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Resumen 
 

 

 

 

 

 

 

 

Los robots autónomos están desempeñando un papel importante en las 

actividades académicas, tecnológicas y cient́ıficas. Por lo tanto, su comporta- 

miento  se  está  volviendo  más  complejo.  Las  principales  tareas  de  los  robots 

autónomos  incluyen  el  mapeo  de  un  entorno  y  la  localización  de  śı  mismos. 

Estas tareas comprenden el problema de la Localización y Mapeo Simultáneo 

(SLAM). La representación del conocimiento SLAM (por ejemplo, las caracte- 

ŕısticas de los robots, la información del medio ambiente, el mapeo y la infor- 

mación de localización), con un modelo estándar y bien definido, proporciona 

la base para desarrollar soluciones eficientes e interoperables. Sin embargo, 

hasta  donde  sabemos,  no  existe  una  clasificación  común  de  esos  conocimien- 

tos. Muchos trabajos existentes basados en la Web Semántica, han formulado 

ontoloǵıas para modelar información relacionada sólo con algunos aspectos del 

SLAM, sin un estándar. En este trabajo, proponemos una categorización del 

conocimiento manejado en el SLAM, basado en las ontolog ı́as existentes y los 

principios delSLAM. También clasificamos ontoloǵıas recientes y populares de 

acuerdo a las categor ı́as propuestas y resaltamos las lecciones a aprender de las 

ontolog´ıas existentes. Evidenciando la necesidad de desarrollar una ontolog ı́a 

completa para representar la información de SLAM en los robot móviles. 

Palabras clave: Ontoloǵıas, SLAM, Web Semántica, Robots móviles 
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Autonomous robots are playing important roles in academic, technologi- 

cal, and scientific activities. Thus, their behavior is getting more complex. The 

main tasks of autonomous robots include mapping an environment and localize 

themselves. These tasks comprise the Simultaneous Localization and Mapping 

(SLAM) problem. Representation of the SLAM knowledge (e.g., robot charac- 

teristics, environment information, mapping and location information), with   

a standard and well-defined model, provides the base to develop efficient and 

interoperable solutions. However, as far as we know, there is not a common 

classification of such knowledge. Many existing works based on Semantic Web, 

have formulated ontologies to model information related to only some SLAM 

aspects, without a standard arrangement. In this work, we propose a categori- 

zation of the knowledge managed in SLAM, based on existing ontologies and 

SLAM principles. We also classify recent and popular ontologies according to 

our proposed categories and highlight the lessons to learn from existing solu- 

tions. Showing the neccesity to develop a complete SLAM ontology in mobile 

robots. 

Keywords: Ontologies, SLAM, Semantic Web, Mobile Robots 
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Caṕıtulo  1 

Introduction 

Nowadays, autonomous robots are everywhere and they are playing important roles 

in every day life activities, as well as for academic, technological, and scientific applica- 

tions [Coeckelbergh et al., 2016, Ingrand and Ghallab, 2017]. The main tasks of autono- 

mous robots are mapping an environment and localize themselves. These tasks conform 

the Simultaneous Localization and Mapping (SLAM) problem. Thus,SLAM, deals with 

the necessity of building a map of the environment, while simultaneously determining the 

location of the robot within this map. In general, building maps of unknown environments 

is based on information captured by a range of sensors, such as lasers or sonars, while ro- 

bot location needs more information coming from other types of devices (e.g., GPS). Due 

to the evolution of mobile technologies and sensors, the complexity of the behaviors that 

robots are expected to perform is growing. Naturally, this trend involves the use of increa- 

singly complex knowledge. It includes understanding SLAM as a continuous and dynamic 

process because of the physical world that the robot explores is in constant change. Also, 

the change of the world that we refers includes: (i) uncertainty about the robots’ position 

and ladmarks’ position, and (ii) the request for multirobots and colloboration between 

human and robots (e.g., rescue tasks in inaccessible places for humans, large tasks that 

cannot be performed by just one robot or a single robot’s type). 

In the other hand, Semantic Web is a collaborative effort led by the World Wide Web 

Consortium [Berners-Lee, 1994] result of the work of a large number of participants among 

industrial and research partners. It is based on the use of RDF [Klyne and Carroll, 2006], 

which integrates a wide variety of applications through the use of XML [Bray et al., 2000] 

for syntax and the use of URLs [Berners-Lee et al., 1994] for identification. Then, in order 

to extend the limited expressiveness of RDF Schema [Brickley et al., 2014], a more ex- 

pressive Web Ontology Language (OWL) [Antoniou G., 2004] has been defined by W3C. 

Semantic Web serves as a bridge to the knowledge that is on the Web.  The Semantic  

Web is not linked to a specific area but it is involved transversally in all of the knowledge 

categories. 
 

To gain more benefits of having information organized by meaning, the use of on- 

tologies appears as a powerful tool. In computer science, ontologies are formal models to 

represent information, that enable the description of objects, properties, and relations- 

hips among such objects in a knowledge domain. Ontologies are particularly important 
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to provide machines with knowledge representation and reasoning capabilities to solve a 

task, as well as to perform semantic interoperability among systems. 

 

 

1.1. Motivation and Context 

 
A common way to organize knowledge in the SW is using web ontologies. With them, 

we can express the knowledge acquired by a robot. In computer science, ontologies are 

formal tools that enable the description of objects, properties and relationships among 

such objects in a knowledge domain [Prestes et al., 2013]. The description is explicit, 

meaning that all the information is formally defined in the ontology. In this definition lies 

one of the basic strengths of ontologies, as being explicit means they can be understood 

(and therefore used) by both machines and men. 
 

Another bennefit of using ontologies is the interoperability [Fortes, 2013] among 

robots who solves the problem of SLAM with differents tecniques or sensors, but still can 

save and share the acquired knowledge with the same ontology. Using transformations, 

defined in the ontology, a robot that uses some polar coordinate system could share 

knowledge with another robot that uses a Cartesian one. Even a flying drone that uses a 

3D coordinate system could share the location of features with a land robot that uses a 

spatial scenario with 2 dimensions. 
 

In this context, formulate SLAM ontologies contributes positively in two commu- 

nities (Robotics and Semantic Web). That is why since November 2011 Ontologies for 

Robotics and Automation Working Group (ORA WG) [Prestes et al., 2013] is actively 

working with industry, academia,and government organizations to develop a set of onto- 

logies and an associated modeling methodology to be used as a standard in Robotics and 

Automation (R&A). 

 

 

1.2. Problem Statement 

 
Even though, SLAM is an area that is well researched and has reached a high le- 

vel  of  maturity  where  progress  is  currently  being  made  [Garćıa-Fernández et al., 2019, 

Leitinger et al., 2019, Demim et al., 2018], there is still a lack of standardization to re- 

present such information and the knowledge needed to propose efficient and interoperable 

solutions. In this context, the need for a standard and well-defined model for capturing 

the knowledge managed by SLAM algorithms, becomes evident. According to the work 

of [Burroughes and Gao, 2016], ontologies are the best way to organize knowledge since 

they are a mixture of first-order logic (FOL) and a model based on characteristics. 
 

As far as we  know, there is not a common classification of such knowledge. In  

fact, many existing works based on Semantic Web, have formulated ontologies to model 

information related to some SLAM aspects, without a standard and common arrangement. 

Hence, there are few ontologies that can be considered complete solutions to the SLAM 

problem. 
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Furthermore, in the current state of the art of SLAM ontologies, it is clear that a lot 

of work is done only in the final result, as if SLAM were a static process. By considering 

the SLAM process as something static, we are modeling the knowledge acquired only 

partially. For this reason, it is important to understand SLAM as a continuous process 

with the presence of uncertainty. For this reason, in order to develop a complete ontology, 

we  have  to start considering not only the result but to examine characteristics inherent  to 

the dynamicity of the process such as uncertainty, for example, the uncertainty of the 

robot pose generated by the inaccuracy of its physical movements and the position of the 

landmarks founded in the robot’s path. 

 

 

1.3. Objective 

 
Model and develop SLAM-UP, an ontology to model the uncertainty in robot pose 

and landmarks positioning in order to enrich the existing modeling of SLAM knowledge. 

 

 

1.3.1. Specific objectives 
 

1. Propose a categorization of the knowledge managed in the SLAM problem, based 

on existing ontologies and SLAM principles, in particularly, for mobile robots. 

2. Analyze the features currently admited for the acctualy ontologies whose model 

robot pose, including (position and orientation). 

3. Analyze and study the advances already developed in landmark positioning. 

4.Develop an ontology that manages the uncertainty of robot pose and landmark 

position. 
 

 

1.4. Organization of the thesis 

 
The remainder of this thesis is structured as follows. Chapter 2 describes some 

studies related to our work and the most important concepts of SLAM. There is also a 

review of the work  that has modeled the knowledge of SLAM up to date. As there is     

no taxonomy already defined to classify these works, a categorization has been proposed 

according to the sub-problems that SLAM has to solve. 
 

In Chapter 3, there is the whole process of modeling and developing SLAM-UP. It is 

explained which requirements the ontology must satisfy, as well as the main concepts that 

will be extracted from existing ontologies. Additionally, it is described how the validation 

process will be. 

In Chapter 4 we present the implementation of SLAM-UP, describing the resources and 

relationships that have been added. The experiments performed and the results obtained 

in the validation are also presented. Finally, in Chapter 5, general conclusions of this work 

and future works are presented. 

 



4 Programa Profesional de Ciencia de la Computación 

4 Universidad Católica San Pablo 

 

 

 

 

 

 

 

 

 

Caṕıtulo  2 

Background 

2.1. SLAM Principles: Preliminaries 

 

SLAM is a well-known problem by which a mobile robot must construct a map of a 

specific environment and simultaneously identify its own position within this map 

[Durrant-Whyte and Bailey, 2006]. A SLAM solution is mostly based on the identifica- 

tion of some representative objects in the environment, called landmarks. Landmarks are 

static objects, that can be used to identify places or zones in the environment. An ef- 

ficient and consistent solution for SLAM requires to combine the robot pose and every 

landmark’s position (considering time information) in a unique state. The state must      

be updated on every robot observation, considering that it includes certain uncertainty 

[Durrant-Whyte and Bailey, 2006]. There exist three kinds of maps that can be cons- 

tructed, either in 2D and 3D mapping, in a solution of the SLAM problem: (i) join pose-

feature maps; (ii) pose-only maps; and (iii) feature-only maps. A pose-feature map is a 

map obtained from the feature-based SLAM, which consists of the landmarks and robots 

positions. A pose-only map is a map obtained from the pose-graph SLAM, con- sisting of 

relative positions among the robot poses. A feature-only map is obtained from  a 

decoupled SLAM (D-SLAM) and considers all landmarks features [Zhao et al., 2019]. 

Building an accurate map, along with performing precise localization of robots is a non 

easy problem [Guclu and Can, 2019], that demands a variety of information. Thus, when 

a developer or researcher implements a solution for the SLAM problem, it is important  

to know what information must be stored. The information that is available  and could   

be stored is mainly related to: (i) the map itself; (ii) the robot pose; (iii) semantic and 

features of the workspace; (iv) changes of poses and landmarks features on time; (v) da- 

ta representing uncertainty; and (vi) some information related to the kind of solution is 

implemented [Bailey and Durrant-Whyte, 2006, Durrant-Whyte and Bailey, 2006]. 

A representation of the map itself is, of course, the main information that must 

be stored. It includes geographical information about all the environment with landmarks 

correlation. It is important to storage features representing the shape and position of land- 

marks. Also, it is important to consider that this information comes from an estimation 

and this estimation can change on time. Finally, it is important to consider and storage 

specific domain information of the environment, either if it is obtained for each landmark 
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or for zones in the environment. 
 

Robot pose is another important information to count on, because the problem is 

about localization while mapping an environment. It is important to include kinematic 

information of the robot to understand its pose and the space it holds. Also, for unders- 

tanding how the map is estimated, and possibly improving that estimation, it is important 

to storage sensory information and the robot trajectory. Robot trajectory is relevant for 

some kinds of SLAM problems, like active SLAM, which considers the capability of mobile 

robots to generate on-time trajectories to maximize the accuracy of the generated map 

and the localization of robots [Carrillo et al., 2012]. 
 

Beliefs about the map and positions of objects will change every time; then, it is 

important to store these changes including the information of moving objects. These beliefs 

changing will bring uncertainty that must be represented, quantified, and stored at each 

time. Stored uncertainty will bring the level of confidence associated to the estimation of 

robot poses and mapping [Rodŕıguez-Arévalo et al., 2018]. If the solution is a large scale 

one, it could include sub-mapping and delayed mapping, then it is important to store 

correlated sub-maps and relative correlations of positions, shapes, and poses. 
 

According to these SLAM principles, some works have proposed to partially model 

the information managed in SLAM applications, by using ontologies. To address this 

limitation, we propose a categorization of such as knowledge, considering all aspects of 

SLAM. In the next section, we describe our proposed categorization. 

 

 

2.2. Ontologies for SLAM 

 
It is obvious that in a SLAM scenario, there exist different types of information and 

knowledge that are managed, considering the description of the capabilities, characteris- 

tics, behaviours of robots, as well as environmental and specif domain information. 
 

In order to correctly categorize the knowledge in SLAM, it is important to consider 

that: (1) SLAM is a problem that must be solved by autonomous robots; (2) a SLAM 

solution is a continuous solution; thus, the problem is not completely solved after some 

time; that means that while the robot is working, it must map the environment and locate 

itself; (3) since a solution to SLAM is continuous in time, then robots will always have 

some üncertainty.about the correctness of the mapping process and also about its location; 
(4) the mapping process and the robot’s location estimation depend on the correctness 

about believes of shapes and location of landmarks; (5) the location of a robot depends 

also of its physical structure, defined by its kinematics; (6) it is  important to consider  

that the main goal of autonomous robots is to act in real world”, that means, to act in 

dynamic environments with possibly moving objects (passive or active) that must affect 

the process of mapping and location; (7) in order to improve the robot capabilities of self-

location while mapping an environment, it is important to manage information and 

knowledge about physical and semantic characteristics of landmarks in the environment; 

and (8) information and knowledge about the environment depend on the dimension of 

the perception of the robot (2D or 3D) and also in the specific domain of application of 

the robotic solution is implemented. 
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Hence, based on these considerations, our proposed classification considers the fo- 

llowing fields of SLAM knowledge: (i) robot information; (ii) environment mapping; (iii) 

timely information; and (iv) workspace. We detail each category as follows. 

 

1. Robot Information: It is related to the information that conceptualize the main 

characteristics of the robot, physical and structural capacities. It mainly considers: 

a) Robot kinematic information: It is related to robots’ degrees of freedom, 

degree of mobility, among others. This information is important for modeling 

the actions that the robot can perform, that in turns allows to consider the 

navigation of the robot in the space it is discovering. 

b) Robot sensory information: Another relevant field is to model what the 

robot perceives through its sensors. 

c) Robot pose  information: It is important to consider information related 

to the location of the robot; position and orientation related to its degrees of 

freedom. 

d) )  Robot trajectory information: For mobile robots, which is the focus on  

this work, it is necessary to model information of the trajectory. 

e) Robot position uncertainty: In the context of SLAM, there is an uncertainty 

related to a set of positions where the robot could be. Then, it is important to 

model actual positions, as well as this uncertainty, as possible positions. 

2. Environment mapping: This category includes information generated directly by 

the tasks of mapping and localization. Thus, it considers: 

a) Geographical information: Mapping is a basic requirement for autonomous 

robots; they must be capable of creating an accurate and in-depth characte- 

rization of the surrounding. Hence, it is essential to model the geographical 

information of the terrain in which they are. Autonomous robots can concep- 

tualize single scenes like offices or multiple scenes like departments. 

b) Landmark basic information (position): It refers to the information rela- 

ted to the presence of other objects in the environment, that are not the robot, 

and the position of these objects on the map being built during the SLAM. 

c) Landmark shape information: Besides the information related to the land- 

mark position, in some scenarios it is also useful to know the shape it has or if 

it is a complex landmark. In some SLAM scenarios, the ability of decomposing 

landmarks into simpler parts, can be useful. 

d) )  Landmark  position  uncertainty:  In  addition  to  the  uncertainty  of 

robot  position, the uncertainty of the position of landmarks can be  

considered. That means to model possible positions and actual positions of 

objects used as land- marks. 

3. Timely  Information: Dynamic environments can change over  the time. Thus, it   

is important to model: 

a) Time information of robots  and  objects: In particularly, it is considered  

the information related to poses and positions of robots and objects during the 

time. 
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b) Mobile objects: It relates the knowledge of objects that can be present or not 

at specific moments in time. In other words, it matters objects with respect to 

time. 

4. Workspace: This category of information is related to general characteristics that 

describe the work space in which the SLAM solution is applied. It considers: 

a) Dimensions of mapping and localization: It refers whether the mapping 

and localization is modeled in two or three dimensions. 

b) Specific domain information: If the SLAM solution is used in particular 

applications, it is important to model high level knowledge of the environment 

that surrounds the robot and the specific domain in which the SLAM is ap- 

plied. Examples of specific entities or objects that can be modeled could be 

related to a restaurant (for a restaurant service domain), an office (for a rescue 

application), or planets (for an automatic search domain). 

 

In order to demonstrate the suitability and completeness of our categorization, we 

perform a comparative analysis of existing ontologies and evaluate which information is 

modeled on each one. Additionally, we report: (i) the Application Scope in which the SLAM 

problem was applied (e.g., service, rescue, automatic search); this refers to the context of 

applicability of the ontology being analyzed; and (ii) the Origin Ontology (Based on), if 

the ontology has been based on an older ontology or on a more general level, such as an 

Upper ontology. In the next section, we present such comparative analysis. 

 

 

2.3. SLAM ontologies classification: A Review 

 
This section describes, according to our categorization, how some ontologies model 

SLAM specific information, in order to know which are the most developed fields and 

which are still missing. 

 

2.3.1. Robot Information 

 
Before a robot can describe and know its surroundings, it needs to know what it  

can do, which are its physical, structural, and functional capabilities. In this section, we 

describe ontologies that are mainly focused on those aspects, however some of them also 

take into account some aspects related to the environment, mapping, and specific domain 

knowledge. In the following, we describe ontologies that model the knowledge of each 

aspect considered in this category. 

 

 

a) Robot kinematic information: 

 
Even though the RoboEarth ontology [Riazuelo et al., 2015] main focus is to model 

concepts and relationships among objects and maps, it is the best one we found that 

provides a good kinematic robot model and robot’s motion capabilities model (e.g., it can 
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represent the arm motor capacity). Robot Ontology [Schlenoff and Messina, 2005], models 

a neutral knowledge about robots and their capacity to help in the field of robot search and 

rescue systems. This ontology model structural characteristics, functional capabilities, and 

operational considerations of robots. All these data are mainly captured in the definition of 

the robot itself, including: size, weight, power source, sensors, and processors. With this 

information, it is possible to conceptualize locomotion, sensor, operational capabilities, 

and also degree of autonomy. 
 

The work presented by Burroughes and Gao in [Burroughes and Gao, 2016], pro- 

poses an ontology which dedicates an entire module to represent the needed information 

necessary for the self-reconfiguration of a planetary rover. Clearly, this is a very broad 

and challenging domain. To reduce the intrinsic complexity, the ontology is organized in 

modules. The Upper ontology is divided into sub-modules as shown in Figure 2.1. Anot- 

 

Figura 2.1: Modules of the Ontology  proposed  by  Burroughes  and  Gao  in  

[Burroughes and Gao, 2016] 

her point of view of kinetic information is to model actions of robots as is the case of: (i) 

OASys ontology [Alonso et al., 2011, Paull et al., 2012]; (ii) the ontology used in OUR-K 

(Ontology-based Unified Robot Knowledge) [Lim et al., 2011]; and (iii) KNOW ROB on- 

tology [Tenorth and Beetz, 2009]. For these three ontologies, in order to represent these 

complex actions, it is necessary to have a previous knowledge of the locomotive capacities 

of the robot. 
 

Another group of ontologies have not focused specifically on describing the loco- 

motive capabilities of robots, but they have classes and entities to describe robot parts. 

This is the case of CORA [Prestes et al., 2013], POS [Carbonera et al., 2013], and the 

work of Fortes-Rey [Fortes, 2013], which have been inspired by the general concepts of 

SUMO [Eid et al., 2007] and have a RobotPart entity in common. 

 

 

b) Robot sensory information: 

 
In SLAM applications, sensors from which gather information can be present in the 

environment or in the robot. KNOW ROB ontology [Tenorth and Beetz, 2009] models in- 

formation received by sensors placed in the environment. A remarkable feature of this on- 
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tology is the management of uncertainty, that could be caused by hallucinated objects de- 

tection,limited observability and sensor noise. ROSPlan [Cashmore et al., 2015] manages 

both sources of information (i.e., sensors in the environment and in the robot) to locate val- 

ve panels and valves. These objects are important for the case study of the work. Most con- 

sidered ontologies model information received from the sensors in the robot. Some of these 

ontologies have a whole ontology only for sensors, as is the case of SUMO [Eid et al., 2007] 

and the ontology proposed by Burroughes and Gao [Burroughes and Gao, 2016]. 
 

Other ontologies model sensory information, even it is not their main objective, such 

as: (i) RoboEarth ontology [Riazuelo et al., 2015], (ii) the ontology of SEMAP, a frame- 

work for semantic maps representation in spatial databases, proposed by Deeken et al., in 

[Deeken et al., 2018]; (iii) the ontology proposed by Wu et al., in [Wu et al., 2014]; (iv) 

the ontology used in OMRKF (Ontology-based Multi-layered Robot Knowledge Frame- 

work) [Suh et al., 2007]; (v) based on OMRKF, the knowledge framework OUR-K 

[Lim et al., 2011] is presented to be used for service robots, (vi) OASys ontology, that 

treats sensors as a type of device; it is developed for Unmanned Aerial Vehicles (UAV) 

and Unmanned Ground Vehicles (UGV); and (vii) Robot Ontology, where the structural 

characteristics are captured when the robot is defined; one of this characteristics is related 

to sensors (e.g., camera, Temperature Sensor, GPS, SONAR, Audio). 

 

 

c) Robot pose information: 

 

Robot position can be absolute or relative. For  the first case, a robot is positioned  

at a global spacial coordinate (e.g., (x, y) if its workspace is R2), while in the second  

case, the robot is positioned considering the position of a landmark in the environment 

(e.g., the robot is behind the ”wall”, where behind means a conical region centred on 

the ”wall.and pointing backward). In the absolute case, works like: (i) Burroughes and 

Gao’s proposal [Burroughes and Gao, 2016], that with its Topological Map Ontology and 

Simple Map Ontology can represent an absolute position; (ii) SUMO [Eid et al., 2007], 

which we assume it models absolute positions, in a coordinate system, because in one 

application in which it is tested, it is possible to model car positions in a New York map; 

and (iii) the ontology presented by Wu et al., in [Wu et al., 2014], which uses a Bayes 

algorithm for a reliable position of the robot in spatial semantic hybrid map building; it is 

a more accurate way of modeling robot position. On the other hand, works able to repre- 

sent relative positions are: (i) RoboEarth [Riazuelo et al., 2015]; (ii) the work of Fortes- 

Rey [Fortes, 2013], that can represent both absolute and relative positions; (iii) POS 

Ontology [Carbonera et al., 2013], which complements Core Ontology and expands SU- 

MO, by specifying the main concepts and their relationships, and underlying the notions 

of pose, orientation, and position; additionally, POS allows the description of postures, 

orientations, and positions, in a coordinated system; in this way it is possible to model 

quantitatively and qualitatively orientations and positions; and (iv) the ontology proposed 

by Deeken et al., in [Deeken et al., 2018] for semantic maps in spatial databases, whose 

mapping approach consists on obtaining absolute geometric data from the environment  

to model objects and their relative spatial relationships. 
 

There are proposals that do not generate a metric map as a result of their SLAM 

stage, in contrast they generate a graph where each node represents a possible place 
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or position where the robot can be. The Knowledge Base ontology of ROSPlan fra- 

mework [Cashmore et al., 2015], uses the structural similarities between many robotics 

planning domains. For example, in the case study presented authors represent the areas, 

where an Autonomous Underwater Vehicle (AUV) can move, showing with points its 

possible locations (waypoints). In a similar way of [Cashmore et al., 2015], KNOW-  

ROB [Tenorth and Beetz, 2009] models robot pose in a list of places where the robot 

could be, using the RobotPlace entity;  and the ontology proposed by  Hotz et al., in  

[Hotz et al., 2012], which combines two spatial reasoning calculi, RCC-8 and CDC, with 

ontological representations of maps for service robots for a restaurant. There are also 

ontologies which combine different maps like OUR-K ontology [Lim et al., 2011], that 

combines semantic, topological, and metrics maps to describe Spaces; and the ontology 

for multi-layered conceptual maps proposed by Martinez et al., in [Mozos et al., 2007] 

and the one proposed by Li et al., in [Li et al., 2013], which represent metric, navigation, 

topological, and conceptual maps. 

 

 
d) Robot trajectory information: 

 
Considering that a trajectory is a sequence of positions in a given time, an ontology 

has to model time to properly model trajectories. Two ontologies comply with this tempo- 

ral characteristic, the one proposed by Burroughes and Gao [Burroughes and Gao, 2016] 

and the proposal of Fortes-Rey [Fortes, 2013]. The first one has a module called Proccess 

Ontology related to Temporal Ontology (see Figure 2.1). Instead, Fortes-Rey proposes a 

relationship, called posAtTime, that allows to relate a robot to a position and timing. 

Then, it is possible to describe the trajectory of a robot. 

 

 
e) Robot position uncertainty: 

 
Only two ontologies were found that conceive uncertainty. KNOW ROB ontology 

[Tenorth and Beetz, 2009]. This ontology considers the actions of robots are unreliable 

and inaccurate. Also the ontology for Spatial Semantic Hybrid map building proposed   

by Wu et al., in [Wu et al., 2014], which is able to represent the most probable position 

where the robot can be. 

 

f) Discussion: 

 
Table 2.1 summarizes the inclusion of the five topics, related to robot information, 

in the analyzed ontologies. As it is shown in Table 2.1, almost all ontologies model basic 

robot information, such as kinematic, sensory, and pose. This kind of information is most 

focused on the result of SLAM solution: maps and robot’s locations. However, trajectory 

and position uncertainty information, which are focused on “the process to obtain” maps 

and locations, are not very considered. 
 

Trajectory is most related to specific types of SLAM solutions, like Active SLAM and 

position uncertainty is specific information related to the process of solving SLAM. Then, 

we can conclude that the majority of ontologies intend to represent the result of SLAM 
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solutions, i.e., a map and a robot located on it. Although, in the field of autonomous mobile 

robots, they must be “always” exploring new environments to resolve the SLAM problem, 

considering more than the basic information could enrich the knowledge managed and 

open new frontiers to expand the SLAM application. 

 
 

2.3.2. Environment mapping 

 
SLAM deals with the ability of autonomous robots to localize themselves in a 

map/plan and construct the map (outdoor use) or the floor plan (indoor use). To  do        

so, geographical information, as well as, information related to landmarks present in the 

explored space, are needed to keep. In this section, we describe ontologies able to model 

such kind of information. 

 

a) Geographical information: 

 
In this category of information, RoboEarth ontology [Riazuelo et al., 2015] is the 

most outstanding. This is reflected in its ability to model the location of objects with 

respect to the robot, the geometry of the scene, as well as the relationships and concepts 

between objects and maps. 
 

There are other ontologies that model geographic information in a general way. This 

is the case of: (i) Space Ontology [Belouaer et al., 2010], which is a spatial knowledge re- 

presentation complemented with a reasoning system, able to model and manage the space 

(e.g., hierarchical organizations, spatial entities); (ii) the ontology proposed by Burroughes 

and Gao [Burroughes and Gao, 2016] has two modules related to geographic information: 

the Simple Map Ontology and the Topological Map Ontology; and (iii) the ontology pro- 

posed by Hotz et al., [Hotz et al., 2012], which describes an environment as a topological 

graph and separates overlapped and reachable rooms. 
 

Instead of using topology maps, other form to describe an environment is to jointly 

use metric maps, navigation maps, topological maps, and semantic maps. This is the   

case of: (i) OUR-K ontology [Lim et al., 2011], which has a Knowledge Class, specifi- 

cally to handle spatial notions as metric and topological map; (ii) the ontology presen-  

ted by  Li et al., in [Li et al., 2013], which shows how  the interaction with an intelli-   

gent wheelchair is done by combining multi-layered maps; (iii) the proposal of Marti-  

nez et al., in [Mozos et al., 2007], which defines topological areas, defined as an onto- 

logical instance of the type Area, in the conceptual map of the ontology (iv) OMRKF 

ontology, in which Rooms are defined as Spaces; (v) the ontology proposed by Deeken 

et al., in [Deeken et al., 2018], which models rooms with objects associated with them; 

(vi) CORA [Prestes et al., 2013], POS [Carbonera et al., 2013], and the work of Fortes- 

Rey [Fortes, 2013], which have been inspired by the general concepts of SUMO [Eid et al., 2007]; 

they share concepts such as Region and Environment. 
 

Finally, there are ontologies that do not describe the environment as a space where 

there are objects, but build an environment from the objects. This is the case of the    

work of Wang and Chen [Wang and Chen, 2011] and the one  proposed by  Wu  et al.,  

[Wu et al., 2014]. 
 



 

 

 

 
 

Name Ref Kinematic 

Inf. 

Sensory 

Inf. 

Pose 

Inf. 

Trayectory 

Inf. 

Position 

Uncertainty 

Robot Ontology, 2005 [Schlenoff and Messina, 2005] X X - - - 

Burroughes and Gao, 2017 [Burroughes and Gao, 2016] X X X X - 

OASys, 2012 [Paull et al., 2012] X X - - - 

Fortes-Rey, 2013 [Fortes, 2013] X - X X - 

Core Ontology, 2013 [Prestes et al., 2013] X - - - - 

POS, 2013 [Carbonera et al., 2013] X - X - - 

SUMO, 2007 [Eid et al., 2007] - X X - - 

Hotz et al., 2012 [Hotz et al., 2012] - - X - - 

RoboEarth, 2015 [Riazuelo et al., 2015] X X X - - 

OUR-K, 2011 [Lim et al., 2011] X X X - - 

Martinez et al., 2007 [Mozos et al., 2007] - - X - - 

ROSPlan, 2015 [Cashmore et al., 2015] - X X - - 

KNOW ROB, 2012 [Tenorth and Beetz, 2009] X X X - X 

Li et al., 2013 [Li et al., 2013] - - X - - 

OMRKF, 2007 [Suh et al., 2007] - X - - - 

Wu et al., 2014 [Wu et al., 2014] - X X - X 

Deeken et al., 2018 [Deeken et al., 2018] - X X - - 

1
2
 

P
ro

g
ra

m
a
 P

ro
fesio

n
a

l d
e C

ie
n

cia
 d

e la
 C

o
m

p
u
tació
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b) Landmark basic information: 

 
When we refer to modeling the basic information of landmarks, we have considered 

two criteria: (i) the capability of modeling an object other than the robot on the map; and 

(ii) the capability of modeling the position of this object with respect to the map. Almost 

all ontologies have defined the entity Object or Artifact to describe landmarks. The work 

presented by Burroughes and Gao [Burroughes and Gao, 2016] has a whole ontology dedi- 

cated to modeling Objects. CORA [Prestes et al., 2013], POS [Carbonera et al., 2013], and 

the work of Fortes-Rey [Fortes, 2013], which are extensions of SUMO [Eid et al., 2007]. 

RoboEarth ontologie [Riazuelo et al., 2015], use the Object entity, which is a specialization 

of the concept Entity, that can be either Abstract or Physical. The ontology proposed by 

Hotz et al., [Hotz et al., 2012] uses the TBox concept to model objects in the environment 

(such as cup, plate, table, room). The proposal of Martinez et al., in [Mozos et al., 2007] 

defines a conceptual map that is the link between the communication system used for the 

dialogue between the robot and the human when they refer to representations of spatial 

entities, such as instances of Objects or Rooms, and low-level maps. In a similar way, the 

proposal of Deeken et al., in [Deeken et al., 2018] has the ObjectDescription entity,which 

defines a generalized model of the spatial characteristics for each class of object. 

The ontology proposed by Li et  al.,  in  [Li et al., 2013],  describes  its  environment 

also with the help of a conjunction of metrical, topological, and semantics maps, just as 

Martinez’s work  makes use of relationships has-a. Thus, it is possible to have  relations  

such as Building has-a Floor, Floor has-a Room, and Room has objects like a Desk or a 

Book. This ontology also allows the modeling of relationships between objects in a Room, 

such as Book on-a Desk. 
 

RoboEarth ontology [Riazuelo et al., 2015] and OUR-K ontology [Lim et al., 2011] 

can model compound and simple objects, where each object belongs to a position no-   

de, associated to an area in a relative  (not  absolute)  way.  The  method  of  represen- 

ting indoor environment semantic maps for mobile robots proposed by Wang and Chen 

[Wang and Chen, 2011], is totally different from its predecessors. For this work, the se- 

mantics of an environment does not longer begin with identifying and connecting Spatial 

Regions; instead, it defines a Region based on the objects that compose it. For example, 

an office can be defined by the presence of a chair, a desk, a room, walls, or other things. 

This example can be seen graphically in Figure 2.2. 
 

KNOW ROB [Tenorth and Beetz, 2009] and OMRKF [Suh et al., 2007] ontologies 

model the absolute positions of objects, i.e., with coordinates (x,y,z). The ontology pro- 

posed by Wu et al., [Wu et al., 2014]models the name, size, function, color, shape, and 

other relevant data of features of an object, by using a QR code. In the ROSPlan on- 

tology [Cashmore et al., 2015], with the data of the sensors captured while the plan is 

executed and after being collated in the ontology, it is possible to define the resources of 

the type objects and the relations between them. 

 

c) Landmark shape information: 

 
This information about landmarks, is important not only in the process but in the 

final result. Thus, when considering shape information is possible to obtain a more realis- 
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Figura 2.2: An example of an office scene with the ontology proposed by  Wang  &   

Chen [Wang and Chen, 2011] 

 
tic an accurate map of the world. From the studied ontologies, only one explicitly models 

the shape of landmarks, that is the ontology proposed by Wu et al., [Wu et al., 2014]. It 

includes the shape of the landmark, as well as the size, the color, among other characte- 

ristics. 
 

Other ontologies model partially this informations, such as: (i) RoboEarth onto- 

logy [Riazuelo et al., 2015], which represents a set of characteristics of the surfaces of the 

object, with a multi-view geometry; (ii) OUR-K ontology [Lim et al., 2011], it does not 

specifically analyze the landmark form, however it offers the possibility of decomposing a 

landmark in other simpler ones; for example a cup is composed of a body and a handle ; 

and (iii) the one proposed by Wang and Chen [Wang and Chen, 2011], which counts on 

relations part-of and has-a to describe more complex landmarks; thus, even though the 

landmark shape is not described geometrically, it does so structurally. 

 

 
d) Landmark position uncertainty: 

 
The only ontology that can fully model the uncertainty of landmark positions is    

the one proposed by Wu et al. [Wu et al., 2014]. To model this uncertainty, this proposal 

uses the hidden Markov model and a probabilistic approach based on the Bayes algorithm. 

RoboEarth ontology [Riazuelo et al., 2015] also has an approximation to the probability of 

positions, because based on where the landmarks are located, the knowledge base deduces 

possible locations, where the objects could be. 

 

e) Discussion: 

 
Table 2.2 summarizes the inclusion of the four topics, related to environment map- 

ping, in the ontologies analyzed. Most of the ontologies considered model the geographic 

information and the basic information of the landmarks. Just one of them models infor- 
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mation related to the shape of landmarks, while only few of them, partially represent this 

knowledge. Furthermore, similar to the previous section (see Table 2.1), the number of 

ontologies that model the uncertainty of landmark positions, is very low. 
 

Landmark position uncertainty information is related to the process of solving the 

SLAM problem; then, the fact that it is not considered enough, ratifies the characteristic 

of the existing ontologies of only considering the final result of a solution to the problem 

of SLAM. On the other hand, shape information about landmarks is important not only  

in the process but in the final result. Thus, when considering shape information is possible 

to obtain a more realistic an accurate map of the world. 

 

2.3.3. Timely Information 

 
SLAM is a problem solved by mobile robots and can consider dynamic environment. 

Thus, not only static positions should be modeled. It is important to model the temporary 

factor that affects both the environment and the robot. 

 

a) Time information of robots and objects: 

 
A diachronic ontology can represent state changes of its concepts through the ti- 

me. SUMO [Eid et al., 2007] has support for indexing facts over time. In fact, SUMO 

represents time using TimeMeasures classes, that represent positions or intervals in the 

universal time-line. In a similar way, the ontology proposed by Fortes-Rey [Fortes, 2013], 

includes the time component in points and regions position measurements. On its side, the 

ontology proposed by Burroughes and Gao [Burroughes and Gao, 2016] has a complete 

module to model temporal information (Temporal Ontology). OMRKF [Suh et al., 2007] 

and OUR-K [Lim et al., 2011] ontologies, present a model based on levels, where one level 

is Context and the temporal context is considered. 

 

b) Mobile objects: 

 
We can say that the proposal of Burroughes and Gao [Burroughes and Gao, 2016] 

allows to recognize mobile objects, if we analyze the relationships among the ontolo-  

gies of Objects and Single Map, with the Temporal Ontology. Also the work of Fortes- 

Rey [Fortes, 2013] allows to differentiate objects that move from those that do not, since 

the ontology can represent an object placed in a position at a given time. Ontologies such 

as RoboEarth [Riazuelo et al., 2015] and OMRKF [Suh et al., 2007] recognize mobile ob- 

jects from databases, according to their visual characteristics, instead of their temporal 

characteristics. For example, a bicycle is considered a mobile object because of its shape 

but not because of its movement. 

 
 

c) Discussion: 

 
Table 2.3 summarizes ontologies related to temporal information. In the context of 

mobile robots solving the SLAM problem, it is clear the need of representing dynamic 
 



 

 

 

 
 

Name Ref Geographical 

Info 

Landmark 

Basic Info 

Landmark 

Shape Info 

Landmark 

Position Uncertain. 

Burroughes and Gao, 2017 [Burroughes and Gao, 2016] X X - - 

Fortes-Rey, 2013 [Fortes, 2013] X X - - 

Core Ontology, 2013 [Prestes et al., 2013] X X - - 

POS, 2013 [Carbonera et al., 2013] X X - - 

SUMO, 2007 [Eid et al., 2007] X X - - 

Hotz et al., 2012 [Hotz et al., 2012] X X - - 

Space Ontology, 2010 [Belouaer et al., 2010] X - - - 

Wang, 2011 [Wang and Chen, 2011] X X X - 

RoboEarth, 2015 [Riazuelo et al., 2015] X X X X 

Martinez et al., 2007 [Mozos et al., 2007] X X - - 

OUR-K, 2011 [Lim et al., 2011] X X X - 

ROSPlan, 2015 [Cashmore et al., 2015] - X - - 

KNOW ROB, 2012 [Tenorth and Beetz, 2009] - X - - 

Li et al., 2013 [Li et al., 2013] X X - - 

OMRKF, 2007 [Suh et al., 2007] X X - - 

Wu et al., 2014 [Wu et al., 2014] X X X X 

Deeken et al., 2018 [Deeken et al., 2018] X X - - 
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Name Ref Time Info Mobile objects 

Burroughes and Gao, 2017 [Burroughes and Gao, 2016] X X 

Fortes-Rey, 2013 [Fortes, 2013] X X 

RoboEarth, 2015 [Riazuelo et al., 2015] - X 

SUMO, 2007 [Eid et al., 2007] X - 

OUR-K, 2011 [Lim et al., 2011] X - 

OMRKF, 2007 [Suh et al., 2007] X X 
 

Cuadro 2.3: Ontologies related to Timely Information 

 

environments, which requires time modeling. As Table 2.3 shows, less than a half of the 

selected ontologies comply with modeling timely knowledge, mainly with concepts related 

to temporal information associated to positions and objects. Concerning the modeling of 

mobile objects, we can notice that although the ontology models basic temporal informa- 

tion, sometimes it is not enough to model dynamic objects in the environment. This is the 

case of SUMO and OUR-K. On the contrary, RoboEarth, which does not model temporal 

information, is capable of recognizing moving objects; at least partially (as explained abo- 

ve). Thus, it is important to note, the fact of recognizing and storing information about 

mobile objects not only refers to a good understanding of the process of solving SLAM, 

but the quality of mapping. Because in the real world (where robots are intended to work), 

mobile objects are very common and an accurate mapping must include its recognition 

and characterization on the map. 

 

 

2.3.4. Workspace 

 
General characteristics of the work space where the SLAM solution is applied are 

mainly related to the dimensionality to represent maps and specific semantic knowledge 

of the domain. 

 
 

a) Dimensions of mapping and localization: 

 
Some ontologies show that they can model knowledge related to mapping and loca- 

tion in two dimensions such as the work of Fortes-Rey [Fortes, 2013], POS [Carbonera et al., 2013], 

SUMO [Eid et al., 2007], and OUR-K [Lim et al., 2011]. 
 

As expected, more recent ontologies are already able to model information in 3D. 

The ontology proposed by Burroughes and Gao [Burroughes and Gao, 2016] allows to 

receive and model information from an external 3D mapping service. The one propo-   

sed by Wang and Chen in [Wang and Chen, 2011], defines relationships between ob-  

jects like,back, right back, right front, left,left back, left front, below, and above, giving 

the idea of a cube (3D) as a scenario around the object. The same case is presented         

in OMRKF [Suh et al., 2007], in the ontology proposed by Li et al., in [Li et al., 2013], 
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KNOW ROB ontology [Tenorth and Beetz, 2009], and the ontology proposed by Wu et 

al., in [Wu et al., 2014]. Others ontologies such as RobotEarth [Riazuelo et al., 2015] and 

the one described by Deeken et al., in [Deeken et al., 2018] model 2D and 3D SLAM. 

 

 

 
b) Specific Domain Information: 

 
 

Once the modeling of information related to the two main SLAM tasks (i.e., map- 

ping and localization), is solved, the next step is regarding the information to detect an 

object and identify it. It does not only matter identifying objects that exist, but ob-      

jects that belong to  a specific domain. This is the case for the ontology presented by  

Hotz et al., in [Hotz et al., 2012] and KNOW ROB ontology [Tenorth and Beetz, 2009] 

that have entities only for restaurants. KNOW ROB was also applied in robotic house- 

work [Pangercic et al., 2012]. 
 

 
 

 

Figura 2.3: Objects on a table according the ontology of Deeken et 

al., [Deeken et al., 2018]. 

 

 

Another examples are offices modeled by the ontology proposed by Wang and Chen 

in [Wang and Chen, 2011] (see Figure 2.2) and by  the one described by  Deeken et al.,   

in [Deeken et al., 2018]. Figure 2.3 shows a table in close-up to illustrate how objects on 

the table are bound to the table’s reference frame. 
 

Finally, specific domains less specialized are the indoor environments modeled in: (i) 

the work proposed by Martinez et al.,[Mozos et al., 2007], in which typical indoor envi- 

ronments, such as kitchen, living room, office, and laboratory can be modeled; including 

also the objects that can be found in them (e.g., blackboards, desks, armchairs, fridges; 

(ii) OMRKF [Suh et al., 2007], which is also able to model a kitchen and a living room, 

including objects such as cups, tables, chairs; (iii) the ontology proposed by Li et al., in 

[Li et al., 2013], which instead models an academic environment, where laboratories, offi- 

ces, corridors, and computer rooms can be modeled, including objects such as computers 

and desks; and (iv) RoboEarth [Riazuelo et al., 2015] provides a sub-database of relevant 

object models that will be needed to fulfill the target task. Thus, its semantic reasoning 

enhances recognition by reducing the false positive rate and computation. 
 



 

 

 

 

 

 

 

 

Name Ref Dimensions Specific Domain Info 

Burroughes and Gao, 2017 [Burroughes and Gao, 2016] 3D - 

Fortes-Rey, 2013 [Fortes, 2013] 2D - 

POS, 2013 [Carbonera et al., 2013] 2D - 

SUMO, 2007 [Eid et al., 2007] 2D - 

Hotz et al., 2012 [Hotz et al., 2012] - restaurant 

Wang and Chen, 2011 [Wang and Chen, 2011] 3D office 

RoboEarth, 2015 [Riazuelo et al., 2015] 2D-3D models relevant for the task at hand 

OUR-K, 2011 [Lim et al., 2011] 2D - 

Martinez et al., 2007 [Mozos et al., 2007] - kitchen, living room, office, lab 

KNOW ROB, 2012 [Tenorth and Beetz, 2009] 3D restaurant 

Li et al., 2013 [Li et al., 2013] 3D office, lab 

OMRKF, 2007 [Suh et al., 2007] 3D kitchen, living room 

Wu et al., 2014 [Wu et al., 2014] 3D - 

Deeken et al., 2018 [Deeken et al., 2018] 2D-3D office 
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c) Discussion: 

 
Table 2.4 summarizes the inclusion of the relevant ontology features, related to the 

workspace, for the analyzed ontologies. As for the dimensions that are handled, there is   

a predominance in 3D. This means that ontologies are looking to model more and more 

real data. In relation to specific domain information, we  note that there is a preference   

to model indoor environments. These include academic environments such as offices and 

laboratories. There are also environments that describe the interior of a house, such as a 

living room or a kitchen. These works present applications of service robots which is an 

area that is being quite developed in mobile robots, which use ontologies to model the 

knowledge collected by SLAM. 

 

2.3.5. Summary 

 
Table 2.5 summarize all analyzed ontologies. The ontologies are marked with a cross 

if they conceptualize the subcategory of the associated column. We identify that some 

SLAM ontologies do not cover only one category, normally they cover more than one. 

However, most ontologies consider the first two categories, considering Robot Information 

and Environment Mapping, while Timely Information and Workspace appear as comple- 

ment with the others. 
 

SLAM problem is continuous in time; that means that it is desired that an auto- 

nomous robot must be solving it all the time, since it works in a real world and it can   

find new places at any time. We have parsed the importance of representing the timely 

information into SLAM ontologies, to improve the process of solving SLAM. We consider 

that the integration of environment mapping information, robot information, and timely 

information with the positioning uncertainty in robots and landmarks, represent an option 

to optimize and improve the precision of the results of SLAM solutions. 
 

It is important to develop ontologies for SLAM because more detailed information 

can take developers to include high level reasoning in autonomous robots in decisions 

including details of the environment. 
 

Additionally, we consider relevant to know the information relative to: (i) origin 

ontology, to know if the proposal has a predecessor; in this regard we can note that more 

than a half ontologies are based on an older ontology such as SUO KIF, KAON, or RCC-8, 

but also we can find ontologies that have been defined from the scratch as Robot Ontology 

and OASys; and (ii) the application scope, since there are ontologies for several knowledge 

areas, not limited to Service or Search and Rescue robots; we find other areas such as AUV 

and planetary robots. 
 

We finally point out the fact that each aspect considered in our proposed categori- 

zation is addressed for at least one of the revised ontologies. This indicates that we have 

took into consideration the most important knowledge related to the SLAM problem. Al- 

so, our knowledge categorization allows to evaluate the completeness of SLAM ontologies 

and to identify lacks and challenges that can boost future research in this area. 
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Thus we can note that there is no ontology that models all categories completely.  

For  this reason, we  gather the acquired knowledge to model an ontology that satisfies   

all categories, in other words, that models the entire SLAM process. On the other hand, 

there are very few ontologies that model important aspects of SLAM, such as uncertainty 

(Columns 5.1.5 and 5.2.4) and temporality (Column 5.3.1 and 5.3.2). In order that, we  

are considering both as important topics in the development of the proposed ontology. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
 

 

Name Ref Cat 1 Cat 2 Cat 3 Cat 4 Application Origin 

5.1.1 5.1.2 5.1.3 5.1.4 5.1.5  5.2.1 5.2.2 5.2.3 5.2.4  5.3.1  5.3.2   5.4.1   5.4.2 Scope Ontology 
 

Robot Ontology, 2005 [Schlenoff and Messina, 2005] X X - - - - - - - - - - - Rescue and Search - 

Burroughes and Gao, 2017 [Burroughes and Gao, 2016] X X X X - X X - - X X 3D - Planetary Rovers [Prestes et al., 2013] 

OASys, 2012 [Paull et al., 2012] X X - - - - - - - - - - - Autonomous systems - 

Fortes-Rey, 2013 [Fortes, 2013] X - X X - X X - - X X 2D - Positioning [Prestes et al., 2013],[Eid et al., 2007],SUO-KIF 

Core Ontology, 2013 [Prestes et al., 2013] X - - - - X X - - - - - - [Eid et al., 2007], SUO KIF, ALFUS  

POS, 2013 [Carbonera et al., 2013] X - X - - X X - - - - 2D - Positioning [Prestes et al., 2013] 

SUMO, 2007 [Eid et al., 2007] - X X - - X X - - X - 2D - - - 

Hotz et al., 2012 [Hotz et al., 2012] - - X - - X X - - - - - X Service robot RCC-8 and CDC 

Space Ontology, 2010 [Belouaer et al., 2010] - - - - - X - - - - - - - - RCC 

Wang and Chen, 2011 [Wang and Chen, 2011] - - - - - X X X - - - 3D X indoor mapping - 

RoboEarth, 2015 [Riazuelo et al., 2015] X X X - - X X X X - X 2D/3D X Service robots OpenCyc systems 

Martinez et al., 2007 [Mozos et al., 2007] - - X - - X X - - - - - X Service Robots - 

OUR-K, 2011 [Lim et al., 2011] X X X - - X X X - X - 2D - Service Robots KAON 

ROSPlan, 2015 [Cashmore et al., 2015] - X X - - - X - - - - - - AUV - 

KNOW ROB, 2012 [Tenorth and Beetz, 2009] X X X - X - X - - - - 3D X Autonomous Robots Cyc ontology 

Li et al., 2013 [Li et al., 2013] - - X - - X X - - - - 3D X Intelligent Wheelchairs - 

OMRKF, 2007 [Suh et al., 2007] - X - - - X X - - X X 3D X Service Robots KAON 

Wu et al., 2014 [Wu et al., 2014] - X X - X X X X X - - 3D - Service Robots SSH 

Deeken et al., 2018 [Deeken et al., 2018] - X X - - X X - - - - 2D/3D X indoor mapping - 
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tólica S

an
 P

ab
lo
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Caṕıtulo  3 

Proposal 

In the scientific literature related to SLAM solutions based on ontologies, there are 

few ontologies that model uncertainty. It is important to consider uncertainty when the 

knowledge generated by the SLAM process is modelled, because robots that solve this 

problem move in a dynamic physical environment. The physical world is neither precise 

nor discrete as is well known 
 

In order to create an ontology that models the knowledge generated by  SLAM,     

we have to consider it as a process instead of just taking the result. We develop an 

ontology that models the uncertainty of the robot and the positions of the landmarks.     

To  achieve  this goal, we  select an ontology that models in detail the Robot’s pose as   

the ontology of Fortes-Rey [Fortes, 2013]. Fortes-Rey ontology has been based on Core- 

Ontology [Prestes et al., 2013] that is the result of the Working Work of ORA, which is  

an important working group for the development of ontologies for autonomous robots,   

as mentioned in the introduction of this work. In addition Fortes-Rey ontology has the 

necessary documentation to attach a module easily in it. Finally, we consider its capacity 

to model temporary information. Due to the fact that temporality and uncertainty are 

inherent characteristics of the SLAM process as a process. So it seems to us a good starting 

point. 
 

After we define the basis ontology, we chose the Markov Logic to model uncertainty 

in SLAM, because there is a precedent in the state of the art in modeling SLAM knowledge 

with this logic. Specifically concerning the uncertainty of landmarks in the work of Wu  

et al [Wu et al., 2014], though it is not its main objective. For  our proposal SLAM-UP,  

we select the SLAM entities that are necessary to model the uncertainty of the robot and 

landmark position, as well as the necessary relationships between the entities chosen. 
 

Now we summarise the set of requirements that we considered for the development 

of SLAM-UP. 
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3.1. Requirements of SLAM-UP 
 

Purpose: The purpose of this ontology is to model the uncertainty of robot position 

as well as the uncertainty of landmark positions, besides all the knowledge related 

to the SLAM problem: robot information, environment information,timely infor- 

mation and workspace information.Thus, it is possible to get closer to a complete 

ontology for SLAM. Considering that SLAM is a process that describes a dynamic 

environment, where uncertainty is a characteristic that must be considered. 

 

Type of Ontology: it would be a general SLAM ontology, able to describe uncer- 

tainty of robots and landmarks positions. However, it should be possible to use this 

ontology in specific domains for specific SLAM applications (e.g., tourism, restau- 

rant service robotics, spatial decovering). 

 

Design Criteria: to ensure the coherence and quality of SLAM-UP ontology, it is 

important to pay attention on clarity and extendability for its development. 

 

 
With these criteria in mind we have designed a process to develop our ontology, 

SLAM UP, explained below 

 

 
 

3.2. SLAM-UP, Ontology Development Flow 

 
To develop this ontology we have 3 phases, as we can see in Fig 3.1. We began with 

the acquisition of knowledge, followed by the implementation and end with a validation 

phase. Next, we describe in more detail what each phase consists of. 
 
 

 
Figura 3.1: Development flow of SLAM-UP 
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3.3. Knowledge Acquisition 

 
The proposed ontology is made considering different sources such as existing onto- 

logies, related documents and the opinion of experts in domains. The existing ontologies 

will be reviewed, because the SLAM domain has been previously conceptualized, but with 

a different purpose than the one of this thesis. These existing ontologies will be selected, 

evaluated and finally reused partially or totally, in the case that a great affinity is found 

between what the ontology models and the purpose of this work. Additionally, attention 

will be paid to the level of granularity (if the existing ontology covers  the same level     

of detail as the developing ontology). The documents considered are surveys, articles or 

books as a source of information for the ontological elements of SLAM-UP. SLAM and 

Semantic Web domain experts also act as a possible source for conceptualization, since 

they provide their terminology, that is, the words and terms of a domain with which they 

are familiar. 

 

 

3.4. Implementation 

 
In this phase we will implement two modules: Robot Position Uncertainty (RPU) and 

Landmark Position Uncertainty (LPU). Those were implemented using OWL, language 

that is being used as standard for the development of web ontologies. Specifically, we will 

use it with RDF/XML serialization. We will also use Protegé, which is a free, open-source 

ontology editor and framework for building intelligent systems. It also has a viewer that 

allows us to see the ontology developed in the form of a graph. To see how the concepts 

are related as we formalize them. How this is an ontology developed on the basis of 

Fortes-Rey’s work, we got the source codes and went through an analysis process. Which 

consists of checking if resources, including their properties, are not incomplete and if the 

relationships between the resources are not damaged. 

 

 

3.5. Validation 

 
This phase is based on the surveys of Brank et al [J Brank, 2005] and Hlomani and 

Stacey [Hlomani and Stacey, 2014] that provides us with an overview of how to evaluate 

and how to compare ontologies. Hlomani and Stacey perceives ontology evaluation to be 

done in the view of two complementary perspective Quality and Correctness. The first 

refers to how the Ontology is structured in terms of lexemes and relationships between 

entities. As well as the completeness of its definitions in the domain it models. The other 

perspective seeks to review the Correctness of Ontology at the syntactic, architectural 

and design levels. 
 

On the other hand, Brank proposes to evaluate the ontologies according to the 

following levels: 
 

Lexical, vocabulary, or data layer: Evaluation on this level tends to involve compa- 

risons with various sources of data concerning the problem domain. 
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Hierarchy or taxonomy: evaluates is-a relations between concepts. 
 

Other semantic relations: The ontology may contain other relations besides is-a, and 

these relations may be evaluated separately. 
 

Context or application level: evaluation looks at how the results of the application 

are affected by the use of the ontology. 
 

Syntactic level: for ontologies that have been mostly constructed manually. 
 

Structure, architecture, design: We want the ontology to meet certain pre-defined 

design principles or criteria; structural concerns involve the organization of the on- 

tology and its suitability for further development. 

 

Using the first three levels, we get a common way to evaluate ontologies which is compa- 

ring the ontology to a ”golden standard”, this is the case of Measuring Similarity between 

Ontologies of Alexander Maedche and Steffen Staab [Maedche and Staab, 2002]. 

A global view of how are related perspectives of Hlomani and Stacey [Hlomani and Stacey, 2014] 

and levels of Brank[J Brank, 2005] it can be seen in Fig. 3.5.  On  quality  are  the  fourth 

upper levels of Brank and on Correctness are the left ones. Also the  Fig.3.5  shows  the 

relation of the Maedche and Staab’s work [Maedche and Staab, 2002] with the Quality 

perpective. 

 

 
Figura 3.2: Relationship between perspectives of Hlomani and Stacey 

[Hlomani and Stacey, 2014] and levels of Brank[J Brank, 2005] 

 

 

 

 

Levels of evaluation 

 
We are going to use the levels proposed by Brank [J Brank, 2005] grouping them in 

the two perspectives of Hlomani and Stacey [Hlomani and Stacey, 2014]. In the Quality 

we will make the evaluation at linguistic level (string analyze) and at structural level 

(graph analyse). Related to the Correctness we will check the capacity of modeling the 

problem through the elicitation of the knowledge of an expert in the area of SLAM. 
 

Linguistic Level: Generally, linguistic analyze relies on their names, labels,comments 

and some other descriptions. But also the number of resources of the ontology, the 
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properties of type object and type data of each resource, the number of classes and 

individuals. 
 

Structural Level: Using directed bipartite graphs to represent ontologies. We will 

analyze statements (triples) composed of subject, predicate and object. Also we will 

analyze the principal relationships among triples. In order to evaluate semantically. 
 

Domain of Knowledge Level: The third level of evaluation is the ability to model 

the SLAM domain specifically in relation to positioning. For this purpose, an expert’s 

knowledge was elicited about the functionalities that a robot should fulfill in order 

to affirm that it solves the SLAM problem. The expert grouped the questions in 3 

subcategories: 

1. Self-knowledge: 

It is important that the robot can know its location on a map but when it   

comes to positioning is also relevant to save the pose of the robot because 

according to that the robot could act differently with its environment, take as 

an example the robot in Figure 1, its name is komodo and has an arm that can 

be extended to almost twice its height when the arm is folded. It has to avoid 

certain obstacles when its arm is stretched out (e.g. a table), which he could 

ignore if the arm were folded. In addition to the pose, it is important to be 
 
 

 

Figura 3.3: Komodo with its arm a) folded and b) stretched out 

 

able to define other characteristics of the robot, including its geometry and the 

reference systems associated with it. As well as the possibility of passing from 

one system to another, in order to be able to share the acquired knowledge. 

The Ontology : 

a) Allows to represent the pose of a robot? 

b) Stores the geometry of the robot? 

c) Defines a referential system for each link for articulated robots? 

d) )Conceptualizes in some way the uncertainty of the position of the robot? 

e) Allow to represent in some way the uncertainty of robot pose? 

f )Allows transformations between referential systems? 

2. Environment-knowledge: 

The aim here is to evaluate the robot’s ability to describe the environment in 
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which it is located. Although it is known that the names that objects can take 

may vary according to the environment. What is sought to know is if the onto- 

logy is able to define that the robot can recognize other objects ( not robots)? 

This question is what opens up the possibility of a more complex SLAM. Be- 

cause if the robot is able to differentiate objects from their environment, it has 

the ability to locate itself either quantitatively or qualitatively with respect to 

them. In addition, objects could be mobile as in the case of a door, which can 

be open or closed according to the angle with respect to its point of origin. Or 

have subareas of interest such as the knob on the door. 

The Ontology: 

a) makes it possible to differentiate objects around the robot in terms of their 

name and characteristics? 

b) can represent the relative position of a robot to the objects around it? 

c) allows to represent the pose of an object in the robot environment? 

d) )allows to store sub-objects of interest in larger objects? 

e) allows to know the relative position between objects without being these 

robots? 

f )model the uncertainty in object position? 

g) )represents each object (other than robots) with its own referential system? 

h) registers objects (other than robots) with joints? 

i) )allows to store the different poses of an object (which is not a robot)       

in time? 

j )allows you to store empty spaces and their coordinates? 

3. Route-knowledge: 

This last group of questions is interested in knowing if the ontology is capable 

of modeling a path of the robot, this is important because just as it is relevant 

to record the change of objects in the environment where the robot is, it is  

even more relevant  that the ontology can know if the robot is moving, where  

it has moved and for how long it has remained in that movement or position. 

The Ontology: 

a) Allows to store a path of the robot and query it? 

b) Allows to store the different poses of a robot in time? 
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Caṕıtulo  4 

 
Experiments and Results 

 
 
4.1. SLAM-UP Implementation 

 
In order to implement SLAM-UP, we have analyzed the concepts implemented by 

the Fortes-Rey Ontology which we would henceforth refer to as fr2013. There are some  

of the concepts implemented by fr2013 that we will use in our proposal. For example, 

CartesianPositionRegion that is the basic unit to model the position of a robot. 

 

<!--RobotsAutomation.owl#CartesianPositionRegion  --> 

<owl:Class  rdf:about="&RobotsAutomation;CartesianPositionRegion"> 

<rdfs:subClassOf  rdf:resource="&RobotsAutomation;PositionRegion"/> 

<rdfs:subClassOf> 

<owl:onProperty  rdf:resource="&RobotsAutomation;ptsOfPR"/> 

<owl:allValuesFrom  rdf:resource="&RobotsAutomation; 

CartesianPositionPoint"/> 

</rdfs:subClassOf> 

</owl:Class> 
 

As well as the implementation of the concept of CartesianCoordinateSystem, an 

equally important entity to model the pose of a robot in a given environment. 

 

<!--RobotsAutomation.owl#CartesianCoordinateSystem  --> 

<owl:Class  rdf:about="&RobotsAutomation;CartesianCoordinateSystem"> 

<rdfs:subClassOf  rdf:resource="&RobotsAutomation;CoordinateSystem"/> 

<rdfs:subClassOf> 

<owl:onProperty  rdf:resource="&RobotsAutomation;ofCS"/> 

<owl:allValuesFrom  rdf:resource="&RobotsAutomation; 

CartesianPositionPoint"/> 

</rdfs:subClassOf> 

</owl:Class> 
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We use the the WebVOWL [Lohmann et al., 2014] Viewer to ensure the good de- 

velopment of the proposed new ontology (SLAM-UP), as well as to analyze the entities 

of the base ontology (fr2013). With the help of this viewer we  noticed one problem in  

the base ontology, when we are defining the RPU module, that the main concepts for 

modeling the Robot Position Uncertainty generated two disconnected graphs: one of the 

Robot model and the second of the Position model, as can be seen in Figures 4.1 and 4.2, 

respectively. 
 

 

Figura 4.1: Robot graph- Image generate with the WebVOwl [Lohmann et al., 2014] 

 

 
 

For this reason we insert a new relantionship called slam-up#has, which models 

that a Robot, of any type (autonomous, semi-autonomous or non-autonomous), has a 

PositionPoint that can be a CartesianPositionPoint. Analogously a RobotPart also has a 

PositionPoint associated with it. In the following code, you can see the implementation 

of this relationship. 

 

<!--  slam-up#has  --> 

<owl:ObjectProperty  rdf:about="&RobotsAutomation;has"> 

<rdf:type  rdf:resource="&owl;FunctionalProperty"/> 

<rdfs:domain  rdf:resource="&RobotsAutomation;Robot"/> 

<rdfs:domain  rdf:resource="&RobotsAutomation;RobotPart"/> 

<rdfs:range  rdf:resource="&RobotsAutomation;PositionPoint"/> 

</owl:ObjectProperty> 
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Figura 4.2: Position graph- Image generate with the WebVOwl [Lohmann et al., 2014] 

 

 
In the same way, we have seen in this example of the inclusion of the slam-up#has 

relationship between Robot and PositionPoint, and adding several new concept, it is how 

the expansion of Fortes-Rey Ontology was made to become SLAM-UP. Our SLAM-UP 

ontology is depicted in Fig. 4.3. In what follows (also in Fig. 4.3), every ontology concept 

is denoted in the format < prefix >:< concept name >, where prefix is a an abbre- 

viation name of the ontology, and < concept name > is the name of the concept. For 

example, cora:Robot refers to the Robot concept within the Core Ontology, while slam- 

up:RobotPose refers to the RobotPose concept of the SLAM-UP ontology. The list of 

ontology prefixes that we use in this chapter are as follows. 
 
 

cora: is a prefix for the Core Ontology for Robots & Automation ontology; 
 

fr2013: is a prefix for the Fortes-Rey ontology (a minimal version of the Fortes-Rey 

ontology proposed by W3C); 
 

slam-up: is a prefix for the SLAM-UP Ontology (our proposal); 
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Figura 4.3: Entities developed as now of the SLAM-UP ontology, in the red squares you 

can see the RPU Module. 

 

 
The extensions that we have done to the Fortes-Rey ontology to propose SLAM-UP 

ontology can be categorized into two main modules. The first implemented module is 

described below. 

 

 

4.1.1. Robot Position Module 

 
This extension allows SLAM-UP ontology to better model a robot pose. To do this, 

the cora:Robot concept was extended with slam-up:RobotPose. This pose is related to 

a  specific  time  slam-up:timestamp through  the  fr2013:PosAtTime relationship  of  the 

Fortes-Rey ontology. This slam-up:RobotPose also allows to model location, orientation 

and uncertainty of this position. This is done through relationships that we will formally 

define. 

 

1. slam-up:HasPosition:  denoted  as  hp,  is  a  2-tuple  for  matching  a  robot  with  its 

current position, defined as hp =< rp, pp >, where: 
 

rp: is an identifier to a slam-up:RobotPose given in IRI format; 

pp:  is  an  identifier  to  a  fr2013:CartesianPositionPoint  given  in  IRI  for- 

mat. It was extendend also by adding the component Z, because in Fortes-Rey 

ontology only have component X and Y. 

2. slam-up:HasOrientation: denoted as ho, is a 2-tuple for matching a slam-up:RobotPose 

with its current orientation, defined as hp =< rp, q >, where: 
 

rp: is an identifier to a slam-up:RobotPose given in IRI format; 

q: is an identifier to a slam-up:Quaternion given in IRI format; this quaternion 

is a set of four real numbers that represent the orientation of a robot. 

3. slam-up:HasUncertainty:  denoted  as  hu,  is  a  2-tuple  for  matching  the  slam- 

up:RobotPose with its current uncertainty, defined as hu =< rp, cm >, where: 
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rp: is an identifier to a slam-up:RobotPose given in IRI format; 

cm: is an identifier to a slam-up:PoseCovarianceMatrix given in IRI format; 

this matrix is a set of slam-up:MatrixElement. Each slam-up:MatrixElement 

is related to 3 values: slam-up:row, slam-up:column and element slam-up:value. 

 

 

4.2. Results 

 
In this section we will see the results obtained after the implementation phase. As 

already mentioned in the chapter of The Proposal, to validate that SLAM-UP ontology 

meets the requirements and improves the performance of current ontologies that model 

SLAM, we use this three levels of validation: linguistic, structural and knowledge domain. 

 

 

4.2.1. Linguistic Level 

 
At this level, two types of OWL entities will be analyzed: prefixes and resources. 

The prefixes help us to give a context to the indicated entity, to determine its relationship 

or belonging with a certain vocabulary. Table 4.1 declares the prefix names that are 

commonly used throughout this specification. IRIs with prefixes rdf:, rdfs:, xsd:, and owl: 

constitute the reserved vocabulary of OWL 2. 
 

Prefix Name Prefix IRI 

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

xsd: <http://www.w3.org/2001/XMLSchema#> 

owl: <http://www.w3.org/2002/07/owl#> 

Cuadro 4.1: Commonly used prefixes 
 

In Table 4.2 we collect all the prefixes used by the ontologies evaluated.It can also 

be seen what prefix each ontology uses. 
 

On the other hand, resources are the entities that conceptualize the knowledge of  

the domain of the ontology in question. The following table shows the number of re- 

sources, with their respective object and data properties. Additionally, the number of 

Classes and Individuals has been considered. Classes then are simply a way  of defi-   

ning meaningful groups into which these resources can be placed - they are classifica- 

tions [LinkedDataTools, 1999]. Besides in semantic web terms, any resource that we’ve 

placed into a class is called an Individual of that Class. An Individual is a resource that 

has been placed into the Class (or, the classifying group). Individuals are not classes 

themselves. To better understand these concepts let’s look at the following example: 

 
An IndoorEnvironment Class, a class for all members of Indoor Environments, into 

which we could place the Office1. 
 

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2002/07/owl
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Prefix Name fr2013 SLAM-UP 

rdf: X X 

rdfs: X X 

owl: X X 

xsd: X X 

RobotsAutomation: X X 

SUMO: X X 

xmlns: X X 

xml: X X 

slam-up:  X 
 

Cuadro 4.2: Used prefixes in ontologies evaluated 

 

Domain ontologies, as is the case with the two ontologies that we are validating, have the 

characteristic of having a greater number of Classes than the number of Individuals. This 

occurs in the opposite way in ontologies of Application. However in our case we decide to 

populate some individuals to the ontology of SLAM-UP to make some consultations in 

the third level of validation. In Table 4.3 we see the evaluation of both ontologies at the 

level of resources, properties, classes and individuals. 

 

 fr2013 SLAM-UP 

Resources 62 66 

Object Properties 16 20 

Data type Properties 2 2 

Classes 43 43 

Individuals 0 4 

Cuadro 4.3: Linguistic Evaluation 

 
Discussion: 

After the analysis at the linguistic level, we can see in Table 4.3 that the number of 

SLAM-UP entities and classes is greater than fr2013. This result is that we expected  

since SLAM-UP is an extension of Fortes Rey, besides being a consequence of including 

new entities to model a greater amount of knowledge. 

 

 
4.2.2. Estructural Level 

 
The structural level is determined through the analysis of built-in properties used   

in the two ontologies to be evaluated. The built-in properties are RDF , RDFS and 
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OWL built-in vocabularies used as properties in triples (e.g. rdf:type, rdfs:subClassOf  

and owl:onProperty). 
 

Table 4.2.2 shows the number of some selected Built-in Properties. As is the case of 

subClassOf , this property is important because it gives us an idea of the interconnection 

between the Classes of the ontology implemented in both ontologies. In other side, one 

general piece of information that is consistent about an RDF resource, outside of the URI      

to uniquely identify it, is the resource or class type. To  explicitly define the resource type,  

you would use the RDF rdf:type property . Normally the property rdf:type is associated 

with the same level of granularity as the other properties. However,  we  will also analyze    

the use of the property owl:onProperty 

 

 fr2013 SLAM-UP 

rdfs:subClassOf 66 66 

rdf:type 9 9 

owl:onProperty 11 15 

rdfs:domain 16 20 

rdfs:range 16 20 

Cuadro 4.4: Estructural Evaluation: Built-in Properties 

 
Discussion: 

On a structural level we can note that, in the same way as in the previous level, the 

number of relations that SLAM-UP has is greater than that of fr2013. This behavior is 

within the expected results because SLAM-UP is an expansion of an existing ontology 

and as a consequence of having introduced new entities it is logical that the number of 

relations increases. 

 

 

4.2.3. Domain of Knowledge Level 

 
For the third level it has been proposed a set of questions. That will be done through 

the SPARQL language [Hayes, 2013]. SPARQL is an RDF query language capable of 

retrieving and manipulating data stored in RDF format, such as our web ontologies. This 

tool allows the consultation of triple patterns, conjunctions, disjunctions and optional 

patterns.Below are some of the queries made in SPARQL with the corresponding output: 
 

For answer question: 

 

1a. The Ontology allows to represent the pose of a robot? 

 

In fr2013, a complex query had to be made, since it did not have the ”Pose” class defi- 

ned explicitly, like other positioning ontologies. In this ontology the pose of the robot it 

can represent with a vector of points with their respective cartesian Ppoints, each one 

associated with a representative part of the robot. 
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QUERY 1 

PREFIX fr2013: 

<http://www.semanticweb.org/ontologies/ 

2013/7/RobotsAutomation.owl#> 

SELECT  ?subject  ?dev  ?artifact  ?ref  ?ofCS 

WHERE { 

fr2013:RobotPart  rdfs:subClassOf  ?dev  . 

?subject rdfs:subClassOf  ?dev  . 

?dev rdfs:subClassOf  ?artifact  . 

?artifact  rdfs:subClassOf  SUMO:Object  . 

fr2013:ref  rdfs:domain  ?ref  . 

fr2013:ofCS  rdfs:range  ?ofCS  . 

fr2013:CartesianPositionPoint 

rdfs:subClassOf ?ofCS 

} 
 

Here we are checking that the RobotPart class defined in fr2013 is related to an 

Object, remember that all Object have an associated Coordinate System. We also con- 

sult the ref relationship that models if a CartesianPositionPoint belongs to a Coordinate 

System. 

 

subject dev artifact ref ofCS 

RobotPart SUMO:Device SUMO:Artifact oordinateSystem PositionPoint 

Cuadro 4.5: Output of Query 1 

 
Once it has been shown that a part of the robot has a Coordinate System associated. 

In fr2013 we can answer analogously 1c and 1e, taking a link and a sensor as a part of 

the robot. For 1f , fr2013 have CORA#TransformationFunction, with two domains: 
 

TransformationMapsFrom 
 

TransformationMapsTo 

 

The table 4.6 shows that in this category the two ontologies are at the same level, 

and that they model well the self-knowledge part of the robot. This is a good starting 

point because to be able to correctly describe the environment that surrounds it, the robot 

must be able to describe itself first. 
 

In the Table 4.7 it can be seen a clear limitation in the capacity that fr2013 ontology 

have to model the environment that surrounds them, because although it has inherited 

from SUMO the Object class and from CORA the definitions of Robots and their types. 

So it can be inferred that a robot could recognize an object (another robot) with respect  

to its position. However, it is not possible to define an Object that is not a Robot. Despite 

we could define the empty space ( question 2j ) using the PRegion class, present in both 

ontologies. Considering that a PRegion is composed of points. Also in fr2013 there is   

the relation :ptsOfPR that has as a domain a PRegion and as a range PPoints. The 
 

http://www.semanticweb.org/ontologies/
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Question fr2013 SLAM-UP 

1a YES YES 

1b YES YES 

1c YES YES 

1d NO YES 

1e NO YES 

1f YES YES 
 

Cuadro 4.6: Self-knowledge questionnaire 
 

Question fr2013 SLAMP-UP 

2a NO NO 

2b NO NO 

2c NO NO 

2d NO NO 

2e NO NO 

2f NO NO 

2g NO NO 

2h NO NO 

2i NO NO 

2j YES YES 

Cuadro 4.7: Environment-knowledge questionnaire 

 
complement to this relation is :inPR that has a domain PMeasure (that could be a PPoint) 

and a range PRegion. 
 

As the third group of questions is interested in the modeling of the robot path, it has 

been seen as convenient to check how is given the relationship between time and position 

in fr2013. To see this relationship the following consultation was made in fr2013: 

 

QUERY 3 

PREFIX  SUMO: 

<http://www.semanticweb.org/ontologies/ 

2013/7/RobotsAutomation.owl#SUMO:> 

SELECT ?measure  ?unit 

WHERE { 

?measure  rdfs:subClassOf 

SUMO:PhysicalQuantity  . 

?unit  rdfs:subClassOf  ?measure 
 

http://www.semanticweb.org/ontologies/
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} 
 
 
 

In the table 4.8 it is possible to see that fr2013 can model the Route-knowledge in 

the SLAM domain, since the robots can define their position and their poses in relation  

to time. In this sense SLAM-UP will keep the entities and relations defined by fr2013 to 

not lose this feature. 
 

Question fr2013 SLAM-UP 

3a YES YES 

3b YES YES 

Cuadro 4.8: Route-knowledge questionnaire 

 
A consolidated of the three subcategory of Domain of knowledge can be seen in 

Table 4.9. For  each row  is statement the number of questions satisfied by  the ontology  

in the respective column. In the fourth column NQ is the number of questions for each 

subcategory. The percent of the last row is relative to the total number of questions in  

this comparison level. 
 

Subcategory fr2013 SLAM-UP NQ 

Self-knowledge 4 6 6 

Environment-knowledge 1 1 10 

Route-knowledge 2 2 2 

Total of Questions satisfied 7 (38.0 %) 9 (50.0 %) 18 (100.0 %) 

Cuadro 4.9: Domain of knowledge similarity 

 
Discussion: 

After analyzing each of the subcategories of the domain level of knowledge, we came to 

the conclusion that the ontology proposed SLAM-UP better models the SLAM domain. 

This improvement can be seen in the first category, where SLAM-UP satisfies 100 % (6/6) 

of the questions about Robot Information. This is the main contribution of this work, 

because with the expansion of the RPU module the capacity to model the SLAM problem 

has been increased to 50 %. This constitutes a 12 % improvement with respect to its base 

ontology (fr2013) which modeled the SLAM problem with a 38 % effectiveness. 

We see a notable deficiency in the second subcategory of knowledge of the environment, 

since none of the ontologies is able to define objects that are not robots yet. In the third 

subcategory (Route Knowledge) there is no improvement, since Fortes-Rey’s ontology 

already satisfied 100 % of the questions (3/3). Since SLAM-UP is based on it, the same 

result is inherited. 
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Caṕıtulo  5 

 
Conclusions and future works 

 
 
5.1. Conclusions 

 
In this work, we propose a categorization for the knowledge generated by in SLAM 

algorithms: (i) robot information, (ii) environment information, (iii) temporal information 

and (iv) workspace information. Through the analysis of several ontologies that had as, 

partial or total, objective to model the knowledge of SLAM, we have parsed the importance 

of representing the timely information into SLAM ontologies, to improve the process of 

solving SLAM. We consider that the integration of environment mapping information, 

robot information, and timely information with the positioning uncertainty in robots and 

landmarks, represent an option to optimize and improve the precision of the results of 

SLAM solutions. 
 

Based on this categorization, we point out that there is not an ontology fully covering 

the whole SLAM problem. Aditionally we found a gap in the area of uncertainty in relation 

to the first two categories. This is why  it was decided to implement SLAM-UP, wich 

has two modules, one relative to Robot Position Uncertainty (RPU) and the other of 

Landmarks Position Uncertainty (LPU). 
 

Fortes-Rey ontology was chosen, due to its detailed robot positioning model, to serve 

as the basis for our new ontology: SLAM-UP. Until now we have implemented the first 

module (RPU). After the validation, we see an improvement of 12 % of effectiveness to 

represent the SLAM problem, with respect to its predecessor. This improvement was on 

the third level of knowledge domain, which is the most relevant category in our work. 

 

 
 

5.2. Future Works 

 
As future work, we are proposing to continue with the implementation of SLAM- 

UP, with the development of the LPU module. This module will allow modeling  not  

only the Robot Positioning Uncertainty, but also the Landmark Positioning Uncertainty 

(characteristic objects of the environment). With this we seek to obtain 100 % of the 
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effectiveness in the capacity to model the SLAM problem. 
 

Although the presented evaluation of the ontology provides a good basis to validate 

the SLAM-UP, we consider that the ontologies should be tested in the real environments 

of their application domain. In our case, the environment (known or unknown) that the 

robot will model. Therefore, we are proposing as a future work to present a practical 

validation of the new SLAM-UP ontology. 
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