
Greenspecting Android Virtual Keyboards
Rui Rua

HASLab/INESC TEC, Portugal
University of Minho, Portugal

rui.a.rua@inesctec.pt

Tiago Fraga
HASLab/INESC TEC, Portugal
University of Minho, Portugal
tiago.m.santos@inesctec.pt

Marco Couto
HASLab/INESC TEC, Portugal
University of Minho, Portugal
marco.l.couto@inesctec.pt

João Saraiva
HASLab/INESC TEC, Portugal
University of Minho, Portugal

saraiva@di.uminho.pt

ABSTRACT
During this still increasing mobile devices proliferation age, much
of human-computer interaction involves text input, and the task of
typing text is provided via virtual keyboards. In a mobile setting,
energy consumption is a key concern for both hardware manu-
facturers and software developers. Virtual keyboards are software
applications, and thus, inefficient applications have a negative im-
pact on the overall energy consumption of the underlying device.
Energy consumption analysis and optimization of mobile software
is a recent and active area of research. Surprisingly, there is no
study analyzing the energy efficiency of the most used software
keyboards and evaluating the performance advantage of its fea-
tures.

In this paper, we studied the energy performance of five of the
most used virtual keyboards in the Android ecosystem. We mea-
sure and analyze the energy consumption in different keyboard
scenarios, namelywith orwithout usingword prediction.Thiswork
presents the results of two studies: one where we instructed the
keyboards to simulate the writing of a predefined input text, and
another where we performed an empirical study with real users
writing the same text.

Our studies show that there exist relevant performance differ-
ences among the most used keyboards of the considered ecosys-
tem, and it is possible to save nearly 18% of energy by replacing the
most used keyboard in Android by the most efficient one. We also
showed that is possible to save both energy and time by disabling
keyboard intrinsic features and that the use of word suggestions
not always compensate for energy and time.

KEYWORDS
Android, Green Software, Keyboard, Energy

1This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020. The
first author is also financed by FCT grant SFRH/BD/146624/2019.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05…$15.00
https://doi.org/10.1145/3387905.3388600

ACM Reference Format:
Rui Rua, Tiago Fraga, Marco Couto, and João Saraiva. 2020. Greenspect-
ing Android Virtual Keyboards. In IEEE/ACM 7th International Conference
on Mobile Software Engineering and Systems (MOBILESoft ’20), October 5–6,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3387905.3388600

1 INTRODUCTION
In the previous century, software runtime was one of the major
concerns for language designers, compiler writers, and software
developers. Nowadays, energy consumption has become one of the
main concerns both for hardware manufacturers and software de-
velopers. In fact, the widely use, and still increasing number of
very powerful mobile computing devices requires energy efficient
hardware and software. Green software community has been de-
veloping techniques and tools to address the energy oriented deci-
sion making, which is being demanded from developers [26]. For
example, researchers studied which programming practises affect
energy consumption [9, 12, 13, 18, 28], the energy overhead of An-
droid testing [11] or development [8] frameworks.

Very much like a computer user relies on a physical keyboard
to interact with a wired computer, a mobile device user mostly
relies on a virtual keyboard to interact with a mobile device. A
virtual keyboard is a software application offering advanced fea-
tures that overcome regular physical keyboards, such as, multilin-
gual word prediction and auto-correction, key animations, among
others. Although mobile operating systems offer a predefined key-
board, there is a large number alternatives offering similar features
which users can install on their devices. Being a software applica-
tion, virtual keyboards may influence the overall energy consump-
tion of the underlying mobile device. Surprisingly, there is no re-
search work on performing a detailed analysis of the energy effi-
ciency of the mainly used keyboards, nor on analysing the energy
impact of their advanced features.

In this paper we analyse the energy consumption of widely used
virtual keyboards and their advanced features.We consider the five
most used keyboards available in the Android ecosystem, which
is the widest used mobile phone operating system worldwide. To
analyse its energy consumption we conducted two studies: First,
we used an Android testing framework to exercise the virtual key-
boards, by automatically writing a predefined input text in the
same mobile device, with exactly the same conditions, while moni-
toring the energy consumption. Next we conducted a second study
with 40 real users who also had to write the same/previous input

https://doi.org/10.1145/3387905.3388600
https://doi.org/10.1145/3387905.3388600
https://doi.org/10.1145/3387905.3388600

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Rui Rua, Tiago Fraga, Marco Couto, and João Saraiva

text. Moreover, in both studies we considered two usage scenarios.
In the former, we considered one with all features off and another
in default mode (the pre-install setup, where prediction and auto
correction are available). For the latter, we considered similar sce-
narios but in default mode: One without using the word sugges-
tions and another maximizing the use of such feature.

These studies aim at answering the following research questions:
• RQ1: Are there any significant differences in energy con-

sumption between the most used Android keyboards?
• RQ2: Can significant energy gains be achieved by minimiz-

ing the work and features that keyboards use?
• RQ3: Does the eventual runtime gain of using (computa-

tional intensive)word prediction algorithms compensate for
energy?

The results of our studies show that there is a statistically sup-
ported difference in the energy consumed by the most used key-
boards in the Android platform. We also show that the energy
gains can go up to 18% just by replacing the most energetically in-
efficient keyboard with the most efficient one. We also show that
there are cases where minimizing the number of features that key-
boards offer can help achieve a drop in energy consumption of up
to 9.3%. The preliminary results of the second study show that the
use of suggestions may not always be beneficial in saving time and
energy.

The remaining article follows the following structure: section 2
introduces the keyboards select for this study and describes the
procedure followed to automatically test andmonitor the keyboards
in real physical devices. It also presents the methodology followed
to isolate the testing environment and the system image fromunde-
sired interference. Section 3 presents the results obtained from the
studies performed automatically and with real users and section 4
presents the main conclusions that the results allow to extract. In
order to discuss some of the potential threats to this work, in 5
we discuss some of the decisions followed to elaborate this work.
Finally, in section 6 we present some of the work related to this
study and in 7 we draw the main conclusions that can be inferred
from this work and the respective results.

2 STUDYING THE ENERGY EFFICIENCY OF
VIRTUAL KEYBOARDS

In this section, we fully explain all the underlying aspects of the
conducted studies to analyze the energy consumption of Android
keyboards. First, we explain how the keyboards used for the ex-
periment were selected, and we describe each one of them (Sec-
tion 2.1). In Section 2.2, we then explain the full experimental setup:
the devices used for the tests, their state, the supplementary tools
used and their purpose, also addressing some of the precautionswe
took to minimize external interference in the procedures followed
in both studies. We present in Section 2.3 the full details of the
procedure followed for the experiment which includes 2 different
studies: one performed using an automatic approach and another
using real users.

2.1 Keyboards Under Test
A virtual keyboard application is an essential software artifact for
mobile device users. A keyboard is not a standalone application,

but instead is the software used as the input method for other soft-
ware applications, for example, to write text messages, edit texts,
write an e-mail, fill forms, etc. In fact, a virtual keyboard applica-
tion offers advanced features that greatly overcome classical phys-
ical keyboards, such as the use of multilingual auto-correction and
word prediction, key pressing animations (both visual and vibra-
tion ones), etc. Thus, the keyboard app became a swiss-army knife
that greatly contributes to improve the user experience of a mobile
device/ecosystem.

To provide those advanced features, virtual keyboards are
complex software applications. For the language specific auto-
correction feature the software needs to efficiently index large dic-
tionaries. Moreover, to give helpful word predictions, keyboards
rely on learning algorithms and artificial intelligence techniques.
We can look at nowadays keyboards as large and complex soft-
ware systems. For example, GBoard keyboard (Google keyboard)
application is written in several programming languages and in
its version 4.1.2.3 it has about 265, 104 lines of code as shown in
Table 1.

Language #Files #Lines LoC

Java 664 117095 75181

C/C++ 127 1923 14543

Bash 3 137 121

HTML/CSS 7 392 77

C/C++ Header 158 15788 9941

XML 1338 241308 164727

Make 1 8 9

Gradle 1 110 87

Others 8 491 145

Total: 2307 377252 265104

Table 1: GBoard: Languages, number of files and (source
code) lines

Being virtual keyboards an important aspect of any mobile de-
vice ecosystem, a predefined one is pre-installed by all device man-
ufacturers. The keyboard that typically comes with the Android
platform is the GBoard keyboard. However some manufacturers
tend to offer alternative keyboards (for example, Samsung pre-
installs its own keyboard, while Huawei re-usesMicrosoft Swiftkey
keyboard 1). Not only these large companies provide such ad-
vanced virtual keyboard, there is a huge number of similar key-
board applications available from the official Android Play Store.

Given the wide variety of keyboard applications, and the un-
feasibility of analyzing the energy consumption of each on indi-
vidually, we selected a representative subset of the keyboard apps
available on the Play Store. First, we used the provided number of
downloads to select the 10 most downloaded keyboards. Since the
number of downloads does not necessary mean the keyboard is
currently being used, we combined this information with the data
contained in the GreenHub [20] dataset: an ongoing green soft-
ware crowd-sourcing initiative, that contains data collected from
1https://www.microsoft.com/en-us/swiftkey

https://www.microsoft.com/en-us/swiftkey

Greenspecting Android Virtual Keyboards MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

more than 60, 000 currently running devices, which included the
app packages installed in each of them. Using the GrenHub dataset
we select the five most used keyboards from the previous set of 10.
Samsung keyboard was excluded from this set because it is only
available for Samsung devices, which do not support our energy
monitoring framework (see Section 2.2), and its applicability is
limited compared to the other alternatives. Table 2 shows the five
keyboards we consider in our empirical studies, specifying the An-
droid package, the app version, number of downloads, andwhether
are available in other mobile platforms.

Cheetah Fancykey Go Google Swiftkey

Auto-Capitalization E E E E E
Suggestions display E E E* E E
Next word prediction E E E E E

Auto-correction E E E E E
Emoji prediction 7 E E 7 D

Gestures (swipe input) E E E E E
Multi-dictionary E E E E E**

Search engine integration E E E 7 E
Keypress animations E E E E E

Voice input E E E E E
Keypress Vibration E E D E E
Keypress Sound E E E D D

Table 2: KUT features list. E - Enabled by default, D - Dis-
ables by default.

2.2 Experimental Setup
Having defined the five representative virtual keyboards we will
consider in our study, we now present the full setup designed for
our experiments: the devices used for the tests, the tools used to (i)
precisely monitor the energy consumed by the keyboards and (ii)
to define the same tasks being executed over different keyboards,
and how we guarantee that we minimize, as much as possible, all
possible external interference to the keyboard application usage.

Mobile Device and Tailored Android: This study was conducted
on two rooted, fully-charged, LG Nexus 5 devices. Google sup-
ported upgrades from the platform version on this model up to
version 6.0.1, and it was this version that was chosen to perform
the study.The version 6 of the platform is still themost widely used
version worldwide [1], and it uses the ART (Android RunTime) vir-
tual machine, that compiles applications at install time, using AOT
(Ahead Of Time) compilation.

To have accurate energy measurements that reflected only the
computational effort of keyboards, we reduced Android to the
minimal number of processes possible, so that there are no non-
necessary processes consuming energy during the studies. In fact,
the considered Nexus 5 devices both run a customized boot image,
obtained by performing root-access changes in the 6.0.1 official
version, which was reduced to the minimal set of apps/processes
needed to conduct our study, being able to reduce the minimum
number of processes running from 8 to 3. Moreover, we restored
the boot image between different keyboard executions.

At the system level, precautions were taken to ensure that all ex-
ternal communication interfaces were disconnected. Thus, no SIM
cards were inserted in the devices, and all network and sensor in-
terfaces (Wi-Fi, Bluetooth, GPS, NFC, etc.) were turned off, as well
as the speakers. Furthermore, we also executed the AUT (App Un-
der Test) in immersive mode, in order to hide the system bar and
minimize the impact of eventual events animations associatedwith
it. All tests were also performed with the screen at the same bright-
ness level.

Energy Measurement: Measuring software power consumption
is a nontrivial process [25], also because of the difficulty in reduc-
ing external interference (commonly called the Hawthorne effect)
to the process to be monitored. Since this work aims to estimate
the consumption in order to minimize this interference, some pre-
cautions had to be taken, from the system image where the tests
were performed to the Profiler configuration and the testing pro-
cedure itself. There are many factors that might have impact the
performance of the KUT and the system itself, that can be internal
or external to the keyboard application. Table 3 reports some of
these factors that we identified and tried to minimize.

External Internal
Hardware Auto-correction Suggestions
OS version Sound and Vibration Emojis
Typing rate Theme/Layout Multi-Language support
System Load Animations Auto-capitalization

System Language Gestures Other user preferences
Table 3: External and internal factors that can impact key-
board performance

To measure the energy consumption of the virtual keyboards
we used the Trepn energy profiler 2. Although there are currently
several alternatives to estimate and measure the energy consump-
tion of applications on the Android [6, 9, 22] platform, we have
selected Trepn since it adapts perfectly to the device and the proce-
dure we intend to implement.This tool is a software-based solution
developed by Qualcomm, that works on devices with Snapdragon
chipset-based running Android, as is the case for our two Nexus 5.
Trepn can be used to profile hardware usage (like GPS, WiFi and
others), resources usage (memory, CPU) and power consumption
of both the system or standaloneAndroid applications.This system
does not need external hardware devices, as it gets its power read-
ings from the power management Integrated Circuit (PMIC) and
the battery fuel gauge software. Moreover, Trepn reportedly pro-
duces accurate estimation [3], virtually identical to those obtained
by hardware-based solutions, such as Monsoon 3.

Input Text and Test Application: Because keyboards are not stan-
dalone applications, we needed a widely used application where
the keyboard is the main input textual method. To reduce any pos-
sible noise due to background operations, this application should,
however, have a limited number of features, and not rely on (for in-
stance) network interactions or animations. Therefore, as AUT we

2Trepn Profiler: https://developer.qualcomm.com/software/trepn-power-profiler
3Monsoon: https://www.msoon.com

https://developer.qualcomm.com/software/trepn-power-profiler
https://www.msoon.com

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Rui Rua, Tiago Fraga, Marco Couto, and João Saraiva

chose the Wordpad application 4, which has a simple and clean in-
terface, and can be used offline without any background task being
constantly doing uncontrolled/unpredictable work, like searching
for an internet connection.

As input text, we randomly sampled 100 words from a para-
graph from the book ”Harry Potter and the Goblet of Fire” [27].
This text consists in words with an average length of 6 characters
and contains no punctuation. We removed the punctuation from
the text since many keyboards have different behaviours when a
dot or comma are pressed. Also, in a preliminary evaluation of the
real users study, they complained that the fact of the selected key-
boards had different places and layouts to show and select the re-
quired punctuation and that affected their writing performance.

Automate Keyboard Inputs: In order to exercise the five key-
boards, we needed to define a strategy for automatically writing
a pre-defined text input using each keyboard. Therefore, we stored
the input text in an auxiliary file, and searched for a tool that
could read its content and simulate writing it onWordpad. For this
purpose, we used the Android View Client (AVC) framework5: a
Python-based tool that evolved frommonkeyrunner [2], and which
allows to manage and interact with multiple devices connected
to the workstation. This tool has been used in similar works be-
fore [10], and uses ADB and the input command 6 to simulating
touches, taps, swipes and text input, among other events events.

Running Keyboard and Collecting Energy Metrics: Finally, for de-
veloping the testing workflow, we reused the AnaDroid frame-
work [29].We reused its tools andworkflow to define the execution
procedure, gather relevantmetrics during the execution of the tests
and generate reports from the profiled data obtained by Trepn.

2.3 Experimental Procedure
The energy consumption of each of the considered keyboards was
studied using two approaches: (i) using a fully automated approach
based on the tools described before, and (ii) by performing an em-
pirical study, with real users that tested the keyboards under con-
trolled conditions. We chose these two approaches since we aimed
at determining the potential gains that could arise from choosing
the most energy efficient keyboard, but also to study the impact
that the human factor has on such gain.

2.3.1 Automated Approach

As stated in section 2.1, virtual keyboards offer a wide range of fea-
tures, but the core component is typically the same, as is the pos-
sibility to turn on/off more advanced features. From animations,
sounds, emojis, and gestures, to complex natural language process-
ing mechanisms (with word suggestions and correction features),
all the considered keyboards offer these features with more or less
complexity.

Given the high level of customization that this type of appli-
cation offers, it was necessary to determine real usage scenarios
that could be replicated on all keyboards, and in which it was fair
to establish comparisons between them. Thus, two different usage
modes have been defined:
4Wordpad application: shorturl.at/qsuC5
5AVC: https://github.com/dtmilano/AndroidViewClient
6Input tool: shorturl.at/jlsCN

• Minimal Mode: In this mode all possible features are
turned off. This usage scenario intends to represent the
most minimalist execution scenario possible, which resem-
bles the functionality offered by a physical keyboard, and
that reduces to the minimum the computational effort of
the keyboard application. It also assures that all keyboards
are tested under the same conditions.

• Default Mode: This mode represents a usage scenario
where the enabled features are the ones provided by each
keyboard at the moment of its installation. It contains the
features that developers defined for that version, which is
the ideal keyboard execution scenario. The features acti-
vated by default, for all of our five keyboards, include word
prediction and suggestion, auto-correction, among others.

In order to configure keyboards in the minimal mode, it is nec-
essary to manually disable each of the features, using the KUT set-
tings. Table 2 shows the features that are automatically activated in
default mode for each of our five keyboards: they are marked with
′E ′. The single exception is the Swiftkey keyboard, which needs
an internet connection to download the dictionary of the selected
language and manually activate it. For this particular case, we use
an Wi-fi connection to download dictionary and then we rebooted
the imaged and wiped the device caches. Since the customized im-
age doesn’t contain another services (like Google Play Services or
a browser) in the background waiting for network connections, we
insured that no other resources were downloaded.

To perform our first study, where the five keyboards are exer-
cised both in minimal and default mode within the Wordpad app,
we use the methodology specified in Algorithm 1.

Algorithm 1 Text input simulation algorithm
loadBootImage()
for k : keyboards do

installKeyboard(k)
if mode == “minimal” then

manuallyDisableFeatures()
end if
for i=0;i<25;i++ do

text = loadTextToWrite(textfile)
wordsCoords = loadKeyboardKeyCoordinates(text)
wipeWordpadCache()
initprofiler()
openWordpad()
openKeyboard(k)
logDeviceState()
startProfiler()
writeTextInWordpad(k, wordsCoords)
stopProfiler()
logDeviceState()
closeKeyboard()
closeWordpad()
exportProfiledData()
shutdownProfiler()

end for
restoreBootImage()
cleanDalvikArtCache()

end for
generateResults()

https://github.com/dtmilano/AndroidViewClient

Greenspecting Android Virtual Keyboards MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

As discussed in Section 2.2, we use a simpler Android boot im-
age, which reduced to the minimum the number of background
processes. Thus, we start by loading that boot image to the Nexus
device. Then, for each of the (five) keyboards, a keyboard is in-
stalled in the considered mode (minimal or default). If in minimal
mode, it is requested an additional manual configuration to turn off
advanced features. After having the KUT installed and configured,
the input text is loaded, along with the mapping between each let-
ter and the corresponding coordinates in the KUT. The use of this
pre-calculated key coordinates for each keyboard is required, al-
though the Input program offers the possibility to write text with-
out explicitly sending the coordinates of each key. However, this
option doesn’t correspond to the option of pressing individually
each key with a touch, leading to different keyboard behaviours
(for instance, not showing keypress animation or not performing
auto-spacing when touching the suggestion bar).

One everything is settled, we repeat the text writing 25 times
using the KUT within Wordpad. Each of these executions consists
of the following steps: theWordpad cache is cleaned, to ensure that
there is no text related to previous tests that may cause biased data.
The Trepn service is then started, and the Wordpad is initialized.
The keyboard app opens and the device resource status is collected
(number of processes running, CPU and RAM usage, among oth-
ers) just before starting the monitoring process (’startProfiler ()’).
This step consists of using the Trepn states to temporarily limit the
beginning of the process. The next step consists of automatically
writing the text. For this step, the Input program is used through
ADB, so that each key is pressed to form thewords of the input text.
Finally, the monitoring process is finished and the device status is
recorded again. The AUT and KUT are closed, the data from the
monitoring session is exported to a csv file, the profiler is turned
off, and the data is exported to the workstation. Finally, after the
25 executions of a keyboard, the boot image is restored and the
device’s caches are cleaned.

2.3.2 Empirical User Study

As described in the previous section, it is possible to instruct a vir-
tual keyboard to write a pre-defined input text. When exploring
the energy impact of keyboards advanced features, however, a sim-
ilar automated process would be infeasible to apply in all five key-
boards. For example, automating the word prediction feature is a
complex task: keyboards use different strategies for the displaying
word suggestions: some only show three predictions, while others
display a pull-down list, sometimes in different positions withing
the keyboard. The position of the best suggestion within the list
also varies between keyboards, thus increasing even the complex-
ity and computation overhead of an automated approach.

Thus, to rigorously study the energy impact of these features,
we performed an empirical study with 40 real users. The volun-
teers that participated in our study were aged between 21 and 36,
with 17.5% being females and 82.5%males. Only 1 volunteer has
the samemobile device and 20% of them used one of the keyboards
evaluated in our study, the Swiftkey keyboard. 75% of users run
their device predefined keyboard, and 87.5 use the Android oper-
ating system. The wide variety of keyboards used by volunteers is
valuable for our study. This ensures that they are unconsciously
not privileging a specific keyboard, either because they are used

Figure 1: Statistics of the volunteers used in our study

to that keyboard or because of personal preference. The main sta-
tistics regarding the volunteers profile of this study is presented in
figure 1.

For our study with real users, we considered the two best key-
boards in terms of energy performance from the previously de-
scribed study. Moreover, we divided the users into 4 groups of ten
volunteers, so that each group evaluates 1 keyboard in a specific
execution scenario. The two scenarios are:

• Minimizing Suggestions: For each of the keyboards, 2 dis-
tinct groups of users are asked to transcribe a given text,
without resorting to the use of suggestions. With keyboards
in the default state, users should write all words. This mode
aims to represent the scenario in which the keyboard user
prefers to write the whole word instead of using the sugges-
tions.

• Maximizing suggestions: For both keyboards, groups of
10 users have to transcribe a given text, while maximizing
the use of keyboard suggestions, which is in default mode.
This mode aims to represent the scenario in which the user
prefers to always look for the suggestion instead of having
to write the full word.

The process was replicated in the sameNexus device used in Sec-
tion 2, and every user transcribed the exact same text. In order to
have a more strict control over what users were doing before and
during the process (like starting to type before the start of the pro-
filer) the same setup as in the procedure referred to in 1 was used,
with the necessary changes. The resultant procedure is described
with algorithm 2. The main differences are the fact that 2 boot im-
ages were used, almost the same used in the automatic study, but
each one containing one keyboard pre-installed and ready to use.
The image and caches were restored between each test, to prevent
the keyboard’s prediction algorithm to adapt and possibly overfit
the input text. The start and end of the profiler is now delimited
directly by the user and the step ’writeTextInWordpad()’ has been
replaced by the process of the user writing the required words.

Finally, the naive automatic procedure developed to simulate
typing text and using suggestions is also very similar to the one
developed described in algorithm 1. Since most of these keyboards
(with the exception of GBoard) are not open-source, without instru-
menting the source code or having access to the view-hierarchy, it

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Rui Rua, Tiago Fraga, Marco Couto, and João Saraiva

Algorithm 2 Real User Text input algorithm

for k : {GO, Swiftkey} do
loadBootImage(k)
for u : users do

wipeWordpadCache()
initprofiler()
openWordpad()
openKeyboard(k)
logDeviceState()
startProfiler()
realUserTextInput()
stopProfiler()
logDeviceState()
closeKeyboard()
closeWordpad()
shutdownProfiler()
exportProfiledData()
restoreBootImage(k)
cleanDalvikArtCache()

end for
end for
generateResults()

is not possible to obtain the suggested words in realtime and with
negligible computational cost. Thus, we decided to manually mea-
sure the effectiveness of each keyboard prediction mechanism in
one single test and store this information in a map data structure.
For each word of a given text, we associated the target word to the
number of characters it was necessary to type in order to appear
the word in the suggestions bar. We also evaluated for each key-
board the approximate coordinates of the place where typically
the most probable suggestion appears. Using this pre-calculated
information, we performed 25 tests using the same procedure of
algorithm 1, but with a different text input procedure, that can be
resumed in the algorithm 3.

Algorithm 3 Naive text input algorithm
textInput (wordMap, suggestionCoords) {

for word, nCharsToWrite : wordMap do
for i=0;i<nCharsToWrite; i++ do

typeChar(word[i])
end for
touchSuggestionBar(suggestionCoords)

end for
}

3 ANALYSING THE ENERGY CONSUMPTION
In this section we present in detail the results obtained in the stud-
ies described in the previous sections. Section 3.1 contains the re-
sults obtained with the automated study, while section 3.2 presents
the results obtained with the empirical study with real users.

3.1 Default and Minimal mode
The overall results for the automated experiment are depicted in
Figures 2 and 3. The former illustrates the energy consumption for
all 5 keyboards, while the latter contains the values for the elapsed

time. Each pair of box plots serves as a comparison between the
25 test executions of both testing modes: default (with only the
default features of each keyboard enabled) and minimal (with all
features disabled).

These plots show statistical differences among KUT energy con-
sumption.The keyboards with lower median and average values of
energy consumed in default mode were Go (median of 724.6J and
average of 687.5J) and Swiftkey (median of 727.9J and average
of 715.98J). Gboard and Cheetah are the most energy-greedy key-
boards, with median values of 890.7J and 816.1J .

When looking at the results for the minimal mode, the most
energy efficient keyboard were Cheetah and Swiftkey, with me-
dian values of 740.2J and 756.8J , and average values of 757.2J
and 757.6J , respectively. Swiftkey appears as one of the most en-
ergy efficient keyboards, independently of the testing mode. On
the other hand, the Cheetah keyboard was by far the one that ben-
efited more with feature disabling, while the Go keyboard actually
increased energy consumption with it, being the keyboard with
highest energy consumption in the minimal mode.

Examining the elapsed time values, illustrated in Figure 3, to-
gether with the energy consumption values, allow us to verify how
much related is the energy efficiency with performance. We can
confirm that, for the minimal mode, every KUT obtained lower
median value that the ones obtained in the default mode. The most
performance efficient keyboards were GBoard in the default mode
and GO inminimal mode, which were also the most energy-greedy
ones in the same modes. The opposite occurs, for instance, for
Cheetah in minimalist mode or Swiftkey in default mode, being
that in these modes they were the most energy efficient, but in
terms of performance they were the most inefficient.

As mentioned in Section 2.3, a wide range of metrics were col-
lected during the execution of the tests. In order to assess the po-
tential impact that each of them may have on energy consump-
tion and even on the consumption of other results, the Figure 4
presents a correlation matrix that aims to illustrate these relation-
ships. The information from the tests performed in a single dataset
was aggregated and the metrics that had no relation between the
others were filtered. In this figure it can be observed that the fea-
tures more directly correlated (marked with a deeper blue tone)
with the energy consumed are CPU 1 frequency, CPU 2 frequency,
CPU Load Normalized (load normalized across all cores, according
to the maximum CPU frequency) and battery power. The least cor-
related features are CPU 2 and 4 load, CPU load (across all cores)
and elapsed time (coinciding with the data observed in Figures 2
and 3).

3.2 Real User Interaction and Simulation
Following the same structure of the previous section 3.1, for this
studywe also present themain results with box plots. However, we
only show the results for the 2 keyboards that are cross-platform
and were the most energy efficient in the default mode, according
to the data contained in the Figure 2: Swiftkey and GO keyboard.
Since we wanted to test each mode several times, if we considered
all of the 5 keyboards, we would end up with only 4 tests for each
mode. Furthermore, we decided to select the two most efficient in
default mode. The results of the energy consumed and execution

Greenspecting Android Virtual Keyboards MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 2: Energy consumption box plots of all keyboards Figure 3: Tests Elapsed time of all keyboards

Figure 4: Correlationmatrix of the sampled data during tests
execution

time in each of the 10 executions of each configuration can be seen
in Figures 5 and 6.

Regarding energy consumption, we can see that using more fea-
tures (in this case only word prediction) produces different results
on these 2 chosen keyboards, similarly to what happened in the
automated study (depicted in Figure 2). According to the results,
looking at the median, the energy consumption slightly increases
when using suggestions in the GO keyboard, but not according to
the 1st and 3rd quartile. It also led to users taking more time to
complete their task, as the values in Figure 6 suggest. As for the
Swiftkey keyboard, the suggestions mode was the most energy ef-
ficient looking at the median value, but also the most time consum-
ing.

The automatic naive procedure was also performed, in order to
simulate the use of word suggestions by real users. This experi-
ment, which was performed with the default features enabled, had
quite different results from those obtained with real users, as can
be seen in Figures 7 and 8. Using this automatic procedure, look-
ing at the median values obtained for each of the keyboards, there
was an average gain of 311.74J (a gain of 43%) per test for the GO

and 297.9J (a gain of 40.9%) for the Swiftkey. Regarding execu-
tion time, the tests took an average of 243 seconds less for the GO
and 222.2 seconds less for the Swiftkey.

4 STUDIES DISCUSSION
In this section we present the analysis and discussion for each of
the studies described previously. For the automated experiment
we analyze the results obtained for each one of the testing modes
(with minimal and default features). We describe and provide de-
tails of the statistical evidences used to retrieve meaningful conclu-
sions regarding the testingmodes and individual keyboards energy
consumption. Considering the real user experiment, we evaluate
the gains associated of word prediction features and the impact
of some aspects intrinsic to each user on energy consumption. We
also compare the procedure executedwith real userswith the naive
automatic version, described in Section 2.3.2.

By examining the data illustrated in Figure 2, it is possible to
observe that there are significant differences among the energy
consumption of the different KUT’s. For example, looking at the
median values in both testing modes, and comparing the most ef-
ficient keyboard with the least efficient, it is safe to conclude that
there are significant gains. For instance, in the default mode, the
GO keyboard has an efficiency gain of more than 18% compared to
the Google keyboard. In the minimal mode, the gain of the more
energy efficient keyboard (Cheetah) compared to the more energy-
greedy (GO) is lower (8.3%).

The illustrated data gives us a clear indication onwhat keyboard
behaved as the most energy friendly for each scenario. Neverthe-
less, it is important to prove if there is statistical evidence behind
these observations, that is, if the energy consumed by each key-
boards is statistically different from the consumption of the others.
Thus, we tested the following hypothesis, for both default and min-
imal modes:

H0 : The energy values obtained for each KUT follow the
same distribution;
H1 : The energy values obtained for each KUT does not fol-
low the same distribution;

The evaluation of these hypothesis and consequently rejection
of the null hypothesis H0 (allows us to answer to RQ1. If a statis-
tical test indicates that two datasets follow different distributions,
and we can see a clear tendency favoring one of them, we can con-
clude that indeed there are evidences that there are differences in

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Rui Rua, Tiago Fraga, Marco Couto, and João Saraiva

Figure 5: Energy consumption box plots
of the 2 keyboards tested with real users

Figure 6: Tests Elapsed time of both keyboards tested
with real users

Figure 7: Energy consumption box plots
of the 2 keyboards for the naive automatic procedure

Figure 8: Tests Elapsed time of both keyboards for the
naive automatic procedure

energy consumption between the KUT’s. To understand if there
is an overall significant relevance between the distributions of the
KUT’s energy values, first, we analyzed each one of the datasets
of each keyboard, to evaluate whether these groups are paramet-
ric or not. Since only one keyboard presented values followed a
Gaussian distribution, we assumed a non-parametric behavior of
the groups and ran the Kruskal Wallis H test [17].

The Kruskal Wallis test can be used to determine whether more
than two independent non-parametric samples have a different dis-
tribution. We ran this test twice, For each keyboard mode, we eval-
uated the p-value considering α = 0.05. The p-values of 0 and
0.026 for the KUT’s samples in default and minimal mode, respec-
tively, obtained for this test, allow us to reject H0, and respond to
RQ1, concluding that indeed there are statistical differences in en-
ergy consumption between the selected keyboards, in both modes.
This result can be explained with the fact that these keyboards are
complex applications and that differ in many aspect, from layout
aspects, animations or word suggestion algorithms. Consequently,
different characteristics and feature implementations might have
different impacts on energy consumption.

As described in the previous section 3, in the case of GO and
Swiftkey, these keyboards consumed more energy in the minimal
mode than in the default mode. GO is the most evident case, with
a median value 10.2% higher. Swiftkey, however, registered a less
significant difference, of only 3.8%. The other keyboards decreased

their energy consumption in the minimal modes. The most signifi-
cant case is the Cheetah, with a decrease of 9.3%. This may be due
to the fact that this keyboard uses a greater number of animations
by default, such as key pressing animations or an animated back-
ground. Since these animations demand additional computation to
be rendered, this sharp descent can be justified by the absence of
these animations in minimal mode.

In order to assess whether or not there is significant and sta-
tistically supported difference between using the different modes,
we need to perform another statistical test. A suitable test for this
purpose is Mann-Whitney U test [19], since is capable to evaluate
whether two independent samples were selected from populations
having the same distribution.This test was performed for each key-
board, in which the following hypotheses were evaluated:

H0 : The energy values obtained for both modes follow the
same distribution;
H1 : The energy values obtained for both modes doesn’t fol-
low the same distribution;

For the non-parametric groups (all except GO), we used the
Mann-Whitney U test [19], considering α = 0.05. The results ob-
tained are detailed in table 4. The only keyboard that doesn’t have
significant statistical differences is Google, with Cheetah being the
strongest null hypothesis reject. For the Go keyboard, a different
statistical test was performed, as its samples follow a normal dis-
tribution, according to 2 different tests performed (Shapiro [30]

Greenspecting Android Virtual Keyboards MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

and D’Agostino and Pearson’s [14]). In order to evaluate the same
hypothesis, for parametric data, the alternative is the T-test [32],
a two-sided test for the null hypothesis that 2 independent sam-
ples have identical expected values. For the same value of α , we
obtained a p-value o 0., that also allows to reject H0.

Keyboard p-value Decision
Cheetah 0 Reject H0
Google 0.076 Failed to reject H0
Fancykey 0 Reject H0
Swiftkey 0.036 Reject H0

Table 4: p-values and hypothesis test decision for each of the
KUT with non-parametric samples

The results obtained for both parametric and non-parametric
samples, combined with the comparison of the values presented
in the plots from Figure 2, allow us to answer RQ2: there are in
fact cases where it is possible to save energy by disabling key-
board features. We observed that for Cheetah, Google and Fan-
cykey. Go and Swiftkey surprisingly do not reflect this behavior.
A possible justification for this may be that the developers were
more concerned with optimizing the default activated features, or
even that such features contain performance improvements that
are removed with a feature being disabled.

The data from the correlation matrix in Figure 4 help to un-
derstand the correlation of the metrics surveyed during the test
execution process. With regard to energy consumption, there are
expected correlation values, such as CPU frequency, and power,
since Android multiplies the CPU time for each application by the
voltage required to run the CPU at a specific frequency 7. We also
can observe that energy consumption of the keyboards decreased
along the 25 tests (each test was identified by its index, column
’testid’), given the slightly red value present in the figure, as well
as the elapsed time of the tests. This observation is consistent with
a previous study that shows that less execution time does not nec-
essarily indicate less energy consumption [15].

As for the results obtained with the use of suggestions, the re-
sults were somewhat unexpected in the study with real users. The
word prediction and suggestion mechanisms were developed in or-
der to save keyboard users time and effort when writing text. How-
ever, the results obtainedwith the 20 users who used the keyboards
trying to maximize the use of suggestions ended up going against
this assumption, as they took longer to write the requested text
(figure 6. for the median value of each group, the Go keyboard had
an increase of 16.6% and the Swiftkey of 15.7%. In the case of GO,
it ended up consumingmore energy, but the opposite happened for
the Swiftkey (which goes against the results illustrated in the ta-
ble 2, in which it consumedmore energy when fewer features were
used (figure 5. Taking into account these data, the answer to the
question RQ3 would be negative, however, during the execution
of the tests with the real users, it was observed that they always
showed great concern in actually observing at each letter inserted
if the suggestion appeared in the respective bar. Also they didn’t

7Android Power profiles:https://source.android.com/devices/tech/power

recognize the text that theywere typing and this studywould prob-
ably have different results if they were writing a text they knew or
had previously thought about.

Nevertheless, in the automatic naive approach performed to
simulate the same procedure, but without resorting to real users,
it obtained concordant results with the assumption that the use
of suggestions can increase writing efficiency, both in terms of en-
ergy and time. Since the default mode of the first study correspond
to the automatic version of the mode that minimized the sugges-
tions in the studies with real users, we can compare those results
with the ones with the this naive procedure. By analyzing the re-
sults of this procedure, described in figures 7 and 8, we can observe
that the median of the values obtained for both keyboards using
suggestions is significantly lower in terms of energy and time than
the ones obtained in the first study in default mode (figure 2 and 3.
More specifically, for the median values obtained for each of the
keyboards, a gain of 311.74 Joules(43%) per test for the GO and
297.91 (40.9%) for the Swiftkey.

Given the results obtained with the real users and the naive ap-
proach, the answer toRQ3 is: Sometimes.The studywith real users
has controversial results, where the use of word suggestions had
negative impact in energy consumption and elapsed time. How-
ever, the same study realized under a different scenario, like writ-
ing 100 random words of user choice, could have different results
than the ones obtained with the transcription of the selected text.
Nevertheless, the results off the naive automatic approach satisfy
the assumption that in fact, the use of this kind of features can
help users to save energy and time while typing text in virtual key-
boards.

5 THREATS TO VALIDITY
Android is a multi-process operating system, where multiple pro-
cesses and applications run ”simultaneously”. To ensure that dur-
ing the execution of each test, only the intended application is
running on the device, affecting its consumption, we registered
its state before and after each test. Moreover, we executed the au-
tomatic tests in a customized boot images (using root-privileges)
where such processes were disable. Testing in customized rooted
images is an usual approach followed by research community [4,
18, 21, 22]. The device selected for this work is usually used by the
research community to conduct performance studies [5, 29] due
to the fact that does not have many pre-installed 3rd party-apps.
Moreover, we run Android version 6.0.1, that uses the ART virtual
machine. However, there are several compiling options available
for this version for applications and system source code, and for
3rd party-apps, by default this version uses the quicken option, that
only optimize some android bytecode instructions to achieve better
interpreter performance. Furthermore, to minimize eventual opti-
mizations that the system might perform for both AUT and pro-
filer code, we restore the boot image between sets of tests for each
keyboard. Thus, in the second study, we also wipe the Dalvik/ART
and system cache, in order to delete eventual optimizations and
execution profiles provided by JIT compilation. To minimize exter-
nal interference, the automated tests for the default and minimal
versions were performed with the minimum value of brightness in
order to minimize the impact on power consumption. For the user

https://source.android.com/devices/tech/power

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Rui Rua, Tiago Fraga, Marco Couto, and João Saraiva

study we used a level of 50% of brightness so that users could see
the screen.

As for factors intrinsic to the KUT, in order to establish fair and
adequate comparisons among keyboards, some precautions had to
be taken. All keyboards used the same language (EN-US),the lan-
guage of the system in which they were tested and the text to be
inserted, since the chosen language has implications for the key-
board layout and dictionaries. Some keyboards also have some pe-
culiarities with which we had to be cautious and ascertain their
impact. For instance, Go Keyboard offers a memory boost option,
enabled by default. When tested in minimal mode, we evaluated
the eventual gains in using this option, but the energy values ob-
tained were slightly higher than the ones obtained with this op-
tion turned off. So we ended up not using it in the minimal testing
mode.

As for the results obtained, these may differ between devices,
Android versions or the keyboard application. Regarding the au-
tomatic procedure performed, there was a noticeable delay in
the communication between the workstation and the Android de-
vice, caused by the type of interface (ADB), communication pro-
tocol(USB 3.0) and by the system version. In a test carried out on
newer devices and emulators, we found that the typing rate using
the same automatic procedure was substantially higher, which can
eventually lead to different results. However, we wanted to carry
out the study on the currently most used version of the platform.

Regarding the study performed with real users, the chosen case
studies (maximizing and minimizing the use of suggestions in the
transcription of a text) may not have been the most suitable to
assess the advantage of using predictions. The language used for
keyboard and text dictionaries to be enteredmay also have implica-
tions. Although all participant who wrote the text learned the lan-
guage since elementary school, the results could possibly be more
satisfactory if the language chosen was their native language. The
process of transcribing words and the indication that they should
not make mistakes in writing meant that there was a delay in read-
ing the text to be transcribed and verifying that the word they had
just writtenwas right.This delay would probably be inferior if they
know the text before-hand and/or did not had to transcribe it.

6 RELATEDWORK
When it comes to measuring energy consumption on Android,
there are currently several studies to offer powerful alternatives
to estimate or measure energy consumption. Like Trepn, there
are other software-based tools capable of assessing the power
consumption of the system, applications and portions of source
code. Having only the application APK and no source code, Green-
Scaler [6] can be used to estimate energy consumption of an ap-
plication execution. Having access to the source code, Petra [22]
is an alternative to consider to measure and locate the energy con-
sumption of applications. GreenScaler is an approach described as
model-based, which uses data from previous work by the same au-
thors [16] to calibrate the model. PETRA has emerged with an ap-
proach usingAPIs available since the version 5 of Android8.The au-
thors claim that this tool can estimate the energy consumption of

8https://developer.android.com/about/versions/android-5.0.html#Power

the source code of an Android application with a low granularity,
at the method level, providing accurate consumption results [23].

There is a small set of works in the literature with the aim of
looking at the performance of virtual keyboards. The first work
to look at virtual keyboards from an power usage point of view
was [24] in 2012, where the authors analyzed the power consump-
tion profile of text input methods on smartphones. They consid-
ered 3 different keyboards, where one of them counts currently
with only 1000 downloads and another no longer exists. Given the
evolution recorded on the platform, on current smartphones and
on the platform’s keyboards, these results may be out of date. In
addition, this work did not consider the impact of intrinsic features
on keyboards or studies with real users. More recently, there is a
work [31] focused on assessing intrinsic aspects of keyboards and
the screen sizes of devices. More specifically, it intended to assess
the effects of keyboard size, gap and button shape on usability met-
rics in thumb interaction in mobile touchscreen devices.

Regarding the evaluation and benchmarking of different appli-
cations and development tools the same effect on the Android plat-
form, Wilke et al [33] evaluated the energy performance of differ-
ent browsers and email clients for the android platform. Corbalan
et al [7] evaluated the difference in energy consumption of appli-
cations developed with different development frameworks for 3
different tasks: intensive processing of video and audio reproduc-
tion.

7 CONCLUSIONS AND FUTUREWORK
In this work we have explored the performance of virtual key-
boards in theAndroid platform, focusing on their impact on energy
consumption. We considered 5 widely used keyboard applications
and designed an experiment to evaluate their energy consumption,
in different execution scenarios. We performed different studies
using both real users and automatic procedures to simulate real
user interaction. The results from this experiment show that in-
deed there are differences in the energy consumed by the selected
keyboards, and switching keyboards or enabling/disabling settings
promotes energy saving in most cases. In fact, replacing the most
energy greedy keyboard by the greenest one has reduced energy
consumption in 18%, and when advanced features of those key-
boards (such as word prediction or animations) are turned off, the
energy consumption is also reduced, in this case up to 9.3%.

As future work, we intend to conduct a larger study, both in
terms of users and devices, to evaluate the individual impact that
each of the keyboards features may have on energy consumption
and the reason of such impact. The study will allow us to deter-
mine the best keyboard and the best combination of features that
optimize energy consumption and, if possible, according to users’
usability preferences. Android is a fast evolving ecosystems, and
the impact on virtual keyboards of mechanisms like compilation
schemes, virtual machines and garbage collection should also be
considered for analysis, in order to determine the greenest key-
boards for a particular combination of mobile device and system
version. Thus, an automated technique to evaluate the energy of
keyboards needs to be considered and the algorithms we presented
in Section 2 is a step in this direction.

https://developer.android.com/about/versions/android-5.0.html#Power

Greenspecting Android Virtual Keyboards MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] 2020. Distribution dashboard. https://developer.android.com/about/dashboards
[2] 2020. Monkeyrunner. https://developer.android.com/studio/test/

monkeyrunner
[3] A. R. Bakker. 2014. Comparing Energy Profilers for Android. In Proceedings of

21st Twente student conference on IT, Enschede, The Netherlands.
[4] A. Banerjee and A. Roychoudhury. 2017. Future of Mobile Software for Smart-

phones and Drones: Energy and Performance. In 2017 IEEE/ACM 4th Interna-
tional Conference on Mobile Software Engineering and Systems (MOBILESoft). 1–
12. https://doi.org/10.1109/MOBILESoft.2017.1

[5] Angel Cañete, Jose-Miguel Horcas, Inmaculada Ayala, and Lidia Fuentes. 2020.
Energy efficient adaptation engines for android applications. Information and
Software Technology 118 (2020), 106220. https://doi.org/10.1016/j.infsof.2019.
106220

[6] Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and Abram Hindle.
2019. GreenScaler: Training Software Energy Models with Automatic Test Gen-
eration. Empirical Softw. Engg. 24, 4 (Aug. 2019), 1649–1692. https://doi.org/10.
1007/s10664-018-9640-7

[7] Leonardo Corbalan, Juan Fernandez, Alfonso Cuitiño, Lisandro Delia, Germán
Cáseres, Pablo Thomas, and Patricia Pesado. 2018. Development Frameworks
for Mobile Devices: A Comparative Study about Energy Consumption. In Pro-
ceedings of the 5th International Conference on Mobile Software Engineering and
Systems (MOBILESoft ’18). Association for ComputingMachinery, New York, NY,
USA, 191–201. https://doi.org/10.1145/3197231.3197242

[8] Leonardo Corbalan, Juan Fernandez Sosa, Alfonso Cuitiño, Lisandro Delia, Ger-
mán Cáseres, Pablo Thomas, and Patricia Pesado. 2018. Development frame-
works for mobile devices: a comparative study about energy consumption. 191–
201. https://doi.org/10.1145/3197231.3197242

[9] Marco Couto, Tiago Carção, Jácome Cunha, João Paulo Fernandes, and João
Saraiva. 2014. Detecting Anomalous Energy Consumption in Android Appli-
cations. In Programming Languages, Fernando Magno Quintão Pereira (Ed.).
Springer International Publishing, 77–91.

[10] L. Cruz and R. Abreu. 2017. Performance-Based Guidelines for Energy Efficient
Mobile Applications. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). 46–57. https://doi.org/10.1109/
MOBILESoft.2017.19

[11] Luis Cruz and Rui Abreu. 2018. Measuring the Energy Footprint of Mobile Test-
ing Frameworks. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 400–
401. https://doi.org/10.1145/3183440.3195027

[12] Luis Cruz and Rui Abreu. 2018. Using Automatic Refactoring to Improve Energy
Efficiency of Android Apps. CoRR abs/1803.05889 (2018). arXiv:1803.05889 http:
//arxiv.org/abs/1803.05889

[13] L. Cruz, R. Abreu, and J. Rouvignac. 2017. Leafactor: Improving Energy Effi-
ciency of Android Apps via Automatic Refactoring. In 2017 IEEE/ACM 4th Inter-
national Conference on Mobile Software Engineering and Systems (MOBILESoft).
205–206. https://doi.org/10.1109/MOBILESoft.2017.21

[14] Ralph B. D’Agostino. 1971. An omnibus test of normality for moderate and large
size samples.

[15] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. 2013. Estimating mobile ap-
plication energy consumption using program analysis. In 2013 35th International
Conference on Software Engineering (ICSE). 92–101. https://doi.org/10.1109/ICSE.
2013.6606555

[16] Abram Hindle. 2013. Green mining: a methodology of relating software change
and configuration to power consumption. Empirical Software Engineering 20 (04
2013). https://doi.org/10.1007/s10664-013-9276-6

[17] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in
One-Criterion Variance Analysis. J. Amer. Statist. Assoc. 47, 260
(1952), 583–621. https://doi.org/10.1080/01621459.1952.10483441
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483441

[18] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining Energy-greedy
API Usage Patterns in Android Apps: An Empirical Study. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR 2014). ACM, New
York, NY, USA, 2–11. https://doi.org/10.1145/2597073.2597085

[19] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Ann. Math. Statist. 18, 1 (03
1947), 50–60. https://doi.org/10.1214/aoms/1177730491

[20] Hugo Matalonga, Bruno Cabral, Fernando Castor, Marco Couto, Rui Pereira,
Simão Melo de Sousa, and João Paulo Fernandes. 2019. GreenHub Farmer:
Real-World Data for Android Energy Mining. In Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories (MSR ’19). IEEE Press, 171–175.
https://doi.org/10.1109/MSR.2019.00034

[21] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol. 2018. EARMO:
An Energy-Aware Refactoring Approach for Mobile Apps. IEEE Transactions on
Software Engineering 44, 12 (Dec 2018), 1176–1206. https://doi.org/10.1109/TSE.
2017.2757486

[22] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lucia.
2017. PETrA: A Software-Based Tool for Estimating the Energy Profile of An-
droid Applications. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). 3–6. https://doi.org/10.1109/ICSE-C.2017.18

[23] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lucia.
2017. Software-based energy profiling of Android apps: Simple, efficient and
reliable?. In 2017 IEEE 24th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). 103–114. https://doi.org/10.1109/SANER.2017.
7884613

[24] Henry Obison and Chiagozie Ajuorah. 2013. Energy Consumptions of Text In-
put Methods on Smartphones. School of Computing and Engineering,Blekinge
Institute of Technology, 371 79 Karlskrona, Sweden.

[25] Gustavo Pinto and Fernando Castor. 2017. Energy Efficiency: A New Concern
for Application Software Developers. Commun. ACM 60, 12 (Nov. 2017), 68–75.
https://doi.org/10.1145/3154384

[26] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Mining Questions
About Software Energy Consumption. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories (MSR 2014). ACM, New York, NY, USA,
22–31. https://doi.org/10.1145/2597073.2597110

[27] J.K Rowling. 2000. Harry Potter and the Goblet of Fire (1 ed.). Scholastic.
[28] Rui Rua, Marco Couto, Adriano Pinto, Jácome Cunha, and João Saraiva. 2019.

Towards using Memoization for Saving Energy in Android. In Proceedings of the
XXII Iberoamerican Conference on Software Engineering, CIbSE 2019, La Habana,
Cuba, April 22-26, 2019, Beatriz Marín, Isabel Sofia Brito, Miguel Katrib Mora,
Andreia Malucelli, Estefanía Serral, Giovanni Giachetti, João Araújo, Miguel
Goulão, Claudia P. Ayala, Marcela Genero, and Vitor Silva Souza (Eds.). Curran
Associates, 279–292.

[29] R. Rua, M. Couto, and J. Saraiva. 2019. GreenSource: A Large-Scale Collection of
Android Code, Tests and Energy Metrics. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). 176–180. https://doi.org/10.
1109/MSR.2019.00035

[30] S. S. Shapiro and M. B. Wilk. 1965. An analysis of variance test for normality
(complete samples)†. Biometrika 52, 3-4 (12 1965), 591–611. https://doi.
org/10.1093/biomet/52.3-4.591 arXiv:https://academic.oup.com/biomet/article-
pdf/52/3-4/591/962907/52-3-4-591.pdf

[31] Da Tao, Tieyan Wang, Haibo Tan, Jian Cai, and Xu Zhang. 2020. Understanding
One-Handed Thumb Interaction with a Mobile Touchscreen Device: Effects of
Keyboard Size, Gap and Button Shape. In Advances in Usability and User Expe-
rience, Tareq Ahram and Christianne Falcão (Eds.). Springer International Pub-
lishing, Cham, 412–423.

[32] B. L. Welch. 1947. The Generalization of ‘Student’s’ Problem When
Several Different Population Variances are Involved. Biometrika
34, 1-2 (01 1947), 28–35. https://doi.org/10.1093/biomet/34.1-2.28
arXiv:https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-
2-28.pdf

[33] Claas Wilke, Christian Piechnick, Sebastian Richly, Georg Püschel, Sebastian
Götz, and Uwe Aundefinedmann. 2013. Comparing Mobile Applications’ En-
ergy Consumption. In Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing (SAC ’13). Association for Computing Machinery, New York,
NY, USA, 1177–1179. https://doi.org/10.1145/2480362.2480583

https://developer.android.com/about/dashboards
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://doi.org/10.1109/MOBILESoft.2017.1
https://doi.org/10.1016/j.infsof.2019.106220
https://doi.org/10.1016/j.infsof.2019.106220
https://doi.org/10.1007/s10664-018-9640-7
https://doi.org/10.1007/s10664-018-9640-7
https://doi.org/10.1145/3197231.3197242
https://doi.org/10.1145/3197231.3197242
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1145/3183440.3195027
http://arxiv.org/abs/1803.05889
http://arxiv.org/abs/1803.05889
http://arxiv.org/abs/1803.05889
https://doi.org/10.1109/MOBILESoft.2017.21
https://doi.org/10.1109/ICSE.2013.6606555
https://doi.org/10.1109/ICSE.2013.6606555
https://doi.org/10.1007/s10664-013-9276-6
https://doi.org/10.1080/01621459.1952.10483441
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483441
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/MSR.2019.00034
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1109/ICSE-C.2017.18
https://doi.org/10.1109/SANER.2017.7884613
https://doi.org/10.1109/SANER.2017.7884613
https://doi.org/10.1145/3154384
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1109/MSR.2019.00035
https://doi.org/10.1109/MSR.2019.00035
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
http://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/52/3-4/591/962907/52-3-4-591.pdf
http://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/52/3-4/591/962907/52-3-4-591.pdf
https://doi.org/10.1093/biomet/34.1-2.28
http://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
http://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://doi.org/10.1145/2480362.2480583

	Abstract
	1 Introduction
	2 Studying the Energy Efficiency of Virtual Keyboards
	2.1 Keyboards Under Test
	2.2 Experimental Setup
	2.3 Experimental Procedure

	3 Analysing the Energy Consumption
	3.1 Default and Minimal mode
	3.2 Real User Interaction and Simulation

	4 Studies Discussion
	5 Threats to validity
	6 Related Work
	7 Conclusions and Future work
	References

