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a b s t r a c t 

During the last years, machine learning-based control and optimization systems are playing an important 

role in the operation of wastewater treatment plants in terms of reduced operational costs and improved 

effluent quality. In this paper, a machine learning-based control strategy is proposed for optimizing both 

the consumption and the number of regulation violations of a biological wastewater treatment plant. 

The methodology proposed in this study uses neural networks as a soft-sensor for on-line prediction 

of the effluent quality and as an identification model of the plant dynamics, all under a neuro-genetic 

optimum model-based control approach. The complete scheme was tested on a simulation model of the 

activated sludge process of a large-scale municipal wastewater treatment plant running under the GPS-X 

simulation frame and validated with operational gathered data, showing optimal control performance by 

minimizing operational costs while satisfying the effluent requirements, thus reducing the investment in 

expensive sensor devices. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Water management is currently facing a major challenge. Eu- 

ope has the responsibility to meet the objectives set by the 

0 0 0/60/EC Water Framework Directive of the European Parlia- 

ent and to ensure the protection of water while promoting its 

ustainable use to safeguard the availability of this precious long- 

erm natural resource ( The European Commission, 2015 ). Wastewa- 

er generated by human activity is currently a serious problem and 

ne of the most important sources of pollution for watercourses 

nd aquifers. The increasing volumes of wastewater with high pol- 

utant loads that our society produces, requires extensive and in- 

ensive wastewater treatments. 

Technologically advanced alternatives to solve the purification 

roblems are available on the market, and with their implementa- 

ion it would be possible to curb the appearance of pollutant dis- 

harges and their consequences, as well as facilitating their pre- 

ention. Santin et al (2017) described the application of effective 

reatments in costs of both operation and maintenance to improve 
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ater qualit. Additionally, the efficiency of a water treatment plant 

s strongly linked to the energy consumption of plant actuators, 

ainly pumping costs and the cost of the sensory system and lab- 

ratory analysis necessary for plant state monitoring. Therefore, an 

ptimized treatment at a global level would entail a huge reduc- 

ion in operating costs, and a notable reduction in levels of effluent 

ollution ( Hreiz et al., 2015a ; Kim et al., 2105 ; Asadi et al., 2016 ;

hu and Anderson, 2017 ). 

Currently, advanced control and optimization systems are play- 

ng a fundamental role in the operation of wastewater treatment 

lants, as they allow efficient plant management ( Hreiz et al., 

015 b). The active sludge process is one of the most used tech- 

ologies for the removal of organic pollutants, nitrogen and phos- 

horus in wastewater ( Van Haandel, 2012 ) and can be considered 

s a complex dynamic system characterized by a non-linear be- 

aviour, uncertainty in process parameters, external disturbances 

ue to atmospheric phenomena, and a multivariate I/O structure 

 Makinia, 2010 ). 

On-line monitoring and control of active sludge process efflu- 

nt variables such as chemical oxygen demand and total nitro- 

en, are difficult to perform, since either they are usually deter- 

ined off-line under uncertainty or they require expensive sen- 

ors, which implies a strong operational restriction ( Akına and 

gurlu, 2005 ). Using software sensors allows the estimation of 
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hese off-line primary variables through the use of on-line sec- 

ndary variables ( Haimi et al., 2013 ). In addition, on-line control 

trategies that take into account the dynamic behaviour of the 

ctivated sludge process should also consider optimizating con- 

rol operation to reduce the energy consumption associated with 

eration and pumping processes ( Gernaey et al., 2014 ). Several 

tudies have investigated this problem when applied to an active 

ludge process using dynamic optimization methods ( Fikar et al., 

0 05 ; Mulas, 20 06 ), or model-based predictive control schemes 

Bryds et al., 2008 ; Piotrowski et al, 2008 ; Han and Qiao, 2014 ). 

Machine learning-based methodologies, defined as a set of al- 

orithms that allow performing tasks of identification, control, 

nd plant optimization based on a set of registered operational 

ata represented with multiple levels of abstraction are increas- 

ngly in use. For this purpose, they make use of connectionist 

tructures of artificial neural networks (ANN) with multiple layers 

 Haykin, 2008 ). On the other hand, genetic algorithms (GAs) are 

sed both for optimizing the structure of large neural networks 

nd extracting characteristics that can be used for the tasks of 

dentification and optimal control ( Lamos-Sweeney, 2012 ). 

Neural networks have been successfully applied for the pre- 

iction and control of wastewater treatment plants ( Baruch and 

ariaca-Gaspar, 2009 ) and different adaptive schemes have been 

sed as software sensors, either based on neural networks 

 Dogan et al, 2008 ; Fernandez de Canete et al., 2016 ) or hybrid

chemes ( Noori et al., 2013 ) to estimate effluent characteristics. Ge- 

etic algorithms are heuristic search algorithms that derive their 

ehaviour from evolutionary processes in nature and perform com- 

lex nonlinear optimization tasks such as non-convex problems, 

on-continuous objective functions, etc. GAs have been success- 

ully applied in the field of biological wastewater treatment for op- 

imization and control ( Holenda et al., 2007 ; Duzinkiewicz et al., 

009 ; Piotrowski, 2016 ). 

The combination of hybrid GA systems with neural networks fa- 

ilitates the search for the optimum in comparison to the local and 

lobal search optimization methods such as sequential quadratic 

rogramming, or reduced generalized gradient ( Hreiz et al., 2015 b). 

agheri et al. (2015) developed hybrid artificial neural network-GA 

odels to predict the sludge volume index (SVI) accurately, where 

enetic algorithms were used to optimize weights and thresholds 

f the neural network models. A method to increase the efficiency 

f water treatment plants which adjusts operating requirements 

ased on the nature of the water was presented in De (2019) , pre-

enting the unnecessary waste of plant resources. Nevertheless, to 

ur best knowledge, there are hardly any works where neural net- 

orks and GAs are applied together for the optimum control of 

astewater treatment plants. 

Despite the good results obtained using these adaptive estima- 

ion and control structures applied to the control of biological reac- 

ors, it is necessary to highlight their lack of application to wastew- 

ter plants in real-time since most of these applications are based 

n simulation models using an unusually low, and unrealistic, sam- 

ling time ( Fang et al., 2011 ; Qiao et al., 2013 ). 

In this paper, a machine learning approach was applied both to 

redicting effluent variables and modelling a nonlinear wastewa- 

er process using neural networks. These neural models, combined 

ith a genetic algorithm-based scheme, were effectively used for 

he optimum control of an activated sludge process-simulation 

odel running under GPS-X framework using a function involv- 

ng aeration, pumping and disposal costs. The proposed neuroge- 

etic control strategy optimized both the consumption and the 

umber of regulations violations during plant operation while the 

ampling-time selection would enable its application to real-time 

astewater plants monitoring and advanced control. 

This paper is organized as follows: In Section 2 , the activated 

ludge process is described together with the activated sludge pro- 
2 
ess simulation model under GPS-X. Both the neural network soft 

stimation and the neural identification structure are detailed in 

ection 3 , together with the derivation of the objective cost func- 

ion used for the neurogenetic control and its corresponding de- 

ign. The performance of both the neural plant model and the neu- 

al soft estimator for chemical oxygen demand (COD), total nitro- 

en (TN) and total suspended solids (TSS) applied to the referred 

ctivated sludge plant model are shown in Section 4 , where the 

erformance of the neurogenetic controller under dry, rainy and 

tormy conditions is also shown with promising results. A discus- 

ion section is included, detailing the advantages and limitations of 

he proposed approach and comparisons with other alternate solu- 

ions and a final summary is also described in Section 5 to ex- 

lain the motivation followed here. Finally, future works will be 

resented in Section 6 . 

. Wastewater process description 

The wastewater plant under study treats an average 

0,0 0 0 m 

3 /d influent flow rate, whose wastewater treatment 

ine consists of bar screening, grit removal, pre-aeration, primary 

edimentation, activated sludge bioreactors, secondary sedimen- 

ation and a chlorine disinfection unit. The sludge treatment is 

chieved using an anaerobic digester. The removal of nitrogen and 

rganic matter is accomplished in the activated sludge process 

y employing a 80 0 0 m 

3 bioreactor consisting of an anoxic den- 

trification sector followed by aerobic nitrification with airflow 

upplied with fine-pore diffusers. The microbiological population is 

aintained through both internal recirculation of sludge removed 

rom the aerobic basin and external recirculation of settleable 

ludge withdrawn from a 60 0 0 m 

3 secondary settler. The quality 

f the wastewater entering the bioreactor and the process op- 

ration are monitored mainly by laboratory measurements, such 

s chemical oxygen demand (COD), total nitrogen (TN) and total 

uspended solids (TSS). 

The activated sludge process of the WWPT under study is repre- 

ented by a BSM1-type activated sludge process model ( Alex et al., 

008 ) to describe the removal of organic and nitrogen com- 

ounds in the bioreactor and the double exponential settling 

odel ( Takacs et al., 1991 ) for the secondary clarifier. According 

o the sensor layout of the bioreactor ( Fig. 1 ), two anoxic deni-

rification ( d ) areas representing the 40% of the total volume and 

hree aerated nitrification ( n ) areas representing the 60% of the to- 

al volume are included. It should be highlighted that oxygen is 

rovided to both anoxic and aerobic zones so that we should con- 

ider two slightly aerated tanks in series with three aerated tanks. 

ig. 2 shows a GPS-X 6.0 computer simulation model of the BSM1 

rocess (Hydromantis 2016 ). 

In this work, we assume the accessibility to the most commonly 

sed sensors and analysers. The wastewater plant considered is as- 

umed to be equipped with on-line sensors to measure the flow 

ate Q in and ammonia NH 

+ 
4 in 

in the influent, while dissolved oxy- 

en O 2 and dissolved nitrate N O 3 sensors and alkalinity ALK anal- 

sers are arranged in each tank, with additional on-line sensors 

o measure ammonia NH 

+ 
4 out 

and alkalinity AL K out in the effluent. 

he bioreactor operation include the pumping of external recycle 

owrate Q r , waste sludge flowrate Q w 

and constant internal re- 

ycle flowrate Q A , while fine-pore air diffusers generate an airflow 

ate Q a to be distributed by the basins. Additionally, off-line lab- 

ratory measurements of COD , T N and T SS concentrations were 

lso taken both for the influent and effluent streams. Table 1 shows 

 list of measurement, control and disturbance variables involved 

nto the BSM-1 WWTP operation. 

Following Alex et al. (2108), the influent dynamics are gener- 

ted considering a whole year after a stabilization period of 244 
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Fig. 1. Schematic representation of the activated sludge process of the WWTP. 

Fig 2. Schematic diagram of the ASP simulation model of the wastewater plant in GPS-X 6.0 (a) and layout of the anoxic and the anaerobic tanks (b). 

d

s

c

(

f

3

w

b

C

t

s

C

a

d

F

t

d

n

e

m

i

c

a

MATLAB-GPS-X 6.0 interface. 
ays. The average influent loads considered for the plant under 

tudy in these conditions are reported in Table 2 . 

The steady-state and dynamic simulations of the pro- 

ess were realised in the GPS-X 6.0 modelling environment 

Hydromantis, 2016 ), which uses a graphical user interface to 

acilitate dynamic modelling and simulation. 

. Neural soft-sensor, identification model and controller 

The complete controlled system is composed of a neural net- 

ork identification model of the process and a control scheme 

ased on a genetic algorithm that uses the effluent values of 

OD, TN and TSS as input variables to get the quasi-optimal con- 

rol law subjected to ASP operational constraints. It uses a neural 

oft-sensor estimator for both determining and monitoring these 
3 
OD, TN and TSS effluent primary variables from secondary vari- 

ble measurements ( Fig. 3 ). 

The control strategy presented in this paper is based on a 

ecision-making process using neural networks combined with GA. 

or each situation (the current and past states), the control scheme 

ries to reach the optimal decision (control action) according to the 

ifferent possible scenarios (dynamic system modelled by a neural 

etwork) and the objective (goal), while assuring no violation of 

ffluent constraints. 

To make the design of both, the estimators and the neural 

odel, as part of the neurogenetic control, specific tools were used 

n MATLAB code for dealing with the modelling and multivariable 

ontrol of plants. The connection between the monitoring system 

nd the MATLAB neurogenetic controller was realized through the 
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Table 1 

Measurement, control and disturbance variables for the WWTP . 

Measurement 

Variables Units 

Tank i ( i = 1 . . . 5 ) 

Oxygen 

O 2 i g O 2 / m 

3 

Tank i ( i = 1 . . . 5 ) 

Nitrate 

N O 3 i gN/ m 

3 

Tank i ( i = 1 . . . 5 ) 

Alkalinity 

AL K i molar 

Effluent Ammonia NH + 
4 out 

gN/ m 

3 

Effluent Alkalinity AL K out Molar 

Effluent Flow Rate Q out m 

3 /d

Internal Recycle 

Flow Rate 

Q A m 

3 /d

Influent Chemical 

Oxygen Demand 

CO D in (off line) gCOD/ m 

3 

Influent Total 

Suspended Solids 

T S S in (off line) gSS/ m 

3 

Influent Total 

Nitrogen 

T N in (off line) gN/ m 

3 

Control Variables Units 

External Recycle 

Flow Rate 

Q r m 

3 /d

Waste sludge Flow 

Rate 

Q w m 

3 /d

Tank i ( i = 1 . . . 5 ) 

Airflow Rate 

Q ai m 

3 /d

Disturbance 

Variables 

Units 

Influent Flow Rate Q in m 

3 /d

Influent Ammonia NH + 
4 in 

gN/ m 

3 

Temperature T in 
◦C

Table 2 

Influent nominal conditions for the WWPT Plant. 

Influent Flow Rate Q in 20.661,22 m 

3 /d

Influent Chemical 

Oxygen Demand 

CO D in 586.90 gCOD/ m 

3 

Influent Total 

Suspended Solids 

T S S in 378.13 gSS/ m 

3 

Influent Total 

Nitrogen 

T N in 48.15 gN/ m 

3 

Influent Ammonia NH + 
4 in 

22.89 gN/ m 

3 

Table 3 

Effluent contraint conditions for the WWPT plant. 

Chemical Oxygen Demand Effluent C OD e f f 
out ≤ 100 gC OD/ m 

3 

Effluent Total Suspended Solids T SS e f f 
out ≤ 30 gSS/ m 

3 

Effluent Total Nitrogen T N e f f 
out ≤ 18 gN/ m 

3 

Effluent Ammonia NH + e f f 
4 out 

≤ 0.6 gN/ m 

3 
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This section is divided as follows. First, the neural soft-sensor 

stimator is presented, the main details of the neural identification 

odel follow, and the complete control strategy is described last. 

.1. Neural soft-sensor 

The use of software sensors to infer hard-to-measure primary 

ariables from easy-to-measure secondary variables ( Han et al., 

018 ) is a common solution to overcome the drawbacks in the 

cquisition and maintenance cost of expensive TN and TSS on- 

ine sensors (Van der Broeke et al., 2014) or in the use of off-

ine measured variables, such as COD . Furthermore, legal restric- 

ions are set precisely for the maximum values of these primary 

ariables regarding effluent concentrations. In our study, the con- 

traints corresponding to these which are refrenced in the BSM1 

eport ( Alex et al., 2008 ) and listed in Table 3 . 
4 
A neural network-based soft-sensor was developed relating the 

astewater plant concentrations ( COD, TN, and TSS at the effluent 

tream) with sampled values of secondary variables that could be 

easured on-line in a reliable, accurate and non-expensive way. 

he set of secondary variables were chosen among those provided 

y a sensory system that was assumed to be physically installed at 

he wastewater plant, and was also present in the GPS-X simula- 

ion model. 

The neural soft-sensor is defined properly using a vector of in- 

uts x i ∈ R 

N x i of dimensionality N x i selected among the secondary 

ariables, a vector of outputs ˆ x s ∈ R 

N x s of dimensionality N x s defin- 

ng the estimations of primary variables, related by 

ˆ 
 s, t+ T p = NN s 

(
x i, t , x i, t−T s , . . . .θs 

)
(1) 

here N N s is the soft-sensor function, θs ∈ R 

θs is a vector of pa- 

ameters (weights and biases) to be learned from operational data, 

 p is the estimation sampling interval, T s is the plant sampling in- 

erval and t is the actual time. The structure of the neural soft es- 

imator is illustrated in Fig. 3 as part of the neurogenetic control 

tructure. 

To select the most suitable secondary variables for our con- 

rol purposes, a multivariate statistical technique based on the PCA 

ethodology reported in ( Zamprogna et al., 2005 ) was applied. 

he methodology is based on a so-called sensitivity matrix, which 

easures the degree of sensitivity of each secondary variable with 
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Fig. 3. Schematic of the neurogenetic control system of the wastewater plant showing the neural network identification, neural software sensor and genetic controller. 
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Fig. 4. Structure of the neural soft-sensor estimator with I/O layout (TDL tapped 

delay line). 
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espect to the primary variables. This matrix is normalized and us- 

ng a PCA approach the directions (in this case meaning the sec- 

ndary variables) with a higher sensitivity to the primary variables 

re selected. 

To determine the order of the lag space that should be con- 

idered for each secondary variable, the proposed methodology by 

e and Asada (1993) was followed, resulting in a value of 20 lags 

or each secondary variable. Once the lag space was determined, 

pecific past samples of each of the secondary variables of the set 

entioned above were selected using the sensitivity matrix terms 

efined as the partial derivative of the different lagged variables 

ith respect to the variables to be estimated. 

After applying the selection method, the inputs to the 

eural soft estimation network turned out to be a sub- 

et of the delayed values of secondary variables x i, t = 

 Q in (t) , NH 

+ 
4 in 

(t) , O 2 j (t) , N O 3 j (t) , AL K j (t) , NH 

+ 
4 out 

(t) , AL K out (t) } 
ith j = 1 . . . 5 sampled at T s = 15 min, whereas the outputs were

iven by ˆ x s,t+ T p = { ̂  COD t+ T p , ̂ T N t+ T p , ̂  T SS t+ T p } primary variable 

stimations. These values were computed one-step ahead using 

 larger sampling interval of T p = 4 h = 16 T s , according to the

ff-line measurement procedure usually accomplished over the 

ffluent stream in the full-scale plant. The I/O structure of the 

eural soft estimator is illustrated in Fig. 4 . 

Specific tools were used in MATLAB code to deal with the de- 

ign, training, and validation of the neural estimator whose details 

re reported in Fernandez de Canete et al. (2016) . 

.2. Neural identification model 

The goal of the identification model of the plant was to predict 

he dynamic behaviour of the WWTP plant by relating the evo- 

ution of the secondary variables to their current and past values 

ogether with the control input variables. 
5 
The neural identification model is defined properly using a first 

ector of inputs x i ∈ R 

N x i of dimensionality N x i selected among the 

econdary variables, a second vector of inputs u i ∈ R 

N u i of dimen- 

ionality N u i corresponding to control inputs to the plant, and a 

ector of outputs ˆ y j ∈ R 

N y j of dimensionality N y j defining the esti- 

ations of a subset of secondary variables (excluded influent and 

ffluent variables), all related by 

ˆ 
 j, t+ T s = NN i, j 

(
x i, t , x i, t−T s , u i, t , u i, t−T s , . . . .θI, j 

)
(2) 
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here N N I, j is the set of the identification model functions 

one neural network j for each estimated secondary variable, j = 

 , . . . , N y j ), θI, j ∈ R 

θI, j is a vector of parameters (weights and bi- 

ses) to be learned from operational data for each j . The structure 

f the multiple neural identification model is illustrated in Fig. 3 as 

art of the neurogenetic control structure. 

Therefore, the outputs of the multiple output neural identifica- 

ion model (predictions of O 2 and N O 3 concentrations, NH 

+ 
4 

and 

lkalinity in tanks) were used in inferring the primary variables 

OD, TN and TSS using the neural software sensor described previ- 

usly, while the input variables of the neural identification model 

ere chosen among the secondary variables of the plant at pre- 

ious time steps together with the output signals of the actuators 

the airflow rates both in the anoxic and aerobic areas and the re- 

irculation and sludge excess flowrates). Fig. 3 shows the neural 

dentification structure as part of the neurogenetic control scheme. 

The input layer dimension was selected using the multi- 

ariate statistical approach based on PCA, as was described 

ormerly for the neural network soft-sensor estimator. The pro- 

edure is defined as follows. Due to the characteristics of the 

astewater treatment process, up to 45 previous time steps, 

ith sampling T s = 15 min, of each of the sensor measure- 

ents are considered as possible inputs for the identification 

etwork. In this way, if a similar notation as in the previous 

ection is used, the secondary variables set would be x i, t = 

 Q in (t) , NH 

+ 
4 in 

(t) , O 2 j (t) , N O 3 j (t) , AL K j (t) , NH 

+ 
4 out 

(t) , AL K out (t) } 
ith j = 1 . . . 5 while u i,t = { Q r (t) , Q w 

(t) , Q a i (t) } with

 = 1 . . . 5 , whereas the output variables set would be 

he estimation of the referred secondary variables ˆ y j, t = 

 ̂

 O 2 j (t) , ̂ NO 3 j (t) , ̂ ALK j (t) , ̂  NH 

+ 
4 out (t) , ̂ ALK out (t) } that are, in 

urn, a subset of inputs to the inference soft-sensor. The variable 

election process is similar to the one in the previous section and 

he I/O structure of the neural identification model is shown in 

ig. 5 . 

.3. Neurogenetic controller 

Once the inference soft-sensor and the dynamic identification 

odel of the plant were developed and validated, the next stage 

n the controller design consisted of developing the control subsys- 

em. This subsystem is responsible for calculating the action that 

ust be applied to the different actuators, so the system evolves 

ollowing the desired path, taking into account a specific cost func- 

ion. 

For a given plant state history and control action, the evolu- 

ion of the system will be forecasted using the dynamical model of 

he plant. Therefore, this subsystem should estimate a control ac- 

ion that minimizes the cost function while reducing the number 

f constraint violations. Thus, the future output of the system can 

e predicted depending on the control inputs and the plant state 

volution through a nonlinear function. 

In this way, the optimization problem for controlling the 

astewater treatment process can be stated as a problem of find- 

ng the input that minimizes the norm of the cost function, mul- 

iplied by a weighting matrix between the reference command to 

ollow and the neural network model output, considering as input 

nd the past and current states of the wastewater plant. 

As for the control strategy proposed in this paper, the control 

ction will be estimated following an optimization schema based 

n genetic algorithms (GA). These methods are based on the ge- 

etic processes of biological organisms. Natural populations evolve 

ccording to the survival of the fittest principles. So the individuals 

hat are better adapted to the environment tend to have relatively 

 higher number of offspring so that the genes from these highly 

dapted individuals spread to an increasing number of individuals 

n each successive generation. It should also be taken into consid- 
6 
ration that the string characteristics from different ancestors can 

ometimes produce offspring that are even better adapted to the 

nvironment. In this way, species evolve to become better suited 

o their environment in an iterative way. One important advantage 

his kind of algorithms has is the fact that for obtaining the op- 

imum, it does not depend on the derivatives of the function to 

ptimize, so all kinds of functions can be optimized using this ap- 

roach. 

The proposed goals of the control strategy consist of minimiz- 

ng both the operational costs and the effluent limits violations. In 

he case of the present study, the operational cost function T C(t) 

ill follow the expressions developed in Foscoliano et al. (2016) so 

hat: 

 C ( t ) = k E · ( AE ( t ) + P E ( t ) + ME ( t ) ) + k D · SP ( t ) (3) 

here AE (t) , P E (t) and ME (t) are the aeration, pumping and mix-

ng costs respectively, while SP (t) represents the sludge produc- 

ion disposal term, k E is the electricity price with an assumed fixed 

alue ( Grave et al., 2016 ) and k D is the unitary disposal cost. 

The aeration energy cost over a certain time range T r can be 

xpressed as follows: 

E ( t ) = 

S sat 
O 

T r · 1800 

∫ t+ T r 

t 

5 ∑ 

i =1 

V i K L a i ( t ) dt (4) 

here K L a i is the oxygen mass transfer coefficient tightly related to 

he aeration flow Q a i in each tank, which are evaluated using the 

xpressions from Hreiz et al. (2015 a), V i is the volume of each tank 

nd S sat 
O 

is the oxygen saturation concentration. It should be noted 

hat oxygen is provided to both anoxic and aerobic zones so that 

e should consider two slightly aerated tanks in series with three 

erated tanks. The reason to provide oxygen to the anoxic zone is 

o improve ammonia removal to reduce the use of external carbon 

ources ( Foscoliano et al., 2016 .) 

The pumping cost is directly related to external recycle flowrate 

 r , waste sludge flowrate Q w 

and internal recycle flowrate Q A 

held constant) according to the expression: 

 E ( t ) = 

1 

T r 

∫ t+ T r 

t 
( 0 . 008 Q r ( t ) + 0 . 05 Q w 

( t ) + 0 . 004 Q A ) dt (5) 

ith the pumping unitary coefficients described in 

lex et al. (2008) . In the same way, mixing energy should be 

upplied according to the expression: 

E ( t ) = 

24 

T r · 1800 

∫ t+ T r 

t 

5 ∑ 

i =1 

{
( 0 . 0035 V i ) K L a i ( t ) < 20 

0 otherwise 

}
dt (6) 

ince the anoxic zones should be mixed to avoid settling condi- 

ions. Finally, the sludge disposal cost should be added as: 

SP ( t ) = 

1 

T r · 10 0 0 

(
T S S x ( t + T r ) − T S S x ( t ) + 

∫ t+ T r 

t 
( T S S w ( t ) Q w ( t ) ) dt 

)
(7) 

here T S S x is the total solid concentration in the activated sludge 

eactors in the secondary settler and T S S w 

represents the total 

olid concentration in the waste sludge flowrate whose respec- 

ive evolutions are estimated by using the dynamic clarification- 

hickening process described in Takacs et al. (1991) . 

As previously stated, the second goal of the control strategy 

onsists of minimizing the effluent limits violations. In this case, 

he Effluent Quality Index (EQI) will be used. This index is related 

o the fines paid due to discharging pollutants into receiving wa- 

ers and is expressed as follows: 
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Fig. 5. Structure of the neural identification model with I/O layout (TDL tapped delay line). 
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QI ( t ) = 

1 

T r · 10 0 0 

(∫ t+ T r 

t 

((
B SS T SS ( t ) + B COD COD ( t ) + B TN T N ( t ) + B NH + 

4 
NH + 4 out ( t ) 

)
Q out ( t ) 

)
dt 

)
(8

ith values of B SS = 2 , B COD = 1 . 2 , B T N = 30 , B NH + 
4 

= 30 , and Q out 

s the measured effluent flowrate. 

Because more than a single criterion is required to be opti- 

ized, a multi-objective control function was used. The ‘Pareto 

ominance’ concept will be used for the optimum search in which 

 given solution dominates another one only if it leads to an equal 

r better performance in every evaluation criterion. Therefore, a 

olution is said to be Pareto-optimal if any other feasible solution 

oes not dominate it ( Hreiz et al., 2015 a). 

So, the multicriteria function to be optimized can be expressed 

s: 

 ( x, u ) = [ T C ( t ) , EQI ( t ) ] (9) 

n this study so that the function to be minimized was evaluated in 

ach time step ( t j ) with a time horizon of 4 hours, where only the

rst optimized control action will be applied. Therefore, in each 
7 
ime step, the optimization problem can be stated as: 

in 

u 
J 
(
x, u, t j , t j + k T r 

)
= 

[ 

t= t j + k T r ∑ 

t= t j 
T C ( t ) , 

t= t j + k T r ∑ 

t= t j 
EQI ( t ) 

] 

(10) 

ubject to 

I. The evolution process is approximated according to the neu- 

ral identification model set N N I and the neural-soft predic- 

tive sensor N N s presented in previous subsections. Therefore 

ˆ x t+ T s = N N I ( x t , u t ) . 

II. In each time step the initial conditions will be used as the state 

of the system at the given time. 

II. The control actions will be restricted by the operational con- 

straints imposed by the actuators. So, u ∈ R 

10 with 0 ≤ u i ≤
u i,max ∀ t , as there are 7 control input u t = { Q r , Q w 

Q a i } i =
1 . . . 5 . 

. Results 

As was stated in previous sections, the complete neuro-genetic 

ontroller was developed following three different phases. 
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Table 4 

Control pairs of manipulated-controlled variables. 

Airflow Q_ a 1 in Tank 1 Oxygen O_21in Tank 1 

Airflow Q a 2 in Tank 2 Oxygen O 22 in Tank 2 

Airflow Q a 3 in Tank 3 Oxygen O 23 in Tank 3 

Airflow Q a 4 in Tank 4 Oxygen O 24 in Tank 4 

Airflow Q a 5 in Tank 5 Oxygen O 25 in Tank 5 

Airflow Q a 6 in Tank 6 Oxygen O 26 in Tank 6 

Airflow Q a 7 in Tank 7 Oxygen O 27 in Tank 7 

Airflow Q a 8 in Tank 8 Oxygen O 28 in Tank 8 

External recycle flowrate Q r Effluent ammonia NH + 
4 out 

Waste sludge flowrate Q w Nitrate N O 3 , 2 at the output of the anoxic zone 

o

o

4

h
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The first stage is responsible for determining the neural soft- 

are sensor of the dynamic process. Second, a neural network- 

ased model of the process dynamics was determined using sam- 

les of the complete I/O values set. Finally, this latest neural model 

as used to derive a genetic-based controller whose objectives in- 

lude minimizing both the cost function and the number of efflu- 

nt constraints violations. 

The wastewater treatment plant model was developed using 

ydromantis GPS-X 6.0 and the MATLAB environment was the 

019 version. The proposed neural networks were developed us- 

ng the MATLAB specific neural network library. The genetic algo- 

ithms were coded in MATLAB without using any specific library. 

he connection between the Hydromantis wastewater plant model 

as made by means of the MATLAB link provided in the Hydro- 

antis GPS-X environment. 

.1. Results with software sensor and identification model 

The structure of the software sensor is a two hidden layer sin- 

le perceptron with a 100-55-25-3 neuron architecture, where the 

idden layer configuration was selected after a trial-and-error pro- 

edure using a pruning algorithm based on the Optimal Brain Sur- 

eon methodology ( Christiansen et al., 2012 ). 

A multi-fold cross validation approach was made starting from 

 subset of 4200 points obtained from several experiments carried 

ut with the GPS-X model during a simulation span of ten days of 

peration. 

Comparison between GPS-X measured and predicted data by 

he neural software estimator shows its ability to accurately es- 

imate the COD, TSS and TN concentrations for each T p = 4 h sam- 

ling interval (Figs. 6 and 7) by exclusively using actual and de- 

ayed values of the selected set of secondary variables by the PCA- 

ased methodology described in Section 3.1 with a sampling time 

 s = 15 min. 

The neural identification network is responsible for learning the 

ynamic behaviour of the secondary variables, in a way, it can re- 

ate the level of the secondary variables with the control inputs 

nd past states. Therefore, the outputs of the neural identification 

odel are the estimated values of the secondary variables in the 

ollowing time step while the inputs of the neural model consisted 

f a combination of selected measurable secondary variables at 

revious time steps together with the control actions. 

Due to the specific dynamic characteristics of the plant pro- 

ess, up to 20 previous time steps of each of the sensors mea- 

urements are considered as input candidates for the identification 

eural network, following the same strategy that was presented in 

 previous section for determining the input set for the software 

ensor network. 

The behaviour is modelled using a single neural network, with 

 50-35-15-1 feedforward architecture per estimated secondary 

ariable, each trained using a Levenberg-Marquardt algorithm with 

 different subset of 1500 points selected randomly from a simula- 

ion data set with a sampling T s = 15 min. The simulation set was 

btained using PID algorithms controlling the O 2 level in both the 

noxic (slightly aerated) and aerobic tanks and considering a wide 

perating range. 

The neural net was also validated with a subset consisting of 

 simulation span of ten days of operation and comparing its out- 

uts to the outputs of the system in independent experiments. A 

omparison between real and predicted data by the neural identifi- 

ation model is depicted in Fig. 7 , showing the ability of the neural

odel to accurately describe the process behaviour under varying 

onditions inside the operating range. 

It also should be noted that the neural identification model was 

mplemented in a way that it was re-trained if the absolute value 
8 
f the absolute error between the predicted output and the process 

utput is above a given threshold. 

.2. Results with genetic controller 

The GA controller is characterized by a population of 250 in- 

abitants, 250 generations, a mutation rate of a 2.5% and a codi- 

cation depth of 8 bits. The optimum is accepted if it is invariant 

n 15 iterations. All these parameters were estimated for achiev- 

ng a time response lower than 5 s for the computational system 

sed for controlling the neural model of the dynamic wastewater 

reatment model process. 

The output will be compared against a multi decoupled adap- 

ive neural network based PID control scheme, to validate the pro- 

osed control scheme, in a such a way that the effluent quality is 

ndirectly controlled. In the case of the present paper, the relative 

ain matrix methodology ( Seborg et al., 2016 ) was used to provide 

he pairing between the controlled and manipulated variables. 

The resulting control pairing is shown in Table 4 where Q a i is 

he i th airflow inlet, O 2 i is the O 2 concentration at the i- th sec- 

ion, Q r is the recycled sludge valve actuation and Q w 

is the valve 

ctuation of the waste sludge. 

The structure of each of the decoupled adaptive neural net- 

ork based PID control loop was designed by using a radial ba- 

is function approach, as described in Du et al. (2018) . This kind 

f adaptive neural-based PID structure has shown promising per- 

ormance in simulating wastewater treatment processes in com- 

arison to fine-tuned PID strategies. A radial basis neural network 

as used to adapt the values of the PID parameters for each con- 

roller based on delayed values of the controlled and manipulated 

ariables for each controlled pair defined in Table 4 , using each a 

-6-1 feedforward structure. 

A subset of influent data from Alex et .al (2018) is extracted 

ver a period T r of 364 days once the plant is stabilized after an 

nitial period of 245-day with T s = 15 min sampling time to check 

he performance of both control approaches. 

The chemical oxygen demand COD concentration in the effluent 

nder the influent conditions aforementioned is shown in Fig. 8 , 

hen using the two control strategies mentioned above. 

The total suspended solids TSS concentration and total nitrogen 

oncentration TN in the effluent are depicted in Figs. 9 and 10 re- 

pectively also under the same influent conditions. 

To assess the prediction results, the mean absolute percent er- 

or (MAPE), maximum absolute percent errors (MaxAPE) and cor- 

elation coefficient of prediction error (R 

2 ) as defined by 

AP E = 

1 

N 

n ∑ 

i =1 

∣∣∣∣Y pred,i − Y observ ed,i 

Y observ ed,i 

∣∣∣∣
axAP E = max 

N 

∣∣∣∣Y pred,i − Y observ ed,i 

Y pred,i 

∣∣∣∣
 

2 = 

∑ N 
i =1 

(
Y pred,i − Ȳ pred 

)
·
(
Y observ ed,i − Ȳ observ ed 

)
( N − 1 ) S Y,pred S Y,observ ed 
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Fig 6. Comparison between GPS-X measured and predicted COD, TSS and TN concentrations by the neural software estimator. 

9 
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Table 5 

Prediction errors in terms of MAPE, MaxAPE and R 2 for the software sen- 

sors in closed loop. 

Variable Neuro-genetic controller Decoupled PID controller 

Effluent COD 

MAPE 4,26 4,31 

MAPE_max 12,45 12,31 

R 2 0,88 0,89 

Effluent TSS 

MAPE 4,52 4,47 

MAPE_max 10,91 11,10 

R 2 0,90 0,90 

Effluent TN 

MAPE 3,02 2,99 

MAPE_max 9,12 9,21 

R 2 0,91 0,91 
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ere calculated, where N is the number of samples, Y pred,i is the i th 

utput of the neural predictor, Y observ ed,i is the i th observed GPS-X 

utput, Ȳ is the mean value and S Y is the standard deviation. The 

esults obtained for the three effluent primary variables are listed 

n Table 5 for both PID and neurogenetic controllers, with similar 

rediction results. 

A summary of the performance of economic consumption and 

ffluent quality can be seen in Table 6 for comparison purposes 
Fig 7. Verification for prediction of controlled variables O 22 , O 25 , N H 
+ 

4 out , NO 32 for t

10 
uring the performance of both the neurogenetic control and the 

ecoupled PID control for the previous subset of influencing con- 

itions. 

Table 6 confirms that the neurogenetic control behaves better 

han the decoupled adaptive PID control. The global energy (sludge 

roduction, aeration energy and pumping energy) is significantly 

educed and the effluent quality index is improved as well, pre- 

enting each effluent variable COD, TSS, TN and NH 

+ 
4 out 

from vio- 

ating the constraints referred to in Table 4 , with a broader op- 

rational range than those acquired with decoupled adaptive PID 

eedback controllers. 

. Discussion 

The main advantages of the application of machine learning 

echniques for the identification of wastewater treatment processes 

eside in their capability to grasp the dynamics of the system by 

sing solely operational data. Once trained, the resulting identifica- 

ion model can be used for control purposes since the output can 

e forecasted for different input sets depending on the current and 

ast states optimizing a cost function, as is shown in the present 

aper. 

An additional advantage is related to wastewater treatment 

ince some of the variables that rule the process are not usually 
he neural network identification model of the wastewater treatment process. 
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Fig 7. Continued 
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easured in real-time due to the high cost of the sensors and/or 

he related high maintenance costs. In this way control schemes 

an only be validated by off-line laboratory measurements. There- 

ore, using neural networks enables the development of software- 

ased sensors using available secondary measurements to infer 

rimary outputs values and, for control purposes, predictions. 

One of the main difficulties in designing neural network-based 

oftware sensors resides in selecting the most significant set of 

econdary variables, the final network structure and the proper 

alue of the sample time, that should be selected according to the 

ynamics of the process. The set of secondary variables should be 

apable of grasping the behaviour of the primary variables, how- 

ver, introducing a very large space dimension may lead to over- 

tting and, in extreme cases, translate into a large computational 

ime. In the present paper a PCA based method was used due to 

ts ability to select the secondary variables that are maximally in- 

ependent in a linear sense while minimizing correlations among 

he variables. 

The selection of the sampling time is intrinsically linked to the 

ynamic characteristics of the process to be modelled/controlled. 

n the case of biological wastewater treatment plants, it is a 

ell-known fact that it involves a wide range of time constants. 
11 
hanges of dissolved oxygen concentration may occur in the range 

f minutes while the time constant for substrate concentration 

ould reach hours, depending on the hydraulic retention time and 

he reaction rate. Variation of the microbial population occurs in a 

ange of days. However, the typical time delay of the hardware in- 

trumentation might range from the few minutes of the dissolved 

xygen to more than 10 minutes for the ammonia and nitrogen 

nalysers, to a few hours for the solids concentration. 

For these reasons, the sampling times were chosen so that the 

rocess dynamics in the activated sludge process and the realistic 

ime response of the hardware instruments were included. In our 

articular case, the value of T p = 4 h, compatible with a successful 

rediction, was selected since this is the minimum value currently 

sed during the off-line measurement procedure that is performed 

n the effluent stream in the wastewater plant considered. Larger 

alues for sample time would render an unstable prediction. 

In the case of the optimization problem a genetic algorithm ap- 

roach was chosen due to its flexibility since it is based on the 

esting and selection of fittest individuals. Unlike traditional hill 

limbing approaches, they do not evaluate and improve a single 

olution, but a set of solutions having flexibility, efficiency and 

obustness as their main properties. The strength of this paral- 
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Fig 8. Comparison between the COD effluent output using the neurogenetic control scheme (blue) against decoupled adaptive PID controllers (red) for a 364-day period. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Comparison between the TSS effluent output using the neurogenetic control scheme (blue) against decoupled adaptive PID controllers (red) for a 364-day period. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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el process is enhanced by the mechanics of population modifica- 

ion, making GAs adequate candidates even for NP -hard problems 

Baese et al. 2014) . In the case of the present paper, the input to

he cost function is a set of possible valid control inputs and the 

enetic algorithm chooses the set that optimizes the cost function 

nvolving both energy consumption and constraints violations. 

The obtained results show that the proposed method results 

n an adequate performance and it is a relatively simple approach 

ince both the software sensor as the dynamic model development 

re based on I/O operational data. In contrast to this, the perfor- 
12 
ance of the neural predictor relies tightly on the I/O data con- 

ent, so that they must be representative of the entire operational 

orkspace. Otherwise, the generalization capabilities exhibited by 

he neural networks would be reduced, causing malfunction. Ad- 

itionally, the optimization algorithm does not impose hard con- 

traints in the cost function since it relies on evaluating the cost 

unction in the possible input set. 

Nevertheless, the practical implementation of the proposed 

imulated approach would require an extra investment in extend- 

ng the actual limited monitoring system to capture the easy to 



J. Fernandez de Canete, P. del Saz-Orozco, J. Gómez-de-Gabriel et al. Computers and Chemical Engineering 144 (2021) 107146 

Fig 10. Comparison between the Total Nitrogen effluent output using the neurogenetic control scheme (blue) against decoupled adaptive PID controllers (red) for a 364-day 

period. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Comparison results with different climatic conditions for quality and economic perfor- 

mance. 

Variable Neuro-genetic control Decoupled PID control 

Effluent COD 

% of limit violations ∗ 2,10 % 5,82 % 

Mean (g COD /m 

3 ) 58,86 69,31 

Effluent TSS 

% of limit violations ∗ 2,15% 7,88 % 

Mean (g SS /m 

3 ) 21,17 25,61 

Effluent TN 

% of limit violations ∗ 1,21 % 2,79% 

Mean (g N /m 

3 ) 12,54 14,03 

Effluent NH + 4 out 

% of limit violations ∗ 5,21 % 12,32% 

Mean (g N /m 

3 ) 0,27 0,48 
∗ Measured in operational time 

Effluent Quality Index (kg/day) 6.276,71 7.048,92 

Total Costs ( €/day) 642 737 
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easure variables. Additionally, the performance of the software 

ensor and the dynamic neural identification model should be pe- 

iodically checked since measurements on such treatment plants 

re noisy, include sensor drift and include periods where one or 

ore sensors might be out of operation. In contrast, a significant 

ost reduction would be achieved implementing the neurogenetic 

pproach as compared to the traditional decoupled PID, represent- 

ng a 12.89 % average total cost reduction ( €/day) in our particular 

ase, according to Table 6 results. 

In summary, the proposed approach is based on using machine 

earning supervised networks for both soft-sensing and dynam- 

cs identification, and genetic algorithms to choose the pseudo- 

ptimal control action in reference to a defined cost function 

aking into account the present and past states of the system. 

he use of neural network approaches represents one of the 

ost commonly employed modelling methods for reconstructing 

he desired outputs in chemical processing. In fact, according to 

aimi et al. (2013) , the neural soft-sensor has become the most 
13 
opular technique used for data-driven sensor development due to 

ts better performance. 

. Conclusions and future works 

In the present paper, an adaptive neural network was ap- 

lied to estimating the effluent characteristics of a wastewa- 

er treatment process model from secondary variables, while 

n additional neural network was developed to estimate the 

ynamic behaviour of the referred secondary controllable 

ariables. 

A pseudo-optimal genetic algorithm was implemented to deter- 

ine the control actions based on the legal effluent concentration 

onstraints and the economic costs involved in the actions of the 

ctuators. The whole neuro-genetic system composed of the soft- 

are sensor module, the identification network and the genetic 

ontrol module was coded using specific tools within MATLAB and 

PS-X software. 
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The proposed control schema offers the possibility of real-time 

mplementation since it offers a high-speed response to influent 

ondition changes. Better results were obtained with the neuro- 

enetic control than those obtained with decoupled adaptive PID 

ontrol, both in complying with the legal constraints and achiev- 

ng lower economic expenses. 

It is also necessary to highlight the potential benefits of artifi- 

ial neural networks combined with GA when applied to the mul- 

ivariable control of nonlinear plants, as was demonstrated with a 

astewater treatment process. Although the proposed schema was 

pplied to a mathematical software model of the physical process, 

t could be extended to industrial processes requiring for that pur- 

ose an extra investment in more reliable and cheaper sensors. 

The future work involves applying this strategy to a physical 

astewater process since the research group the authors collab- 

rate with is currently designing a neuro-genetic control system 

hat is going to be applied to control an experimental plant within 

he University of Malaga facilities. 
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