
Expressing Disambiguation Filters as Combinators
José Nuno Macedo

jose.n.macedo@inesctec.pt
HASLab/INESC TEC

University of Minho, Portugal

João Saraiva
saraiva@di.uminho.pt

HASLab/INESC TEC & Depart. of Informatics,
University of Minho, Portugal

ABSTRACT
Contrarily to most conventional programming languages where
certain symbols are used so as to create non-ambiguous grammars,
most recent programming languages allow ambiguity. These ambi-
guities are solved using disambiguation rules, which dictate how
the software that parses these languages should behave when faced
with ambiguities. Such rules are highly efficient but come with
some limitations - they cannot be further modified, their behaviour
is hidden, and changing them implies re-building a parser.

We propose a different approach for disambiguation. A set of
disambiguation filters (expressed as combinators) are provided, and
disambiguation can be achieved by composing combinators. New
combinators can be created and, by having the disambiguation
step separated from the parsing step, disambiguation rules can be
changed without modifying the parser.

CCS CONCEPTS
•Theory of computation→Parsing;Grammars and context-free
languages; Program reasoning;

KEYWORDS
parsing, disambiguation filters, combinators

ACM Reference Format:
José Nuno Macedo and João Saraiva. 2020. Expressing Disambiguation
Filters as Combinators. In The 35th ACM/SIGAPP Symposium on Applied
Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3341105.3374123

1 INTRODUCTION
The evolution of programming languages in the 1960s was accom-
panied by the development of techniques for the syntactic analysis
of programs. While techniques for processing text have evolved
since then, the general approach has remained the same. To define
and implement a new programming language, the general approach
tends to be the use of context-free grammars to specify the pro-
gramming language syntax. Then, a grammar-based tool, called
parser generator, automatically generates programs known as pars-
ers. Such parsers are able to syntactically recognize whether a text
is a program in the specified programming language. Thus, for a
parser to be generated, a context-free grammar is needed.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374123

From such grammar, a parser generator, such as the widely used
YACC parser generator system [4], produces a parser (implemen-
ted in a specific programming language) that given a text (i.e. a
sequence of characters) accepts/rejects it. If the text is accepted a
(abstract) syntax tree may be constructed. For unambiguous gram-
mars, a single tree is built, meaning that there is only one possible
way of accepting the text from such a grammar. However, program-
mers often write ambiguous grammars. Firstly, because they are
easier to write/understand and evolve. Secondly, because modern
languages provide a “cleaner” syntax, which make programs look
nicer, but are easier to express by ambiguous grammars.

Regular parser generators do not support ambiguous grammars.
Thus, the grammar writer has to provide the priority/associativity
rules of the ambiguous operators, in two ways: by refactoring the
grammar to eliminate ambiguity (which can be complex, and res-
ults in a more complex and hard to understand grammar), or by
providing the so-called disambiguation rules, which are specified in
the grammar. These disambiguation rules are pre-defined for most
parser generators, and are directly imbued into the parser itself
when it is generated, effectively modifying it. If the disambiguation
rules are well-defined, there will be no ambiguity problems and the
parser will be able to recognize text without any problem. However,
There are several problems with this approach:

• The only rules available are the pre-defined rules and they
are not extensible: the parser generator itself would need to
be updated in order to support new rules.

• Because disambiguation rules are part of the grammar, they
are context-free too. Thus, it is impossible to define context-
dependent rules like for example to express that ’+’ operator
has a different priority/associative when inside a while loop.

• It is not modular. In fact, when the developer changes a
disambiguation rule, the grammar changes, therefore a new
parser must be generated.

• Since the only rules available are the pre-defined rules, the
developer is unable to observe the source code of these rules,
instead opting to trust a black box that could potentially not
behave as desired.

This paper presents an alternative to the classical approach,
which does not suffer from these drawbacks: Disambiguation rules
are modular combinators that are kept separate from the parser,
being instead used as filters that are applied to the results of parsing
an input. In this way, changes to the disambiguation rules do not
affect the parser, allowing for an efficient development cycle around
disambiguation rules. Because we express disambiguation rules as
combinators, new rules can be easily defined by combining existing
ones. Moreover, our approach allows the definition of context de-
pendent disambiguation filters which behave differently according
to the context they are applied to.

1348

https://doi.org/10.1145/3341105.3374123
https://doi.org/10.1145/3341105.3374123

2 GRAMMARS AND PARSERS
In the early ages of programming languages, it was usual to include
certain symbols in a language’s grammar so that the generated
parser for that language would be more efficient. One such example
is found in the C programming language: the semicolon found at
the end of each instruction is a statement terminator [3].

Modern programming languages, however, tend to avoid the use
of too many syntactic symbols. This has the clear advantage that it
not only allows developers to write fewer symbols and less code
while programming, but also makes programs simpler and easier
to understand. Although it helps program comprehension, it also
comes at a price: it requires large and complex grammars and cor-
responding parsers to handle them! In the next section we discuss
grammars and generalized parsers that can handle ambiguity.

While programming languages are usually specified via gram-
mars, for example using the BNF notation [1], there are various
ways to generate a parser given such specification. Each alternat-
ive method has its own advantages and disadvantages. One of the
most well-known parser generators, YACC, uses an efficient LALR
parsing technique [4]: this relies on a lightweight table-driven al-
gorithmwhich was developed when runtime and memory size were
one of the main concerns. Other popular parser generators include
ANTLR [7], which uses the ALL(*) [8] algorithm, and Happy [6],
which produces Haskell source code.

2.1 Generalized Parsing
Several parsing techniques do not deal with ambiguity properly.
The input is expected to be unambiguous, and when it is not, a
certain interpretation of such ambiguity is chosen so as to continue
parsing. This results in runtime-wise efficient but not so expressive
parsers, as they ignore any ambiguity problems that may arise.

Ambiguity can be dealt with using Generalized LR (GLR) parsing,
which just try all different parsing paths when an ambiguity occurs.
Thus, when faced with an ambiguous input, a GLR parser [12]
produces possible outputs instead of selecting one of them. That is
to say that it produces a set of abstract syntax trees, called parse
forest, and not a single one. As a consequence, they are slower
than their non-generalized counterparts, due to their additional
flexibility in dealing with non-determinism. If no non-determinism
is present, a GLR parser will be as efficient as a regular LR parser [5].

2.2 Scannerless Parsing
Grammars usually rely on regular expressions to specify their ter-
minal symbols, which are then processed via very efficient finite
state automata-based recognizers [10], the so-called scanners [4].
The use of scanners provides also some form of modularity in gram-
mar/parser writing. However, this approach has a severe limitation:
because some parts of the language are defined outside the BNF
grammar formalism, and handled by a scanner, there is not an
unified and coherent way of processing all symbols of the language.

Scannerless parsing [9] consists of skipping the lexer-phase en-
tirely and treating each character from the input as a token, which
is directly processed by the parser. As a consequence, every pro-
gram’s character is processed by the parser, and not by an external
lexer. Usually, terminal grammar symbols are specified via regular

expressions, still, but they are transformed into an equivalent regu-
lar CFG before a parser is produced. There are two key advantages
in this approach: First, ambiguous grammars are compositional, and
as a result two grammars can be merged and a (ambiguous) parser
can be generated, which will not be the case when merging regular
expressions. Second, because all grammar symbols are handled
in the same way, i.e. via a parser, advanced parsing techniques
can be applied to all symbols. This is the case, for example, of the
disambiguation rules that we discuss in the next section.

3 DISAMBIGUATION FILTERS FOR
SCANNERLESS GENERALIZED PARSING

Scannerless Generalized parsers handle ambiguous grammars and
inputs. Moreover, they handle all grammar symbols in a uniform
and canonical way, not relying on external recognizers to process
part of the input. Since they deal with ambiguous grammars/inputs,
it is expected that they generate a set of outputs as a result, which
represent all possible interpretations. However, not all possible
interpretations are desired: depending on the situation, a developer
might want to only get one or a small subset of parse trees.

The task of processing the set of ambiguous parse trees generated
by a parser and eliminating the undesired ones is called disambigu-
ation. Typically, such filtering is done on the parser itself, by adding
disambiguation rules or by modifying part of the parser, so that the
undesired interpretations cannot be produced. When dealing with
scannerless parsing new disambiguation rules are needed. In this
section, we present a set of disambiguation filters following the the
work of van den Brand et al. [14].

The priority filter specifies that certain productions have a
higher priority than others, while the associativity filter specifies
that an operator associates left or right. These filters can be specified
as annotations in the productions they refer to.

The reject filter enables the creation of keywords in the grammar.
In other words, it rejects some productions from deriving into
certain sequences. This is extremely useful as in most programming
languages, some keywords cannot be used as variable names, and
this filter allows for a clean implementation of this incompatibility.
For example, in the C language, it is not allowed for a variable to
have the name of the reserved keyword "while".

The follow filter (also known as longest match filter) solves a
less obvious ambiguity that arises in scannerless parsing. When the
grammar dictates that a sequence of symbols can be parsed using
one single production or a sequence of productions, for example,
a sequence of digits which could be read as a single number or
several numbers with no separators, the follow filter specifies that
the longest match is to be performed.

When there are several correct input interpretations, but some
are preferred to others, a preference filter is used. It specifies
which parse results should be removed when there are several
correct outputs but the developer wants to select only some of
them. This filter is used to disambiguate the dangling else problem,
which can be exemplified by the input if bool1 then if bool2 then
out1 else out2 that can be interpreted in two ways,if bool1 then (if
bool2 then out1 else out2) or if bool1 then (if bool2 then out1) else
out2.

1349

4 EMBEDDED DISAMBIGUATION FILTERS
This section presents a new approach for parser disambiguation,
where instead of expressing the disambiguation rules in the parser
itself, they are kept separate. The parser is generated once, and
it produces a possibly ambiguous result. Afterwards, the disam-
biguation rules are applied to the parser’s forest, removing some
or all of the ambiguities, according to the rules specified by the
developer. There are several advantages and disadvantages in using
this process instead of the classical approach. Since the parser is a
pure generalized one, it is less efficient, as the classical approach
uses disambiguation rules at parse time thus reducing the number
of parser results. However, the development cycle of the developer
is more efficient, as there is no need to constantly produce a new
parser after an update in a disambiguation rule. Only the disam-
biguation rules are to be changed, and this can be easily done if
the implementation is user-friendly. Therefore, the disambiguation
rules are implemented as filter combinators, where the developer
starts with basic blocks that perform very simple filtering, combin-
ing them in easy-to-understand ways to produce complex filters
that perform the desired disambiguation rules.

4.1 Abstract Syntax Trees
A parser typically constructs the parsing result as an abstract syntax
tree. This is a tree that contains all the information from the input
categorized in accordance to the grammar. For a generalized parser,
the output is not a tree but a forest, that is, a set of trees. Since
our disambiguation process occurs after the parsing phase, the
disambiguation rules are applied to the syntax forest, trying to find
undesired patterns in them. This process will be described in more
detail in the following sections.

4.2 Haskell XML Toolbox and HAGLR
Syntax trees are generalized trees which can represent a program.
Generalized trees are often called Rose Trees in the functional
programming setting and are well studied in several contexts. One
of them is XML, for which there are several generic tools that can
be used. In this work, the filter variant of the Haskell XML Toolbox
[11], where Rose Trees are known as NTree, is used as a base for
building combinators for filtering syntax trees.

The HaGLR tool [2] is a Haskell implementation of a GLR parser
generator, which was implemented with pedagogic purposes. Since
performance is not our main focus and HaGLR is a generalized
parser generator, it is adequate for this work. It produces as result
a pure parse tree forest, which is a list of parse trees.

4.3 Disambiguation Filters
To be able to build complex filters to disambiguate the result of a
parser, some basic combinators to build upon are needed. Most of
the combinators described in this section are defined in the Haskell
XML Toolbox library. They enable the creation of filters, as well as
manipulation and composition. Some new combinators were also
created to better fit the needs of this work. They are available in
the repository of this work, but as they are simple and intuitive,
they are not described in this paper.

Having defined these Rose Tree filter combinators, we have all
ingredients to implement the aforementioned disambiguation filters.

In the following sections, the types of filters described in section 3
are implemented using these combinators. However, it is important
to note that they apply to the parse trees produced by the HaGLR
parser, and if a different parser is used, it might be needed to change
the filters accordingly.

To build a filter that defines disambiguation rules, it is first
needed to take a look at a parse tree and devise an algorithm for
checking if it is a valid parse tree. To do so, it is important to un-
derstand the structure of the parse trees produced by the parser.
The combinators used in this work refer to the nodes by their pro-
duction’s name (e.g. "InfixExp1" or "Values1"), as this allows for
the manipulation of any node, regardless of how it is built. A small
change to the combinator that check the nodes could allow for the
matching of the nodes by the symbols they represent (e.g. "+" or
"*"), which is more practical for the implementation of simple rules
but less expressive.

4.4 Associativity Filter
For a given example where InfixExp2 is a node where associativity
ambiguity can occur, the defined filter will look at the root node,
check if it is an InfixExp2 node, and, if it is, check if there is an
InfixExp2 node in the right (or left) child of said node. If there is not,
then the tree is correct according to the filter and thus the filter will
do nothing. If there is, the tree is deemed invalid and discarded.
associativity :: TFilter String

associativity = every (neg rightNodeCheck `when ` matches

↪→ "InfixExp2 ")

where rightNodeCheck = matches "InfixExp2" . head .

↪→ getChildren . (!!2) . getChildren

Therefore, the filter is finished and can be read in a reasonably easy
way.When the rootmatches the string "InfixExp2", the rightmost
child must not match the string "InfixExp2".

However, this filter does not work as expected on a real parse
tree without the every combinator, which applies the filter to all
nodes of the tree, and discards the tree if any of the nodes fail to
satisfy it. This pattern is repeated for all filters.

4.5 Priority Filter
The priority filter is rather similar to the associativity filter in
functionality, as it restricts some children nodes from existing for a
given node. In the following example, the node InfixExp2 will not
have any node InfixExp1 as a direct child, meaning that InfixExp1
has an higher priority than InfixExp2.
priority :: TFilter String

priority = every (neg anyChildrenMatches `when ` matches "

↪→ InfixExp2 ")

where anyChildrenMatches = (matches "InfixExp1" $$). (

↪→ concatMap getChildren) . getChildren

4.6 Reject Filter
Regarding the reject filter, for a given node, we want the children
not to match certain keywords. In the following example, the node
Id (containing an identifier, for example a variable name) is ruled
not to have any children containing the strings "true" or "false".
Note that, because HaGLR is a scannerless parser, an auxiliary
implodeSubTree function is needed to recover the string which is
split up during parsing, and reverse is used for the same reason.

1350

reject :: TFilter String

reject = every (neg stringMatchesKeywords `when ` matches

↪→ "Id")

where stringMatchesKeywords = (matches (reverse "true")

↪→ `orElse ` matches (reverse "false")) . head .

↪→ getChildren . implodeSubTree

4.7 Follow Filter
In the follow filter, we define that, if there are several values gener-
ated by a production, then they are in different nodes only when
there is a separator between them. We do this by verifying that,
when there are two nodes, either the first one ends with a separator
or the second one starts with a separator. In this example, the node
Values1 represents a list of values.
follow :: TFilter String

follow = every ((firstEndsGood `orElse ` secondStartsGood)

↪→ `when ` matches "Values1 ")

where firstEndsGood = isOf (not . isDigit . head .

↪→ getLastTerm . (!!0) . getChildren)

secondStartsGood = isOf (not . isDigit . head .

↪→ getFirstTerm . (!!1) . getChildren)

4.8 Preference Filter
The preference filter is used to choose one production over another
when both are valid. For this, we refer back to the subsection 3
where the dangling else problem is mentioned.

This filter, however, does not behave similarly to the other filters.
It works by comparing different parse trees, and then choosing the
best one, which is fundamentally different to the other filters which
operate on a single tree. Therefore, the implementation of this filter
is just a function which operates on lists. This function compares
each parse tree to every other tree, and discards a parse tree if it is
considered less interesting than any other one.
4.9 Context Dependent Filters
In our approach disambiguation rules can be used to implement
already known disambiguation rules. However, they can also be
used to implement new concepts and ideas that generally are not
possible to implement in the disambiguation rules of most parser
generators. This allows the developer to express any desired disam-
biguation rule - specific to the language the developer is defining -
without the limitations of not being able to fine-tune the filters.

As an example, in this section, it will be presented a filter that
associates any sum operations to the left, until an if clause is found,
and inside the if blocks, the sum operations will associate to the
right. While there is no immediate use for this filter , it is a good
example of different behaviour implemented into a filter.
ff :: TFilter String

ff = iff (matches "Instr3 ") rAssocAll leftAssocUntil

where rAssocAll = every (right_assoc "InfixExp2 ")

leftAssocUntil = isOf (all (satisfies ff) .

↪→ getChildren) `o` left_assoc "InfixExp2"

The iff combinator is fed three arguments, where the first is
just to check if the current node matches the if instruction. If
so, the rAssocAll portion of the code is run, which just applies the
right_assoc (associate right) combinator to all the subtrees from that
point onwards. If the matching fails, as seen in the leftAssocUntil
portion of the code, the left_assoc (associate left) combinator is
applied to the current node, and the whole filter is recursively
applied to all the subtrees.

5 CONCLUSIONS
This paper presents a novel approach to express grammar disam-
biguation rules as abstract syntax tree filter combinators. Disam-
biguation rules are first-class citizens: new rules can be defined by
combining existing ones and they can be also passed as input to
parsers. As a result, grammar writers are not limited to a set of
pre-defined rules offered by the parser generator, instead they can
easily express new rules and experiment with them without having
to re-generate a new parser.

We have developed a combinator library of such disambiguation
rules and we have defined various rules with we validate by com-
bining our Haskell-based filter combinators with the HaGLR parser
generator: The AST forest produced by the HaGLR parser is pruned
into a single correct AST by our disambiguation filters.

Because HaGLR was developed in a pedagogic setting, it does
not use the most efficient data structures. Thus we are refactor-
ing HaGLR so that uses a better representation for parse-tables
(which steer the parser at runtime), and we are also considering to
use shared packed parse forests[13] which use sharing to reduce
runtime and memory consumption. We are also integrating the
disambiguation filters with BiYacc [15], a tool for generating both a
parser and a reflective printer [16] for an unambiguous context-free
grammar. The use of disambiguation filters can be helpful in ex-
tending this tool to also support ambiguous context-free grammars,
therefore increasing its expressiveness and allowing for more test
cases to be supported by this tool.
REFERENCES
[1] John W. Backus. 1959. The syntax and semantics of the proposed international

algebraic language of the Zurich ACM-GAMM Conference.. In IFIP Congress
(2002-01-03). 125–131.

[2] João Fernandes, João Saraiva, and Joost Visser. 2004. Generalised LR Parsing in
Haskell. In Advanced Functional Programming (AFP’04) - Students Workshop.

[3] ISO. 2011. IEC 9899: 2011 Information technology−Programming languages−C.
International Organization for Standardization, Geneva 27 (2011), 59.

[4] Stephen C. Johnson. 1979. Yacc: Yet Another Compiler-Compiler.
[5] Adrian Johnstone, Elizabeth Scott, and Giorgios Economopoulos. 2004. General-

ised Parsing: Some Costs. In Compiler Construction, Evelyn Duesterwald (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 89–103.

[6] Simon Marlow and Andy Gil. 2001. Happy User Guide.
[7] Terence Parr and Kathleen Fisher. 2011. LL(*): The Foundation of the ANTLR

Parser Generator. In Proc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI ’11). ACM, New York, USA, 425–436.

[8] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL (*) parsing:
the power of dynamic analysis. ACM SIGPLAN Notices 49, 10 (2014), 579–598.

[9] D. J. Salomon and G. V. Cormack. 1989. Scannerless NSLR(1) Parsing of Program-
ming Languages. In Proc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI ’89). ACM, New York, NY, USA, 170–178.

[10] João Saraiva. 2002. HaLeX: A Haskell Library to Model, Manipulate and Animate
Regular Languages. In Proc. of the ACM Workshop on Functional and Declarative
Programming in Education (FDPE) (Univ. of Kiel, TR 0210). 133–140.

[11] Uwe Schmidt, Martin Schmidt, and Torben Kuseler. 2016. hxt: A collection of
tools for processing XML with Haskell. https://github.com/UweSchmidt/hxt.

[12] Masaru Tomita. 1985. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, Norwell, MA, USA.

[13] Masaru Tomita. 1985. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Vol. 8. Springer Science & Business Media.

[14] Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser.
2002. Disambiguation Filters for Scannerless Generalized LR Parsers. Springer
Berlin Heidelberg, Berlin, Heidelberg, 143–158.

[15] Zirun Zhu, Hsiang-Shang Ko, Pedro Martins, João Saraiva, and Zhenjiang Hu.
2015. BiYacc: Roll Your Parser and Reflective Printer into One. In Proc. of the
4th Int. Workshop on Bidirectional Transformations co-located with STAF 2015,
L’Aquila, Italy, July 24, 2015. 43–50.

[16] Zirun Zhu, Yongzhe Zhang, Hsiang-Shang Ko, Pedro Martins, João Saraiva, and
Zhenjiang Hu. 2016. Parsing and Reflective Printing, Bidirectionally. In Proc. of
the 2016 ACM SIGPLAN Int. Conf. on Software Language Engineering (SLE 2016).
ACM, New York, NY, USA, 2–14.

1351

https://github.com/UweSchmidt/hxt

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

