi diagram.
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Figure 4.5: Coherent amplitudes of polycrystalline (a) aluminium and (b) Inconel measured
inside FE models and on free boundaries. Amplitudes are plotted versus propagation distance at
the frequency of f = 5 MHz. Each material uses 15 realizations of the model N11520 to get the
averaged data as shown in the figure. The circles represent signals collected inside the models,
and the squares are collected on the same surfaces but the models are truncated at these surfaces
to form traction-free boundaries.

on complex free boundaries, with spatially-varied elastic properties, produces complicated

reflections that involve mode conversions. Such mode conversions occur differently on a

free boundary compared to the equivalent plane inside the material.

2) The second aspect is that the through-transmission method reflects the overall scatter-

ing behaviour of the whole cuboid of a polycrystal medium, while its counterpart is largely

influenced by the smaller subsets of the medium. It suggests that these two methods may

have different statistical significances in representing the target polycrystal. This volume

effect, however, is not the main cause of the difference between the two methods. The

reason can be clearly seen from Figure 4.5 which illustrates the use of identical volumes

at each propagation distance still leads to statistically different results between the two

methods.

However, it is important to realise that the difference between the two methods is generally

within the range of error bars as shown in Figure 4.5. This suggests that the through-

transmission and fitting methods are practically equivalent and both can be used. In this

work, the through-transmission method is used in later discussions due to its convenience

in the collection of waves and the calculation of scattering parameters.
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4.3 Numerical errors and statistical uncertainties

It is certainly true that disagreement exists between the results calculated by the FE

method and the reality. This disagreement should be estimated to establish the validity

of the FE model and to aid improvement of its accuracy and precision.

In the case of modelling elastic wave propagation in polycrystals, the disagreement can be

divided into two parts. One part is the systematic difference between an FE result and the

exact solution, and another is the random variation around the FE result. These two parts

are denoted as error and uncertainty, respectively. As mentioned in §3.5, an FE result is

obtained by averaging those of multiple FE realizations that are independently generated

but follow the same microstructure statistic. Error in this case is the difference between

the average result and the exact solution, while uncertainty is the standard deviation of

the multiple results relative to the average. Error and uncertainty arise in the FE model

mainly as results of numerical approximations and statistical fluctuations.

Numerical approximations include two major facets: one is the approximation of an exact

wave propagation problem by an FE model that is discretised in space and time, and

another is the truncation or rounding of an exact number to a computer number that has

a finite precision. These approximations cause numerical errors, and the estimation of

these errors will be provided in §4.3.1.

Statistical fluctuations relate to the random nature of the polycrystalline microstructure

and the stochastic scattering it causes. A combination of multiple realizations is used in

the FE model to average out the fluctuations and thus to obtain statistically meaning-

ful FE results. Such statistical considerations are accompanied by statistical errors and

uncertainties, which will be estimated in §4.3.2

Following the estimations of errors and uncertainties, §4.3.3 examines the propagation of

errors and uncertainties through coherent waves to effective media parameters, namely

attenuation coefficient and phase velocity. Finally, §4.3.4 and §4.3.5 provide examples to

suppress numerical velocity and attenuation errors. In this work, absolute and relative

errors are denoted respectively as ∆ and δ, while absolute and relative uncertainties are

denoted as σ and ε.
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4.3.1 Errors in numerical approximations

The spatial and temporal discretisation approximations in the FE method introduce nu-

merical errors, and this work looks at both space and time. The interest of this work is

to establish knowledge of the underlying errors in amplitude and in wave velocity that

come from the FE discretisation of the propagation behaviour; key to this is whether

these errors are significant in comparison with, respectively, the changes of amplitudes

due to scattering induced attenuation and the changes of phase velocity due to dispersion

by the polycrystal. Such errors, if sufficiently understood, may also be used in practice in

order to make corrections to simulated results. Therefore, this work chooses to assess the

errors in a homogeneous isotropic domain, being the background on which the polycrystal

behaviour will be built, keeping with the same meshes and time-stepping schemes of the

latter. This work recognizes that this omits possible errors that might be specific to the

discretisation of the spatial changes in the polycrystal, but this work suggests that the

target of achieving good recommendations for choices of mesh and time step is addressed

most usefully by studying the non-specific homogeneous background case. Furthermore,

this work believes that a good discretisation for the homogeneous background will auto-

matically ensure good representation in the polycrystal case because it is already well

established that the wave behaviour is not sensitive to specific features at the space scale

of the crystal boundaries, and indeed the analytical models do not include information

about these boundaries at all.

The evaluation of the accuracy of FE models for wave propagation is a highly developed

subject with a long history. Considerations of phase velocity dispersion in particular have

motivated many different spatial and temporal schemes; dispersion is strongest for coarse

meshes, so the challenge is to achieve the best efficiency for the desired performance in

modelling short-wavelength waves. The monograph by Bathe [61] provides an excellent

description and evaluation of the basic methodologies of the main schemes in use for time-

domain simulation. A variety of studies of performance of these and their variants, limiting

to relevance to the method used in the present work, can be found in, e.g., [59, 62–70].

This work limits its reporting here to its specific choice of scheme and includes results in

brief for the benefit of modellers in the applications context of this article, leaving detailed
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evaluation of the mathematics and performance of the scheme to the cited literature. The

specific choice is the central difference explicit scheme, using lumped mass matrices, no

material damping, and a structured mesh of identically-sized cube-shaped linear hexa-

hedral elements. The basis of this choice has been optimised and explained in previous

studies [29, 38].

The exact solution to the propagation of elastic plane waves within an isotropic non-

damping material is given by u(x, t) = p0 exp [i(k0x− 2πft)], where p0 and k0 = k0n

are the exact polarization and wave vectors, respectively. It is implied in the solution

that the displacement amplitude is unity. There is no dissipation and the wave number

k0 = 2πf/V0 is thus a real number, where V0 is the exact phase velocity.

Due to numerical approximations, the FE solution to the same problem is approximate.

At a given node x and time instance t = n∆t, the approximate solution unx takes a similar

form to the exact one

unx = pei(k·x−2πfn∆t), (4.3)

where p and k = kn are the approximate polarization and wave vectors. Numerical

attenuation α, if any, and phase velocity V are included in the complex wave number k,

i.e. k = 2πf/V + iα. By using Equation 4.1, the wave number can be further related to

amplitude and phase changes via k = ϕ/d − i lnA/d, where d is the wave propagation

distance. Thus, the estimation of amplitude and phase errors depends on the solution of

wave number k.

The central difference explicit scheme is known to be non-dissipative, correctly conserving

the energy of the propagating waves [69, 70], although the literature devotes little atten-

tion to the details of this, concentrating in preference to the real concern, which is the

velocity dispersion. Here this work suggests it is useful to think a bit more about the

non-dissipative property before evaluating the dispersion.

The non-dissipative property can be examined by looking at the numerical wave propaga-

tion solution for a monochromatic plane wave in an infinite domain (see also, e.g., [63,70]).

The elements are all identical, so this work arbitrarily considers a single node, with waves

propagating in the z-direction and no external forces. The scheme requires only local in-
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formation at each time step, so only information from the eight elements that adjoin this

node needs to be considered. This local assembly has mass M and stiffness K matrices

with 81× 81 coefficients, as defined in §3.5.

Substituting Equation 4.3 into Equation 3.1 gives a system of 81 equations. However,

the eight-element assembly only carries complete information about nodal connectivity

for the target node. As a result, only the three equations which correspond to the degrees

of freedom of this target node are meaningful in terms of describing wave motion, and,

considering compression waves, only the displacement in the chosen coordinate z relates

to the example wave propagating along z. Simplifying this equation results in

(e−i2πf∆t + ei2πf∆t − 2)h2 − (e−ikh + eikh − 2)V 2
0 ∆t2 = 0, (4.4)

and solving this equation leads to

k =
1

h
arccos [

cos (2πf∆t)− 1

V 2
0 ∆t2

h2 + 1]. (4.5)

It is clear from Equation 4.5 that k is a real number. This confirms the non-dissipative

nature of the solution, which holds for plane waves that are continuous in space and time.

A similar analysis would show the same for shear waves.

Equation 4.5 also shows the relative phase error, which is given by δϕ = (k−k0)/k0. Here

the spatial sampling and Courant numbers are defined with respect to the longitudinal

phase velocity V0 = VL, i.e. S = VL/(fh) and C = ∆tVL/h. Considering these relations,

the relative phase error can be expressed as

δϕ =
S

2π
arccos

[
cos (2πC/S)− 1

C2
+ 1

]
− 1. (4.6)

The equation shows that the phase error is directly related to spatial sampling number

S and Courant number C, which correspond to spatial discretisation and time stepping

respectively. It follows now that there is also an anisotropic behaviour because, however

well the element behaves for waves at different angles, the spatial sampling is certainly

different in different directions; this is a well-known property of these solutions [59,63,67].

Thus a perfect preservation of the amplitude of monochromatic plane waves is expec-
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ted, but a frequency-dependent error of phase velocity. The latter will imply that the

amplitude of the envelope of a wave packet in the time domain will in general exhibit

distortion as it travels. This performance will be evaluated in simulation studies in the

following.

A simple cuboid model, with the dimensions of dx×dy×d = 12×12×10 mm, is established

using isotropic steel, with Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3 and

density ρ = 8000 kg/m3. The longitudinal wave velocity of this material is VL = 5944.45

m/s. Similar to the FE model given in §3, the model is discretised with uniform eight-

node cube elements and configured to accommodate a plane longitudinal wave that has

the centre frequency of 5 MHz. The transmitting and receiving waves, U(0, f) and U(d, f),

are collected and the relative phase error is thus obtained as δϕ = ϕ/(2πfd/VL)−1, where

ϕ is the phase part of U(d, f)/U(0, f).

Figure 4.6 compares the actual simulations with analytically predicted results from Equa-

tion 4.6. The left panel (a) assesses the influence of spatial discretisation, as characterised

by the sampling number S, while the right panel (b) evaluates the impact of time stepping,

as characterised by the Courant number C. Model details are given in the figure caption.

The figure shows that the actual phase errors can be well represented by Equation 4.6.

A key observation from the figure is the high degree of accuracy of the calculated phase.

The lowest sampling number, S, in the results in part (a) of the figure is 10 elements per

wavelength, for which the phase error (and thus velocity error) is about 0.5%, and this

error is reduced to 0.1% by increasing S to 20 elements per wavelength. Thus, the policy

of using at least 10 elements per wavelength is justified for all routine analysis by this

method unless particularly high precision is to be pursued.

The figure also defines the two approaches to reduce phase errors, pertaining to spatial

discretization and time sampling, respectively. The first is to use finer meshes, which

can be discovered from the left panel (a) that phase error decreases exponentially (δϕ ∝

exp(−2S)) as spatial sampling number increases. The second approach is to use larger

Courant numbers, which can be found from the right panel (b). When this number is at

its limit of unity, phase error can nearly be removed. However, for stability reasons, it

is not recommended to use C = 1 because the actual C in a simulation could be greater
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Figure 4.6: Evaluation of numerical phase errors. (a) and (b) assess the influences of spatial
sampling number S and Courant number C, respectively. (a) uses four models with different mesh
sizes, h = 0.100, 0.050, 0.025, 0.020 mm, and fixed Courant number, C = 0.8. The resulting
relative phase errors (points) are plotted against their sampling numbers S in the frequency range
of f = 3 − 6 MHz. (b) uses seven models with fixed mesh size, h = 0.025 mm, and different
Courant numbers, C = 0.4, 0.5, . . . , 1.0. Their relative phase errors (points) are plotted versus
their Courant numbers at the frequency of f = 5 MHz. The solid lines in (a) and (b) are
analytically predicted errors from Equation 4.6. Note that the vertical y axes in the figure
panels show the percentage error over the propagation distance of 10 mm.

than 1 (thus violate the stability condition) as a result of accelerated wave velocity caused

by numerical dispersion, and also this condition cannot be achieved for all waves when

there are spatial variations of material properties or multiple wave modes. An important

implication of the second approach is that a structured mesh is likely to perform better

than a free mesh in this analysis. This is because the free mesh has a range of element sizes

and the range can be very wide for sharp spatial features, and therefore it is impossible to

achieve the same Courant number everywhere, even if there is only one wave mode and

material present. In §4.3.4, examples will be given to show actual errors in phase velocity

calculations and to illustrate the corrections of these errors by using the two approaches

discussed here.

This work further uses the same models as for Figure 4.6(a) and calculates their relative

amplitude errors by δA = A−1, where A is the amplitude of U(d, f)/U(0, f) and its exact

solution is unity in the absence of amplitude error. In the frequency range of f = 3 − 6

MHz, the errors are plotted against frequency in Figure 4.7.

Figure 4.7 shows that the amplitude errors of the FE simulations are small, and that they
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Figure 4.7: Evaluation of numerical amplitude errors. The evaluation utilizes the four FE
models that are used in Figure 4.6(a). The points represent the relative amplitude errors and
they use the left y-axis. The solid line is the normalised amplitude spectrum of the transmitting
wave for the model with the mesh size of h = 0.100 mm and it uses the right y-axis. Note that
the vertical y axes in the figure panels show the percentage error over the propagation distance
of 10 mm.

reduce as the mesh is refined, but they are not zero. It is important to recall here that

zero loss is expected for monochromatic plane waves, but that analysis did not include the

FE calculations for the transient behaviour of a wave packet. Critically, it is needed to

distinguish here between energy loss, which would violate the non-dissipative nature, and

signal distortion without loss of energy. Therefore, the integral of the energy content is

calculated for the whole wave packet in each case and this revealed that the energy loss is

negligible, at around 10−4 % for the coarsest mesh. Thus, the energy is correctly retained

and the solution is convincingly non-dissipative, but that there is some small distortion

of the amplitude spectrum, resulting in time-shifting of some spectral amplitudes in the

wave packet.

For interest, Figure 4.7 also shows the normalised amplitude spectrum of the transmitting

wave for the model with the mesh size of h = 0.100 mm, which can be seen, when scaled

appropriately (right y-axis), to match the same shape as the spectrum of the distortion.

Further work on this observation could be academically interesting, but this would be

beyond the present scope. For now, it is noted that the wave packet does not dissipate
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energy, but that there is a small distortion across the amplitude spectrum; furthermore,

the latter is very small (0.2%), even for the coarsest mesh (S = 12 elements per wavelength

at centre frequency), while for the preferred finer meshes it is below 0.003% across the

bandwidth (S = 60 elements per wavelength at centre frequency). These are very small

numbers compared to the scattering induced attenuation in the polycrystal.

Thus the analysis and practice both show that the amplitude errors are insignificant

in comparison to the phase errors. Therefore it is expected that limitations of the FE

modelling will impact the predicted phase velocity but have a negligible influence on

the wave amplitude when reported in the frequency domain. The key result to achieve

accurate simulation is the phase error in Figure 4.6(a), showing dramatic improvement as

the number of elements per wavelength, S, is increased. However, this is in direct conflict

with the desire to minimise S for large models and high-frequency simulations.

4.3.2 Errors and uncertainties in statistical considerations

Generally, one aims to simulate polycrystals of prescribed statistical properties. A single

FE model is not capable of fully describing one of such polycrystals, due to its relatively

small sample volume and finite number of grains. Instead, the statistical combination of

the results of multiple realizations that are randomly generated following the same stat-

istical property is desirable to draw meaningful conclusions about the given polycrystal.

The effectiveness of using multiple realizations to achieve statistical convergence is exem-

plified here. The model N11520 is used to simulate polycrystalline aluminium and In-

conel that have statistically isotropic and macroscopically homogeneous properties. Due

to random scattering, the wave field u(x, y, d; t) on the receiving plane z = d should be

randomly distributed. This means that at a given time instance of t = t0 the fluctuation

uf(x, y, d; t0), which is defined in §4.2, should follow the Gaussian distribution. However,

the actual distribution of a single realisation differs from the Gaussian for both aluminium

and Inconel, which are respectively shown in Figure 4.8(a) and (b) as probability density

histograms. Instead, the combination of multiple realizations (15 in this example) delivers

satisfactory distributions that agree very well with the Gaussian. Thus, a combination of

multiple realizations can be regarded as a confident description of the target polycrystal.
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Figure 4.8: Probability density of the normalised receiving fluctuation fields of (a) aluminium
and (b) Inconel. The materials are simulated using the model N11520 with the centre frequency
of 5 MHz. Each realisation is independently generated by randomizing its crystallographic ori-
entations. The fluctuation uf(x, y, d; t0) of each realisation is collected at all nodal points on
the receiving plane z = d. The time instances t0 for aluminium and Inconel are 1.88 × 10−6

and 1.98× 10−6 s respectively, which correspond to the maxima of their coherent waves U(d; t).
Note the order of magnitude difference in the horizontal scale indicating significantly stronger
scattering for Inconel. Part (a) uses the same legend as (b).

As mentioned in §4.2, the coherent wave of a model is used to calculate effective media

parameters. In the case of multiple realizations, the calculation needs to use the average

of the multiple coherent waves that can be denoted as µ(z; f) = 〈Ui(z; f)〉i, where Ui(z; f)

is the coherent wave of the i-th realisation. As prescribed by the central limit theorem,

the multiple coherent waves follow the Gaussian distribution because the multiple realiz-

ations are independently randomly generated. And, the average µ(z; f) is an appropriate

estimate of the true coherent wave, and this estimation includes statistical uncertainty

and error as discussed below.

Uncertainty is characterised by the standard deviation σ(z; f) of the coherent waves. Here

the 15-realisation example of Figure 4.8 is used to investigate the uncertainties associated

with the simulations. For the received coherent waves Ui(d; f) (i = 1, 2, ..., 15), their

uncertainties are calculated and split into amplitude σA and phase σϕ parts, respectively;

normalisation by their respective mean values results in relative uncertainties εA = σA/µA

and εϕ = σϕ/µϕ. The results show that Inconel has a larger uncertainty than aluminium,

which is consistent with Figure 4.8. This means that uncertainty is positively correlated

with material anisotropy. In addition, the amplitude uncertainty is around 10 times larger
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than that of phase. This is opposite to what has been found for numerical errors which

was that amplitude error is in general smaller than phase error; this was shown in Figures

4.6(a) and 4.7.

Error in this case is termed the standard error of the mean. It is a statistical error between

the mean and the true value, and it can be probabilistically estimated by σµ = σ/
√
N ,

where N is the number of realizations.

It is important to realise that uncertainty cannot be suppressed, but rather it can be

better determined by using more realizations for example. For standard error, however,

its expression indicates that it can be reduced by increasing the number of realizations N .

Practically, a simple trial-and-error process can be employed to suppress standard error

to a satisfactory extent. This process increases the number N until the relative standard

error of either amplitude or phase (δµ = εA,ϕ/
√
N) is below a set threshold (e.g. 0.1%).

4.3.3 Propagation of errors and uncertainties

It is known that errors and uncertainties propagate through independent variables to

dependent ones. Thus, those of coherent waves discussed in §4.3.1 and §4.3.2 will be

brought into scattering parameters, namely attenuation coefficient and phase velocity, via

Equation 4.2.

Given that propagation distance and frequency are accurate, the attenuation coefficient

in Equation 4.2 is a univariate function of amplitude. Amplitude error is denoted as

∆A = A−AT, where AT is the true amplitude and A is its estimation given by the mean

of multiple realizations. Replacing A by AT in Equation 4.2 and expanding this equation

about the point A in a Taylor series, the relative error of attenuation coefficient can then

be obtained as

δα = −e
αd

αd
∆A +O[∆2

A], (4.7)

where α is the true value of attenuation coefficient; frequency f is implicit. In general,

the true attenuation coefficient α is unknown, so instead it is approximately replaced

by the mean value of multiple realizations. Note that only the first-order term of the
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Taylor expansion is used in the equation, by assuming that amplitude error is small.

Higher-order terms should be included if this assumption does not hold. For uncertainty,

the attenuation coefficient of each realisation needs to be expressed as a Taylor series.

Substituting the expansion into the formula of standard deviation, the relative uncertainty

can then be obtained

εα =
eαd

αd
σA +O[σ2

A], (4.8)

where σA is amplitude uncertainty. Similarly, assuming that phase error and uncertainty

are small, then their propagation from phase to velocity can be easily obtained from

Equation 4.2

δV =
V

2πfd
∆ϕ +O[∆2

ϕ], εV =
V

2πfd
σϕ +O[σ2

ϕ], (4.9)

where V is the true phase velocity that is approximated to the mean value of multiple

realizations.

As shown in Equations 4.7 and 4.8, the error and uncertainty of attenuation coefficient are

related to those of amplitude by the same factor, Fα = exp(αd)/(αd). Due to the lack of

true values, such propagation of error cannot be evaluated. However, it is easy to do so for

uncertainty. For this purpose, σA and εα are calculated from 15 realizations and the actual

propagation factor is calculated from their division. The resulting factor is plotted against

αd in Figure 4.9(a) for aluminium and Inconel, and each material covers a wide frequency

range by using three models: N115200, N11520, and N16000. The actual uncertainty

propagation can be seen to be very well represented by the analytical factor Fα, and this

should always be valid as long as amplitude uncertainty is small. Likewise, this factor is

also applicable to error propagation on the same condition that amplitude error is small.

The figure conveys important information that the propagation factor is at its minimum

of e = 2.72 when αd = 1 Neper. Thus, in order to suppress the magnification of error and

uncertainty, the total attenuation αd should be kept around 1 Neper [71]. Practically,

this work has observed that moderate magnifications can be achieved by maintaining αd

between 0.01 and 6 Neper.
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For phase velocity, Equation 4.9 shows that the same factor FV = V/2πfd = 1/ϕ governs

both error and uncertainty propagation. Similarly, uncertainty propagation is evaluated

in Figure 4.9(b) by using the same models as its left panel. The figure shows that the

factor FV agrees very well with actual simulations, and it is no doubt that it is also valid

to error propagation. An elaborate analysis would suggest that error and uncertainty are

naturally suppressed during their propagation. This is based on the fact that achieving a

good statistical significance requires waves to propagate at least a quarter of wavelength,

which means ϕ ≥ 2π/4 = π/2 and further leads to FV = 1/ϕ ≤ 2/π < 1. Note that in

Figure 4.9(b) the phase ϕ on the horizontal axis is in the range from 10 to 1000 and the

propagation factor FV on the vertical axis is not greater than 0.1. It is also important

to emphasise that better suppression can be achieved by using a longer model length d.

However, increasing d often makes it difficult to meet the condition of αd being close to

1 Neper, which is necessary to suppress the error and uncertainty of attenuation. It is

thus advised to only consider the suppression condition exerted to attenuation and that

of phase velocity should be fulfilled accordingly.

4.3.4 Suppression of numerical velocity errors

The preceding studies have provided a variety of ways to understand and then suppress

errors and uncertainties. Following these studies, this section and the subsequent section

present some typical examples to demonstrate the practical use of the suppression methods

in actual simulations.

Suppressing statistical error and uncertainty is relatively simple, and it is thus not exem-

plified in this subsection. As illustrated in §4.3.2, a statistical error can be reduced to a

satisfactory extent by increasing the number of realizations N , while uncertainty cannot

be suppressed and can only be better determined through the use of large N . For all simu-

lations considered in this work, N = 15 is used to achieve a satisfactory statistical error of

at most 0.1% and a sufficiently good determination of uncertainty. §4.3.3 further suggests

that the propagations of statistical error and uncertainty can be effectively suppressed by

minimizing the factors Fα and FV , respectively. But because such minimization equally

suppresses numerical errors, its discussion is left to the following example suppressions of
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Figure 4.9: Propagation factors for the uncertainties of (a) attenuation and (b) phase velocity.
Lines represent analytically derived factors, while the points are obtained from 15 FE realizations.
For aluminium, the models N115200, N11520, and N16000 cover the frequency ranges of 1-6.5,
6.5-13.5, and 13.5-25 MHz, respectively. For Inconel, the ranges are 1-2.5, 2.5-6.5, and 6.5-23
MHz. Part (b) of the figure uses the same legend as (a).

numerical errors.

Suppressing numerical errors requires a good combination of modelling parameters, and

the suppression approach differs from phase velocity to attenuation. Thus, this section and

the subsequent section give suppression examples separately for velocity and attenuation.

As shown in Equation 4.9, the relative error of phase velocity δV is the product of phase

error ∆ϕ and propagation factor FV . Thus, reducing either of these two parts leads to

the suppression of velocity error. For FV , §4.3.3 infers that it naturally reduces errors

as it is smaller than unity. This factor can be further reduced by using a longer model

length d. However, this work does not aim to do so, because d is a critical parameter for

suppressing attenuation error.

For ∆ϕ, its analytical expression has been obtained for isotropic materials as given in

Equation 4.6. Although this work has not seen a means yet to extend it analytically

to polycrystals, it will be demonstrated later that the conclusions drawn from it can

be quantitatively applied to polycrystals for error suppression. To use this equation

for polycrystals, the spatial sampling number S is defined with respect to the Voigt

velocity V0L, i.e. S = V0L/(fh), and its Courant number C with respect to the peak

velocity Vmax, namely C = ∆tVmax/h. For cubic materials considered in this work, the
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Voigt and peak velocities are given respectively as V0L =
√

(3c11 + 2c12 + 4c44)/(5ρ) and

Vmax =
√

(c11 + 2c12 + 4c44)/(3ρ) [72].

Reducing phase error ∆ϕ can be achieved by using the two approaches summarised in

§4.3.1. The first approach is to use a larger spatial sampling number S. However, this ap-

proach is practically difficult for the present example. This is because the three material

models (Table 3.1) used in this work are already very big in terms of their required com-

putational resources, and further increasing their S requires the use of even finer meshes

that would easily exceed the current computer capability. Instead, this first approach is

substituted by a correction approach that uses the numerical phase error predicted from

Equation 4.6 to correct the error included in the simulation result. The second approach

is to control phase error ∆ϕ by using a Courant number which is as close to unity as

possible.

Examples are provided in Figure 4.10 to illustrate these two approaches. The examples use

the same FE models and configurations as Figure 4.9. In the figure, the phase velocities

obtained from FE simulations are provided as discrete points, and theoretically predicted

results are given as lines. The accurate statistical information of the FE material models

is incorporated into the theoretical curves, and these curves are of good accuracy for the

studied materials and frequency ranges. In particular, the curve of aluminium in panel (a)

is very accurate because the underlying theory can take almost all its weak scattering into

consideration. This curve can thus be used as a reference to evaluate the error suppression

approaches.

For the first approach of error correction, phase velocities before correction are provided

as hollow circles and corrected ones as solid circles. In this case, small Courant numbers

(0.81 for aluminium and 0.86 for Inconel) are used in order to get large phase errors

and thus to show clear effects of correction. The correction is achieved by subtracting

the numerical phase error ϕδϕ (δϕ is the relative phase error calculated by Equation

4.6) from the simulation result ϕ and then calculating the corrected phase velocity by

V = 2πfd/(ϕ − ϕδϕ). It is obvious that before correction, the three models (N115200,

N11520, N16000) do not give consistent velocities as expected at the transitions between

individual models. Note that the transitional inconsistency is less clear for Inconel (panel
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(b) of the figure) because its y-axis scale is too large to show this. This inconsistency

is nicely averted in the corrected results, implying the effectiveness of the correction

approach. And by comparing the hollow and solid circles with the theoretical curve

of aluminium (panel (a)), it is also observable that the use of the correction approach

significantly suppresses numerical phase velocity errors.

For the second approach of error control, both aluminium and Inconel use a large Courant

number of C = 0.99. This is the largest C number attempted in this study that does

not encounter stability issues; the Courant numbers above C = 0.99 were tested but led

to unstable FE computations for both aluminium and Inconel. The velocity results are

provided in the figure as solid squares. The results show good consistencies at model

transitions, but not as good as the corrected results of the first approach. The theoretical

curve of aluminium in panel (a) is also closer to the corrected points, suggesting that

the correction approach performs better than the control approach. This error control

approach, however, may be more advantageous for practical simulations as it requires less

post-simulation calculation compared to the correction approach.

4.3.5 Suppression of numerical attenuation errors

Equation 4.7 indicates that the relative error of attenuation δα is the multiplication of

amplitude error ∆A and propagation factor Fα, and thus reducing either of these two parts

leads to the suppression of attenuation error. It is suggested in §4.3.1 that amplitude error

∆A can be reduced by using either a larger spatial sampling rate S (thus a finer mesh

size h) or an appropriate spectrum range that is in close proximity to its maximum. And

§4.3.3 indicates that propagation factor Fα can be suppressed by limiting αd to a certain

range in the vicinity of 1 Neper.

Thus, three opportunities are available to suppress numerical attenuation errors. For the

first opportunity of using a larger spatial sampling rate S, §4.3.4 has mentioned that

the three models utilized in this work are already very computationally intensive, and

therefore this work does not aim to further increase their sampling rates. For the third

opportunity of using a αd being close to 1 Neper, the creation of the currently used FE

models has ensured that this condition can be relatively easily satisfied. It is certainly
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Figure 4.10: Example suppression of numerical velocity error for polycrystalline (a) aluminium
and (b) Inconel. Lines represent theoretically predicted [28] phase velocities, while points are ob-
tained from 15 FE realizations. Hollow circles represent un-corrected results and their corrected
ones are shown as solid circles. Solid squares represent results obtained by using larger Courant
numbers. For aluminium, the models N115200, N11520, and N16000 cover the frequency ranges
of 1-6.5, 6.5-13.5, and 13.5-25 MHz, respectively. For Inconel, the ranges are 1-2.5, 2.5-6.5, and
6.5-23 MHz.

true that more models can be created to accommodate different modelling frequencies

and polycrystalline media, such that an optimal suppression condition of αd ≈ 1 Neper

can be achieved. But such treatment would introduce huge computation and time costs,

and therefore it is not pursued in this example. Instead, this example uses a combination

of all three opportunities, rather than any single one, to reduce attenuation errors.

The principle of combining suppression opportunities is relatively simple. For a given

material, trial simulations (or theoretical predictions) are first conducted to determine

the frequency range of each FE model in which αd is within a bound of 1 Neper, e.g.

0.01 ≤ αd ≤ 6 Neper. If there is an overlapped frequency range between two models, the

overlapped range is designated to the model with either a larger sampling rate S, a closer

attenuation αd to 1 Neper, or both. Finally, within the chosen frequency range of each

model, transmitting centre-frequencies are tailored to ensure that the whole range uses

appropriate spectra of the waves.

Here an example is provided in Figure 4.11 to demonstrate an incorrect combination

of suppression opportunities and the corrected combination that appropriately reduces

numerical attenuation errors. The example is given for the material aluminium. In

the frequency range of 6.5-13.5 MHz, panel (b) shows that the models N11520 (solid
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triangles) and N16000 (hollow circles) both satisfy the condition of 0.01 ≤ αd ≤ 6 Neper

(2.72 ≤ Fα ≤ 101.00). The incorrect combination chooses the model N16000 to cover this

frequency range because it has a larger sampling rate S than N11520, which is shown

in panel (c). To save modelling costs, the incorrect combination excites a transmitting

wave, in the form of a three-cycle Hann-windowed toneburst, with a centre frequency of 20

MHz to provide a wide frequency coverage. In this case, the range of 6.5-13.5 MHz is far

away from the maximum of the transmitted amplitude spectrum as shown in panel (d).

This deviation from spectral maximum may cause a relatively small amplitude error ∆A,

but the error is significantly magnified by the large propagation factor Fα. This leads to

incorrect attenuation results (hollow circles) as shown in panel (a). Instead, the corrected

combination uses the model N11520 having smaller propagation factors in the frequency

range of 6.5-13.5 MHz as shown in panel (b) and performs the FE simulations in an

appropriate spectral range as shown in panel (d). The corrected results (solid triangles in

panel (a)) agree very well with the theoretical curve, which is very accurate in the range

of concern as explained in §4.3.4, while the incorrect results deviate substantially from

both corrected and theoretical results. It is important to realise that the peak difference

between the incorrect and corrected results, with the latter as reference, is as large as

-54.78% occurring at the frequency of 6.5 MHz, see Figure 4.11(a).

4.4 Effect of symmetry boundary conditions

The preceding FE method is capable of performing numerical experiments with fully-

controlled conditions, and from the experiments, effective media parameters can be ideally

measured with errors and uncertainties being appropriately estimated. Thus, this method

is well suited to evaluating theoretical models that are generally approximate due to the

use of assumptions and simplifications. However, there remains one more challenge for

accurate simulations, which is to determine the set of characteristics that are defined by a

chosen FE model. Clearly, the choices of most parameters, such as, density, dimensions,

or crystal properties, are simply recorded. But the spatial characteristics, represented by

the geometric two-point correlation (TPC) function, of the grains are a product of the

creation of the polycrystal domain, and these need to be measured from the FE model.
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Figure 4.11: Example suppression of numerical attenuation error for aluminium. (a) shows
attenuation coefficients obtained from FE models (points) and a theoretical model [28] (solid
line). Solid points represent satisfactory results with attenuation errors being appropriately
suppressed, while incorrect results are plotted as hollow circles. (b) gives the error propagation
factors for the FE models, Fα = exp(αd)/(αd). (c) plots the spatial sampling rates S = VL/(fh)
and (d) the normalised transmitting amplitude spectra A′ = A(0; f)/max(A(0; f)). All panels
(b)-(d) use the same legend as given in (a). Each FE model uses 15 realizations to get the
averaged result as shown in the figure.

This is a vital step for any comparative studies with theoretical models, to ensure that

these properties are represented properly in parallel in the FE and analytical models.

4.4.1 Effect on two-point correlation function

As introduced in §3.6 and the literature [28, 39], the determination of a TPC data point

w(r) involves dropping a large number of random pairs of points, each pair being separated

by a distance of r, into a polycrystal model. The determination then counts the number

of pairs whose two points occur in the same grain and compares this number to the total

number of pairs to obtain the probability w(r). As shown in Figure 4.12(a), this approach

has limited both points of a random pair to the inside of a model, and thus consider only

the statistical information within the cuboid of the model. Nonetheless, it is mentioned in
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4. Maximizing the accuracy of the finite element model

§3.4 that symmetry boundary conditions (SBCs) are utilized to emulate polycrystal media

of infinite size in the transverse direction to that of wave propagation. Such conditions

mirror the boundary grains that are associated with the SBCs, which is demonstrated

in Figure 4.12(b), and these grains are therefore likely to be larger on average than the

grains located within the body of the model. And in the FE computations, this results in

stronger scattering of propagating waves when they encounter enlarged boundary grains.

Thus, it might be desirable to consider this mirroring effect in the measurement of TPC

data with a goal to evaluate, by comparison with the FE results, which TPC is more

appropriate for evaluating theoretical results.

r

Correlated  

r

Uncorrelated  

r(b)

Propagation 

direction

Correlated  

Symmetry

boundary

(a)

Figure 4.12: Illustration of (a) the measurement of two-point correlation function w(r) and (b)
the effect of symmetry boundary conditions. w(r) is the probability that two points separated
by a distance of r are correlated. Previous measurement procedures [28, 39] only use internal
points, which is shown in (a), to determine w(r). In this case, two points are deemed correlated
if they are in the same grain. As shown in (b), the use of symmetry boundary conditions in
the FE simulations leads to the mirroring of boundary grains. Due to this mirroring effect, two
points are also deemed correlated if they are in the same extended boundary grain.

It can be inferred from the illustration in Figure 4.12(b) that the statistical significance

and impact of the boundary grain mirroring increases as the proportion of boundary

grains grows. Based on this inference, the actual effect of SBCs on the TPC function

is evaluated here. Achieving this evaluation requires the grains associated with SBCs

being parametrically described and the TPC functions with consideration of SBCs being

numerically measured.

To describe the grains associated with SBCs, three parameters are used: the number

fraction NF and volume fraction VF describing respectively the relative number and
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4. Maximizing the accuracy of the finite element model

volume of boundary grains to all grains within the model, and the surface area to volume

ratio SA:V representing the amount of symmetry boundary area per unit model volume.

These parameters are calculated for the models given in Table 3.1 and the results are

provided in Table 4.1 with each of the coordinate axes being wave propagation direction.

The table shows that for the provided models having significant numbers of grains, these

three parameters are actually equivalent, with NF and VF being approximately equal to

each other and being proportional to SA:V. It is important to realise that NF is slightly

smaller than VF because the grains generated by the Voronoi tessellation do not have

uniform volume, but rather boundary grains are to some degree larger than internal

grains. Since these three parameters are equivalent, the following evaluation only uses

the surface area to volume ratio SA:V to represent SBCs, because this parameter can be

easily calculated without the knowledge of actual grains. And the studies reported below

just consider, for the sake of clarity, the five cases in Table 4.1 with unique SA:V values:

N115200-x, N11520-x, N11520-z, N16000-x, and N16000-z. Here the label of each case is

composed of its model name and propagation direction.

To measure the TPC functions with consideration of SBCs, this study uses a procedure

that is mostly the same as the one summarised in §3.6 except for the two treatments

adopted to consider SBCs. The first treatment is that for a pair of random points only

one of them is confined within the model, while the other is completely random as long

as their distance is r, meaning that the latter point can be outside of the model. Given a

sufficiently large number of pairs, this allows the ergodicity to be satisfied, as the pairs can

Table 4.1: Parameters of the grains associated with symmetry boundary conditions. The
parameters are given for three models, with information being provided in Table 3.1, of waves
propagating in three coordinate axes. NF and VF are the number and volume fractions, de-
scribing respectively the relative number and volume of symmetry boundary grains to all grains
within a model. SA:V is the surface area to volume ratio, representing the amount of symmetry
boundary area per unit model volume.

Model x-direction y-direction z-direction

NF VF SA:V NF VF SA:V NF VF SA:V

N115200 0.086 0.090 0.187 0.086 0.090 0.187 0.148 0.154 0.333
N11520 0.158 0.171 0.367 0.161 0.168 0.367 0.146 0.156 0.333
N16000 0.224 0.232 0.500 0.226 0.233 0.500 0.090 0.096 0.200
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cover the entire space of infinite lateral extents that are prescribed by SBCs. The second

treatment involves the counting of correlated pairs. As illustrated in Figure 4.12(b), an

extra situation of two points being correlated may occur when the second point is outside

of the model. In this case, a pair is considered to be correlated if one point occurs in

a symmetry boundary grain and the other falls into its mirrored counterpart. By using

this measurement procedure, the TPC data of the five cases given above are obtained and

plotted in Figure 4.13(a) as hollow points (the data points for the case N115200-z are also

given in the figure for later use). To evaluate the influence of SBCs, the TPC statistics

neglecting SBCs are also provided as solid points in the figure.

The simulated waves travel in the z-direction, meaning that the consideration of SBCs

involves only the cases associated with z-direction: N115200-z, N11520-z and N16000-z.

It is shown in Figure 4.13(a) that these three cases are quite close to each other, but

N11520-z has the largest tail and thus the strongest SBC effect. Therefore, this case is

used in the following as an example for the consideration of SBCs, and it is further plotted

in Figure 4.13(b) as hollow circles. For the case of neglecting SBCs, the TPC data of the

three models (Figure 4.13(a)) are nearly identical. Thus, their average, provided in Figure

4.13(b) as solid circles, is employed to describe the case of neglecting SBCs.

It would be practically meaningful to reduce the impact of SBCs such that measuring

TPC data can be performed in a simpler way by neglecting SBCs. This can be achieved

by using smaller SA:Vs due to the positive correlation between TPC data and SA:V.

It is shown in Table 4.1 that the way to get a smaller SA:V is through widening the

lateral dimensions of polycrystal models, and in extreme cases, the effect of SBCs can be

negligible if the lateral dimensions are sufficiently wide. However, the models adopted in

the present work are already very big, and increasing their lateral dimensions will lead

to added challenges to the computation resources. In addition, an alternative possibility

of minimizing SBCs effect is to reduce the average size of the symmetry boundary grains

such that the mirrored grains would have similar sizes to internal grains. It is practically

difficult to generate grains with such a distribution but implementing a method for this

aim would be very useful.
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Figure 4.13: Two-point correlation data numerically measured from FE models (a) and those
related to actual FE simulations of this work (b). In (a), hollow points are collected with
consideration of symmetry boundary conditions (SBCs), while solid points ignore this SBCs
effect. The label of hollow points, N115200-z: 0.3333 for example, is started with model name
(N115200), followed by wave propagation direction (z), and ended with surface area to volume
ratio SA:V (0.3333). In (b), hollow points correspond to those of N11520-z: 0.3333 in (a), and
solid points are the averages of the solid ones in (a). These two sets of discrete data are fitted
into mathematical functions and are shown as lines. For better visualisation, only every third
point of measured data points are shown in the figure.

4.4.2 Effect on attenuation and phase velocity calculation

Having demonstrated in the preceding examination that SBCs have a significant effect on

TPC functions, it is now essential to identify if SBCs would equally affect effective media

parameters in terms of attenuation coefficient and phase velocity. For this purpose, the

TPC functions, with and without consideration of SBCs, are put into one of the advanced

theoretical models, the second-order approximation (SOA), to calculate the parameters.

The degrees of agreement between the resulting parameters and FE results are then

estimated to assess the improvement brought in by the consideration of SBCs.

Incorporating TPC functions into the SOA model requires the two sets of data in Figure

4.13(b) to be fitted to mathematical forms. The case without consideration of SBCs

has been fitted in §3.6 and the coefficients of the fitted function are repeated in Table

3.3. Similarly, the case with SBCs is fitted and the results are shown in the same table.
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The fitted functions are further plotted in Figure 4.13(b), showing a reasonably good

agreement with the data points.

Substituting the two fitted functions into the SOA model and solving the equation results

in the theoretical solutions to attenuation and phase velocity. Inconel is used here as

the material input to calculate theoretical solutions; the properties of Inconel are given

in Table 3.2. The resulting attenuation and velocity curves are plotted in Figure 4.14(a)

and (b), respectively. In the figure, the corresponding FEM results are also provided as

baseline data to evaluate the approximations of these solutions.

It is shown in Figure 4.14(a) and (b) that the overall agreement between the theoretical

and FEM results is very good, no matter whether SBCs are considered in the TPC func-

tions or not. However, there are clear differences between the theoretical results, which

demonstrates that the SBCs effect is actually prominent. In most frequency regions, the

curves with consideration of SBCs agree better with FEM points, conveying an essential

message that the FEM results are influenced by the doubling of grain size at symmetry

boundaries. It is also important to notice that the theoretical and FEM results are not

perfectly matched even when boundary grains are considered. This is because in the

FEM results the SBCs affect scattering only at boundaries, while in the theoretical model

the effect is not reproduced exactly as the TPC function assumes random, homogeneous

distribution of those grains.

There is no doubt that the TPC function with SBCs should be selected for the material

systems when evaluating the theoretical model. To quantify the improvement of the-

oretical prediction brought in by the consideration of SBCs, the relative differences of

theoretical curves to the FEM points are calculated and plotted in Figure 4.14(c) and (d).

The agreement is clearly better at all frequencies for the TPC function with SBCs.

This investigation concludes that it is best to consider the SBCs effect in the TPC function.

In practice, however, it is always desirable to reduce the effect of the boundaries to a

negligible level by making a model as wide as possible. It is important to do so, because

one of the key interests of FE modelling at the moment is to check the significance of

assumptions in analytical models, and thus there is a strong motivation to eliminate this

TPC source of differences from the modelling.
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Table 4.2: Coefficients of mathematically fitted two-point correlation functions. Ai and ai are
coefficients of the i-th term of the mathematically fitted function w(r) =

∑
iAi exp(−r/ai).

Terms Without SBCs With SBCs

Ai ai Ai ai

1 -2922.66 0.115726 -129.485 0.1280002
2 -10.6181 0.172221 -388.413 0.1279995
3 3914.370 0.110790 797.091 0.1517330
4 -3305.68 0.103201 -1372.040 0.1898924
5 696.919 0.0910265 1982.690 0.1867733
6 54.3582 0.152263 694.300 0.1242404
7 -42.4732 0.0723540 -469.525 0.1279995
8 1616.78 0.110790 -1113.610 0.1709402
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Figure 4.14: Comparison of theoretically predicted effective media parameters with FEM res-
ults for Inconel: (a) attenuation, (b) phase velocity, (c) relative difference of attenuation, and
(d) relative difference of phase velocity. In (a) and (b), lines represent the theoretical solutions
of the SOA model which uses the two-point correlation functions with (solid lines) and without
(dash-dotted lines) consideration of symmetry boundary conditions (SBCs). Crosses denote the
FEM results obtained from the models N115200, N11520, and N16000. Each model uses 15 real-
izations to obtain the averaged results shown in the figure. For better visualisation, only every
ten points of FEM data are shown here. In (c) and (d), the relative differences are computed by
subtracting FEM results from theoretical predictions and then dividing by FE results.
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4.5 Summary

This work presents a thorough study to maximize the accuracy of the finite element (FE)

method for the propagation and scattering of elastic waves in polycrystals. Specifically,

this work addresses the following three topics that have not been covered by the modelling

studies so far but are essential to future FE simulations.

The determination of effective media parameters, namely attenuation and phase velocity,

is first discussed. These parameters describe the amplitude and phase changes of a plane

wave as it travels through a polycrystalline medium. It is demonstrated that the travelling

wave essentially does not have a planar wavefront, which is caused by random scattering.

However, it is demonstrated that the coherent part, belonging to the plane wave, can be

conveniently calculated as the spatial average of the wavefront. From a set of coherent

waves, attenuation and phase velocity can be determined in two ways. The through-

transmission approach uses the coherent waves measured on two external surfaces: the

transmitting surface and its opposite receiving surface. In addition to the two waves used

in the through-transmission method, the fitting approach also utilizes extra coherent

waves collected inside a FE model. These two approaches are found to be practically

equivalent and can thus be used interchangeably. The through-transmission method might

be preferable in actual simulations due to its ease of wave collection and calculation.

The estimation and suppression of the errors and uncertainties of effective media para-

meters are then attempted in this study. It is found that two factors can cause errors

and uncertainties: numerical approximations and statistical considerations. Numerical

approximations only cause errors, while statistical considerations involve both errors and

uncertainties. For numerical errors, both attenuation and velocity errors can be sup-

pressed by the use of a larger spatial sampling number S (thus a finer mesh size h) if

computational capability allows. In addition to this, numerical attenuation and velocity

errors can also be reduced in different ways: 1) Numerical attenuation error can be sup-

pressed by using an appropriate spectrum range that is in close proximity to its maximum,

or by limiting attenuation αd to a certain range in the vicinity of 1 Neper. 2) Numerical

velocity error can be controlled by using a large Courant number C that is close to unity,

and can also be corrected by utilizing the analytically predicted error from Equation 4.6.
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For statistical errors and uncertainties, the suppression approaches developed for numer-

ical errors also ensure that they can be satisfactorily controlled to a certain extent. The

only requirement is that a sufficiently large number N of realizations has to be used to

obtain a reasonably small statistical error and a fairly converged statistical uncertainty.

The incorporation of FE model information into theoretical models is finally discussed. It

is indicated that the two-point correlation (TPC) function is the statistic required to put

into theories. The symmetry boundary conditions (SBCs), employed to emulate infinitely

wide media that can hold plane waves, have a considerable effect on the TPC function

and on the theoretically predicted attenuation and velocity. Thus, this SBCs effect needs

to be considered in the TPC function for a more accurate incorporation of statistical

information.

The FE method discussed in this work focuses on the specific case of plane longitudinal

waves travelling in untextured polycrystals with equiaxed grains. However, it is expected

that the principle established in this work may be extended reliably to more general cases,

for example to elongated grains and preferred crystallographic texture materials.
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Chapter 5

Elastic waves in polycrystals with

equiaxed grains

5.1 Introduction

This chapter studies the attenuation and phase velocity dispersion of plane longitudinal

waves in polycrystals with equiaxed grains. The polycrystals are statistically isotropic and

homogeneous on the macroscopic scale, and two types of such polycrystals are considered

in this chapter.

The first type has the highest crystal symmetry, i.e., cubic, for the constituting grains.

This type of material has been studied previously by using the theoretical SOA and

Born models with comparison to 3D FE simulations [28, 29, 39]. The theoretical models

were shown to agree very well with FE results in a wide frequency range for a variety of

materials with the Zener anisotropy factor A [53] varying from 1.24 (Al) to 3.14 (Copper),

indicating that wave scattering by polycrystals can generally be properly accounted for

by the theoretical models. However, the studies also demonstrated a slightly degenerated

agreement as A increases. This is not surprising since the theoretical models better

describe materials of low material inhomogeneity due to their lack of representation of high

order terms on inhomogeneity in the theoretical models. This chapter aims to evaluate

how the theoretical models behave when A is much higher than previously considered and

thus to establish the range of validity of those models. Since the elastic scattering factors
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QL→T and QL→L [26] are more accurate and contain more information than the anisotropy

factor A, they will be used to characterise the level of material inhomogeneity for the low-

frequency Rayleigh and high-frequency stochastic regions, respectively. This part of work

will be presented in the following §5.2, and it is being prepared for publication [P5].

The second type of polycrystal has the lowest symmetry, namely triclinic, for the consti-

tuting grains. Although prior works have studied polycrystals of symmetry lower than

cubic using the theoretical Born and FFA models [11,26,46,73], the studies involving the

development of the SOA model and the comparison with FE simulations were limited

to polycrystals of cubic symmetry [14, 17, 19, 28, 29, 39]. Moreover, many practically-

important polycrystalline materials have symmetries lower than cubic, e.g., titanium al-

loys generally have a hexagonal symmetry [74] and α/β colonies in aerospace titanium

alloys form effective grains of monoclinic symmetry [75]. To fill this gap, this chapter

seeks to use the SOA model as formulated in §2 and the 3D FE model as implemented

in §3 to study the most general case of a polycrystalline material having the lowest tri-

clinic symmetry that needs to be described by 21 independent elastic constants. This

part of the work will be reported below in §5.3. It has been reproduced from [P1], with

the permission of AIP Publishing; the theoretical curves were originally generated by Dr

Gaofeng Sha as a co-author of the publication.

5.2 Polycrystals of cubic crystal symmetry

This section studies equiaxed polycrystals of cubic symmetry, investigating their attenu-

ation and velocity dispersion for plane longitudinal waves propagating within them. The

purpose is to evaluate the change of wave behaviours with material inhomogeneity and

establish the range of validity of the theoretical SOA and Born models by comparing to

numerical FE simulations. The eight cubic materials given in Table 3.2 are considered

and their anisotropy factors A vary from 1.24 to 9.14. Initially, this section compares

the theoretical and numerical FE results for attenuation and velocity and discusses their

frequency dependences. This is followed by analysing the influence of material inhomo-

geneity on the results. The approximations of the theoretical models are then evaluated

against the FE model. Lastly, the quasi-static velocity limit is investigated.
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5.2.1 Frequency dependence of attenuation and velocity

Figure 5.1 shows the normalised attenuation 2αLa in (a-b) and the normalised phase

velocity VL/V0L − 1 in (c-d) versus the dimensionless frequency 2k0La for the eight poly-

crystalline materials. Each material utilizes the equiaxed FE models N115200, N11520

and N16000 given in Table 3.1, combined with multiple modelling centre frequencies, to

cover a wide frequency range. The choice of FE material models and their modelling

parameters has ensured a satisfactory numerical accuracy across the covered frequency

range. A combination of 15 realizations has been used for each modelling case to achieve

statistically meaningful results. The FEM points in the figure show the averages of multi-

realisation cases; standard deviations are not provided since the corresponding error bars

are smaller than, or comparable to, the size of the point markers. The theoretical SOA

(solid) and Born (dash) curves have incorporated the TPC function as accurately meas-

ured from the FE material models; the coefficients of the TPC function are given in Table

3.3. The normalisation factor a is determined from the slope at the origin of the TPC

function, representing the mean linear size of the grains.

The Rayleigh and stochastic attenuation asymptotes are given for aluminium; for clarity

of the plots, those of other materials are not provided. The asymptotes approach the

theoretical and numerical results of aluminium in the low- and high-frequency ranges,

and they are clearly parallel to the results of other materials. It can thus be inferred

from the asymptote expressions, Equations 2.18 and 2.26, that attenuation has fourth-

and second-power dependences on frequency in the two regimes. Between the Rayleigh

and stochastic regimes, frequency dependence transits from fourth to second power and

a hump behaviour can be consistently seen from the theoretical and numerical results for

all materials. As a unique feature of longitudinal waves, this hump behaviour is caused by

the transition of dominant scattering from the L→ T component in the Rayleigh regime

to L→ L in the stochastic regime [14]. Also, it is observable that for a material with a

higher inhomogeneity, the stochastic regime is less pronounced and the geometric regime

(seemingly flat attenuation) occurs earlier in frequency as can be more clearly seen from

the SOA curve for lithium.

For phase velocity, the theoretical and numerical results tend to approach the Rayleigh and
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Figure 5.1: Normalised (a-b) attenuation and (c-d) phase velocity versus normalised frequency
for longitudinal waves in equiaxed polycrystals comparing theoretical SOA and Born predictions
with numerical FEM results. All FEM points are obtained by averaging the results of 15 FE
realizations; the corresponding error bars are not shown since they are smaller than the size of
the point markers. The theoretical SOA and Born curves have used the TPC function (Table
3.3) as accurately measured from the FE models. The properties of the polycrystalline materials
are given in Table 3.2, and their inhomogeneities (characterised by the elastic scattering factors
QL→T and QL→L) have the relationship of Al < A=1.5 < A=1.8 < A=2.4 < Copper < Inconel
< A=5.0 < Lithium.

stochastic asymptotes in the low- and high-frequency ranges, respectively. For clarity of

the plots, the asymptotes are provided for lithium only. The asymptotes are independent

of frequency, meaning that phase velocity is non-dispersive in these two frequency ranges.

In the transition region, a dispersive behaviour occurs as a result of dominant scattering

transition as mentioned above. It is also supported by the phase velocity results that

the stochastic regime gets shorter as the material inhomogeneity becomes larger. The

FEM points for the materials A=5.0 and lithium do not show frequency-independent

parts in the range where the stochastic regime is expected. This may be attributed to the
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relatively larger numerical errors involved in the results or the complete disappearance of

the stochastic regime due to the strongly scattering nature of the materials.

In addition to the frequency dependences, attenuation and phase velocity also show reli-

ance on material inhomogeneity. This is manifested as a larger material inhomogeneity

being accompanied by a higher level of attenuation and a larger deviation of phase velo-

city to the Voigt velocity. These inhomogeneity dependences will be further discussed in

the following §5.2.2.

The theoretical SOA and Born models have a high quality of agreement with the 3D FE

results, especially for materials of relatively low inhomogeneity. The agreement between

the theoretical and numerical models and its degeneration with the increase of material

inhomogeneity will be evaluated in-depth in §5.2.3.

5.2.2 Inhomogeneity dependence of attenuation and velocity

Figure 5.1 has shown that attenuation and phase velocity vary across different mater-

ials, exhibiting dependences on material inhomogeneity. These dependences are more

prominent in relatively low- and high-frequency ranges. For this reason, two normalised

frequencies, 2k0La = 1 and 2k0La = 12, are chosen in these two ranges to quantitat-

ively evaluate the dependences. At these two frequencies, normalised attenuation and

phase velocity points are extracted from Figure 5.1 and plotted versus material inhomo-

geneity in Figure 5.2. The choice of the two material inhomogeneity factors, QL→T and

QL→L, in the figure is based on the asymptotes of the Rayleigh and stochastic regimes

where the two frequencies roughly fall into. At the Rayleigh limit, QL→T is the dom-

inant elastic factor affecting attenuation and velocity: 1) The elastic dependence of the

Rayleigh attenuation in Equation 2.18, αL ∝ Q∗LL + V 3
0L/V

3
0TQL→T, can be reduced to

αL
∝∼ QL→T since Q∗LL is generally negligible while V 3

0L/V
3

0T just differs slightly from one

material to another; 2) The Rayleigh velocity in Equation 2.23 can be approximated to

VL/V0L − 1 ≈ −2Q∗LL − 2QL→T ≈ −2QL→T since the elastic factors Q∗LL and QL→T are

far smaller than unity and the former is generally negligible. Likewise, QL→L governs the

level of scattering at the stochastic limit: 1) the stochastic attenuation in Equation 2.26

satisfies αL ∝ QL→L; 2) the stochastic velocity in Equation 2.30 can be approximated to
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VL/V0L − 1 ≈ −5QL→L/2 + 2Q∗LT/(V
2
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(d) Phase velocity at 2k
0L

a=12

Figure 5.2: Normalised (a-b) attenuation and (c-d) phase velocity versus material inhomo-
geneity for longitudinal waves in equiaxed polycrystals comparing theoretical SOA and Born
predictions with numerical FEM results. The FEM (solid), SOA (shaded) and Born (hollow)
points are taken from Figure 5.1 at the normalised frequencies of (a,c) 2k0La = 1 and (b,d)
2k0La = 12. The two selected frequencies fall roughly into the Rayleigh and stochastic regimes,
respectively. The elastic scattering factors, QL→T and QL→L, are used as the material inhomo-
geneity parameters for the x-axes of the plots. The solid and dash lines in (a) and (c) are
quadratic fits of the points, while the rest lines in the figure are linear fits.

At the low-frequency 2k0La = 1, the numerical FE points show a distinct quadratic

relationship with the inhomogeneity factor QL→T for both attenuation and phase velocity.

Quadratic fits are produced for the data points and plotted in the figure. The theoretical

SOA predictions also have a quadratic dependence on inhomogeneity; their quadratic

fits, however, have much smaller quadratic terms than linear ones, manifested as the

nearly straight lines in the figure. Also, the SOA model predicts smaller attenuation and

velocity change than the FE model, suggesting that only a limited amount of multiple

scattering is considered by the former in comparison to the consideration of all scattering
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5. Elastic waves in polycrystals with equiaxed grains

possibilities in the latter. The theoretical Born predictions exhibit a linear dependence

(quadratic fits were generated for them, but the quadratic terms are nearly zero) on

material inhomogeneity, which is consistent with its linear approximation made in the

derivation. Since the Born model only considers single scattering, the extra attenuation

and velocity obtained from the FE model may be attributed to the contribution of multiple

scattering. Also, it is important to note that the attenuation points for copper and

Inconel in panel (a) deviate slightly from the fitted lines because the factor QL→T is

not fully representative of the degrees of inhomogeneity for these two materials; nearly

perfect fits can be obtained if the complete factor Q∗LL +V 3
0L/V

3
0TQL→T is used for material

inhomogeneity.

At the high frequency 2k0La = 12, all results have a linear dependence on the material

inhomogeneity factor QL→L, as is more evident from attenuation results shown in panel

(b). Nonetheless, it is worth emphasizing that this assertion of linear dependence may

not be appropriate. This is due to the possibility that not all evaluated materials are

consistently in the stochastic regime at 2k0La = 12: weakly scattering materials are yet

to enter the stochastic regime while the strongly scattering ones are already transiting

into the geometric regime. Thus, several different scattering mechanisms may be involved

at 2k0La = 12 across different materials and the finding from the evaluation may not be

conclusive.

Consistently for both the low- and high-frequency cases, the level of scattering gets

stronger with the increase of material inhomogeneity, leading to a larger attenuation and

a greater deviation of phase velocity to the Voigt velocity. In order to visually observe

the growth of scattering with inhomogeneity, wavefront fluctuation fields are provided in

Figure 5.3 for the eight materials at the low frequency of 2k0La = 1, with details in the

caption. A fluctuation field records the relative variation of wave motion to the coherent

wave that represents the spatial average of wave motion over the wavefront. The way to

obtain a fluctuation field can be referred to §4.2.1.

It is demonstrated in Figure 5.3 that wavefront fluctuation intensifies as material inhomo-

geneity increases. This is to say that a wavefront degenerates and scatters more energy

locally into incoherent components as scattering gets stronger. The magnitude of fluctu-
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5. Elastic waves in polycrystals with equiaxed grains

Figure 5.3: Normalised wavefront fluctuations for longitudinal waves in equiaxed polycrystals
at the normalised frequency of 2k0La = 1. Each plot is obtained by monitoring the displacement
field u(x, y; t) on the receiving end z = dz of the N115200 model, and in the spectral domain,
the normalised amplitude fluctuation is calculated by uf(x, y; f) = u(x, y; f)/〈u(x, y; f)〉x,y − 1,
where 〈·〉x,y represents spatial averaging over all x and y points. The root-mean-square (RMS)
values of the fluctuations are annotated in the plots.

ation is very small as compared to the coherent wave for materials of low inhomogeneity

such as aluminium, but it can be twice the magnitude of the coherent part for the most

strongly scattering material, lithium, as considered in this thesis. This change of fluc-

tuation with inhomogeneity can be more clearly seen from the root-mean-square (RMS)

values of the fluctuations as annotated in the plots. The RMS values of individual ma-

terials are further plotted against their inhomogeneity factors in Figure 5.4. It is evident

that fluctuation RMS exhibits a quadratic relationship with the inhomogeneity factor

QL→T, which is consistent with that for the corresponding attenuation and velocity as

demonstrated above.
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Figure 5.4: Root-mean-square (RMS) of normalised wavefront fluctuation versus material in-
homogeneity QL→T at the normalised frequency of 2k0La = 1. The RMS points are taken
from Figure 5.3, and the line represents their quadratic fit expressed as RMS = 206.96Q2

L→T +
12.18QL→T + 0.04 with the goodness-of-fit of R2 = 0.99.

5.2.3 Evaluation of the approximations of the theoretical models

As mentioned in §5.2.1, the FE simulation of waves in polycrystals has achieved a very high

degree of accuracy by using a proper combination of FE material models and modelling

parameters. The FE simulation results can thus be employed as reference to evaluate

the approximations of the theoretical SOA and Born models that consider only a limited

amount (or none) of the multiply scattered waves. In order to achieve this evaluation, the

relative differences between the theoretical curves and the FEM points shown in Figure

5.1 are quantitatively analysed and plotted in Figure 5.5. The solid and dash lines in

the figure represent the relative differences of the SOA and Born predictions to the FE

results, respectively.

In the figure, the quality of agreement between the theoretical and FE models is very

good in comparison to that between the theoretical and experimental results as observed

in the early work [13]. The largest differences for attenuation and phase velocity are found

to be around -70% and 3%, both for lithium. As can be found from both attenuation and

phase velocity curves, the differences are mostly smaller for the SOA model than for the

Born model, correctly reflecting the different degrees of assumptions and approximations

made in the derivations of these models.
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Figure 5.5: Relative difference of (a) attenuation and (b) phase velocity between theoretical
(SOA and Born) and numerical (FEM) results versus normalised frequency for longitudinal
waves in equiaxed polycrystals. All theoretical and FEM results are taken from Figure 5.1.
Their relative differences, with the FEM results as reference, are shown in percentage.

The differences in attenuation and phase velocity between the theoretical and FE models

are relatively large at very low frequencies around 2k0La = 1. These large differences are

somewhat unexpected since it was previously believed that multiple scattering is small in

the low-frequency range and can thus be appropriately accounted for by the theoretical

models. However, it is now evident that large multiple scattering may also arise at low

frequencies, especially for materials of very strong inhomogeneity such as lithium. In

comparison to very low frequencies, the middle-frequency range exhibits mostly smaller

differences that vary with frequency, and surprisingly, the attenuation differences for the

shown materials are nearly overlapped between about 2k0La = 5 and 2k0La = 12 in panel

(a). At very high frequencies, the differences tend to grow substantially with frequency

since multiple scattering is increasing. It would be scientifically valuable to actually see

this further increase by obtaining higher frequency FE results, but this has currently been

limited by the available computational power.

Overall evaluation

The relative differences shown in Figure 5.5 exhibit an overall dependence on material

inhomogeneity. In order to assess this dependence, the RMS of each curve in Figure 5.5
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is calculated. This parameter, more widely known as the normalised root-mean-square

deviation (NRMSD), measures the aggregated relative difference between the theoretical

and FE results over the whole frequency range. The NRMSD values for individual curves

in Figure 5.5 are provided in Table 5.1 under the label ‘Without SBCs’. This label means

that the theoretical calculations have not considered the effect of symmetry boundary

conditions (SBCs), which are used in the FE simulations to emulate infinitely-wide models

such that plane waves can be initiated. It was demonstrated previously in §4.4 that SBCs

can double the sizes of symmetry boundary grains and make these grains larger on average

than the grains located within the body of the models. Since this doubling effect is not

taken into account in the measurement of the TPC function from FE material models,

the theoretical predictions incorporating this TPC function cannot consider the stronger

scattering as caused by those doubled, larger grains. This causes a larger difference

between theoretical predictions and FE results in comparison to the more accurate case

where the SBCs effect is appropriately considered, whose NRMSD values are provided in

Table 5.1 under the label ‘With SBCs’.

Table 5.1: Normalised root-mean-square deviation (NRMSD) of theoretical SOA and Born
predictions to numerical FE results for longitudinal waves in equiaxed polycrystals. The material
inhomogeneity factor QL→T (×10−3) of each polycrystalline material is provided in the second
column. The NRMSDs (%) are specified in the third to tenth columns. For example, the
third column specifies the NRMSD of SOA attenuation αSOA

L to its FE counterpart αFEM
L , i.e.,

RMS(αSOA
L /αFEM

L − 1).

QL→T
Without SBCs With SBCs

αSOA
L αBorn

L V SOA
L V Born

L αSOA
L αBorn

L V SOA
L V SOA

L

Al 0.33 8.31 8.38 0.01 0.01 5.69 5.61 0.01 0.01
A=1.5 1.43 10.41 10.93 0.11 0.11 4.98 5.35 0.11 0.11
A=1.8 2.79 13.23 14.30 0.11 0.11 7.19 8.38 0.10 0.10
A=2.4 5.48 18.45 20.49 0.13 0.15 12.30 14.69 0.11 0.12
Inconel 7.59 21.47 24.36 0.22 0.26 15.57 19.03 0.19 0.25
Copper 7.19 24.28 26.76 0.21 0.24 18.02 21.05 0.18 0.21
A=5.0 12.66 33.95 37.61 0.62 0.74 28.56 32.95 0.58 0.72
Lithium 18.70 42.66 46.95 1.35 1.63 38.78 43.80 1.30 1.60

To better interpret the NRMSD data given in Table 5.1, they are further plotted against

material inhomogeneity in Figure 5.6. The factor QL→T has been used to describe material

inhomogeneity, but note that QL→L can also be alternatively utilized in this case without
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affecting the conclusion made from this figure. The lines denote the quadratic fits of the

points, and the fitted equations are provided in Table 5.2.
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(b) Phase velocity
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Figure 5.6: Normalised root-mean-square deviation (NRMSD) of the theoretical SOA and Born
models to the numerical FE model for longitudinal waves in polycrystalline materials plotted
against material inhomogeneity: (a) attenuation and (b) phase velocity. The coloured points
are calculated from the data given in Figure 5.1, with the solid and hollow ones representing
respectively the NRMSDs of the SOA and Born curves to the FEM points. The grey points
are similarly calculated but the SOA and Born curves have considered the effect of symmetry
boundary conditions (SBCs). The lines denote the quadratic least-squares fits of the points, and
the fitted equations are provided in Table 5.2.

Table 5.2: Normalised root-mean-square deviation (NRMSD) of theoretical SOA and Born
predictions to numerical FE results versus material inhomogeneity for longitudinal waves in
equiaxed polycrystals: fitted equation. R2 represents the goodness-of-fit. The fitted equations
are plotted in Figure 5.6.

Fitted equation R2

Without SBCs

RMS(αSOA
L /αFEM

L − 1)× 100 = −20072.73Q2
L→T + 2291.35QL→T + 7.16 0.99

RMS(αBorn
L /αFEM

L − 1)× 100 = −31979.93Q2
L→T + 2746.44QL→T + 7.07 0.99

RMS(V SOA
L /V FEM

L − 1)× 100 = 3705.24Q2
L→T + 0.04 0.99

RMS(V Born
L /V FEM

L − 1)× 100 = 4514.76Q2
L→T + 0.03 1.00

With SBCs

RMS(αSOA
L /αFEM

L − 1)× 100 = −19000.00Q2
L→T + 2281.80QL→T + 1.93 0.98

RMS(αBorn
L /αFEM

L − 1)× 100 = −7002.80Q2
L→T + 2344.12QL→T + 2.97 0.99

RMS(V SOA
L /V FEM

L − 1)× 100 = 3577.63Q2
L→T + 0.03 0.99

RMS(V Born
L /V FEM

L − 1)× 100 = 4455.59Q2
L→T + 0.02 0.99

All goodness-of-fit values in Table 5.2 are very close to 1, meaning that the points can be
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5. Elastic waves in polycrystals with equiaxed grains

described very well by the fitted lines. Therefore, the overall differences in attenuation and

phase velocity between the theoretical and FE models are quadratically related to material

inhomogeneity. Interestingly, this is consistent with the dependence of attenuation and

velocity change at 2k0La = 1 on inhomogeneity as demonstrated in §5.2.2, despite that

the evaluation here is performed for the whole frequency range.

For attenuation, it is shown in Figure 5.6(a) that the quadratic fits for the case with

consideration of the SBCs effect are approximately parallel to the respective counter-

parts that ignored the SBCs effect. This means that the improvement of accuracy for

theoretical predictions made by the consideration of SBCs does not depend on material

inhomogeneity, and the improvement is about 5% for all materials. For phase velocity,

Figure 5.6(b) shows a negligible improvement of accuracy, which on average is about

0.02%. Since the improvements are not significant as compared to the normalised RMSD

values, unless otherwise specified, the SBCs effect is consistently not considered in the

theoretical calculations across this thesis.

Evaluation at 2k0La = 1

The approximations of the theoretical models are further evaluated at the frequency

where the models are most critically challenged. This frequency was identified above as

2k0La = 1 in the considered frequency range. At this frequency, the relative differences in

attenuation and velocity between the SOA and FE models are analysed in Figure 5.7 as

functions of the material inhomogeneity factor QL→T. The Born model is also analysed

in the figure, but it is evaluated against the SOA model rather than the FE model.

The differences have a quadratic dependence on material inhomogeneity for both attenu-

ation and phase velocity; the fitted quadratic equations are given in Table 5.3. This de-

pendence can also be easily inferred from the same dependence as found for attenuation

and velocity in §5.2.2. The quadratic relation is not very obvious for the attenuation

difference between the Born and SOA models, and for this reason, the dependence was

previously considered to be linear [27] (the inhomogeneity parameter ξ2
p therein is equi-

valent to QL→T as used in this thesis). However, this thesis still treats the dependence

as quadratic in order to maintain consistency with that of the velocity difference between
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the Born and SOA models.
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Figure 5.7: Relative difference of (a) attenuation and (b) phase velocity between theoretical
and numerical models versus material inhomogeneity for longitudinal waves in polycrystalline
materials. The solid points represent the relative differences between the SOA and FE models
at the normalised frequency of 2k0La = 1, while the hollow points denote those between the
theoretical Born and SOA models. The lines represent the quadratic least-squares fits of the
points, and the fitted equations are provided in Table 5.3.

Table 5.3: Relative difference of theoretical SOA and Born predictions to numerical FE results
versus material inhomogeneity for longitudinal waves in equiaxed polycrystals at 2k0La = 1:
fitted equation. R2 represents the goodness-of-fit. The fitted equations are plotted in Figure 5.7.

Fitted equation R2

(αSOA
L /αFEM

L − 1)× 100 = 61131.25Q2
L→T − 4115.27QL→T − 8.92 0.997

(αBorn
L /αSOA

L − 1)× 100 = 796.09Q2
L→T − 808.64QL→T 1.000

(V SOA
L /V FEM

L − 1)× 100 = 5972.40Q2
L→T − 0.02 0.998

(V Born
L /V SOA

L − 1)× 100 = 1216.25Q2
L→T 1.000

5.2.4 Quasi-static velocity limit

The quasi-static limit of longitudinal phase velocity is related to the effective elastic con-

stant C11 of the polycrystal medium by VL =
√
C11/ρ. It was demonstrated in §3.7 that

this limit can be determined to a high degree of accuracy from 3D FE modelling. There-

fore, FE results are well suited to evaluate the suitability of effective medium theories.

For this purpose, quasi-static FE velocities are calculated and provided as solid points in

Figure 5.8(a) as a function of material inhomogeneity, QL→T, for the eight cubic materials

114



5. Elastic waves in polycrystals with equiaxed grains

considered. Each point represents the statistically-converged average of 30 realizations of

the model N115200 (Table 3.1), and the error bar of each point is smaller than the size

of the markers and is thus not shown.
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Figure 5.8: (a) Normalised quasi-static velocity versus material inhomogeneity for longitud-
inal waves in polycrystalline materials comparing theoretical and numerical results; (b) relative
difference between theoretical and numerical models versus material inhomogeneity. LHS and
UHS represent respectively the lower and upper Hashin-Shtrikman bounds. SC denotes the self-
consistent effective theory. SOA corresponds to the Rayleigh asymptote of the SOA model. FEM
represents the results obtained from quasi-static FE simulations and each point is the average of
30 realizations. The lines are the quadratic fits of the points. Note that the SC and FEM points
are mostly overlapped with each other in (a).

The effective medium theories considered here include the Hashin-Shtrikman (HS) bounds

[76–78] and the self-consistent (SC) theory [79]. The lower and upper HS bounds, denoted

respectively as LHS and UHS, prescribe the quasi-static velocity range that any predic-

tions or measurements should lie within it. These bounds are calculated with the scripts

by Brown [78] and are plotted in Figure 5.8(a) as grey points. The SC theory provides

a unique estimation of quasi-static velocity under the condition that the compatibility of

stress and strain is fully met throughout the polycrystal. The scripts by Kube and De

Jong [79] are used in this study to calculate the SC results as presented in the figure. In

addition to these well-known theories, the Rayleigh velocity asymptote of the theoretical

SOA model, Equation 2.23, is also examined in this study. Such SOA predictions are

shown as shaded points in the figure. The looser first-order bounds, namely the Reuss-

Voigt bounds, are not considered here, but it is worth noting that all results shown in
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Figure 5.8(a) are normalised to the Voigt velocity, V0L. The deviations of the theoretical

predictions to the reference FE results are provided in Figure 5.8(b). Quadratic fits are

generated for all datasets shown in the figure.

Consistently for all materials, the FE, SC and SOA points lie well between the LHS and

UHS velocity bounds, whose range becomes wider as material inhomogeneity increases.

As can be seen from all numerical and theoretical models, the normalised quasi-static

velocity, VL/V0L − 1, shows a quadratic relationship with material inhomogeneity. This

sole dependence on inhomogeneity is newly found and is simpler than the previously

observed that was on both the Poisson’s ratio and anisotropy factor [28].

The differences between the theoretical predictions and the FE results also exhibit a quad-

ratic dependence on material inhomogeneity. The HS bounds perform just as well as the

SC and SOA estimates for weakly scattering materials, but the latter two estimates are

required as inhomogeneity gets larger. The SC theory performs better than the SOA

model; the SC results are nearly overlapped with the FE points. This is not surprising

since the SC theory takes the full continuity of stress and strain into consideration. How-

ever, the SC theory in general needs to be iteratively solved [79], whereas the SOA model

has a simple analytical expression that explicitly shows the dependence of quasi-static

velocity on material inhomogeneity: VL/V0L − 1 ≈ −2Q∗L→L − 2QL→T ≈ −2QL→T.

5.3 Polycrystal of triclinic crystal symmetry

This section studies equiaxed polycrystals of triclinic symmetry. The aim of this study

is to evaluate the suitability of the theoretical SOA and Born models for predicting the

longitudinal attenuation and velocity of triclinic polycrystals by comparing with numerical

FE simulations. The copper sulfate pentahydrate (CSP) given in Table 3.2 is used for

the evaluation. The universal anisotropy factor of this material is close to that of the

fictitious material A=2.4.

Figure 5.9 shows normalised longitudinal attenuation versus non-dimensional frequency

for CSP, with details in the caption. Each FE material model has used 15 realizations

to obtain those statistically converged results as shown in the figure. Generally, the
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quality of agreement between the theoretical and FE results is remarkable. The overall

discrepancy is further quantified by the normalised root-mean-square deviation (NRMSD)

over the whole frequency range. With the FE results as reference, the NRMSDs are 9.44%

and 11.47% for the SOA and Born models, respectively. Interestingly, these numbers are

smaller than those for A=2.4, although the two materials have a similar level of anisotropy.
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Figure 5.9: Normalised longitudinal attenuation in polycrystalline CSP versus normalised fre-
quency. The points represent the 3D FEM results obtained from the three FE material models.
The solid and dash lines denote, respectively, the predictions of the theoretical SOA and Born
models with the TPC function measured from FE material models. The dash-dotted lines show
the Rayleigh and stochastic asymptotes.

The Born approximation is almost indistinguishable from the SOA model at most fre-

quencies. However, it departs from the SOA model and follows closely with the stochastic

asymptote at higher frequencies where forward multiple scattering becomes stronger. This

departure is associated with the start of the transition to the geometric region. In com-

parison, the SOA model predicts a higher level of attenuation and shows the emergence

of the geometric regime, due to its partial consideration of forward multiple scattering.

Similarly, phase velocity results are plotted in Figure 5.10 as a function of normalised

frequency. The theoretical SOA and Born models are in excellent agreement with the

FE results from the Rayleigh to stochastic regimes. The largest discrepancy occurs at

2k0La ≈ 6.34 with an absolute deviation of 27 m/s, which translates to a relative difference

of 0.34% with the FE velocity as reference. The NRMSDs of the SOA and Born predictions

to the FE results are 0.12% and 0.10%, respectively. They are similar to those of the
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5. Elastic waves in polycrystals with equiaxed grains

material A=2.4 but are negligible as compared to the attenuation NRMSDs as observed

above.
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Figure 5.10: Longitudinal phase velocity in polycrystalline CSP versus normalised frequency.
The points represent the 3D FEM results obtained from the three FE material models. The
solid and dash lines denote, respectively, the predictions of the theoretical SOA and Born models
with the TPC function measured from FE material models. The dash-dotted lines show the
Rayleigh and stochastic asymptotes. The solid square at 2k0La = 0.01 is for the FEM quasi-
static velocity, while the solid triangle is for the Voigt velocity, V0L. The other three horizontal
lines specify, respectively, the lower and upper Hashin-Shtrikman (LHS and UHS) bounds and
the self-consistent (SC) estimate.

The quasi-static limit of phase velocity is also addressed here. The velocity limit obtained

from FE simulations is provided as a reference to evaluate the effective medium theories

as considered in §5.2.4, including the lower and upper Hashin-Shtrikman (LHS and UHS)

bounds, the self-consistent (SC) estimate, and the Rayleigh asymptote of the SOA model.

As can be seen from Figure 5.10, the SC and SOA predictions are reasonably close to

the FE result, and their relative deviations from the FE point are -0.11% and -0.01%.

Therefore, both models are suitable for estimating the quasi-static velocity of polycrystals

with generally anisotropic grains. It is observable that phase velocity is constantly between

the LHS and UHS bounds in the low-frequency range. In the high-frequency stochastic

region, however, phase velocity is even faster than the Voigt velocity, V0L.

118



5. Elastic waves in polycrystals with equiaxed grains

5.4 Summary

This chapter studies the propagation and scattering of plane longitudinal waves in untex-

tured polycrystals with equiaxed grains of two extreme crystal symmetries, namely, cubic

and triclinic. Theoretical SOA and Born models as well as numerical 3D FE simulations

are employed for the study.

For polycrystals of cubic symmetry, eight materials with varying inhomogeneity factors

are used to evaluate the change of wave behaviours with inhomogeneity and to establish

the range of validity of the theoretical SOA and Born models by comparing to numerical

FE simulations. The findings are summarised in the following four aspects:

1) Frequency dependence. The theoretical and numerical results show that attenuation

has fourth- and second-power dependences on frequency in the Rayleigh and stochastic

regimes, while phase velocity is independent of frequency in both regimes. In the transition

between these two regimes, attenuation exhibits a hump behaviour and phase velocity is

dispersive, owing to the transition of dominant scattering from L→ T component in the

Rayleigh regime to L→ L in the stochastic regime.

2) Inhomogeneity dependence. In the Rayleigh regime, a quadratic relationship to the

material inhomogeneity QL→T is found for the attenuation and velocity change results

obtained from the SOA and FE models, while the relationship is linear for those predicted

from the Born model. In the stochastic regime, the results of all three models show a linear

dependence on the inhomogeneity factor QL→L for both attenuation and velocity change.

The wavefront fluctuation recorded in the FE simulations intensifies as inhomogeneity

increases and the RMS value across the wavefront is quadratically related to QL→T in the

Rayleigh regime.

3) Approximations of the theoretical models. The FE results are treated as reference for

evaluating the approximations of the theoretical SOA and Born models. It is found that

the overall approximations, as characterised by the NRMSD over the entire frequency

range, of the two theoretical models have a quadratic dependence on material inhomo-

geneity for both attenuation and velocity change. This quadratic dependence also extends

to the theoretical models at a chosen normalised frequency where the models are most
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5. Elastic waves in polycrystals with equiaxed grains

critically challenged. Also, it is demonstrated that the attenuation and velocity predic-

tions of the theoretical models can be improved by about 5% and 0.02% by considering

the SBCs effect.

4) Quasi-static velocity limit. The deviation of the quasi-static velocity limit to the Voigt

velocity has a quadratic relationship to the material inhomogeneity QL→T. This is found

from the FE results as well as the predictions of the effective medium theories, including

the Hashin-Shtrikman bounds, self-consistent theory, and the Rayleigh asymptote of the

SOA model. The discrepancies between the theoretical predictions and the FE results

also show a quadratic dependence on material inhomogeneity. The predictions of the self-

consistent theory agree the best with the FE results, while the explicit, simpler Rayleigh

asymptote of the SOA model performs just as well.

For the polycrystalline CSP of triclinic symmetry, a good agreement for attenuation and

phase velocity is found between the SOA and FE models when the accurate TPC function

of the FE material system is used in the SOA model; the NRMSD for attenuation is below

10% and it is 0.12% for phase velocity. The Born approximation only differs slightly from

the SOA model, but the difference becomes larger as scattering departs the stochastic

regime and transits into the geometric region. The quasi-static velocity limits obtained

from the SOA model and the self-consistent theory are between the Hashin-Shtrikman

bounds and agree very well with the result obtained from 3D FE simulations.
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Chapter 6

Elastic waves in polycrystals with

elongated grains

6.1 Introduction

This chapter studies the propagation of plane longitudinal waves in polycrystals with

statistically elongated grains, investigating the influence of frequency, elastic properties,

and grain elongation on scattering-induced attenuation and velocity dispersion.

The average grain shape of the studied materials is ellipsoid-of-rotation and the elongation

ratio is 5. This means the average grain radius in the elongated direction is 5 times that

of the shortened direction as seen in Figure 3.1(b), and the mean grain geometry is

transversely isotropic in a plane normal to the elongated direction. It is important to

note that the average grain elongation for practical materials may vary in a wide range.

This chapter, however, is not intended to achieve a range of elongation ratios because

massive computing resources and times would be needed; theoretical studies addressing

this aim can be found in [11, 21, 41–43]. Instead, a representative elongation ratio of 5

is used to establish the fundamental numerical and theoretical approaches that may be

applicable to more general cases and to reveal the mechanisms of wave scattering that may

be universally true for grains with different aspect ratios. It is also important to emphasise

that the elastic properties of the studied materials are transversely isotropic as a result of

grain elongation, although the crystallographic axes of the grains within a polycrystal are

121



6. Elastic waves in polycrystals with elongated grains

uniformly randomly oriented. Therefore, the scattering-induced effective wave parameters

exhibit transverse isotropy, and for this reason, the results in this chapter are given for

waves propagating in directions that show anisotropy, i.e., the directions lying in the plane

that contains both the shortened and elongated directions.

This chapter starts with the study of attenuation in §6.2 by comparing the results of the

theoretical and FE models, which is followed by a similar treatment of phase velocity

dispersion in §6.3. This chapter is mostly adapted from the manuscript [P3] that has

been submitted for possible publication and [P4] with the permission of AIP Publishing.

6.2 Attenuation

6.2.1 Frequency dependence

Figure 6.1 shows normalised attenuation, 2αLax, versus normalised frequency, 2k0Lax, for

aluminium, Inconel and CSP. The FEM results are plotted as points in the figure and the

SOA predictions are provided as lines. The Rayleigh and stochastic asymptotes derived

from the Born approximation of the SOA model are shown as dash-dotted lines. The FEM

results are obtained from the FE material models given in Table 3.1 and the average of

15 realizations is used to obtain statistically converged results as presented in the figure.

The SOA predictions are obtained by using the TPC function of the FE material models

as input, and thus the SOA and FEM results are directly comparable.

It is observable that, in the grain elongated z-direction, the SOA attenuations for Inconel

and CSP start to decrease as they enter the geometric regime. The FEM results, however,

have not reached such high frequencies to show this phenomenon although their highest

normalised frequencies are as large as 2k0Laz = 42 and 2k0Laz = 45. The results for

aluminium do not indicate such a departure from the stochastic regime even at 2k0Laz =

70 and it is not predicted by the SOA model even at the highest frequencies of these

calculations. As will be discussed later in this chapter, a higher frequency FE simulation

may help to reach the SOA predicted transition to the geometric region, but it is currently

limited by computation capability.
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Figure 6.1: Comparison of normalised longitudinal attenuation between the FEM and SOA
models for (a) aluminium, (b) Inconel, and (c) CSP. The results are plotted against normalised
frequency 2k0Lax, where ax is the mean grain radius in the shortened direction as determined from
the slope at the origin of the generalized TPC function (Table 3.3 and Figure 3.3). δmax signifies
the maximum difference between the SOA and FEM models, and it occurs in the elongated
direction for all three materials. The annotation 2k0Laz specifies the maximum normalised
frequency of FE modelling for propagation in the elongated direction with the mean grain radius
az. For clarity of the plots, only a subset of the calculated FEM points is displayed in the figure
and the rest of the points between those displayed are skipped.

The case of grains being equiaxed is provided for aluminium to illustrate the similarities

and differences between the elongated and equiaxed cases. All results are normalised by

the same factor ax as was conventionally used in the study of elongated grains [21]; this

factor corresponds to the mean grain radius in the shortened direction which is determined

from the slope at the origin of the generalized TPC function (Table 3.3 and Figure 3.3)

by ax = 1/
∑n

i=1(Ai/a
i
x). A different factor can be adopted for the normalisation, but

it only linearly transforms the data points and curves and does not change the relations

between them. Yet, it is important to emphasise that the FE modelling has reached

large normalised frequencies for the elongated direction. As annotated in the figure, the

frequencies are greater than 40 when they are normalised with the mean grain radius az of

the elongated direction. While only the shortened and elongated directions are considered

in Figure 6.1, the general interest of this chapter is in wave propagation in directions lying

in the plane containing both those directions, as will be studied later.

It is clear from the figure that the agreement between the SOA and FEM results is in

general remarkable. The overall difference between the SOA and FE models across the
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6. Elastic waves in polycrystals with elongated grains

whole frequency range is further quantified by the normalised root-mean-square deviation

(NRMSD) with the FEM results as reference; the results for different material cases

are shown in Table 6.1. The level of agreement for the polycrystalline aluminium with

elongated grains is almost the same as that of the equiaxed case which is also valid for

the other two materials, Inconel and CSP, although their equiaxed cases are not shown.

The SOA model in the shortened direction is in very good agreement with the FE model

in the whole frequency range for all materials, and the agreement decreases slightly in

the elongated direction due to the increased wave scattering. The table also shows that

the overall difference between the SOA and FE models increases from aluminium through

CSP to Inconel, showing a positive correlation with the universal anisotropy factor. For

the three materials, the maximum difference between the SOA and FE models is marked

as δmax in the figure and it occurs in the elongated direction for all three materials. For

the studied cases, the largest relative difference, -39.29%, is for Inconel (at the lowest

frequency of the FEM results). The discrepancy between the FE and the SOA models is

rather modest, considering the approximations involved in both the SOA and FE models.

It is important to realise that the difference between the SOA and FE models may also be

partially attributed to the effect of symmetry boundary conditions (SBCs), which causes

a difference of -20% for equiaxed Inconel as demonstrated in §4.4.

The good agreement between the SOA and FE models indicates that the approximations of

the SOAmodel impose generally only small influences, even for polycrystals with relatively

high anisotropy grains, such as Inconel. That the agreement is so good is all the more

surprising considering the key approximations of the SOA model, such as the replacement

of the polycrystal by a continuously random medium and accounting only partially for the

multiple scattering effects; in the formulations, these representations are assumed to be

suitable only under conditions of small inhomogeneity perturbations. Another important

assumption in the SOA model is the factoring of the two-point correlation function of

a polycrystal into the geometric and elastic parts, which has been discussed in §2.2.2.

This factorisation has been supported by the direct numerical comparison [49] for the

statistically isotropic polycrystals with equiaxed grains; this study further supports (while

indirectly) this factorisation for statistically anisotropic elongated polycrystals.

In addition, the good agreement between the SOA and FE models means that both models
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6. Elastic waves in polycrystals with elongated grains

Table 6.1: Normalised root-mean-square deviation (NRMSD) of attenuation between the SOA
and FE models (with the FE model as reference) for different material systems. The universal
anisotropy factor [54] AU and the elastic scattering factors QL→L,T are also provided in the table.

Material AU QL→L QL→T
NRMSD for NRMSD for elongated case

equiaxed case Shortened Elongated

Aluminium 0.05 7.80× 10−5 3.34× 10−4 10.15% 6.81% 10.71%
Inconel 1.42 2.26× 10−3 7.59× 10−3 - 20.22% 24.77%
CSP 0.95 3.23× 10−3 7.19× 10−3 - 10.47% 11.94%

can be utilized to reveal the mechanisms of wave scattering in polycrystals with elongated

grains. The theoretically demonstrated (in §2.2) dependence of attenuation on frequency,

grain geometry, and elastic property is analysed below based on the SOA and FEM results

shown in Figure 6.1.

a. Frequency dependence. The SOA and the FEM results approach the Rayleigh asymp-

tote at very low frequency and the stochastic asymptote at high frequency. Considering

the frequency dependences of the Rayleigh asymptote, Equation 2.18, and the stochastic

asymptote, Equation 2.26, it means that attenuation depends on fourth and second powers

of frequency in these two frequency ranges respectively. The stochastic regime is not pro-

nounced in the elongated direction for the strongly scattering materials, Inconel and CSP.

This was also noted by Stanke and Kino [14] for equiaxed iron and their study showed

that the stochastic region becomes shorter as the degree of inhomogeneity increases.

Attenuation shows a smooth transition of frequency dependence from the fourth to the

second powers between the Rayleigh and stochastic regimes. A “hump” is noticeable in

this transition region. As discussed in §5.2.1 and previous studies [14,39] for polycrystals

with equiaxed grains, this behaviour is a result of the change of the dominant scattering

mode, as the dominant longitudinal-to-transverse wave scattering in the Rayleigh regime

is replaced by the longitudinal-to-longitudinal scattering in the stochastic regime. This

mode transition is a unique feature for the longitudinal waves.

The geometric regime occurs at frequencies above the stochastic regime. This region

is manifested in the figure as the decline of attenuation with the increase of frequency

for Inconel and CSP in the elongated direction, as shown by the SOA model results (this

decline also occurs for aluminium at higher frequencies and was also observed for equiaxed

125



6. Elastic waves in polycrystals with elongated grains

grains). The geometric region was not reached in the FEM simulations. The decline of

the attenuation differs from the observation of Stanke and Kino [14] for equiaxed and

Calvet and Margerin [42] for elongated polycrystals, who observed that attenuation is

independent of frequency in the geometric regime. This thesis attributes this difference

to the difference in the TPC functions.

b. Geometric dependence. In the Rayleigh regime, the attenuation of each material tends

to be the same in the shortened and elongated directions, and the equality also applies

to the equiaxed case as shown in panel (a) of the figure. This equality occurs because

attenuation in the Rayleigh regime depends on the effective volume of the grains, which

can be deduced from the Rayleigh asymptote expressed in Equation 2.18. In the high-

frequency stochastic regime, grain elongation introduces a clear directional effect on the

attenuation as it depends on the correlation length in the direction of wave propagation.

These geometric characteristics will be further assessed in §6.2.2.

c. Elastic dependence. As theoretically discussed in §2.3.2 and §2.3.3, the Rayleigh

attenuation asymptote is proportional to the mode converted elastic scattering factor

QL→T and the stochastic attenuation asymptote is related to QL→L. Considering the good

agreement of the SOA and FEM results, those dependences will be further evaluated in

§6.2.3.

6.2.2 Effect of grain shape

1. Directional ratio

As mentioned above, grain elongation causes the directional dependence of attenuation

at high frequencies. Here the ratio of attenuation between the elongated and shortened

directions is used as a measure to quantify this. The elastic part of attenuation cancels

out after division in the ratio, and thus the effect of the geometric part on attenuation

can be observed clearly. The ratios are plotted in Figure 6.2 for the three materials. As

with the original attenuation results shown in Figure 6.1, the SOA ratios (lines) agree

very well with the FEM ratios (points) across the whole frequency range.

The ratios overlap reasonably well for all materials and for both the FE and SOA models
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Figure 6.2: Directional ratio of longitudinal attenuation between the elongated and shortened
directions. The horizontal reference line shows the ratio of unity. For clarity, only a subset of the
original FEM points is displayed in the figure and the remaining points between those displayed
are skipped.

except above the stochastic region when the transition to the geometric region begins;

here each ratio reaches a separate peak and then begins to decline. This behaviour of

a peak followed by decline was also discussed in Rokhlin et al. [26]. The abrupt drop

is due to the emergence of the geometric regime in the elongated direction. For Inconel

and CSP, the ratio only reaches the value of around 2, which is smaller than the grain

elongation ratio of 5. However, the peak occurs much later in frequency for aluminium,

which has a relatively weak scattering; the ratio is 5.28 and is a bit greater than the grain

elongation ratio. These peaks are observed only for the SOA model, they are not found

in the FEM results: for aluminium the peak was not reached and for CSP and Inconel

the ratio continues to grow with frequency as in the stochastic regime. We are currently

unable to extend the frequency range in the FEM simulations beyond these ranges, and

this phenomenon may be further investigated when FE computation capability allows.

In the low-frequency Rayleigh regime, the ratio is almost unity, confirming that atten-

uation is independent of grain shape and is instead determined by the effective volume

of the grains, see Equation 2.18. The Rayleigh-stochastic transition exhibits itself as the

non-monotonic variations that are caused by the transition of dominant scattering modes

between the two regimes, which was discussed above. It is interesting that consistently

for all three materials, the ratio first decreases below one (scattering in a shorter direc-
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tion is a bit stronger) when departing from the Rayleigh region. This occurs relatively

early in frequency and is supported by the FEM simulations. Importantly, for all studied

materials, the directional attenuation ratio is about one until the normalised frequency

2k0Lax increases to five for the SOA and FE models.

2. Wavefield fluctuations

Using CSP as an example material, Figure 6.3 shows the normalised wavefront fluctuation

uf(x, y; f) at different frequencies for both the shortened and elongated directions. To

obtain uf(x, y; f), the z-displacements across all points on the receiving plane z = dz

are recorded as a spatially varied waveform u = u(x, y; t). The spectral amplitude field

u = u(x, y; f) is obtained by Fourier transforming the windowed waveform of each point

with respect to time. The normalised wavefront fluctuation, as plotted, is then calculated

by uf(x, y; f) = u(x, y; f)/〈u(x, y; f)〉x,y−1, where 〈·〉x,y represents the spatial average over

all points. The model N11520 is employed to acquire the fluctuations for the normalised

frequencies of 0.56, 1.00, and 1.39, while N16000 is used for the frequencies of 5.56 and

8.34.

The fluctuation is surprisingly large for all shown cases, and the magnitude of fluctuation

can be nearly 4 times that of the displacement mean (the coherent part of the total field).

The directional difference of fluctuation root-mean-square (RMS) between the shortened

and elongated directions is consistent with that of attenuation as shown in Figure 6.2:

the elongated direction has a smaller fluctuation RMS than the shortened direction at the

normalised frequency of 2k0Lax = 0.56, and this relation is reversed at higher frequencies.

It is also noticeable that the fluctuation RMS intensifies as frequency increases. However,

in direct contrast to attenuation as shown in Figure 6.1, fluctuation tends to saturate at

high frequencies starting at around 2k0Lax ≤ 5.56.

3. Polar dependencies

The evident directional difference might be useful for inversely inferring the average shape

of the elongated grains. To further elucidate the directional behaviour, the change of at-

tenuation with the propagation direction θp is evaluated. θp denotes the angle between
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6. Elastic waves in polycrystals with elongated grains

Figure 6.3: Illustration of wavefront fluctuations for the normalised spectral amplitude field
uf(x, y; f) = u(x, y; f)/〈u(x, y; f)〉x,y − 1. Panels (a-e) are for shortened and (f-j) for elongated
directions at different normalised frequencies. The results are given for the material CSP with
elongated grains of elongation ratio 5.

the directions of propagation and grain elongation as illustrated in Figure 2.1 and Figure

3.1(b). Again, CSP is used as the example material for this evaluation and the propaga-

tion of waves is simulated in the directions of 0◦ (elongated direction), 15◦, 18.75◦, 30◦,

45◦, 60◦, 75◦, and 90◦ (shortened direction). The FEM results together with the predic-

tions of the SOA model are shown in Figure 6.4 versus the normalised frequency for the

propagation directions of 0◦, 15◦, 18.75◦, 30◦, 45◦, and 90◦; the results for 60◦ and 75◦ are
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not shown as they complicate the figure but they will be used later in Figure 6.5. The

FE simulations for different propagation directions have used the same modelling condi-

tions (model dimensions, mesh size, centre frequency, etc.), but their results are given in

different frequency ranges in order to have the same level of numerical accuracy.
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Figure 6.4: Normalised longitudinal attenuation versus normalised frequency in different
propagation directions for triclinic CSP. Points are for the FEM results and lines are for the
SOA model. The propagation directions θp are 0◦, 15◦, 18.75◦, 30◦, 45◦, and 90◦. The FEM
points for 0◦ (squares), 15◦ (stars), and 18.75◦ (crosses) are mostly overlapped in the given fre-
quency range. TF denotes the normalised transition frequency, 2k0Laθp , to the geometric regime,
and it corresponds to the peak of the SOA curve. The normalisation factor aθp for TF is the
mean grain radius in the wave propagation direction θp. For clarity, only a subset of the original
FEM points is displayed in the figure and the remaining points between those displayed are
skipped.

The agreement between the FEM and SOA results is generally good for all plotted dir-

ections. The largest difference occurs in the elongated direction (0◦) because the FEM

result continues to grow while the SOA model is transiting into the geometric regime

where attenuation decreases. As the angle deviates from the elongated direction, the

mean grain radius in the propagation direction decreases, and therefore in the stochastic

region, the level of attenuation should also decrease as follows from the Born approxim-

ation [11, 21, 41–43] and the stochastic limit of the SOA model (Equation 2.26). This is

valid for the angles of 30◦, 45◦, and 90◦ closer to the shortened direction which is sup-

ported by both the FEM and SOA models. However, it is not the case as attenuation
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approaches the transition to the geometric region which is observed for the angles in the

vicinity of the elongated direction. At those angles (0◦, 15◦, and 18.75◦), the FEM results

are nearly overlapped while the SOA attenuation for 0◦ is even smaller than those for

15◦ and 18.75◦ since it is deeper into transition to the geometric region. The SOA model

results in Figure 6.4 are in general reminiscent of those in Figure 6 of Yang et al. [41] that

were obtained for ellipsoidal scatterers in the scalar approximation; however, near-zero

propagating angles were not investigated in that work.

It is shown in Figure 6.4 that at the angles 0◦, 15◦, and 18.75◦, the SOA attenuation trans-

its into the geometric regime at different 2k0Laθp (as indicated in the figure by the TF

points, open circles) and roughly the same nondimensional frequency 2k0Lax. The trans-

ition occurs later in frequency for 30◦, 45◦, and 90◦, whose transitions are not shown in

the figure. The normalisation factor aθp is the mean grain radius in the wave propagation

direction θp as determined from the slope at the origin of the generalized TPC function

(Table 3.3 and Figure 3.3). The FEM results do not exhibit the transition to the geometric

region; the current computation capacity does not allow further increase in frequency.

The directional dependence is further evaluated in Figure 6.5 by polar plotting the norm-

alised attenuation against propagation direction θp for the normalised frequencies of 5.56

and 8.34. The FEM results are mirrored about the shortened and elongated axes to obtain

all FEM points as plotted in the figure. The SOA and Born approximation results are

also provided in the figure as solid and dash lines, respectively. The Born approximation

model is included here because prior studies are mostly based on this model [11,41].

The panels (c-d) of Figure 6.5 show for comparison the stochastic asymptote (dash-dotted

line) that has the same elliptical shape as the mean elongated grain with the aspect ratio

of 5. This is consistent with the accepted view [21, 42, 43] that the stochastic asymptote

follows the same shape as the statistical geometry of the grains. The difference with

the FEM results indicates again that the stochastic regime did not develop for the CSP

material.

Consistent with Figure 6.4, the SOA and Born approximation models in general match

very well with the FE model. The SOA model exhibits a more complicated behaviour at,

and near, the elongation direction, 0◦. The relative differences between the SOA and FE
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Figure 6.5: Polar plot of normalised longitudinal attenuation (r-axis) versus wave propagation
direction (θ-axis) for CSP at the normalised frequencies 2k0Lax of (a) 5.56 and (b) 8.34. (c-d)
show the respective quarter plots of (a-b) with the Born approximation and asymptote curves
added. Points are for the FEM results and solid lines are for the SOA predictions; dash and
dash-dotted lines represent respectively the Born approximation and the stochastic asymptotes
that are of elliptical shape. All panels use the same legend as shown in (d).

models are given in Table 6.2 for the plotted frequencies and simulated angles. The largest

deviations from the FEM are at a near-zero angle. As shown in Figure 6.4, at the higher

frequency of 8.34 the largest attenuation is found in both the SOA and FE models in

the vicinity of the propagation direction 18.75◦. The complexity of the behaviour arises

because different propagation angles are associated with different scattering regimes of

the SOA model involving the stochastic, stochastic-geometric transition, and geometric

regimes. For example, in the elongated direction (0◦) that has the largest difference

between the SOA and FE models, the SOA model is already transiting into the geometric
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region while the FEM result is still increasing with frequency as shown in Figure 6.4. The

Born approximation does not exhibit this nonmonotonic behaviour with angle since it

does not follow the transition into the geometric region as was shown in Figure 2.2.

Table 6.2: Relative difference of longitudinal attenuation between the SOA and FE models for
polycrystalline CSP with elongated grains.

2k0Lax
δ = αSOA

L /αFEM
L − 1 (%)

0◦ 15◦ 18.75◦ 30◦ 45◦ 60◦ 75◦ 90◦

5.56 -11.60 -7.05 -6.52 -3.74 -2.62 0.61 1.18 2.58
8.34 -14.25 -1.02 1.05 -2.08 -8.44 -10.18 -11.33 -11.69

6.2.3 Effect of elastic scattering factors

The dependence of attenuation on the elastic properties of the grains is evaluated here.

The FEM and SOA results of all three materials given in Figure 6.1 are replotted in Figure

6.6(a) and (c) for the shortened and elongated directions, respectively. The curves for the

CSP and Inconel are nearly overlapped, this is because their QL→T and QL→L factors are

relatively close (Table 6.1). The attenuation for aluminium is obviously much smaller.

By comparing the results of the three materials, the impact of elastic properties on atten-

uation can be intuitively evaluated. However, the evaluation is made more quantitative

in panels (b) and (d) by normalizing the attenuation by the elastic factors that affect the

attenuation of the low-frequency Rayleigh and high-frequency stochastic regimes.

In the low-frequency Rayleigh regime, the attenuation results are divided by the elastic

factor QL→TV
3

0L/V
3

0T. This factor is chosen based on Equation 2.18 and the factor Q∗LL in

the equation is neglected because it is small compared to the chosen factor. Panels (b)

and (d) show that after division the results for different materials are nearly overlapped

for both the SOA and FE models and for both the shortened and elongated directions.

The overlapping means that the proportionality of attenuation to the chosen elastic factor

holds for the Rayleigh regime. The studied materials have similar velocity ratios as their

Poisson’s ratios are close, and thus the factor being divided can be substituted by QL→T

with small changes for the overlapping. As a result, the mode-converted elastic scattering
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Figure 6.6: Comparison of normalised longitudinal attenuation between the three polycrystal-
line material systems in the (a) shortened and (c) elongated directions. (b) and (d) show the
respective results of (a) and (c) divided by the elastic factors. The elastic factor being divided
is QL→TV

3
0L/V

3
0T for the low-frequency range (2k0Lax ≤ 2), while the factor is QL→L for the

high-frequency range (2k0Lax ≥ 6). For clarity, only a subset of the original FEM points is
displayed in the figure and the remaining points between those displayed are skipped.

factor, QL→T, is usually used to describe the degree of inhomogeneity of polycrystals in

the long-wavelength scattering range [26].

In the high-frequency stochastic regime, the attenuation results are divided by the elastic

scattering factor QL→L, which is similarly chosen based on Equation 2.26. It is clear

from panels (b) and (d) that the FEM points and SOA curves overlap among different

materials. In panel (b), the results for CSP slightly deviate from those of the other

two materials below the normalised frequency of 15, which is because CSP reaches the

stochastic regime later than the other two materials. The overall good overlapping of

the three materials suggests that the attenuation in the stochastic regime is elastically

determined by the factor QL→L. This conclusion is important because it means that the
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6. Elastic waves in polycrystals with elongated grains

level of inhomogeneity of polycrystals can be solely quantified by the elastic scattering

factor QL→L in the short wavelength scattering range [26].

The scaling results show that the two scattering factors are needed to normalise the

level of inhomogeneity for the Rayleigh and stochastic regimes. These two factors are

sufficient to describe the elastic properties of the grains in the whole frequency range.

For the transverse incident wave, the attenuation scaling can be achieved by a single

elastic scattering parameter [46]. A similar attenuation scaling was performed by Stanke

and Kino [14] by using a single inhomogeneity factor ε2 in the stochastic regime (for

longitudinal waves, the factor they used is the same as the elastic scattering factor QL→L).

6.3 Phase velocity dispersion

6.3.1 Comparison of theoretical and numerical models

The velocity results of the SOA and FE models are compared in Figure 6.7 for aluminium,

Inconel, and CSP. The y-axis of each panel represents the normalised variation in phase

velocity VL from the Voigt velocity, VL/V0L − 1. The leftmost solid points in each panel

represent quasi-static velocities obtained from FE simulations and details for these results

will be provided in §6.3.5. Although these points correspond to 2k0Lax → 0, they are

plotted at 2k0Lax ≈ 0.1 to fit the scales of the plots. Small discontinuities can be found as

one looks along sequential FEM points, which is clearer for those of aluminium shown in

panel (a). These discontinuities occur at the interfaces of neighbouring FE material models

(Table 3.1) that are used in this work to cover different frequency ranges, as was explained

in §3.5. The discontinuities arise because neighbouring models have slightly different levels

of numerical error that is related to frequency and mesh size. The numerical error has

been minimised by using a Courant number C as close as possible to unity (C = 0.98 in

this work) but has not been fully eliminated. The FEM points are provided in slightly

different frequency ranges for the shortened x and elongated z directions to achieve the

same level of numerical accuracy.

The quality of agreement between the SOA and FE models is excellent. The overall

difference between the two models for the phase velocities across the entire frequency
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Figure 6.7: The FEM and SOA simulations of the normalised longitudinal phase velocity
VL/V0L − 1 against nondimensional frequency 2k0Lax for polycrystalline (a) aluminium, (b)
Inconel, and (c) CSP. The results are for the shortened x and elongated z directions of the
grains; for aluminium, the results are also given for the equiaxed case. The leftmost points (solid
points) correspond to the FEM quasi-static velocities. The dash-dotted lines denote the Rayleigh
velocity asymptotes. The largest discrepancy between the SOA and FE models, δmax, occurs in
the elongated direction for all materials. For clarity of the plots, only a subset of the calculated
FEM points is displayed in the figure and the rest of the points between those displayed are
skipped.

range is further quantified by the normalised root-mean-square deviation (NRMSD), with

the FEM velocity as reference. The results are given in Table 6.3 for the studied materials

(equiaxed aluminium is also included for comparison). The table shows that: 1) the level

of agreement for the elongated case is about the same as that of the equiaxed case; 2)

for all materials the SOA model has a very good agreement with the FE model in the

shortened direction, and the agreement decreases in the elongated direction due to the

increased scattering; 3) the overall discrepancy between the two models is smallest for

aluminium and largest for Inconel, suggesting that the discrepancy increases with the

universal anisotropy factor. In general, the observations for velocity NRMSD between

the SOA and the FE models are similar to those for attenuation discussed in §6.2.1,

however, the velocity NRMSD is about two orders of magnitude smaller. The point-

by-point difference between the SOA and FE models is annotated as δmax in the figure,

showing the largest value in the elongated direction for all materials. The maximum

discrepancy of -0.59% is found for CSP in the grain elongation direction at the highest

normalised frequency of 2k0Laz = 44.56. The discrepancy may also be partially attributed
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to the SBCs effect, which may cause a discrepancy of -0.2% between the SOA and FE

models for equiaxed Inconel as discussed in §4.4. Although scattering is weak at low

frequencies, a noticeable difference between the SOA and FE models is observed for Inconel

in Figure 6.7(b) for the quasi-static velocity. This difference may be attributed to the

approximations involved in both the SOA and FE models.

Table 6.3: Normalised root-mean-square deviation (NRMSD) of phase velocity between the
SOA and FE models (with the FE model as reference) for different material systems. Universal
anisotropy factor [54] AU and elastic scattering factors QL→L,T can be found in Tables 3.2 and
6.1 for the three materials.

Material RMSD for RMSD for elongated case

equiaxed case Shortened Elongated

Aluminium 0.006% 0.007% 0.014%
Inconel - 0.225% 0.243%
CSP - 0.178% 0.183%

The excellent agreement of phase velocity between the SOA and FE models indicates that

the SOA model is suitable for accurate velocity estimation.

6.3.2 Frequency dependence

Phase velocity is in general dispersive across the entire frequency range but also exhibits

nondispersive behaviours at low and high frequencies. The nondispersive low- and high-

frequency regions are first discussed below. They are followed by the discussion of the

overall variation of the scattering induced phase velocity dispersion within a frequency

range that is usually found in experimental studies.

1. Low-frequency region

In the low-frequency Rayleigh regime, the phase velocity dispersion is small and is well

approximated by the quasi-static limit and a reasonable agreement between the theor-

etical SOA and numerical FE results is observed in Figure 6.7. With the decrease of

frequency, the velocity extends asymptotically to the quasi-static velocity limit, which is

significantly below the Voigt average; see further discussions in §6.3.5. The FE and the
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Born approximations of the phase velocity for the CSP polycrystal are shown in Figure

6.8; which also presents the contributions of the L → L and L → T scattering compon-

ents in addition to the total Born velocity. The figure demonstrates that the longitudinal

phase velocity is dominated by the L → T scattering component in the Rayleigh region,

which is consistent with that of attenuation as discussed in §6.2.3.
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Figure 6.8: Total normalised phase velocity and its L→ L and L→ T components in the Born
approximation for the CSP in the shortened x and elongated z directions of the grains. The
L → L and L → T components VL/V0L − 1 ≈ − (∆L→L + ∆L→T) are approximately presented
by −∆L→L and −∆L→T terms, Equation 2.13. The generalized TPC function as provided in
Table 3.3 and Figure 3.3 is used for the calculations. The points represent the FEM results.

2. High-frequency region

It is observable from both panels of Figure 6.8 that in the high-frequency stochastic regime

the L→ T velocity components are weakly dispersive and behave similarly on frequency

for both propagation directions; interestingly they virtually travel faster than the Voigt

velocity V0L. This phenomenon is not well understood especially that the transverse wave

is much slower than the longitudinal. Figure 6.7 and Figure 6.8 show that the total velocity

in the shortened grain direction is also weakly dispersive in the high-frequency stochastic

regime. For aluminium, this region is much longer in frequency than those for Inconel

and CSP, which have much higher material inhomogeneity (for equiaxed polycrystals the

non-pronouncement of the stochastic regime was indicated in [14]).

In contrast to the propagation in the shortened direction, the total phase velocity in the
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elongated direction dramatically decreases with frequency even for the weakly scattering

aluminium. It is obvious from Figure 6.8 that this directional difference is caused by

the L → L scattering velocity component, rather than by the L → T component. The

dominant L→ L component in Figure 6.8(b) decreases rapidly with frequency in the high-

frequency range, leading to a similar decrease for the total phase velocity. The average

grain radius in the elongated direction is significantly longer than the average wavelength

of the waves (their ratio is represented by 2k0Laz, where az = 5ax). The velocity decrease

may be associated with the bending of refracted waves; due to longer propagation paths,

the phase delays may be sufficient to cause a decrease of effective mean phase velocity.

Importantly the velocity decrease phenomenon is supported by the FE results, Figure 6.7

and Figure 6.8. It is observable from Figure 6.7(c) that the FE velocity deviates at the

highest frequency points from the SOA velocity, but interestingly, the Born velocity agrees

better with the FE velocity at those points, Figure 6.8(b). The high-frequency behaviour

of the phase velocity merits further investigation by extending the FE simulations to a

higher frequency; however, this is currently limited by computational capacity and by

very high scattering-induced attenuation.

3. Comment on a relation of phase velocity dispersion with experiment

Here the theoretical SOA and numerical FE results in Figure 6.7 are used to estimate

the range of velocity dispersion. The accuracy of the FE method in measuring frequency-

dependent phase velocity is estimated to be around 0.03% (accurate to about three sig-

nificant digits); the estimation is performed in the worst scenario by using Equation 4.6

for the highest-frequency FE point of the CSP polycrystal in Figure 6.7.

As mentioned in §1.2.2, the author is not aware of any published experimental studies

that focus on or account for the dispersion of phase velocity in polycrystals with elongated

grains. For polycrystalline copper with equiaxed grains, however, a recent work [28]

compared the experimental measurements by Ledbetter [80] with the results of the FE and

SOA models. Based on Ledbetter [80], three-to-four significant digits in absolute velocity

can be measured in laboratory conditions on well-prepared polycrystalline samples (i.e.

comparable to the above-mentioned FE accuracy). The effects of finite transducer size and
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beam profile can be accounted for by a diffraction correction [81,82] and thus the measured

apparent phase velocity may accurately represent the plane-wave phase velocity [81, 82].

This further enables the direct comparison of actual experiments with theoretical and

numerical modelling. In addition, it is useful to note that both phase and group velocities

can be measured in real experiments which are not equal but are related in the dispersive

frequency range [81].

In most experimental studies, the velocity measurements are done in a relatively nar-

row frequency range to observe measurable dispersion that can be attributed to micro-

structure. However, often such measurements are compared with static measurements or

low-frequency vibration measurements; see for example the intensive experimental study

by Seiner et al. [83], where the ultrasonic velocity was also investigated and compared

for different material processing. In such cases of comparison, the scattering induced

dispersion needs to be considered for significantly different frequency ranges or different

microstructures due to material processing. Therefore, it is practically important to have

simple estimates of the range of the phase velocity dispersion.

Between static, vibration, and ultrasonic measurements, the range of the 2ka parameter

is about 0-10. Due to grain scattering, it is very difficult to receive an ultrasonic wave at a

meaningful distance above that frequency limit and to make ultrasonic velocity measure-

ments in polycrystals with a sufficient signal-to-noise ratio. For all material cases shown in

Figure 6.7, phase velocity in the normalised frequency range 0-10 is approximately between

the Rayleigh asymptote (quasi-static velocity) and the Voigt velocity (VL/V0L − 1 = 0).

The phase velocity change is about 0.1% for aluminium and is about 2% for Inconel and

CSP (it is about 3% for Inconel in the shortened direction). The quasi-static velocity

limit, Equations 2.19 and 2.20, is a good approximation for the lower velocity bound. As

mentioned above a slight velocity decrease in the low-frequency regime can be neglected

for this estimation. The significant dispersion change starts at about 2k0Lax ≈ 1 for the

shortened and elongated propagation directions. As follows from Figure 6.7, for both the

SOA and FE models, this dispersion frequency range continues until the emergence of

the stochastic range at 2k0Lax ≈ 5 in the shortened direction and 2k0Laz ≈ 15 in the

elongated direction, where the phase velocity reaches a peak that is close to the Voigt

velocity. In the elongation propagation direction, it is already on the high end of the
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assumed practical frequency range.

In the Rayleigh regime, the phase velocity is smaller in the shortened direction than in

the elongated direction, while at the end of the transition regime this reverses and the

velocity in the shortened direction is slightly above that in the elongated direction. As a

result, in the range of 2k0Lax = 1− 5, the change of the phase velocity with frequency is

larger in the shortened propagation direction than that in the elongated direction.

6.3.3 Elastic dependence

This section studies the scaling of the relative directional phase velocity difference ξV =

(V z
L−V x

L )/V x
L by the elastic scattering factors. Similarly to the attenuation study in §6.2.3,

the scaling is performed by dividing the relative directional difference by QL→TV
3

0L/V
3

0T in

the low-frequency range (2k0Lax ≤ 2) and by QL→L in the high-frequency range (2k0Lax ≥

6). The results are plotted in Figure 6.9. After the scaling, both the FE and the SOA

directional velocity differences are almost overlapped for different materials studied. It is

important to emphasise that the elastic scattering factors are approximately proportional

to the relative directional velocity difference ξV rather than the directional ratio V z
L /V

x
L .
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Figure 6.9: The scaled relative longitudinal directional phase velocity difference ξV = (V z
L −

V x
L )/V x

L versus nondimensional frequency 2k0Lax. ξV is scaled by the elastic factor QL→TV
3

0L/V
3

0T

in the low-frequency range, and by the scattering factor QL→L in the high-frequency range. For
clarity, only a subset of the calculated FEM points is displayed and the rest of the points between
those displayed are skipped.

The velocity ratio V 3
0L/V

3
0T of the Voigt reference medium depends on the Poisson’s ratio
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only and is weakly varying for most structural materials. For this reason, it is sufficient in

the Rayleigh regime to use only the QL→T factor for velocity scaling. Thus, it concludes

that the anisotropy of wave velocity in polycrystals with elongated grains is governed by

the degrees of inhomogeneity QL→T and QL→L in the Rayleigh and stochastic regimes,

respectively. These are identical to the elastic dependences of attenuation for equiaxed

polycrystals as discussed in §5.2.2 and for elongated polycrystals as discussed in [26] and

in §6.2.3. As indicated in [26], if different material systems have nearly the same elastic

scattering factors QL→T and QL→L, they have very similar scattering behaviour in all

frequency ranges including the Rayleigh-to-stochastic transition.

6.3.4 Geometric dependence

1. Dependence on propagation direction

The directional dependence of phase velocity is studied here by evaluating the change of

phase velocity with the propagation direction θp. Similarly to the attenuation study in

§6.2.2, the FE results and the predictions of the SOA model are plotted in Figure 6.10 for

the directions of 0◦, 15◦, 18.75◦, 30◦, 45◦, and 90◦. The results in the figure are limited

to the high-frequency range, while the low-frequency results will be presented in §6.3.5.

The figure shows a generally good agreement between the FE and SOA models for all

directions, especially for the three directions closer to the shortened direction (90◦) where

scattering is relatively smaller than in the other three directions. The two models start to

deviate when the transition into the geometric regime begins at the normalised frequency

of about 6-8. The largest deviation is about 0.8%.

The mean grain radius in the wave propagation direction decreases as θp deviates from the

elongated direction (0◦). This leads to a decrease of scattering level, which is manifested

in two aspects in the figure as θp deviates from 0◦: phase velocity becomes faster; and the

transition point into the geometric regime occurs later in frequency, which is observable

from the SOA curves.

The directional dependence is further evaluated in Figure 6.11 by polar plotting the nor-

malised phase velocity against propagation direction θp for the normalised frequencies of
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5.56 and 8.34. The r-axis of each panel represents the normalised phase velocity VL/V0L−1

and the θ-axis denotes the propagation direction θp. The FEM points are provided for

all simulated directions. The SOA and Born approximation results are provided as solid

and dash lines in the figure.
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Figure 6.11: Polar plot of normalised longitudinal phase velocity (r-axis) versus wave propaga-
tion direction (θ-axis) for CSP at the normalised frequencies of (a) 5.56 and (b) 8.34. The results
are given for polycrystalline CSP with elongated grains.
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6. Elastic waves in polycrystals with elongated grains

The agreement between the FE and theoretical models is generally very good in all direc-

tions. In directions nearer the shortened direction (90◦/270◦), the two theoretical models

both provide slightly larger velocities than the FE model. Closer to the elongated dir-

ection (0◦/180◦), the FE model matches better with the Born approximation than with

the SOA model. This is because the SOA model predicts the transition to the geometric

regime; however, at the highest FE frequencies achieved in this study, the FE velocity

does not follow this transition and coincides with the Born approximation.

The absolute value of normalised phase velocity in Figure 6.11 increases as the propaga-

tion direction changes from the shortened direction (90◦/270◦) to the elongated direction

(0◦/180◦), which is observable from both the numerical FE and theoretical SOA models.

This means that the scattering-induced variation of phase velocity (characterised by the

normalised phase velocity VL/V0L− 1) increases with the mean grain size in the direction

of propagation and this determines the level of scattering. This indicates that the phase

velocity dispersion in the high-frequency range carries information about the average geo-

metry of the grains. The absolute difference of FEM phase velocity between the shortened

and elongation directions are 19.19 and 48.73 m/s at the normalised frequencies of 5.56

and 8.34, respectively.

2. Dependence on grain aspect ratio

The above evaluation of directional dependence has used a representative aspect ratio of

R = 5. Since in practical materials grain aspect ratio may vary in a wide range, it would

be important to see how directional dependence changes with R, which is the ratio of

average grain radius between the axial z and transverse x directions and is called aspect

ratio rather than elongation ratio in order to consider pancake-shaped grains.

In Figure 6.12(a), the relative directional ratio of phase velocity, V z
L /V

x
L − 1, is plotted

against the normalised frequency for CSP with four aspect ratios of 0.1, 0.2, 5, and 10.

The predictions of the SOA and the Born approximation models are provided for all

cases, while the FEM points are only provided for R = 5. In the low-frequency Rayleigh

range, the directional ratio has a flat part observable for all cases. This is because phase

velocity is nondispersive as explained in §6.3.2. The flat parts appear on the opposite
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6. Elastic waves in polycrystals with elongated grains

sides of V z
L /V

x
L − 1 = 0 for R < 1 and R > 1. They collectively indicate that phase

velocity is larger for a longer mean grain radius in the direction of propagation. Beyond

the nondispersive Rayleigh regime, the directional ratio exhibits a complicated behaviour.

A non-monotonic variation is visible in the Rayleigh-stochastic transition range, and it

occurs relatively early in frequency for the two cases with R > 1. This variation ends

at the frequency where the ratio starts to decrease (for R > 1) or increase (for R < 1)

continuously. The continuous decrease or increase at high frequencies may be caused by

the dominant L→ L scattering component as discussed in §6.3.2.
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Figure 6.12: Directional velocity ratio versus (a) normalised frequency 2k0Lax and (b) aspect
ratio R for polycrystalline CSP. The curves in (a) are obtained from the SOA and Born ap-
proximation models, while those in (b) are obtained solely from the Born approximation. The
TPC functions used for the calculations are obtained by scaling the generalized equiaxed TPC
function with the aspect ratio of R. The y-axis of both panels represents the relative difference
of phase velocity between the axial z and transverse x directions.

In Figure 6.12(b), the change of directional velocity ratio with the grain aspect ratio is

further evaluated. The normalised frequencies of 3, 5, 7, 10, 15, and 20 are chosen for

the evaluation. The lowest frequency corresponds to the peak ratio in Figure 6.12(a)

for R = 5, so the chosen frequencies are mostly in the high-frequency range. A similar

discussion will be given for the low-frequency Rayleigh range (the quasi-static limit) in

§6.3.5. The simpler Born approximation, instead of the SOA model, is used to obtain

the curves in Figure 6.12(b) because it is computationally efficient and its prediction is

very close to that of the SOA model as can be seen in panel (a). As the aspect ratio

approaches zero, the directional velocity ratio tends to be independent of the aspect ratio
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6. Elastic waves in polycrystals with elongated grains

and it converges to the same value for all frequencies. This converged value is below

zero, which is consistent with the above finding that the shorter axial direction has a

slower phase velocity than the longer transverse direction. On the right side of the plot,

the directional velocity ratio exhibits a continuous decrease with the aspect ratio in the

shown range. This may be due to the dominant L→ L scattering component that tends

to have larger phase delays in the elongated z direction as a wave propagates through

longer grains. It is noted that a nonpropagative case (V z
L /V

x
L − 1 = −1) will not happen

because each curve in the figure will eventually reach a flat part (with the directional

ratio being greater than -1) as the aspect ratio further increases.

6.3.5 Quasi-static velocity limit

This section studies the effect of grain elongation on velocity at the quasi-static limit.

To the author’s knowledge, limited attention has been received to study the quasi-static

limit with the consideration of grain shape. While Kocks et al. [5] have included tables

showing simulated results for the combined effect of macro-texture and grain shape on

elastic moduli, it is difficult to conclude the grain shape effect. This section aims to

evaluate the effect of grain elongation on the quasi-static velocity limit.

In addition to the analytical quasi-static limit obtained in Equation 2.19, the FE method

outlined in §3.7 is also employed to calculate the quasi-static limit. It is worth noting

again that the chosen FE method naturally meets the continuity of stress and strain at

grain boundaries and thus delivers a very accurate calculation of quasi-static velocity.

The quasi-static velocities obtained from the FE and SOA models have already been

provided in Figure 6.7, but they are more elaborately summarised in Table 6.4 for all three

polycrystalline materials. As indicated from the relative difference δ, the SOA results are

mostly indistinguishable from the FEM results. The SOA model gives a generally higher

quasi-static velocity but the maximum difference between the SOA and FE models for the

studied cases is as small as 0.36%, which can be treated as negligible. And, quasi-static

velocity shows an identical trend to attenuation and dynamic phase velocity in that the

increase of anisotropy (characterised by the universal anisotropy factor as shown in Table

3.2) directly causes the increase of difference between the SOA and FE models.
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6. Elastic waves in polycrystals with elongated grains

Table 6.4: Longitudinal quasi-static velocities for polycrystalline aluminium, Inconel, and CSP
with elongated grains. The ‘FEM’ columns represent longitudinal quasi-static velocities, VL

(m/s), obtained from FE simulations; each FEM result is the average of 30 realizations. The
‘SOA’ columns correspond to the low-frequency Rayleigh velocity limits obtained from the SOA
model, Equation 2.19. δ = V SOA

L /V FEM
L − 1 indicates the relative difference of velocity between

the SOA and FEM results. ξV = V z
L /V

x
L − 1 signifies the directional ratio of FEM velocity

between the elongated z and shortened x directions.

Material Shortened x direction Elongated z direction
ξV (%) ξV

QL→TV
3
0L/V

3
0TFEM SOA δ (%) FEM SOA δ (%)

Aluminium 6312.2 6312.4 0.003 6313.4 6313.1 -0.005 0.019 0.069
Inconel 5890.8 5911.6 0.353 5911.1 5927.6 0.280 0.344 0.079
CSP 4780.2 4784.7 0.094 4799.5 4802.3 0.060 0.403 0.059

The emergence of the grain shape effect is clearly visible in the table, which is manifested

as the directional difference between the elongated and shortened directions. To further

evaluate this effect, the normalised quasi-static velocity is plotted versus propagation

direction in Figure 6.13(a). In the figure, FE results are only provided for the elongated

and shortened directions, but the excellent agreement between the FE and SOA models

means that the FE results should be close to the SOA curves in all directions. In the

figure, all SOA curves are approximately elliptical and their major axes overlap with the

grain elongation direction, revealing a positive correlation between quasi-static velocity

and grain geometry.

The directional difference is further quantified in the table by the ratio ξV as used in

the above sections. It is clear from the table that this ratio can differ significantly from

one material to another, but it tends to deliver the same value when it is divided by the

elastic factor QL→TV
3

0L/V
3

0T. This is an important finding that the grain shape effect is

also positively correlated with the elastic inhomogeneity perturbation of polycrystals.

In addition, the analytical expression in Equation 2.19 is used to evaluate the directional

ratio of quasi-static velocity between the axial z and transverse x directions versus the

grain aspect ratio, Figure 6.13(b). Both the pancake-shaped (R < 1) and needle-shaped

(elongated, R > 1) cases are shown in the figure. For this reason, V z
L /V

x
L − 1 is used to

denote the velocity ratio in Figure 6.13(b), where the ellipsoid axes z and x are defined

in Figure 2.1. The FE results are provided as points in the figure, corresponding to
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Figure 6.13: Longitudinal quasi-static velocity for polycrystals with statistically ellipsoid-of-
rotation grains: (a) normalised velocity (r-axis) versus wave propagation direction (θ-axis); (b)
directional ratio of velocity between the axial z and transverse x directions against the grain
aspect ratio R = az/ax. In (a), the r-axis represents the quasi-static velocity as normalised by
the Voigt average: VL/V0L − 1. In (b), the axial z and transverse x directions correspond to the
elongated and shortened directions for R > 1.

the elongation ratio of R = 5. This work is not intended to extend the quasi-static FE

simulations to other elongation ratios because it has a very large demand on computational

costs, this may be pursued in future work.

The figure shows a general increase in the directional velocity ratio as the grain aspect

ratio gets larger. Obviously, the directional difference vanishes for the equiaxed case of

R = 1, given by Equation 2.22. The velocity ratio reaches its lower bound as R approaches

zero (R → 0), Equation 2.24, which is shown by dotted lines. Similarly, the quasi-static

velocity ratio reaches its upper bound as grain elongation increases (R → ∞), Equation

2.25. These bounds are further listed in Table 6.5, showing a generally larger directional

difference for the case of R→ 0 than for R→∞. For the latter case, the absolute quasi-

static velocity differences between the elongated axial and shortened transverse directions

are respectively 0.9, 19.3, and 21.3 m/s for aluminium, Inconel, and CSP.

It has been revealed from Equations 2.24 and 2.25 that the phase velocities for R → 0

and R → ∞ are the same along the long axes of the grains (x direction for the former

and z direction for the latter). This equality is shown in the third and fifth columns of

Table 6.5. It is noted that the equality is only valid for this extreme case, meaning that

phase velocity differs between a R < 1 case and a R > 1 case even though they have the
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6. Elastic waves in polycrystals with elongated grains

same grain radius in the long axes of the grains.

Table 6.5: Upper and lower bounds of longitudinal quasi-static velocity for polycrystals with
statistically ellipsoid-of-rotation grains. V z

L and V x
L represent respectively the quasi-static ve-

locities in the axial z and transverse x directions of the grains. Lower and upper bounds are
calculated with Equations 2.24 and 2.25, respectively.

Material Lower bound at R→ 0 Upper bound at R→∞
V z

L (m/s) V x
L (m/s) V z

L /V
x

L − 1 V z
L (m/s) V x

L (m/s) V z
L /V

x
L − 1

Aluminium 6312 6313 -0.0003 6313 6312 0.0001
Inconel 5892 5930 -0.0064 5930 5911 0.0033
CSP 4764 4805 -0.0085 4805 4784 0.0044

6.4 Summary

The theoretical SOA and 3D FE models are employed in this chapter to study the

scattering-induced attenuation and phase velocity dispersion of plane longitudinal waves

in polycrystals with statistically elongated grains. The study uses three polycrystalline

materials, aluminium, Inconel, and CSP, that have a grain elongation ratio of 5. Based on

the comparative studies of the SOA and FE models, the following conclusions are reached:

1) Quantitative agreement has been found between the two models. The difference

between the SOA and FE models is quantified by the NRMSD. In general, the NRMSD

is positively correlated with the universal anisotropy factor AU and the mean grain radius

in the direction of propagation, showing a direct relation to the level of scattering. The

NRMSD for the elongated direction is larger than that for the shortened direction for all

studied materials. In the elongated direction, attenuation NRMSD increases from about

11% for aluminium through 12% for CSP to 25% for Inconel, while velocity NRMSD

is smaller than 0.3% for all cases. The largest point-by-point difference of attenuation

between the SOA and FE models is -39% as observed for Inconel, while that of phase

velocity is around -0.6% as found for CSP in the elongated direction.

2) In general, the attenuation of longitudinal waves mostly exhibits anisotropy as a result

of grain elongation. The attenuation is independent of grain elongation and is proportional

to the effective volume of the grains and the fourth-degree of frequency in the Rayleigh
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regime. It shows a complex dependence on grain elongation and frequency in the Rayleigh-

stochastic transition. As scattering enters the stochastic regime, attenuation exhibits

an angular dependence and is proportional to the frequency squared; for the strongly

scattering materials Inconel and CSP, the stochastic regime is not pronounced in the

elongated direction. As a result of grain elongation, the onset of the geometric regime

varies with the propagation direction and the angular dependence of attenuation becomes

complicated. The relative directional difference of phase velocity also shows anisotropy

due to grain elongation. This grain elongation effect varies from one scattering regime

to another. In the Rayleigh regime, the phase velocity is larger in the direction of grain

elongation. This relation is reversed in the stochastic regime, where the velocity is slower

in the elongated direction than in the shortened direction.

3) In addition to the dependences on grain elongation and frequency, the attenuation

and phase velocity also show reliance on the elastic properties of the polycrystals. This

manifests itself mostly through the two elastic scattering factors, QL→T and QL→L, that

are combinations of crystallite elastic constants. The attenuation and the directional

difference of phase velocity are proportional to QL→T in the Rayleigh regime and to QL→L

in the stochastic regime. Therefore, the effect of different material systems on attenuation

and phase velocity can be scaled by those factors.

4) The analytical and numerical analyses show that the phase velocity at the quasi-static

limit follows a similar pattern as found for phase velocity in the low-frequency Rayleigh

regime. Namely, the quasi-static velocity is angle-dependent in elongated polycrystals,

and its directional change is related to the grain aspect ratio and the elastic scattering

factor QL→T. The analytical analysis shows that the quasi-static velocity is lower and

upper bounded as the grain aspect ratio decreases and increases, respectively.
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Chapter 7

Representing spatial autocorrelation by

a single exponential

7.1 Introduction

Previous chapters have demonstrated that the calculation of scattering-induced attenu-

ation and velocity dispersion relies on the statistical description of microstructure by the

TPC function. For a numerically generated polycrystal as used in 3D FE simulations, its

TPC data can be accurately measured from its material volume. This leads to a fairly

accurate calculation of attenuation and velocity by incorporating the mathematical rep-

resentation of the measured TPC data into a theoretical model [28, 39]. Importantly, it

has been found that an exponential series is needed for a closer representation of the TPC

data than was considered in the earlier work [14,17] which used a single exponential.

For an experimental sample, however, determining its accurate TPC data is very expens-

ive, because it requires a substantial number of statistical tests to be performed on a

lot of micrographs of sample cross-sections [51]. Thus, it is usually desirable to use a

limited number of cross-sections and tests, which results in less accurate TPC data. The

challenge then is to choose a simple representation of the TPC that can be depended on

to work optimally from a small sample set. This chapter sets out to do that, retaining

the traditional single exponential function for simplicity, but pursuing the optimal choice

of its parameter. This is achieved by choosing several candidate parameters for the single
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7. Representing spatial autocorrelation by a single exponential

exponential function and then evaluating their goodness of representation by comparing

their attenuation and velocity predictions with those of the accurate TPC function.

For practical applications, it is important to ensure that a selected parameter can be

directly measured from cross-sectional micrographs. Thus, an essential first step is to

study the measurable statistics that can characterise the spatial autocorrelation of a

polycrystal that determines the level of scattering occurring in the medium. Such a study

is performed in the following §7.2 by revisiting the TPC function and analysing the other

two probability functions, namely, the distributions of line intercept and free path. The

latter two functions are better known in materials science and are more widely used in

engineering applications. This study provides measurement approaches for these functions

and also demonstrates their relations. Additionally, a key investigation is conducted to

evaluate the statistical convergence of measurement.

Then, five potential parameters are identified in §7.3 for the single exponential function

to replace the actual TPC function. Four parameters are the characteristic lengths of

the actual TPC function, with the mean line intercept relating to its slope at the origin,

the correlation length being its integral, the effective radius relating to its triple integral,

and the best-fit radius being the coefficient of its best fit to the single exponential. The

other parameter selected for the study is the equivalent spherical radius that can only be

determined by stereological methods.

Lastly, the goodness of representation of the selected parameters is evaluated in §7.4. The

single exponential function using these parameters is incorporated into theoretical models

for attenuation and velocity calculation. The calculation results are compared with those

obtained from the accurate TPC function, leading to the choice of an optimal parameter

for the single exponential function.

The purpose of this study is to achieve a reasonably good estimation of attenuation and

velocity for experimental applications in which case microstructural statistics are rapidly

determined from a limited number of tests on a few cross-sectional micrographs. Achiev-

ing this goal, however, requires accurate reference data to be provided for demonstration

and evaluation. For this reason, numerical polycrystal samples, rather than actual exper-

imental ones, are used for the study. This is because the microstructure of a numerical
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sample can be fully controlled and accurately measured, and the associated scattering

parameters can be precisely calculated from FE simulations. Various numerical samples

with equiaxed grains of different grain uniformities are generated for the study. This

study is being prepared for publication [P6].

7.2 Spatial probability functions

This section studies the three probability functions for the description of spatial auto-

correlation for polycrystals, including the TPC function and the distributions of line

intercept and free path, which can all be directly measured from cross-sectional micro-

graphs. Initially, the TPC function is revisited. This is followed by the discussions of the

line intercept and free path distributions and their relations to the TPC function. Lastly,

the statistical convergence of probability function measurement is discussed.

7.2.1 Two-point correlation function revisited

The TPC function has been extensively discussed in previous chapters. It is expressed

as w(r) for equiaxed polycrystals, describing the probability that two points separated

by a distance r are in the same grain [14, 17, 51]. This function reflects the geometric

statistics of grains, and in particular, the statistical variation of material property across

grains. Consequently, this function is related to how propagating waves are scattered by

(or interact with) grains.

The measurement of w(r) is straightforward for a numerical sample. This is achieved

by dropping a substantial number of random point pairs, each being separated by a

distance r, into the 3D volume of the sample, and the probability w(r) is then obtained

by comparing the number of pairs occurring in the same grain with the total number of

test pairs [28,39].

For an experimental sample, however, the access of measurement is generally limited to its

surface, meaning that measurement can only be performed in a 2D way as illustrated in

Figure 7.1(a). In this case, volumetric statistics are usually acquired from multiple cross-

sections of the sample that are successively exposed for measurement via serial sectioning.
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Figure 7.1: Illustration of (a) two-point correlation, (b) line intercept, and (c) free path stat-
istics. In (a), two points are correlated when they fall into the same grain; the probability of
two points separated by a distance r being in the same grain is represented by the correlation
function w(r). In (b), line intercepts, li, denote the lengths of the random test line segments
intercepted by grain boundaries. In (c), a free path, di, represents the length of a random line
that passes through a random test point and is intercepted by grain boundaries.

To emulate this 2D practical procedure, 1000 random cross-sections perpendicular to

the z-direction are chosen from the FE material model N11520, Table 3.1. For a given

distance r, 1000 random tests are performed on each cross-section. This leads to the TPC

data shown as circular points in Figure 7.2. These points are mostly indistinguishable

from the triangular ones that are measured directly from the 3D volume of the model by

using the same number, 1000 × 1000, of tests for each distance r. The normalised root-

mean-square deviation (NRMSD) between these two datasets amounts to 0.17%, with

the 3D case as reference. Due to this small mismatch, the two datasets are fitted into

the same exponential series, w(r) =
∑

iAie
−r/ai , shown as the solid line in the figure.

The coefficients, Ai and ai, are provided in Table 3.3. In order to maintain consistency

with actual practical scenarios, TPC statistics used hereafter are measured from 2D cross-

sections, unless otherwise stated.

7.2.2 Probability distribution of line intercept

The microstructure of a polycrystal can also be described by the probability distribution

of line intercept. As illustrated in Figure 7.1(b), a line intercept li (also called chord

length, see e.g., [50, 84, 85]) represents the length of a line segment intercepted by grain

boundaries. The mean value of line intercept is being widely used in metallography as
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Figure 7.2: Two-point correlation, w(r), for the material model N11520. The circular points
are measured from 1000 random cross-sections that are perpendicular to the z-direction of the
model, and 1000 random tests are performed on each cross-section to determine each correlation
probability w(r). Each triangular point is determined by using the same number, 1000×1000, of
random tests in the 3D volume of the model. The solid line represents the multi-term exponential
fit, w(r) =

∑
iAie

−r/ai , of the points, with coefficients Ai and ai being given in Table 3.3.

a measure to quantify the average grain size of a polycrystal. For this reason, there

are standard approaches (see e.g., [86]) dedicated to the measurement of line intercept

statistics from cross-sectional micrographs. Mimicking the approach provided in [86]

leads to one of the two methods used here for measuring the line intercepts of a numerical

sample. This method is achieved by first selecting multiple random parallel cross-sections

from the sample and then dropping a significant number of random test lines onto each

cross-section to determine the probability distribution of line intercept. By contrast, the

second method simply performs a significant number of random tests in the 3D volume of

the sample. These two methods are similar to those used above for TPC measurement.

The probability densities of line intercept, pl(x), obtained with the two methods are given

in Figure 7.3 for the material model N11520. The first method selects 1000 random

cross-sections perpendicular to the z-direction of the model and uses 1000 random test

lines (the length of each line translates to at least 10 intercepts) on each cross-section.

The second method performs the same number, 1000 × 1000, of random tests in the 3D

volume of the model. It is important to note that, as demonstrated in Figure 7.1(b), the

line heads penetrated into the grains are not accounted for in both cases of measurement,
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which is to avoid the scoring of such penetrated heads as half intercepts as used in [86].

Figure 7.3 shows very consistent results between the two methods, demonstrating again

the effectiveness of measuring 3D volumetric statistics from 2D cross-sections when a

significant number of cross-sections and tests are utilized for measurement.
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Figure 7.3: (a) Probability density of line intercept for the model N11520; (b) Comparison of
the two-point correlation function determined from line intercept distribution with the directly
measured one. In (a), case I is measured with 1000 random cross-sections perpendicular to the z-
direction and 1000 random test lines per cross-section, while case II is determined by performing
1000 × 1000 random tests in the 3D volume of the model. In (b), the line with points is taken
from Figure 7.2 and the solid line is calculated from case I of panel (a) by using Equation 7.2;
the statistics of both lines are determined from random cross-sections.

The distribution of line intercept is directly related to the TPC function. The relation,

first reported by Stanke [50] and later mathematically proved by Man et al. [51] under

general conditions, is expressed as

w(r) =

∫ ∞
r

x− r
l

pl(x)dx, (7.1)

where l is the mean value of line intercept. For discrete measurements, the relation can

be rewritten as [51]

w(r) =
N∑

i,li≥r

(li − r)/
N∑
i=1

li, (7.2)

where li is the i-th intercept and N is the total number of intercepts. Applying this
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relation to the cross-sectional line intercept data given in Figure 7.3(a) leads to the solid

TPC curve shown in panel (b) of the same figure. It is illustrated in the figure that this

TPC curve agrees very well with that measured directly from the FE material model,

amounting to an NRMSD of 0.07%. To the author’s knowledge, this excellent agreement

is the first justification of the Man et al. [51] result with actual measurements. This

result is of great practical importance because it allows the TPC to be determined by

post-processing line intercept statistics measured with standard protocols in materials

science.

In addition, it was proven by Man et al. [51] that the mean line intercept, l, is equal to

the negative of the reciprocal of the slope at the origin of the TPC function

l = −1/w′ (r = 0) , (7.3)

where the prime symbol represents the derivative of w with respect to r. The mean

line intercept l of the model N11520 is calculated by using the statistics given in Figure

7.3, while the value for −1/w′ (r = 0) is numerically estimated from the discrete TPC

points given in Figure 7.2. The results are provided in Table 7.1 and they show very

small differences, -0.81% and -0.12%, for the cross-sectional and 3D volumetric methods,

respectively. In addition to the numerical estimation, the latter parameter can also be

analytically obtained from the fitted TPC function by −1/w′ (r = 0) = 1/
∑

i (Ai/ai),

and the result only differs from the other values after the second significant digit. The

mean line intercept is widely employed in experiments to characterise the mean length

scale of grains [50,51], and to maintain consistency with other parameters used below, it

is denoted al hereafter and therefore al = l = −1/w′ (r = 0).

7.2.3 Probability distribution of free path

Free path is a geometrical attribute defined with respect to randomly chosen points. As

shown in Figure 7.1(c), the free path of a given point is the length of the line segment

passing through this point and extending to the boundaries of the grain in which the

point falls [50]. Unlike line intercepts that are consecutively connected through random
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Table 7.1: Mean line intercept and the slope at the origin of the TPC function for the model
N11520. l denotes the mean line intercept and the values in the table are obtained from the
distributions in Figure 7.3(a). −1/w′ (r = 0) represents the negative of the reciprocal of the
slope at the origin of the TPC function, w(r); it is either numerically estimated from the discrete
TPC points in Figure 7.2 or analytically calculated from the fitted curve by −1/w′ (r = 0) =
1/
∑

i (Ai/ai). Unit: mm.

l
−1/w′ (r = 0)

From discrete points From fitted curve

Measured on cross-sections 0.3440 0.3412 0.3458Measured in 3D volume 0.3417 0.3413

lines, free paths are uncorrelated. As a result, free paths are likely to be longer than line

intercepts on average, which will be shown below [50].

Similarly to line intercept, two methods are used here for determining the probability

distribution of free path. The first method drops random points on multiple cross-sections

that are randomly chosen beforehand, and then draws randomly oriented in-plane lines

passing through these test points, and eventually measures the lengths, di, of the line

segments intersected by grain boundaries. In comparison, the second method randomly

distributes the locations of the test points and the orientations of the associated test lines

across the volume of the sample.

Figure 7.4 shows the probability densities of free path, pd(x), of the model N11520 as

measured with the two methods. The cross-sectional method uses 1000 cross-sections with

each using 10000 test points, while the second method directly utilizes the same number,

1000 × 10000, of tests in the 3D volume. As shown in the figure, the two methods have

an excellent agreement with each other. This proves again the possibility of acquiring

volumetric statistics from cross-sectional images.

The probability density of free path is related to that of line intercept by [50] pd(x) =

pl(x)x/l. This relation has been verified by using the statistics given in Figures 7.3 and

7.4. Substituting this relation into Equation 7.1 leads to the relationship between the

probability density of free path and the TPC function [14]

w(r) =

∫ ∞
r

x− r
x

pd(x)dx, (7.4)
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Figure 7.4: (a) Probability density of free path for the model N11520; (b) Comparison of the
two-point correlation function determined from free path distribution with the directly measured
one. In (a), case I is measured with 1000 random cross-sections perpendicular to the z-direction
and 10000 random tests per cross-section, while case II is determined by performing 1000×10000
random tests in the 3D volume of the model. In (b), the line with points is taken from Figure
7.2 and the solid line is calculated from case I of panel (a) by using Equation 7.5; the statistics
of both lines are determined from random cross-sections.

which can be written in the discrete form as

w (r) =
1

N

N∑
i,di≥r

di − r
di

, (7.5)

where N is the total number of free paths. With the use of this relation, the TPC function

calculated from the free path distribution, case I in Figure 7.4(a), is provided in panel

(b) of the same figure. The resulting curve agrees very well with the directly measured

TPC points, amounting to an NRMSD of 0.06%. This is an important verification of

this relation since neither rigorous mathematical proof nor actual justification has been

reported previously for this relation.

The mean values of free path in Figure 7.4(a) are larger than those of line intercept shown

in Figure 7.3(a). This confirms the earlier postulation that free path is likely to visit a

longer grain dimension than line intercept. The half of mean free path is equal to the

integral of the TPC function [50]

d/2 =

∫ ∞
0

w (r) dr, (7.6)
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which is demonstrated here by using the free path and TPC statistics given above. The

half of mean free path obtained from Figure 7.4(a) and the integral of the discrete TPC

data in Figure 7.2 are provided in Table 7.2, which show very small differences, -0.17%

and -0.04%, for the cross-sectional and 3D volumetric methods. The integral of the

TPC can also be calculated from the fitted TPC function by
∫∞

0
w (r) dr =

∑
iAiai and

the resulting value, provided in Table 7.2, differs very slightly from those obtained from

discrete data points.

The integral of the TPC function is commonly known as the correlation length, repres-

enting the characteristic length over which a significant correlation exists between values

of the medium [87]. This parameter is related to the level of wave scattering in the high-

frequency stochastic regime and will be denoted aCL hereafter, i.e., aCL =
∫∞

0
w (r) dr =

d/2.

Table 7.2: Half of mean free path and the integral of the TPC function for the model N11520.
d denotes the mean free path and the values in the table are obtained from the distributions in
Figure 7.4(a).

∫∞
0 w (r) dr represents the integral of the two-point correlation, w(r); it is either

numerically estimated from the discrete TPC points in Figure 7.2 or analytically calculated from
the fitted curve by

∫∞
0 w (r) dr =

∑
iAiai. Unit: mm.

d/2

∫∞
0
w (r) dr

From discrete points From fitted curve

Measured on cross-sections 0.2313 0.2309 0.2309Measured in 3D volume 0.2295 0.2294

7.2.4 Statistical convergence

The above-converged statistics are measured by combining a significant number of cross-

sections with a substantial number of tests for each cross-section. For actual experiments,

it is straightforward to perform the same large number of tests on each cross-sectional

micrograph with the use of computer programs [51, 86]. However, a major difficulty for

actual experiments is to acquire a similar number of parallel cross-sectional micrographs

from the volume of a sample, because it requires a considerable effort for serial-sectioning,

surface preparation, and micrograph capturing. Therefore, in order to minimise the effort
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7. Representing spatial autocorrelation by a single exponential

of acquiring cross-sectional micrographs, it is desirable to investigate how many cross-

sections and tests are required to achieve measurement convergence.

Without loss of generality, the mean free path is used here as a measure to evaluate the

convergence of measurement. For the model N11520, its mean free path, d, is progressively

calculated as the number of cross-sections increases. The cross-sections are randomly

chosen from the model and are all perpendicular to the z-direction. For the completeness

of the evaluation, three sets of measurements are performed by utilizing different numbers

of tests for each cross-section. The results for the mean free path are plotted against the

number of cross-sections in Figure 7.5(a) for individual measurements.
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Figure 7.5: Convergence of mean free path: (a) mean free path versus the number of cross-
sections, (b) two-point correlation function obtained from free path distribution. The solid, dash,
and dash-dotted lines in (a) use respectively 100k, 10k and 1k tests on each cross-section. The
thick solid line in (b) is obtained with the largest number, 1000×100k, of free paths, while the
rest lines are derived from 100 cross-sections with 100k, 10k and 1k tests per cross-section.

A clear observation from the figure is that the curves for the three measurements are nearly

overlapped, meaning that the number of tests per cross-section is not a determining factor

for convergence as long as it is not too small. All three sets of measurements start to

converge as the number of cross-sections approach 100. At this number, the free path

statistics of the three measurements are converted to the TPC curves shown in Figure

7.5(b) by using Equation 7.5. The three curves are mostly indistinguishable compared to

the one obtained using 1000 cross-sections and 100k tests per cross-section. This indicates

that the use of 100 cross-sections is sufficient to deliver converged free path statistics that
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would enable a fairly accurate calculation of attenuation and velocity for the sample.

It is useful to note that the evaluation here is performed for the specific numerical sample,

N11520, that has a cross-section of 12×12 mm in dimensions and 24×24 in average grain

numbers. For a larger sample with more grains on each cross-section, it may be sufficient

to use less than 100 cross-sections to achieve the same level of convergence.

7.3 Potential parameters for the single exponential

It has been shown above that the microstructure of a polycrystal can be statistically

described by the three probability distributions. As a result of their relations, measuring

any of these distributions eventually leads to the determination of the TPC function that

enables the calculation of attenuation and velocity. For this calculation, the measured

TPC of a polycrystal usually needs to be mathematically represented by an exponential

series as used in the prior work [28] and this thesis. In many circumstances, however,

TPC statistics are not accurately measured due to the lack of a sufficient number of

cross-sectional micrographs. In this case, the necessity of representing the measured TPC

by an exponential series would not be crucial, and instead, it would be adequate to

utilize a single exponential, wS(r) = e−r/a, to characterise the spatial variability of the

sample. Note that the subscript ‘S’ is used here to distinguish this single exponential

from the actual TPC function, w(r), as measured from the sample. Also, such a simple

representation is usually desirable in industrial applications for estimating the material

properties of a sample by a simple inverse determination of its mean grain radius, a, from

ultrasonic measurements.

The choice of the mean grain radius, a, is a vital step for the single exponential to deliver

a satisfactory calculation of attenuation and velocity. In most prior studies on ultrasonic

scattering, the mean line intercept al was used as the parameter a. However, it will be

shown below that this selection is far from optimal. To assess the selection of a, five lineal

parameters are identified here for the mean grain radius and their goodness in representing

attenuation and velocity will be evaluated in §7.4. The first parameter is the mean line

intercept, al, which has been used in several important studies [14, 50, 51]. However,

162



7. Representing spatial autocorrelation by a single exponential

despite its relation to the actual TPC function by al = −1/w′ (r = 0), this parameter

is not evidently related to scattering-induced attenuation and velocity dispersion. By

contrast, the second parameter, the effective radius, as suggested by Weaver [17] is a

well-recognized key parameter determining the level of attenuation in the low-frequency

Rayleigh regime, see e.g., [21,26] and Equation 2.18 of this thesis. This effective radius is

denoted as aER in this thesis and is related to the actual TPC function by

aER =
3

√
V g

eff

8π
=

3

√∫
w(r)dr3

8π
, (7.7)

where V g
eff =

∫
w(r)dr3 is the effective volume of the grains. The third parameter is

the correlation length, aCL =
∫∞

0
w (r) dr = d/2, which is well understood to be the

key microstructural quantity controlling the degree of attenuation in the high-frequency

stochastic regime, as can be seen from Equation 2.26 of this thesis. The fourth parameter is

the best-fit radius, aBF, which is the coefficient of the single exponential, wS(r) = e−r/aBF ,

that best fits the actual TPC. Although a variety of algorithms are suitable for the fitting,

this thesis uses an unweighted least-squares approach to determine the best-fit radius aBF.

In contrast to the first four parameters, the fifth parameter is not directly related to the

actual TPC function. This parameter is the equivalent spherical radius R and is defined

as the average of the equivalent spherical radii of the grains, i.e.

R = 〈Ri〉i =

〈
3

√
3vi
4π

〉
i

, (7.8)

where Ri = 3
√

3vi/(4π) is the radius of the sphere that has the same volume, vi, as that

of the grain i. Determining this parameter can be easily achieved for a numerical sample

but is not as trivial for practical experimental samples. This is because the 3D volumes

of individual grains cannot be simply determined from 2D cross-sectional measurements,

and instead, complex stereological methods are required for the determination [88]. Also,

it is useful to note that in most cases the mean equivalent circular radius of a cross-section

is smaller than the mean equivalent spherical radius of the corresponding 3D sample. All

five parameters are summarised in Table 7.3.

Three polycrystalline microstructures with the same number of grains per unit volume
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Table 7.3: Five potential parameters defined for the mean grain radius a of the single expo-
nential wS(r) = e−r/a.

Notation Relation to the actual TPC w(r)

Mean line intercept al −1/w′ (r = 0)

Effective radius aER
3

√∫
w(r)dr3/(8π)

Correlation length aCL

∫∞
0 w (r) dr

Best-fit radius aBF e−r/aBF best fits w(r)

Equivalent spherical radius R -

but different grain uniformities, as illustrated in Figure 7.6(a), are generated to evaluate

the five selected parameters. The three microstructures are generated respectively by the

Laguerre, Poisson Voronoi, and centroidal Voronoi tessellations [52, 89, 90]. The Poisson

Voronoi tessellation (PVT) has been used throughout this thesis to create polycrystalline

models. This method utilizes a Poisson point process to drop random seeds into model

space and then generates seamless, non-overlapping grains under the conditions that each

grain encloses a seed and all points in a grain are closer to its own seed than to any other.

As would be expected from the central limit theorem, the equivalent spherical radii of the

grains are normally distributed, as can be seen from Figure 7.6(b). In comparison to the

PVT, the seeds of the Laguerre tessellation are weighted in order to create more complex

microstructures [89, 90]. This method is used to generate the type of microstructure

as commonly found in applications [13] in which case the equivalent spherical radii of

the grains follow the lognormal distribution, as shown in Figure 7.6(b). The centroidal

Voronoi tessellation (CVT) iteratively changes the locations of its seeds in order to achieve

a uniform distribution of grains. The equivalent spherical radii of the generated grains

follow a much narrower normal distribution than that of the PVT.

The TPC statistics of the three microstructures are plotted in Figure 7.6(c) as connected

points. These statistics are measured with the cross-sectional approach by randomly

choosing 1000 z-direction cross-sections from each model and performing 1000 random

tests on each cross-section to determine every single TPC point. As can be seen from the

shown statistics, the likelihood of having a long autocorrelation distance becomes smaller

as grain uniformity increases. The thick lines in the figure are the mathematical fits of the

164



7. Representing spatial autocorrelation by a single exponential

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

2

4

6

8

10

0

20

40

60

80

Thin line: measured

Thick line: fitted

0 0.25 0.5 0.75 1 1.25 1.5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Laguerre

PVT

CVT

Points: measured

Thick line: generalized

Laguerre

=0.2384 mm

=0.1339 mm

PVT

=0.3033 mm

=0.0461 mm

CVT (use right y-axis)

=0.3101 mm

=0.0054 mm

Figure 7.6: Three polycrystalline microstructures of different grain uniformities: (a) illustration
of grain structure, (b) probability density of the equivalent spherical radii of the grains, and
(c) two-point correlation statistics. The three microstructures are generated by the Laguerre,
Poisson Voronoi (PVT), and centroidal Voronoi (CVT) tessellations. Each microstructural model
has 11520 grains and has the dimensions of 12×12×10 mm in the three coordinate directions.
The data points of the Laguerre case in (b) are fitted to the lognormal distribution, while the
other two cases are fitted to the normal distribution.

TPC points and the fitted expressions are provided in Table 7.4. Similarly to the PVT

case that has been fitted earlier in §3.6, the Laguerre case is fitted to the same multi-term

exponential form, w(r) =
∑8

i=1Aie
−r/ai . Obtaining the same fit is difficult for the CVT

case, so it uses an alternative function [50,91,92]

w(r) =

{
1− 3r/(4R) + r3/(16R3), 0 ≤ r ≤ 2R

0, r > 2R
, (7.9)

where R is the equivalent spherical radius of the grains, as defined above. The figure shows

a very good agreement between the fitted functions and the measured TPC statistics.
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Following the prior work [28], the fitted functions are called the generalized TPC functions

below.

Table 7.4: Generalized two-point correlation functions for the three polycrystalline microstruc-
tures of different grain uniformities.

Laguerre

w(r) =
∑8

i=1Aie
−r/ai

i 1 2 3 4 5 6 7 8

Ai -2713.43 -35.09 4017.09 -3579.02 474.15 377.42 428.05 1031.83

ai (mm) 0.1329 0.1443 0.1352 0.1446 0.1437 0.1449 0.1442 0.1509

PVT w(r) =
∑8

i=1Aie
−r/ai , Ai and ai are given in Table 3.3

CVT w(r) =

{
1− 3r/(4R) + r3/(16R3), 0 ≤ r ≤ 2R

0, r > 2R
, R = 0.3101 mm

The five lineal parameters are calculated and provided in Table 7.5 for the three polycrys-

talline microstructures. The mean line intercept al, effective radius aER, and correlation

length aCL of each microstructure are analytically calculated from the respective general-

ized TPC function by using the relations given in Table 7.6. Since the generalized TPC

functions match very well with the measured points in Figure 7.6(c), the analytical results

only differ slightly from those numerically calculated from discrete TPC points. The best-

fit radius aBF of each microstructure is obtained by fitting to the measured TPC points,

while the equivalent spherical radius is the mean value of the respective distribution in

Figure 7.6(b).

Table 7.5: Differently defined mean grain radii (mm) for the three polycrystalline microstruc-
tures of different grain uniformities.

Laguerre PVT CVT

Mean line intercept, al 0.4323 0.3458 0.4134
Effective radius, aER 0.3034 0.1793 0.1706
Correlation length, aCL 0.3474 0.2309 0.2326
Best-fit radius, aBF 0.3611 0.2431 0.2449
Equivalent spherical radius, R 0.2384 0.3033 0.3101

The single exponentials with the five differently defined mean grain radii are compared

to the measured and generalized TPC functions in Figure 7.7. Overall, the single expo-

nentials better describe an actual (measured or generalized) TPC when the grains of a
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Table 7.6: Relations of the mean line intercept, effective radius, and correlation length to the
generalized TPC functions. Refer to Table 7.4 for the generalized TPC functions of the Laguerre,
PVT and CVT cases.

Laguerre and PVT CVT

Mean line intercept, al 1/
∑8

i (Ai/ai) 4R/3

Effective radius, aER
3

√∑8
i Aia

3
i R/ 3

√
6

Correlation length, aCL
∑8

i Aiai 3R/4

polycrystal are less uniform. The best and worst representations are achieved, respect-

ively, for the Laguerre and CVT microstructures, which form the two extreme cases of this

work. The three microstructures represent the typical scenarios where a single exponential

can describe the actual TPC to the best, modest, and worst extents, respectively. There-

fore, they are suitable for evaluating the goodness of the lineal parameters in delivering

attenuation and velocity predictions in the next step.
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Figure 7.7: Comparison of the single exponentials e−r/a with differently defined mean grain
radii a to the measured and generalized TPC functions for the Laguerre, PVT and CVT micro-
structures. Refer to Table 7.5 for the values of the five lineal parameters: al, aER, aCL, aBF, and
R.
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For all three microstructure cases, the exponential e−r/al , whose slope at r = 0 is the

same as that of the actual TPC, defines the upper bound of the five single exponentials.

Consistently for all microstructures, the exponential e−r/aBF lies slightly above e−r/aCL ,

while e−r/aER rests further below the latter. It is useful to emphasise that the integral

(namely, the correlation length) of e−r/aCL and the triple integral (i.e., the effective grain

volume) of e−r/aER are equal to the respective integrals of the actual TPC. The exponential

e−r/R varies across different microstructures: it defines the lower bound for the Laguerre

case but lies just below the topmost e−r/al for the PVT and CVT cases.

7.4 Optimal parameter for the single exponential

This section proceeds to choose an optimal mean grain radius a from the above-identified

lineal parameters in order for the single exponential wS(r) = e−r/a to deliver the best

calculation of attenuation and phase velocity.

With the use of the single exponential, the theoretically calculated attenuation and velo-

city are plotted in Figure 7.8 in comparison with the more accurate theoretical predictions

from the generalized TPC functions and the results of 3D FE simulations. The results

are given for plane longitudinal waves in equiaxed CSP, whose material properties are

provided in Table 3.2. The normalised frequency, 2k0La, is used for the x-axis of each

panel and the normalisation factor a corresponds to the mean line intercept al. The y-axis

of each left panel represents the normalised longitudinal attenuation, 2αLa, while that of

each right panel denotes the normalised variation in phase velocity VL from the Voigt

velocity V0L. The FE simulation of each microstructure employs three models, N115200,

N11520 and N16000, with different dimensions and numbers of grains to minimise nu-

merical errors. The model parameters are given in Table 3.1, and the three different

microstructures of the model N11520 are illustrated in Figure 7.6(a). A combination of

15 realizations is used for each modelling case to obtain converged results; the average is

shown as points in the figure while the standard deviation is not provided since the cor-

responding error bar is smaller than the size of the point markers. For the Laguerre and

PVT microstructures, the SOA model is utilized for theoretical predictions. For the CVT

microstructure, however, the convergence of numerical integration in the SOA model is
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made difficult by its generalized TPC function, Equation 7.9, and therefore the simpler

Born approximation is used for this case.

The theoretical predictions from the generalized TPC functions agree very well with the

FEM results, and the NRMSDs between them amount to 7.20%, 9.06%, and 10.40% in

attenuation and 0.08%, 0.12%, and 0.09% in phase velocity for the three microstructures.

As a result of the good agreement, these theoretical predictions will be used below as

reference to choose the optimal parameter for the single exponential. Note that an oscil-

latory behaviour is observable from the theoretical curve in the high-frequency range of

the CVT case, inset in Figure 7.8(e). This behaviour was also observed in FE results by

Ryzy et al. [39] and was attributed to the resonance of waves within the uniform grains;

however, this oscillation does not appear in the FE results of this work, the reason for

which will be investigated in future work.

It is observable from Figure 7.8 that the single exponential delivers different attenuation

and phase velocity for each microstructure when using different lineal parameters as the

mean grain radius a. It is important to emphasise that these theoretical curves will be

overlapped if they are differently normalised by using their respective lineal parameters

as the normalisation factor a in the figure. For phase velocity, the use of a larger a simply

results in the transition of scattering into a more strongly scattering regime at a lower

frequency. This influence is more evident in the middle-frequency dispersive region and is

negligible in the nondispersive Rayleigh and stochastic regimes due to the independence

of phase velocity on grain size, as can be seen from Equations 2.23 and 2.30. Nonetheless,

the various phase velocity curves for each microstructure only differ slightly from each

other and it may be difficult to detect such differences in actual experiments; therefore,

phase velocity is not utilized below to evaluate the goodness of the lineal parameters.

In contrast to phase velocity, attenuation can differ substantially with the use of different

lineal parameters in the single exponential. In the shown frequency ranges in Figure 7.8,

this difference is most significant in the low-frequency Rayleigh regime. This is because

the longitudinal attenuation in this regime has a cubic dependence on the mean grain

radius a. This dependence is described by the Rayleigh attenuation asymptote, Equation

169



7. Representing spatial autocorrelation by a single exponential

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10 15 20

10
-1

10
0

10
-1

10
0

10
1

-0.025

-0.02

-0.015

-0.01

-0.005

0

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10 15 20

10
-1

10
0

10
-1

10
0

10
1

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10 20 30

10
-1

10
0

10
-1

10
0

10
1

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Figure 7.8: Normalised attenuation (a, c, e) and phase velocity (b, d, f) versus normalised
frequency for longitudinal waves in equiaxed polycrystalline CSP with the Laguerre, PVT and
CVT microstructures, comparing different theoretical predictions with numerical FEM results.
The mean line intercept al of each microstructure is used as the normalisation factor a. The left
and right panels use the same legends.
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7. Representing spatial autocorrelation by a single exponential

2.18, which is rewritten below as

αR
L =

1

2π
k4

0LV
g

eff

(
Q∗LL +

V 3
0L

V 3
0T

QL→T

)
, (7.10)

where the effective volume of the grains is given by V g
eff = 8πa3 for a single exponential

wS(r) = e−r/a. For a given material and a given frequency, the Rayleigh attenuation

asymptote is solely determined by V g
eff because the rest parameters in the equation are

constant. The effective grain volumes of individual single exponentials are provided in

Table 7.7 for all three microstructures alongside those of the generalized TPC functions.

A frequency that falls into the Rayleigh regime is chosen for each microstructure, and

at the chosen frequency, the theoretically predicted attenuation is given in the table for

the various TPC functions. With the predictions from the generalized TPC functions as

reference, it is found that a single exponential produces a more accurate attenuation if its

effective grain volume is closer to that of the respective generalized TPC. The exponential

e−r/aER delivers the most accurate prediction because its effective volume is exactly the

same as that of the generalized TPC. The predictions of the exponentials e−r/aCL and

e−r/aBF may be acceptable in practice, but those of e−r/al and e−r/R deviate too much

from the respective reference value, especially for the PVT and CVT microstructures.

The attenuation predictions from the single exponentials also differ greatly from the ref-

erence curves in the high-frequency stochastic regime. In this regime, the attenuation

asymptote is given by Equation 2.26, which is repeated below as

αS
L = k2

0LaeffQL→T, (7.11)

where the correlation length of the grains is given by aeff = a for a single exponential

wS(r) = e−r/a. The correlation lengths of the various TPC functions are summarised in

Table 7.7 and attenuation predictions are also provided in the table for each microstructure

at a chosen frequency that roughly falls into the stochastic regime. Unsurprisingly, the

exponential e−r/aCL performs the best in this regime because it has the same correlation

length as that of the generalized, reference TPC. The exponentials e−r/aER and e−r/aBF

may be treated as satisfactory in this regard, while e−r/al and e−r/R are less appealing.
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7. Representing spatial autocorrelation by a single exponential

Table 7.7: Longitudinal waves in equiaxed polycrystalline CSP with the Laguerre, PVT and
CVT microstructures, comparing generalized TPC functions with single exponentials of differ-
ently defined mean grain radii. Two normalised frequencies, 2k0La, are chosen from the Rayleigh
and stochastic regimes for each microstructure, and the respective characteristic parameters (ef-
fective grain volume V g

eff and correlation length aeff) and normalised attenuation values are given
for the chosen frequencies. The attenuation results are extracted from the theoretical curves
shown in Figure 7.8, and the results of the single exponentials are given as relative deviations
to those of the respective generalized TPC functions. The last column provides the normal-
ised root-mean-square deviation (NRMSD) in theoretical attenuation from single exponentials
to their respective generalized TPC functions over the frequency ranges shown in Figure 7.8.

La
gu

er
re

TPC Rayleigh, at 2k0La = 0.3 Stochastic, at 2k0La = 18 NRMSD
V g

eff (mm3) 2αLa aCL (mm) 2αLa

Generalized 0.7021 9.6380× 10−5 0.3474 0.5402 -
e−r/al +189.10% +148.49% +24.43% +82.81% 42.83%
e−r/aER +0.00% −4.41% −12.65% −11.75% 10.46%
e−r/aCL +50.07% +38.79% +0.00% +6.25% 8.91%

e−r/aBF +68.50% +54.13% +3.94% +13.34% 12.66%
e−r/R −51.51% −51.66% −31.38% −30.83% 24.48%

P
V
T

TPC Rayleigh, at 2k0La = 0.3 Stochastic, at 2k0La = 18 NRMSD
V g

eff (mm3) 2αLa aCL (mm) 2αLa

Generalized 0.1449 4.0593× 10−5 0.2309 0.4061 -
e−r/al +616.83% +490.28% +49.74% +143.13% 107.52%
e−r/aER +0.00% −3.72% −22.34% −12.48% 18.81%

e−r/aCL +113.50% +97.56% +0.00% +10.79% 25.08%
e−r/aBF +149.01% +127.99% +5.26% +17.58% 30.42%
e−r/R +384.01% +317.81% +31.37% +65.78% 70.12%

C
V
T

TPC Rayleigh, at 2k0La = 0.3 Stochastic, at 2k0La = 22 NRMSD
V g

eff (mm3) 2αLa aCL (mm) 2αLa

Generalized 0.1249 1.9611× 10−5 0.2326 0.4622 -
e−r/al +1322.22% +1055.18% +77.78% +74.22% 129.40%
e−r/aER +0.00% −2.67% −26.62% −13.91% 22.05%
e−r/aCL +153.13% +138.16% +0.00% +6.26% 21.05%

e−r/aBF +195.45% +175.81% +5.29% +10.58% 25.38%
e−r/R +500.00% +434.32% +33.33% +34.46% 58.34%

Now it is clear that the effective radius aER and the correlation length aCL are the best

choices for the single exponential to deliver a good calculation of attenuation for the low-

and high-frequency ranges [50], respectively. However, it is usually desirable to achieve a

good quality of calculation for the whole, measurable frequency range. For this purpose,

the NRMSDs in attenuation from the single exponentials to their respective generalized
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7. Representing spatial autocorrelation by a single exponential

TPC functions are calculated across the shown frequency ranges in Figure 7.8 and the

results are provided in Table 7.7. In this case, the best choice varies between aER and

aCL depending on microstructure. Nonetheless, the effective radius, aER, is selected in

this work as the optimal parameter for the single exponential because its attenuation

prediction consistently agrees very well with the reference result in individual frequency

ranges as well as across the whole frequency range for all microstructures.

7.5 Summary

This chapter attempts to represent the two-point correlation (TPC) of an equiaxed poly-

crystal by a single exponential function. This is to address the practical need of performing

a rapid but fairly accurate calculation of attenuation and velocity based on not-so-accurate

TPC data measured from a small sample set. The main work is to choose an optimal

parameter for the single exponential such that the spatial variability of the medium can

be best described by the exponential function and the attenuation and velocity of the

propagating wave can then be best predicted.

This chapter first studies the three measurable probability functions, namely the two-point

correlation function and the distributions of line intercept and free path, that can describe

the spatial variability of polycrystals. An ideal 3D volumetric approach and a practical

cross-sectional approach are utilized to measure these functions. The latter approach

is found to be very effective in measuring volumetric statistics when using a significant

number of cross-sections and tests, and the convergence study suggests that 100 cross-

sections may be sufficient for achieving a satisfactory convergence. Actual measurements

are used to demonstrate the important relations between the three functions which allow

the TPC function to be determined by measuring either of the other two. Also, the

characteristic parameters of the line intercept and free path distributions, i.e., the mean

line intercept and the half of mean free path (also known as correlation length), are related

to the slope at the origin and the integral of the TPC function, respectively.

Then, this chapter introduces the five potential parameters that can be used as the mean

grain radius a in the single exponential, wS(r) = e−r/a. Four parameters are the char-
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7. Representing spatial autocorrelation by a single exponential

acteristic lengths of the TPC function, with 1) the mean line intercept al relating to its

slope at the origin, 2) the correlation length aCL being its integral over r, 3) the effective

radius aER relating to its triple integral over r, and 4) the best-fit radius aBF being the

coefficient of its best fit to the single exponential. The fifth parameter is the equivalent

spherical radius R which needs to be determined by stereological methods. Three sets

of equiaxed polycrystals with the same number of grains per unit volume but different

grain uniformities are generated to demonstrate these lineal parameters. The three poly-

crystalline microstructures represent the typical scenarios where a single exponential can

describe the actual TPC to the best, modest, and worst extents, respectively.

Lastly, this chapter evaluates the goodness of the single exponential in delivering at-

tenuation and velocity predictions when using different lineal parameters. Longitudinal

attenuation and phase velocity are calculated for the three microstructures by using the-

oretical models and 3D FE simulations. The theoretical predictions obtained from the

actual, generalized TPC function agree very well with the results of the FE simulations,

and they are thus used as reference to assess the predictions from the single exponentials.

It is found that fairly accurate velocity results can be produced from the single exponen-

tial by using any of the five lineal parameters, while attenuation results are very sensitive

to the choice of parameter. It is discovered that the effective radius aER and the correl-

ation length aCL are the best choices for low- and high-frequency ranges, but the former

is the best overall choice for the single exponential to deliver an accurate prediction of

attenuation in the whole frequency range for all three microstructures.

In conclusion, the effective radius aER is the optimal parameter selected in this chapter for

the single exponential. Practically, this means that the discrete TPC function w(r) needs

to be first measured from the cross-sectional micrographs of a sample. The measurement

is then used to determine the effective radius by aER =
∫
w(r)dr3 via discrete numerical

integration. Fairly accurate attenuation and phase velocity results will eventually be

obtained by inserting the single exponential wS(r) = e−r/aER into a theoretical model

for prediction. On the contrary, the a parameter inversely determined from attenuation

and phase velocity measurements would most closely represent the effective radius of the

grains when using the single exponential wS(r) = e−r/a as the basis function for inversion.
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Chapter 8

Elastic waves in polycrystals can have

three modes

8.1 Introduction

It is a common knowledge that one longitudinal and two transverse modes exist in a ho-

mogeneous elastic solid while only one longitudinal acoustic mode can be found in a fluid.

There is no doubt that the situation would be much more complex for random inhomo-

geneous media. For a fluid-saturated porous medium for example, it was theoretically

predicted by Biot [93, 94] and later experimentally observed by Plona [95] that two bulk

longitudinal modes co-exist in the medium, with the fast mode travelling predominantly

in the solid and the slow mode propagating primarily in the liquid. A similar finding

was experimentally discovered [96] and then theoretically explained [97] for colloidal sus-

pensions in which case two longitudinal modes occur in the high-frequency regime: the

velocity of the first mode is between those of the solid and fluid phases, while the second

mode is even slower than the fluid and was interpreted as a coupled interfacial Stoneley

wave [96,97]. The occurrence of two longitudinal modes has since been widely found in a

variety of random media containing fluids, and particularly, in trabecular bones [98–100].

For random polycrystalline media, prior theoretical studies [23, 26] have disclosed the

co-existence of two longitudinal modes at high frequencies that have similar levels of at-

tenuation but greatly differing phase velocities. The same studies have also demonstrated
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8. Elastic waves in polycrystals can have three modes

the occurrence of two transverse modes. The experimental and numerical studies so far,

however, have observed only one mode, see e.g. [13, 14, 17, 28, 29, 38, 39], and no evidence

has been found for the second mode. This may be because these studies have not reached

a high enough frequency where the second mode is prominent.

Although the occurrence of the second mode is still in doubt, the theoretical study of

this thesis has discovered a third mode for either longitudinal or transverse waves in

polycrystals. The purpose of this chapter is to report this new finding and discuss the

possibility of three modes co-existing in actual wave propagation problems. This chapter

is first devoted to the study of a simpler scalar case in §8.2. This scalar case is formulated

by considering only longitudinal wave scattering and neglecting the contribution of mode-

converted scattering in the dispersion equation. Whereas it is an ideal, unphysical case,

its study forms the basis for the more complex elastic case as addressed in §8.3 and

facilitates the interpretation of the latter. This part of work is in preparation for a short

communication [P7].

8.2 Two modes for scalar wave approximation in poly-

crystals

The dispersion equation for scalar waves in polycrystals is given by Equation 2.1 by

considering only the L→ L term in the total mass operator; i.e., mL = mL→L. In the SOA

model, the mass operator mL→L is provided in Equation 2.2. Two solutions can be found

from this equation for the perturbed wave number k, representing two propagation modes

of the wave. Example solutions are given in Figure 8.1 as solid lines for polycrystalline

iron with equiaxed grains. The polycrystal is statistically isotropic and macroscopically

homogeneous, and its microstructure is described by a single-term TPC function; i.e.,

w (r) = exp(−r/a), a = 0.25 mm. The polycrystal is of cubic single-crystal symmetry

with c11 = 219.2 GPa, c12 = 136.8 GPa, c44 = 109.2 GPa, and ρ = 7860 kg/m3. The

left and right panels show respectively the imaginary and real parts of k, αL = Imk and

VL = ω/Rek, as normalised by the mean grain diameter 2a and the Voigt velocity V0L;

they are plotted versus normalised frequency 2k0La.
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8. Elastic waves in polycrystals can have three modes

The existence of the two modes can be more explicitly illustrated by the FFA model. The

mass operator mL→L of this model has a simple expression for equiaxed polycrystals

mL→L =
−8πa2k2V 2

0Lk
2
0LQL→L

a2k2 − (i+ ak0L)2 . (8.1)

With the substitution of this mass operator, the dispersion equation can be rewritten as

A4k
4 + A2k

2 + A0

a2k2 − (i+ ak0L)2 = 0, (8.2)

where

A4 = −a2V 2
0L,

A2 = 8πa2V 2
0Lk

2
0LQL→L + (i+ ak0L)2 V 2

0L + a2ω2,

A0 = − (i+ ak0L)2 ω2.

(8.3)

The numerator of Equation 8.2 is a quadratic function of k2, meaning that two pairs of

solutions can be obtained for k from the FFA model. The two solutions with positive

real and imaginary parts are chosen because they represent forward-propagating wave

modes. For polycrystalline iron, the two solutions are provided in Figure 8.1 as dash

lines. These solutions agree very well with those of the SOA model at all frequencies for

both attenuation and phase velocity. While the FFA solutions are analytically solved,

those of the SOA model are numerically obtained by using a variant of the Newton’s

method. A difficulty arises in this numerical method to find a solution that is close to

a pole. This difficulty has resulted in the absence of the second SOA solution in Figure

8.1 in the low-frequency range. This is because the second solution in this range is in

close proximity to one of the poles of the dispersion equation, which is estimated to be

k = k0L + i1/a from the denominator of Equation 8.2.

It is observable from both the SOA and FFA models that the two solutions are approx-

imately symmetric about k = k0L + i1/(2a). This is exhibited as the vertical symmetry

of attenuation about 2αLa = 1 as can be clearly seen from the inset of panel (a), and it

is also shown as the symmetry of phase velocity about VL/V0L − 1 ≈ 0 in panel (b).

A distinctive feature of the first mode is that its phase velocity at the low-frequency
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Figure 8.1: Two modes for scalar waves in polycrystalline iron with equiaxed grains: (a)
attenuation and (b) phase velocity. For the first mode of the FFA model, its phase velocity has
been corrected by adding a constant V R

L − V0L, where V R
L is the Rayleigh velocity limit; see

details in §2.4.

Rayleigh limit, V R
L , is larger than that of the high-frequency geometric limit, V G

L . This

contradicts the Kramers-Kronig causality relations which require an opposite relationship

of V R
L < V G

L [101]. It was shown [23] that the causality relations are very well satisfied

by the combination of the two modes for scalar waves in two-phase random media. Sim-

ilarly, it is reasonable to believe that the two scalar modes in random polycrystals also

collectively obey the causality relations, owing to their close analogy to those in two-phase

random media. This suggests that the two modes may physically co-exist for scalar waves

in polycrystals.

Although two modes may co-exist, the amplitude of the second mode is negligible as

compared to that of the first mode in the low- to intermediate-frequency range where wave

scattering is generally studied in physical experiments and numerical simulations. The

dominance of the first mode can be revealed by the spectral function of the mean Green’s

function, which allows for the identification of the relative amplitudes of propagating

modes. The spectral function (SF) is defined as the imaginary part of the mean Green’s

function [23]

SF (ω, k) = −Im(〈G(ω, k)〉) = −Im(
V 2

0L

ω2 − k2V 2
0L −mL

), (8.4)
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where the perturbed wave number k is considered to be on the real axis. The denominator

ω2−k2V 2
0L−mL is the dispersion function. By varying the two independent variables ω and

k, the SF surface of polycrystalline iron is calculated and plotted in Figure 8.2(a). ω and

k are represented, respectively, by the horizontal, k0L = ω/V0L, and vertical, VL = ω/k,

axes in the figure. The SF varies over several orders of magnitude in the plotted range,

and thus at each frequency ω, it is normalised by the corresponding maximum value.

This enables the visualisation of the two modes and the identification of their amplitude

contributions. Normalised SF curves are also provided in panels (b-d) for the normalised

frequencies of 1, 100, and 1000.

Figure 8.2: Normalised spectral function (SF) for scalar waves in polycrystalline iron with
equiaxed grains. (a) shows normalised SF against normalised frequency (horizontal x-axis) and
phase velocity (vertical y-axis), while (b-d) provides details for the normalised frequencies of 1,
100, and 1000.

At low frequencies below 2k0La ≈ 20, the two modes have very similar phase velocities and

are thus located at nearly the same positions with respect to the vertical axis. A further

calculation of the relative amplitudes of the two modes (by fitting
∑2

i=1Ai/{[(Reki)
2 −

(Imki)
2− k2

0L]2 + (2RekiImki)
2} to SF data, where Ai is the amplitude of mode i) reveals

that the second mode has a negligible amplitude as compared to the first mode. The

amplitude proportion of the second mode becomes larger as frequency further increases,

and it gets very close to that of the first mode at the normalised frequency of 100 as

shown in panel (d).
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8.3 Three modes for elastic waves in polycrystals

8.3.1 Occurrence of three modes

For the propagation of elastic longitudinal waves in equiaxed polycrystals, its dispersion

equation involves two mass operators, mL→L and mL→T. In the FFA model, they have

closed-form expressions for equiaxed polycrystals

mL→N =
−8πa2k2V 2

0Lk
2
0NQL→N

a2k2 − (i+ ak0N)2 . (8.5)

Substituting the total mass operator, mL = mL→L + mL→T, into the dispersion equation

(Equation 2.1) and rearranging the terms leads to

A6k
6 + A4k

4 + A2k
2 + A0[

a2k2 − (i+ ak0L)2] [a2k2 − (i+ ak0T)2] = 0, (8.6)

where

A6 = −a4V 2
0L,

A4 = a2qLL + a2qLT + a2pLV
2

0L + a2pTV
2

0L + a4ω2,

A2 = −pTqLL − pLqLT − pLpTV
2

0L − a2pLω
2 − a2pTω

2,

A0 = pLpTω
2,

(8.7)

and

pL = (i+ ak0L)2 ,

pT = (i+ ak0T)2 ,

qLL = 8πa2V 2
0Lk

2
0LQL→L,

qLT = 8πa2V 2
0Lk

2
0TQL→T.

(8.8)

As a cubic function of k2, the numerator of Equation 8.6 delivers three pairs of solutions

for k. Each pair has a solution with positive real and imaginary parts, representing a

forward-propagating wave mode. Altogether, three forward-propagating modes can be

found from the FFA model for longitudinal waves in polycrystals.
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8. Elastic waves in polycrystals can have three modes

The three FFA solutions are provided as dash lines in Figure 8.3 for the same polycrys-

talline iron as used in §8.2. By using the FFA solutions as initial guesses, three SOA

solutions are also numerically obtained and plotted as solid lines in the figure. Similarly

to the second SOA solution of the scalar case, the second and third SOA solutions have

not been found at low frequencies because they are very close to two of the poles of the

dispersion equation (k = k0L + i1/a and k = k0T + i1/a as obtained from the denominator

of Equation 8.6). The SOA and FFA models in general agree very well with each other

across the whole frequency range for all three modes.
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Figure 8.3: Three modes for longitudinal waves in polycrystalline iron with equiaxed grains:
(a) attenuation and (b) phase velocity. For the first mode of the FFA model, its phase velocity
has been corrected by adding a constant V R

L − V0L, where V R
L is the Rayleigh velocity limit;

see details in §2.4. The first and second modes in (b) are normalised by the longitudinal Voigt
velocity V0L, while the third mode is normalised by the transverse Voigt velocity V0T.

Similarly to the scalar case, the first two modes are approximately symmetric about

k = k0L + i1/(2a). Their attenuation rises and falls as frequency increases, respectively;

they show independences on frequency when the high-frequency geometric regime sets in.

Their phase velocities are close to the longitudinal Voigt velocity V0L but the first mode

shows a stronger dispersion in the low- to intermediate-frequency range than the second

mode. The third mode exhibits a very high attenuation across the whole frequency range,

and its phase velocity nearly coincides with the transverse Voigt velocity V0T.

The three modes for transverse waves in equiaxed polycrystals can be similarly obtained

from the FFA and SOA models. They are given in Figure 8.4 for polycrystalline iron.
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The first two modes show an approximate symmetry about k = k0T + i1/(2a). In contrast

to the longitudinal case, these two modes have phase velocities close to the transverse

Voigt velocity V0T. The third mode has a strong attenuation at all frequencies and has a

phase velocity in close proximity to the longitudinal Voigt velocity V0L. Its overall shape

in phase velocity is similar to that of the first mode of the longitudinal case.

Figure 8.4: Three modes for transverse waves in polycrystalline iron with equiaxed grains: (a)
attenuation and (b) phase velocity. For the first mode of the FFA model, its phase velocity has
been corrected by adding a constant V R

T − V0T, where V R
T is the Rayleigh velocity limit; see

details in §2.4. The first and second modes in (b) are normalised by the transverse Voigt velocity
V0T, while the third mode is normalised by the longitudinal Voigt velocity V0L.

8.3.2 Difficulty in observing the second and third modes

As mentioned in §8.1, only the first mode has been observed in actual experiments and

numerical simulations. The lack of evidence for the other two modes may be due to their

difficulty in observation, which is manifested in two aspects.

The first aspect is related to the strong attenuation of the second and third modes. These

two modes are associated with strongly attenuated signals and high degrees of scattering-

induced noises, and their wave signals are thus difficult to be measured within a reasonable

level of signal-to-noise ratio. The first mode also involves such a measurement difficulty

as frequency increases to a certain level where the coherent signal almost disappears.

The second aspect is due to the small amplitude proportions of the second and third
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Figure 8.5: Normalised spectral function (SF) for longitudinal waves in polycrystalline iron
with equiaxed grains. (a) shows the logarithm of normalised SF against normalised frequency
(horizontal x-axis) and phase velocity (vertical y-axis), while (b-d) provides details at the nor-
malised frequencies of 1, 100, and 1000.

modes. Using longitudinal waves as an example, the normalised spectral function (SF)

surface of polycrystalline iron is shown in Figure 8.5. At low frequencies below 2k0La ≈ 20,

the second mode co-exists with the first one and they are contained in the same SF peak.

However, the amplitude of the second mode is negligible as compared to that of the

first mode, which can be inferred from the analysis of amplitude contributions by fitting∑3
i=1Ai/{[(Reki)

2−(Imki)
2−k2

0L]2+(2RekiImki)
2} to SF data. The amplitude proportion

of the second mode becomes larger as frequency increases and is comparable to that of

the first mode at 2k0La = 100. The third mode emerges only at very high frequencies.

Its amplitude increases with frequency but is still an order of magnitude smaller than

those of the first two modes at the highest frequency of 2k0La = 100. Therefore, both

the second and third modes have small amplitudes in the low- to intermediate-frequency

ranges where actual experiments and numerical simulations are generally performed, and

thus they have not been observed so far.

It is also interesting to note that the second and third modes for longitudinal waves (and

the first mode for transverse waves) contradict the Kramers-Kronig causality relations by

violating the required condition of V R
L < V G

L . It is speculated that the combination of all

three modes may allow the causality relations to be fully satisfied.
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8.4 Summary

This chapter reports the theoretical existence of three modes in the dispersion equation

for either longitudinal or transverse waves in polycrystals and discusses the possibility of

their co-existence in actual problems. The theoretical SOA and FFA models are employed

for the study and the spatial autocorrelation of the polycrystals is represented by a single

exponential.

The simpler scalar case, rather than the elastic case of interest, is first discussed. This

case is formulated by considering only longitudinal wave scattering and neglecting the

contribution of mode-converted scattering in the dispersion equation. It is found from the

SOA and FFA models that two longitudinal modes occur in the considered scalar medium

and their perturbed wave numbers are approximately symmetric about k = k0L + i1/(2a).

The first mode evidently contradicts the Kramers-Kronig causality relations, and it is

believed that the combination of both modes would naturally avoid this contradiction. It

is shown from the spectral function analysis that the amplitude proportion of the second

mode is only prominent at very high frequencies.

This chapter then investigates the elastic case. Both the SOA and FFA models reveal

that three modes co-exist for either longitudinal or transverse waves in polycrystals. The

longitudinal wave case is utilized for further discussions. The first two longitudinal modes

are approximately symmetric about k = k0L + i1/(2a), while the third longitudinal mode

has a phase velocity in close proximity to the transverse Voigt velocity, V0T. There is

a lack of evidence from actual experiments and simulations to support the existence of

the last two modes. This is attributed to two possible reasons: the two modes are too

strongly attenuated to be detected at a reasonable signal-to-noise ratio, and the amplitude

proportions of the two modes are too small at ultrasonic frequencies as found from the

spectral function analysis. Also, it is speculated that the three modes may collectively

obey the causality relations.
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Chapter 9

Conclusions

9.1 Thesis review

Chapter 2 describes the theoretical models for plane elastic wave propagation in polycrys-

tals with statistically equiaxed and elongated grains of arbitrary crystal symmetry. The

description is primarily performed for the second-order approximation (SOA) which has

a second-order accuracy in material inhomogeneity and accounts for some possibilities of

multiple scattering. The SOA model takes the elastic and geometric properties of the

polycrystals, represented respectively by the elastic covariance and two-point correlation

(TPC) function, as input and outputs scattering-induced attenuation and phase velocity

dispersion. Then, the SOA model is simplified by invoking the Born approximation to

obtain explicit expressions for attenuation and velocity. The resulting Born model only

considers single scattering and it has a good agreement with the SOA model at low fre-

quencies but gradually deviates from the SOA model as frequency increases and transits

into the geometric regime. The analytical Rayleigh and stochastic asymptotes are de-

rived from the Born model in order to gain closed-form insights into the wave behaviours.

Lastly, this chapter describes the far-field approximation that is more computationally

efficient but still maintains a very good accuracy when compared to the SOA model.

Chapter 3 presents the three-dimensional (3D) finite element (FE) method for simulating

plane longitudinal waves in polycrystals with statistically equiaxed and elongated grains.

The equiaxed grains of a polycrystal are generated with the Voronoi tessellation, while the
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9. Conclusions

elongated grains are formed by stretching the equiaxed grains with the desired elongation

ratio. Then, a created polycrystal model is discretized in space and time, and a plane

longitudinal wave is initiated by applying uniformly distributed dynamic forces to all

nodes on the transmitting surface and by prescribing symmetry boundary conditions

(SBCs) to all outer surfaces that are parallel to the wave propagation direction. Coherent

waves are monitored on the transmitting surface and its opposite receiving surface, and

attenuation and phase velocity are determined by comparing the two coherent signals

in the frequency domain. To enable a direct comparison with the theoretical models,

the TPC function is directly measured from the FE material models and mathematically

fitted into exponential series. Lastly, a modelling approach is provided to calculate the

quasi-static limit of phase velocity.

Chapter 4 presents researches into maximising the accuracy of the 3D FE model. First,

this chapter evaluates the through-transmission and fitting approaches for the determ-

ination of attenuation and phase velocity, and it is found that the two approaches are

practically equivalent and can thus be used interchangeably. Then, this chapter performs

thorough analytical and numerical studies to estimate the modelling errors and uncertain-

ties as caused by FE approximations and statistical considerations. It is demonstrated

that the errors and uncertainties can be well suppressed by using a proper combination

of modelling parameters. Finally, an elaborated investigation is presented to assess the

influence of SBCs on the theoretical calculation of attenuation and velocity. It shows that

the theoretical calculation has a better agreement with the FE model if the SBCs effect

is considered in the TPC function and incorporated into the adopted theoretical model.

Chapter 5 uses the theoretical and FE models to study plane longitudinal wave propaga-

tion in polycrystals with equiaxed grains of two extreme crystal symmetries, namely, cubic

and triclinic. For cubic symmetry, eight materials with varying inhomogeneity factors are

employed. The theoretical and FE results show that attenuation has fourth- and second-

power dependences on frequency in the Rayleigh and stochastic regimes, while phase

velocity is independent of frequency in both regimes. Both attenuation and the deviation

of phase velocity to the Voigt velocity exhibit proportionalities to the inhomogeneity

factors QL→T and QL→L in the Rayleigh and stochastic regimes, respectively. The differ-

ence between the theoretical and FE models has a quadratic relationship to the material
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inhomogeneity factors. For triclinic symmetry, polycrystalline CSP is used to demonstrate

the good agreement in attenuation and velocity between the SOA and FE models.

Chapter 6 uses the theoretical and FE models to study plane longitudinal wave propaga-

tion in polycrystals with statistically elongated grains. A quantitative agreement is found

between the theoretical and FE models for all evaluated material cases. For attenuation,

the FE simulations support the SOA model prediction that grain shape does not exert

any influence on attenuation in the Rayleigh regime, and grain shape effect emerges as

frequency increases to the stochastic regime, showing anisotropy in attenuation. This at-

tenuation anisotropy intensifies with the increase of frequency and exhibits a complicated

behaviour as frequency transits into the geometric regime. For phase velocity, it is nearly

constant on frequency in the Rayleigh regime and exhibits dependence on propagation

angle. In the stochastic regime, phase velocity behaves differently depending on propaga-

tion direction: it remains nearly constant in the grain shortened direction while decreases

with frequency in the grain elongated direction. Also, both attenuation and directional ve-

locity change show proportionalities to the two elastic scattering (inhomogeneity) factors.

Chapter 7 evaluates the possibility of representing the spatial autocorrelation of poly-

crystals by a single exponential. First, this chapter finds that the TPC function, line

intercept distribution, and free path distribution are cross-related and they equally de-

scribe the spatial autocorrelation of a polycrystal. These probability functions can be

measured with an ideal 3D volumetric approach and a practical cross-sectional approach,

and a convergence study suggests that the latter can accurately measure volumetric stat-

istics when a sufficiently large number of cross-sections and tests are used. Then, five

lineal parameters are identified for the single exponential function to replace the actual

TPC function: four parameters are the characteristic lengths of the TPC function, while

the fifth is a parameter that can only be determined by stereological methods. Three sets

of polycrystals are generated to demonstrate these lineal parameters, and the polycrystals

have statistically equiaxed grains of different grain uniformities and represent three typical

scenarios where a single exponential can describe the actual TPC to the best, modest, and

worst extents. Finally, this chapter evaluates the goodness of the selected parameters in

representing actual microstructure and in calculating attenuation and phase velocity. It is

discovered that the effective radius aER is the best overall choice for the single exponential
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to deliver an accurate prediction of attenuation and velocity in the whole frequency range

for all three microstructures.

Chapter 8 reports the theoretical existence of three modes in the dispersion equation.

Three solutions are found in the far-field approximation and the SOAmodel, indicating the

possibility of three modes co-existing for longitudinal (or transverse) waves in polycrystals.

A further study by the spectral function approach reveals that the two non-dominant

modes are mostly not pronounced in comparison to the dominant mode, making their

detection difficult in actual experimental and numerical studies.

9.2 Key contributions

This thesis has contributed mainly in six aspects.

1) This thesis has developed a theoretical SOA model for elastic wave propagation in

polycrystals with statistically elongated grains. In contrast to prior theoretical studies

addressing the same problem [11, 21, 24–26, 40–43], this SOA model has maintained the

exact second-order accuracy in material inhomogeneity. This thesis has also derived a

new representation for phase velocity in the Born approximation of the SOA model.

This representation greatly simplifies velocity calculation by analytically evaluating the

complex Cauchy integral, which has to certain extent prevented previous studies from

calculating phase velocity. In addition, this thesis has derived a closed-form expression for

the Rayleigh velocity asymptote and its two extremes with polycrystals having statistically

infinitely-thin pancake-shaped and infinitely-long needle-shaped grains.

2) This thesis has advanced a 3D FE method for solving plane elastic wave propagation

in the time domain. The first contribution in this regard is the generation of statistically

elongated grains by stretching equiaxed ones, enabling the convenient, accurate determ-

ination of the TPC function of the elongated grains by scaling that of the equiaxed ones.

The second contribution concerns the study of the accuracy of the FE method. This

includes studying the difference between the through-transmission and fitting approaches

in determining attenuation and phase velocity and establishing their equivalency. It also

involves the comprehensive study of FE modelling errors and uncertainties and the offer-
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ing of practical approaches to suppress them by using a proper combination of modelling

parameters. Additionally, the contribution also encompasses the investigation of the SBCs

effect and the proper consideration of this effect in the theoretical calculation of attenu-

ation and velocity.

3) It has long been a great interest to evaluate when the theoretical models break down by

their lack of representation of high-order material inhomogeneity terms. Such evaluation

is achieved in this thesis by using the results of the high-quality FE modelling as reference

data. With the use of eight cubic materials with equiaxed grains and greatly differing

inhomogeneities, an increase in difference between the theoretical and FE models has been

observed as material inhomogeneity becomes larger, and the difference is shown to have

a quadratic relationship with material inhomogeneity.

4) Studying wave propagation in polycrystals with statistically elongated grains is prac-

tically important because the grains of most polycrystals in practice tend to be elong-

ated [5, 10, 22, 40]. Prior studies [11, 21, 26, 40–43] were mostly focused on theoretical

investigation and lacked quantitative experimental or numerical measurements to assess

their theoretical findings. This thesis has made a step change towards studying this

problem by using both theoretical predictions and numerical simulations. It is found

that the theoretical SOA model has a surprisingly good agreement with the FE model

for the studied polycrystals over a wide frequency range. The findings of this thesis are

mostly consistent with those already known in the literature, especially the dependence

of attenuation [11, 21, 41–43] and phase velocity [42, 43] on frequency and grain elonga-

tion. However, this thesis has additionally observed the decrease of phase velocity with

frequency in the grain elongated direction in the stochastic regime, and the quantitat-

ive relations of attenuation and directional velocity change to the two elastic scattering

(inhomogeneity) factors.

5) This thesis has attempted to represent the TPC of equiaxed polycrystals by a single

exponential. This is a practical need for performing a rapid but fairly accurate calculation

of attenuation and velocity based on not-so-accurate TPC data measured from a small

number of cross-sections of a polycrystal sample. It is found that the effective grain

radius aER is an optimal parameter for the single exponential, which can be determined
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in experiments from the measured TPC function w(r) by aER =
∫
w(r)dr3 via discrete

numerical integration. Also, this thesis has demonstrated the mutual relations between

the TPC function, line intercept distribution, and free path distribution. This allows the

TPC function to be determined by measuring either of the other two.

6) This thesis has, for the first time, reported the theoretical existence of three modes

in the dispersion equation for either longitudinal or transverse waves in polycrystals and

discussed the possibility of their co-existence in actual problems.

9.3 Future work

Following this thesis, two studies may be conducted in the future. The first study is

to achieve the inverse characterisation of microstructure for polycrystals by using ultra-

sound. This thesis has established forward understanding and theoretical models to relate

ultrasonic behaviours to microstructure and has demonstrated the great potential of us-

ing these models for inversion, so inversion is now feasible. As discussed in Chapter 1,

such inverse characterisation is practically important because microstructural statistics,

such as the size, shape and orientation of the grains, are key parameters determining the

macroscopic properties of polycrystals, such as yield strength, fatigue, and creep. Meas-

uring these statistics is desirable to ensure the required properties and structural integrity

be met by the polycrystalline materials. This is especially important for safety-critical

applications such as aerospace and nuclear.

The second study is to understand how ultrasonic waves interact with more complex

polycrystals. This thesis has studied polycrystals with statistically equiaxed and elongated

grains, but the materials have been assumed to be homogeneous on the macro scale and

isotropic on average. The polycrystals in practice, however, may also exhibit microtexture

regions, leading to inhomogeneity on the macro scale, and macrotexture, resulting in

anisotropy on average. Thus, it is necessary to study the propagation of ultrasonic waves

in such complex materials and establish forward models to describe the wave propagation

behaviours in terms of attenuation and dispersion. Also, such forward study will facilitate

microstructure characterisation for practical polycrystals of complex microstructure.
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Appendix A

Voigt velocities, inner product

coefficients, and elastic scattering

factors

This appendix provides the expressions for the Voigt velocities, inner product coefficients,

and elastic scattering factors of single-phase polycrystals that have untextured, isotropic

properties in an ensemble average sense. The crystallographic symmetry of the grains

is arbitrary. The elastic constants of the grains are denoted as cij that are contracted

from the fourth-rank elastic tensor cijkl by using the Voigt convention: 11 → 1, 22 → 2,

33 → 3, 23 → 4, 13 → 5, and 12 → 6; a total of 21 independent constants exist for a

triclinic crystal. The mass density of the grains is denoted as ρ.

The homogenised Voigt velocities are expressed as

V0L =
√

[3(c11 + c22 + c33) + 2(c23 + c13 + c12) + 4(c44 + c55 + c66)]/(15ρ),

V0T =
√

[(c11 + c22 + c33)− (c23 + c13 + c12) + 3(c44 + c55 + c66)]/(15ρ).
(A.1)

For the AMN , BMN , and CMN coefficients of the inner product IPM→N , the seven inde-

pendent ones are given in Table A.1. The rest coefficients are related to the independent

ones by CLT = CTL = −CTT = −CLL, ATL = ALT, BTL = BLT.
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A. Voigt velocities, inner product coefficients, and elastic scattering factors

The elastic scattering factors are given by

QM→N =


AMM+BMM+CMM

4ηρ2V 4
0M

M = N

AMN+BMN/3+CMN/5

4ηρ2V 2
0MV 2

0N
M 6= N

, (A.2)

where the factor η takes the values of 1 and 2 for longitudinal (M = L) and transverse

(M = T) propagating waves, respectively. The following elastic factors have also been

used in this thesis to simplify the notation of the equations

Q∗MN =


AMM+BMM/3+CMM/5

4ηρ2V 4
0M

M = N

AMN+BMN+CMN

4ηρ2V 2
0MV 2

0N
M 6= N

. (A.3)

Care must be taken to differentiate them from the elastic scattering factors as defined in

Equation A.2.
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A. Voigt velocities, inner product coefficients, and elastic scattering factors

Table A.1: The ALL, BLL, CLL, ALT, BLT, ATT, and BTT coefficients of the inner product.
Multiplying the individual numbers listed in each column by the corresponding quadratic elastic
constants in the first column and then taking the sum of the product leads to the expression for
each coefficient. Continue on next page.

ALL BLL CLL ALT BLT ATT BTT

c2
11 8 46 12 2 16 23 -9
c11c12 4 18 -24 0 -17 -46 18
c11c13 4 18 -24 0 -17 -46 18
c11c22 1 -43 -11 -1 -13 1 12
c11c23 -26 -42 46 -2 28 44 -42
c11c33 1 -43 -11 -1 -13 1 12
c11c44 28 -44 -68 0 -54 -42 66
c11c55 -32 16 32 -2 21 -27 -39
c11c66 -32 16 32 -2 21 -27 -39
c2

12 83 -49 47 5 1 68 -39
c12c13 -74 52 -46 -4 2 -44 42
c12c22 4 18 -24 0 -17 -46 18
c12c23 -74 52 -46 -4 2 -44 42
c12c33 -26 -42 46 -2 28 44 -42
c12c44 52 -76 68 2 9 42 -66
c12c55 52 -76 68 2 9 42 -66
c12c66 -68 164 -132 0 -6 12 144
c2

13 83 -49 47 5 1 68 -39
c13c22 -26 -42 46 -2 28 44 -42
c13c23 -74 52 -46 -4 2 -44 42
c13c33 4 18 -24 0 -17 -46 18
c13c44 52 -76 68 2 9 42 -66
c13c55 -68 164 -132 0 -6 12 144
c13c66 52 -76 68 2 9 42 -66
c2

14 240 -150 140 14 0 180 -120
c14c24 60 120 -140 4 -90 -180 120
c14c34 60 120 -140 4 -90 -180 120
c14c56 -240 480 -400 -4 -30 -60 420
c2

15 60 150 40 10 60 165 -15
c15c25 60 120 -140 4 -90 -180 120
c15c35 -60 240 60 0 60 -150 -90
c15c46 -120 120 200 -4 150 30 -210
c2

16 60 150 40 10 60 165 -15
c16c26 -60 240 60 0 60 -150 -90
c16c36 60 120 -140 4 -90 -180 120
c16c45 -120 120 200 -4 150 30 -210
c2

22 8 46 12 2 16 23 -9
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Table A.1: continued.

ALL BLL CLL ALT BLT ATT BTT

c22c23 4 18 -24 0 -17 -46 18
c22c33 1 -43 -11 -1 -13 1 12
c22c44 -32 16 32 -2 21 -27 -39
c55c22 28 -44 -68 0 -54 -42 66
c66c22 -32 16 32 -2 21 -27 -39
c2

23 83 -49 47 5 1 68 -39
c23c33 4 18 -24 0 -17 -46 18
c23c44 -68 164 -132 0 -6 12 144
c55c23 52 -76 68 2 9 42 -66
c66c23 52 -76 68 2 9 42 -66
c2

24 60 150 40 10 60 165 -15
c24c34 -60 240 60 0 60 -150 -90
c56c24 -120 120 200 -4 150 30 -210
c2

25 240 -150 140 14 0 180 -120
c25c35 60 120 -140 4 -90 -180 120
c25c46 -240 480 -400 -4 -30 -60 420
c2

26 60 150 40 10 60 165 -15
c26c36 60 120 -140 4 -90 -180 120
c26c45 -120 120 200 -4 150 30 -210
c2

33 8 46 12 2 16 23 -9
c44c33 -32 16 32 -2 21 -27 -39
c55c33 -32 16 32 -2 21 -27 -39
c66c33 28 -44 -68 0 -54 -42 66
c2

34 60 150 40 10 60 165 -15
c56c34 -120 120 200 -4 150 30 -210
c2

35 60 150 40 10 60 165 -15
c46c35 -120 120 200 -4 150 30 -210
c2

36 240 -150 140 14 0 180 -120
c45c36 -240 480 -400 -4 -30 -60 420
c2

44 92 -36 108 8 54 207 -81
c55c44 -56 48 -104 -4 -42 -111 93
c66c44 -56 48 -104 -4 -42 -111 93
c2

45 240 -120 320 20 150 525 -255
c2

46 240 -120 320 20 150 525 -255
c2

55 92 -36 108 8 54 207 -81
c66c55 -56 48 -104 -4 -42 -111 93
c2

56 240 -120 320 20 150 525 -255
c2

66 92 -36 108 8 54 207 -81
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Appendix B

Derivation of analytical asymptotes

B.1 Rayleigh attenuation asymptote

The Rayleigh asymptote for attenuation is derived based on the Born approximation. At

the low-frequency Rayleigh limit, the wavelength is large compared to the average grain

radius. Thus, the TPC function in Equation 2.7 can be simplified toWM→N(k, ω, ξ, θ, ϕ) =∑n
i=1(Aia

i
xa

i
ya

i
z)/π

2 by neglecting the dimensionless wave number q2
x(a

i
x)

2 + q2
y(a

i
y)

2 +

q2
z(a

i
z)

2. For the attenuation component αM→N in Equation 2.18, the TPC function can

now be pulled out of its double integral and the remaining integral can be obtained as

4π(AMN +BMN/3 + CMN/5), leading to

αM→N =
ω4
∑n

i=1(Aia
i
xa

i
ya

i
z)(AMN +BMN/3 + CMN/5)

ηρ2V 3
0MV

5
0N

. (B.1)

By summing up the two components αM→M and αM→N , the total attenuation for wave

M in the low-frequency Rayleigh limit can be derived as

αRM =
1

2π
k4

0MV
g

eff

(
Q∗MM +

V 3
0M

V 3
0N

QM→N

)
, (B.2)

where M,N ∈ L,T and M 6= N . V g
eff = 8π

∑
iAia

i
xa

i
ya

i
z is the effective grain volume. The

mode-converted elastic scattering factor QM→N and the elastic factor Q∗MM are given in

Appendix A and they follow the same definition as Rokhlin et al. [26].
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B. Derivation of analytical asymptotes

B.2 Rayleigh velocity asymptote

The derivation in this section is limited to elongated grains that are axially symmetric

about the z-axis of the global coordinate system. In this case, the coefficients of the

generalized two-point correlation (TPC) function in Equation 2.7 satisfy aix = aiy, and an

elongation ratio can be defined as Ri = aiz/a
i
x. In the Born approximation, the functions

Ci
0, Ci

1 and Ci
2 in Equation 2.15 can thus be written in a simpler form as

Ci
0 = 1 + k2

0M(aix)
2[1 + (R2

i − 1) cos2 θp],

Ci
1 = 2k0Mk0N(aix)

2[cos θps + (R2
i − 1) cos θ cos θp],

Ci
2 = k2

0N(aix)
2[1 + (R2

i − 1) cos2 θ].

(B.3)

For the function Ci
0, its second term is bounded in the interval [k2

0M(aix)
2, k2

0M(aiz)
2]

when Ri ≥ 1 and in the inverted interval when Ri < 1. This function can thus be

approximated as Ci
0 = 1, because in the low-frequency Rayleigh regime the dimension-

less wave number k0Ma
i
x and k0Ma

i
z are small. Similarly, the function Ci

2 is bounded by

k2
0N(aix)

2 and k2
0N(aiz)

2, and thus Ci
2 � 1 at the low-frequency limit. The function Ci

1 is

not always positive and its bounds can be given as [−2k0Mk0N(aiz)
2, 2k0Mk0N(aiz)

2] and

[−2k0Mk0N(2(aix)
2 − (aiz)

2),−2k0Mk0N(aiz)
2] for Ri ≥ 1 and Ri < 1, respectively. The

absolute value of Ci
1 is always much smaller than unity in the Rayleigh limit.

Equation 2.14 can now be written as

n∑
i=1

Aia
i
xa

i
ya

i
z

π2
P.V.

∫ ∞
0

ξ4

(1− ξ2)(1 + Ci
2ξ

2)2

∫ π

0

∫ 2π

0

IPM→N(θ, ϕ)[
1− Ci

1ξ

1+Ci
2ξ

2

]2 sin θdϕdθdξ, (B.4)

where the factor [1 − Ci
1ξ/(1 + Ci

2ξ
2)]2 can be approximated as unity. This conclusion

is reached differently for different signs of the function Ci
1. When Ci

1 > 0, the factor

Ci
1ξ/(1 + Ci

2ξ
2) is a positive function of ξ in the range of [0,∞]. Its maximum occurs at

ξ = 1/
√
Ci

2 and the maximum value is Ci
1/(2

√
Ci

2), which is smaller than unity according

to the above-mentioned bounds of Ci
1 and Ci

2. Thus, the factor 1/(1 − Ci
1ξ/(1 + Ci

2ξ
2))2

can be expressed in Taylor series as
∑∞

j=1 j[C
i
1ξ/(1+Ci

2ξ
2)]j−1. By neglecting higher-order

terms, the factor becomes unity. Similarly, the same conclusion can be reached for Ci
1 ≤ 0.
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As a result, the double integral in Eq B.4 is independent of ξ and can be pull-out from

the Cauchy integral, and it can be evaluated.

It is clear that the limit of the integrand ξ4/ [(1− ξ2)(1 + Ci
2ξ

2)2] is approaching zero as ξ

approaches infinity. This allows the Cauchy integral to be solved by the contour integral

and residue theorem

P.V.

∫ ∞
0

ξ4dξ

(1− ξ2)(1 + Ci
2ξ

2)2
=

1

2
P.V.

∫ ∞
−∞

ξ4dξ

(1− ξ2)(1 + Ci
2ξ

2)2
=

−π(3Ci
2 + 1)

4(Ci
2 + 1)2(Ci

2)3/2
.

(B.5)

The result can be further simplified by taking the first term of its Taylor series (with

respect to Ci
2), leading to the integral being given as −π/4/(Ci

2)3/2. Substituting the

result for the triple integral in Equation B.4 into Equation 2.13, the relative change of

velocity is obtained as

∆M→N =
1

8πηρ2V 2
0MV

2
0N

n∑
i=1

AiRi

∫ π

0

∫ 2π

0

IPM→N(θ, ϕ)

[1 + (R2
i − 1) cos2 θ]3/2

sin θdϕdθ. (B.6)

Evaluating the inner integration of Equation B.6 over ϕ and denoting x = cos θ leads to

∆M→N =
1

8πηρ2V 2
0MV

2
0N

n∑
i=1

AiRi

∫ 1

−1

IPM→N(x)

D(x)
dx, (B.7)

where

IPM→N(x) =
π

4
(q0 + q2x

2 + q4x
4),

D(x) = [1 + (R2
i − 1)x2]3/2,

(B.8)

and

q0 = 8AMN + 4BMN

[
1− cos2 θp

]
+ 3CMN

[
1− 2 cos2 θp + cos4 θp

]
,

q2 = −4BMN

[
1− 3 cos2 θp

]
− 6CMN

[
1− 6 cos2 θp + 5 cos4 θp

]
,

q4 = CMN

[
3− 30 cos2 θp + 35 cos4 θp

]
.

(B.9)

The single integral in Equation B.7 can be further evaluated and it leads to the final
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expression as provided in Equation 2.20, §2.3.2.

B.3 Stochastic velocity asymptote

For polycrystals with equiaxed grains, the relative change of phase velocity ∆M→N is

given by Equation 2.13 in the Born approximation. The factor fM→N in the equation is

expressed as

fM→N(k0M , ω, ξ, θ, ϕ) =
n∑
i=1

IPM→N(θ, ϕ)Aia
3
i

π2(1 + k2
0Ma

2
i − 2k0Mk0Na2

i cos θξ + k2
0Na

2
i ξ

2)2
, (B.10)

where the inner product has the form of IPM→N(θ, ϕ) = AMN +BMN cos2 θ+CMN cos4 θ.

It is clear that fM→N is independent of angle ϕ, and the integral over ϕ in Equation 2.13

results in a constant value of 2π. By performing a variable substitution of x → cos θ,

Equation 2.13 can be rewritten as

∆M→N =
−ω3

πηρ2V 2
0MV

5
0N

n∑
i=1

Aia
3
i×

P.V.

∫ ∞
0

ξ4dξ

1− ξ2

∫ 1

−1

AMN +BMNx
2 + CMNx

4

(1 + k2
0Ma

2
i − 2k0Mk0Na2

ixξ + k2
0Na

2
i ξ

2)2
dx.

(B.11)

Pulling x independent terms out of the inner integral leads to

∆M→N =
−ω3

πηρ2V 2
0MV

5
0N

n∑
i=1

Aia
3
iP.V.

∫ ∞
0

ξ4dξ

(1− ξ2)(1 + k2
0Ma

2
i + k2

0Na
2
i ξ

2)
×∫ 1

−1

AMN +BMNx
2 + CMNx

4

[1−D(ξ)x]2
dx,

(B.12)

where D(ξ) = 2k0Mk0Na
2
i ξ/(1 + k2

0Ma
2
i + k2

0Na
2
i ξ

2). The denominator term 1/[1−D(ξ)x]2

in the inner integral has a sharp peak at x → 1 and ξ → 1, while the numerator term

AMN + BMNx
2 + CMNx

4 is a smooth, relatively slowly changing function. Without loss

of accuracy, the numerator can be pulled out of the integral and be replaced by its value
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B. Derivation of analytical asymptotes

at x = 1, leading to

∆M→N ≈
−ω3(AMN +BMN + CMN)

πηρ2V 2
0MV

5
0N

n∑
i=1

Aia
3
i×

P.V.

∫ ∞
0

ξ4dξ

(1− ξ2)(1 + k2
0Ma

2
i + k2

0Na
2
i ξ

2)

∫ 1

−1

1

[1−D(ξ)x]2
dx.

(B.13)

The inner integral can now be evaluated and it results in

∆M→N =
−ω3(AMN +BMN + CMN)

πηρ2V 2
0MV

5
0N

n∑
i=1

Aia
3
i×

P.V.

∫ ∞
0

ξ4dξ

(1− ξ2)(1 + k2
0Ma

2
i + k2

0Na
2
i ξ

2)[1−D2(ξ)]
.

(B.14)

Substituting D(ξ) into the equation and re-arranging it leads to

∆M→N =
−ω3(AMN +BMN + CMN)

πηρ2V 2
0MV

5
0N

n∑
i=1

Aia
3
i×

P.V.

∫ ∞
0
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0Ma

2
i )
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0Na

2
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0Ma
2
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0Na

4
i ξ

4]
.

(B.15)

The Cauchy integral can be explicitly solved by using the contour integration and the

residue theorem. Under the conditions of k0Mai � 1 and k0Nai � 1, the solution is given

by

P.V.

∫ ∞
0

ξ4dξ

(1− ξ2)[(1 + k2
0Ma

2
i )

2 + 2k2
0Na

2
i (1− k2

0Ma
2
i )ξ
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0Na

4
i ξ

4]

=

 −5π/(16k3
0Ma

3
i ) N = M

−π/ [4k3
0Na

3
i (1− k2

0N/k
2
0M)] N 6= M

.

(B.16)

Thus, the relative change of phase velocity can be obtained as

∆M→N =


5(AMM+BMM+CMM )

8ηρ2V 4
0M

N = M

(AMN+BMN+CMN )

2ηρ2V 2
0MV 2

0N (1−V 2
0M/V 2

0N )
N 6= M

, (B.17)

which can be further simplified to the final expression given in Equation 2.29.
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