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Abstract

Brain responses recorded during fMRI are thought to reflect both rapid,
stimulus-evoked activity and the propagation of spontaneous activity through
brain networks. In the current work we describe a method to improve the
estimation of task-evoked brain activity by first “filtering-out” the intrinsic
propagation of pre-event activity from the BOLD signal. We do so using
Mesoscale Individualized NeuroDynamic (MINDy; [1]) models built from
individualized resting-state data (MINDy-based Filtering). After filtering,
time-series are analyzed using conventional techniques. Results demonstrate
that this simple operation significantly improves the statistical power and
temporal precision of estimated group-level effects. Moreover, estimates
based upon our technique better generalize between tasks measuring the
same construct (cognitive control) and better predict individual differences
in behavior. Thus, by subtracting the propagation of previous activity, we
obtain better estimates of task-related neural activity.

Keywords: Resting State fMRI, Neural Dynamics, Causal Modeling,
Recurrent Neural Networks, Cognitive Control

1. Introduction

Task-related analyses in fMRI typically involve statistical general lin-
ear models (GLMs) which seek to identify the amplitude and/or mean
timecourse of (BOLD) evoked-responses after removing nuisance covariates.
These approaches have proven statistically powerful and characterize much
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of the current literature regarding task-induced activation in group-level
fMRI analyses. However, over the past two decades, improvements in fMRI
acquisitions and the rise of resting-state connectomics ([2]) have given rise
to a new literature concerning variability within brain activation across
trials, individuals, and/or contexts. Understanding such variability is key
to precision neuroscience initiatives, as these studies have the potential
to uncover new neural mechanisms and generate stronger brain-behavior
linkages at the level of individuals ([3], [4], [5]).

Previous studies in this domain have generated two key findings relevant
to the current study: 1) individual differences in intrinsic brain networks
predict corresponding differences in BOLD responses ([6], [7], [8], [9]) and 2)
the BOLD signal elicited by a stimulus is dependent upon the previous pat-
tern of brain activity ([10]), including spontaneous fluctuations ([11]). We
use the term “brain activity” in the latter case to indicate that this history
dependence is thought to be neural, rather than solely reflecting potential
nonlinearity in the hemodynamic coupling. The first set of findings indicate
that inter-subject variability in brain responses may be due to the “flow”
([8]) of evoked activity through subject-specific connectomes. The second
set of findings suggest that evoked responses are history-dependent (i.e.
reflects underlying dynamics). Thus, the neural activity associated with
BOLD is increasingly considered as a nonlinear dynamical system—one in
which the spatiotemporal response to an input depends upon its current
state, and further, is determined by a set of rules that dictate its temporal
evolution ([12]). These dynamical “rules” are a function of subject-specific
connectivity and the specific properties local to each brain region ([13],
[14]). The manifestation of these dynamics (i.e. trial-to-trial variability in
BOLD) are thought to be neural and cognitively-relevant as they predict
within-subject behavioral variation ([15]).

This framework contrasts both with current statistical approaches, which
treat the neural activity as a noisy autoregressive signal (most GLMs),
and with Dynamic Causal Modeling (DCM) approaches, which treat the
brain as a linear system (although see [16]). In the current work, we
propose a new technique for modeling intrinsic brain dynamics and their
contribution to task-evoked activation patterns. This approach leverages
MINDy models ([1]) fit to resting-state data for each subject. These models
are akin to an abstracted neural mass model containing hundreds of different
regions (parcels) spanning the whole brain. Regions interact nonlinearly
via a signed, directed connectivity matrix and integrate inputs over time
(i.e. form a nonlinear dynamical system). The BOLD signal is modeled
via region-specific hemodynamic models, and all parameters (neural and
hemodynamic) are directly estimated from each subject’s resting-state
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scans (a process which takes 1-3 minutes). In prior work ([1], [17]), we
have established that MINDy models/parameters are robust, reliable, and
predictive ([1]). In the current work, we use these models to estimate
intrinsic brain dynamics (i.e. predictions based upon resting-state MINDy
models) and subtract them from the observed BOLD, a process which we
term MINDy-based Filtering. This procedure more accurately identifies
individual differences, and enhances the temporal precision and statistical
power in identifying task effects. We also obtain stronger brain-behavior
linkages and more generalizable effects across tasks tapping a common
cognitive construct (cognitive control demand).

1.1. Filtering Intrinsic Dynamics

The current approach rests upon the ability to model the flow of neural ac-
tivity between brain areas, as identified via models fit to resting-state brain
activity. However, rather than seeking to describe the flow of task-related
neural activity (e.g. [8]), our approach acts to censor, or computationally
estimate and remove, the flow of task-unrelated (pre-event) activity. To
be clear, we perform this operation at every time point and use the whole
timeseries for analyses. No information regarding task timing is used in
our filter (Fig. 1). However we use the notion of “events” to provide an
intuitive motivation for our approach (conversely each timepoint could
be considered an “event”). Likewise, our approach does not require an
event-related design (see SI 7.3 for block-related analyses). At each time
point, the measured neural activity is considered a combination of task-
effects manifest over fast time scales and the propagation of brain activity
emerging at previous time points. By subtracting the modeled propagation
of previously-triggered (e.g. pre-event) activity, we aim to better isolate
the influence of each event (time-point).

Our approach is conceptually-similar to a previous study by Fox and
colleagues ([11],[18]) which suggested that estimated task-effects could be
improved by subtracting spontaneous activity. They demonstrated this pos-
sibility in a motor task by subtracting the recorded BOLD in contralateral
motor cortex from the task-implicated motor hemisphere. However, the
Fox et al. approach ([11],[18]) has not been applied more broadly, since it
requires identifying region pairs which are strongly correlated at rest, but
only one of which is recruited during task. This dissociation is key as it
enabled Fox and colleagues ([11]) to measure intrinsic brain activity (via
the contralateral cortex) separately from task-evoked activity in the other
hemisphere. By contrast, the current literature overwhelmingly suggests
that, for most brain regions and networks, coactivation during resting-state
fMRI predicts coactivation during task (e.g. [6], [8], [7]).
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Fig 1. MINDy-based Filtering analysis. MINDy models are estimated from each
subject’s resting-state data. The MINDy filter makes 1-step (i.e. predicting BOLD at
t+ 1 using information at time t) and subtracts the predicted values from the measured
BOLD. No information regarding task timing is used in this step. The filtered
timeseries are then analyzed using conventional methods.

By contrast, we propose to filter out the intrinsic component of brain
activity using model-based predictions. We predict brain activation at each
time-point by applying resting-state MINDy models ([1],[17]) to the previous
time-step (i.e. 1-step forward predictions) and subtract these predictions to
better identify task-evoked changes. Thus, we better isolate event-related
brain changes by filtering out the propagation of pre-event activity. As
mentioned previously, we use the notion of task “events” to provide an
intuitive understanding of why our approach improves fMRI analyses. Our
filter does not utilize any prior information regarding task structure (events)
and is compatible with any task design (not just event-related designs; see
Fig. 1).

1.2. Previous Approaches using DCM

Dynamic Causal Modeling (DCM), by contrast, incorporates the tem-
poral evolution of brain activity and thus can consider the propagation of
neural activity through brain networks. Each DCM contains an effective
connectivity matrix and a set of extrinsic inputs that describe how task
events impinge upon each node of the network ([19]). Many implementations
also contain region-specific hemodynamic models and/or an interaction be-
tween task events and effective connectivity (i.e., the effective connectivity
is parameterized by task events). Although the original DCM models were
strongly limited in size, modern implementations ([20], [21]) can consider
a much larger number of brain regions (although the computation cost
still remains considerable; [20], [1]). However, the DCM methodology also
presents several constraints which limit its application. Estimating a DCM
model requires pre-specifying the time-series of task effects. This assump-
tion precludes analyses which explore the temporal dynamics of task effects
such as Finite Impulse Response (FIR) modeling or nuanced task GLMs,
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such as those featuring nuisance regressors (e.g. motion). In addition, all
DCM implementations that support whole-brain models (i.e., more than a
few regions; [20]) are dependent upon the assumption of stationary linear
dynamics ([1]).

1.3. Filtering Instead of Parameterizing

In the current work, we aim to strike a balance between the mecha-
nistic inferences made by DCM and the flexibility of standard analysis
techniques. To do so, we generate dynamical systems models of the brain
and neurovasculature (as is done in DCM). However, our approach differs
substantially from DCM in how we build and utilize these models. Instead
of fitting models of the brain and tasks, we propose to fit dynamic models
to independent resting-state data for each subject. We then use these
models to generate a mathematical filter for each subject that removes, or
“partials out”, the effects of intrinsic dynamics from BOLD timeseries. The
approach uses no information regarding task events and thus functions as
a preprocessing step, as opposed to explicitly modeling task events. This
feature is advantageous, as the proposed techniques can be inserted into any
data preprocessing pipeline with minimal effort, provided that sufficient
amount of resting state data (e.g. >15 minutes [1]) has been collected to
build MINDy models.

2. Approach

2.1. Model Derivation

Our approach leverages individualized resting-state models in order
to estimate task-evoked brain effects, while making minimal modeling
assumptions about the underlying mechanisms. We model brain activity (xt)
as a dynamical system containing two components: an intrinsic dynamical
component f(x) which is estimated from resting-state models, and an
exogenous input component It.

xt+1 = f(xt) + It. (1)

The latter component is exogenous with respect to the resting-state model
and should not be interpreted as “exogenous to the brain”. Rather, It rep-
resents additional input to each brain region beyond that which is created
through intrinsic (resting state) dynamics embedded in f(x). In principle,
this technique is compatible with any resting-state model (f(xt)). For the
current work, we chose MINDy ([1], [17]) as it is highly scalable, nonlinear,
and robust to many nuisance factors. The aim of the current work is to
estimate the input (It) for task data and to investigate exogenous input as
a marker for cognitive states. We do not assume a specific mechanism un-
derlying this input (e.g. recurrent input, inter-regional signaling, neuronal
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“noise”, or sensory afferents are all possible sources) or any spatial/temporal
properties of It. Thus, we treat It as a latent signal to be estimated (i.e. fil-
tering It from BOLD). By contrast, other methods, such as DCM ([19],[22])
assume a time course of It (the temporal aspects of It) based upon task
design and only estimate its relative contribution to each brain area. For
this reason, we term our objective MINDy-based Filtering. Although the
mechanisms of interest (It) are modeled as neural, fMRI measures the
hemodynamic BOLD contrast. For this reason, we simultaneously model
neural dynamics and the hemodynamics which link neural events to fMRI
measurements. We assume that BOLD signal reflects the convolution (de-
noted “*”) of latent neural activity (xt) with a region-specific Hemodynamic
Response Function (HRF; denoted hi(t)) and we estimate the HRF kernels
from resting state data ([17]). Thus, for each brain region (parcel “i”) our
model is:

BOLD
(i)
t = [hi ∗ (x(i)τ + η(i)τ ))]t + νt (2)

We consider noise at the level of the neurovascular coupling ηt and at the level
of BOLD measurements (νt). These terms are modeled as normal random
variables which are independently and identically distributed (iid) between
brain regions and time points. Process noise (physiological stochasticity) is
not explicitly modeled at the neural level in Eq. 1, as it is absorbed in the
unknown inputs It. Substituting for xt (from Eq. 1) and rearranging yields:

BOLD
(i)
t+1 − [hi ∗ f (i)(x)]t = [hi ∗ I(i)τ ]t + [hi ∗ η(i)τ ]t + ν

(i)
t . (3)

Thus, the HRF-convolved input [h ∗ I]t is equal to the difference between
measured and predicted BOLD plus additional autocorrelated noise terms.
For all current analyses we consider brain states estimated with HRF-
convolved estimates of input ([h ∗ I]t) as opposed to the estimates of It
alone. This step enables the same statistical pipelines (i.e. GLM structure)
to analyze original fMRI BOLD data and the HRF-convolved input. As
a result, the estimation of [h ∗ I]t serves as an additional “preprocessing”
(filtering) step that can be added to any fMRI pipeline with minimal effort.
No information regarding task events is used in estimating It, so the same
statistical frameworks are applied to model-filtered and original data.

2.2. MINDy-based Filtering

In the current approach, we do not explicitly model different forms of
noise. The only noise factor we consider is the measurement noise power
in inverting BOLD onto neural activity. Since neurovasculature noise is
removed (ηt=0), Wiener deconvolution ([23]) generates the least-mean-
square estimate for xt. The resultant approximation for BOLD-convolved
input ([h ∗ I]t) is:

[h ∗ Iτ ]t ≈ BOLDt+1 − [h ∗ f(h∗̂−1BOLD]τ ]t (4)
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With h∗̂−1BOLD denoting the Wiener deconvolution of each region’s BOLD
signal with respect to the corresponding HRF model. Thus, we estimate
neural activity by deconvolving BOLD with the region-specific HRF’s
identified at rest. Predictions are made in terms of neural activity and
then re-convolved to produce predictions in terms of BOLD. The difference
between measured and predicted BOLD approximates the HRF-convolved
input.

3. Methods

3.1. Subjects

Data consisted of fMRI task and resting-state scans for 53 healthy young-
adult subjects collected as part of the Dual Mechanisms of Cognitive Control
(DMCC) study ([24]). The DMCC participant pool contains a large number
of monozygotic and dizygotic twin pairs. However, for these analyses, these
characteristics are ignored.

3.2. Scanning Protocol

Each participant took part in three separate scanning sessions which
occurred on different days, but all had the same general procedure. Each
day, participants provided two resting-state scans of 5 minutes each as well
as two scans each for four cognitive tasks: the AX-Continuous Performance
Task (AX-CPT), Sternberg Task, Stroop Task, and Cued Task-Switching
(Cued-TS). The two scans per task were performed sequentially for each
task whereas the two resting-state scans were separated in time (one at the
session start and one at end). Each of the task scans (2 per task per day)
contained three task-blocks separated by inter-block intervals and lasted
approximately 12 minutes. For resting state and task, the two scans per day
were split between anterior-posterior and posterior-anterior phase-encoding
directions. Scans were performed at 3T with 1.2s TR (multi-band ×4; see
[24] for additional details).

3.3. Task Descriptions

We briefly describe the general structure of each of the four cognitive
tasks in the “baseline” format which was administered on the first scanning
day (see [24] for more details on task design and rationale). Subtle changes
to task structure were made on the two following days (subsequent section)
but were not relevant to our analyses. The AX-CPT task ([25]) involves
repeated sequences of cue-probe pairs, in which the response to the probe
item is constrained by the preceding contextual cue. Thus, the A-X cue-
probe pairing requires a target response and is frequent, leading to strong
associations between the cue and probe. However, both the B-X pairing
(where “B” refers to any non-X cue) and A-Y pairing (where “Y” refers
to any non-X probe) require non target responses. In the Sternberg
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task ([26]), participants are sequentially presented with short list of words
to memorize for that trial (called the memory set; appearing across two
encoding screens). After a short retention delay, they are presented with
a probe word and must determine if the probe was present in that trial’s
memory set. On some trials, the probe item is termed a “recent negative”,
in that was not present in the current trial memory set but was present in
the memory set from the preceding trial. In the current implementation of
the Stroop task, subjects are asked to verbally report the font color in
which probes are displayed ([27]). Each probe is itself a color-word, and can
either be congruent (font color is the same as the color word, e.g., BLUE
in blue font) or incongruent (font color is different from the color-word
name; e.g., BLUE in red font). Lastly, during Cued Task-Switching
(Cued-TS, [28]) participants are pre-cued to attend to either the number
or letter component of a subsequent probe (combined letter + digit). In
“attend-number” trials, participants indicate whether the digital component
of a probe is even vs. odd. In “attend-letter” trials, participants indicate
whether the letter component is a consonant vs. vowel. The probe can
be either congruent (both letter and digit are associated with the same
response) or incongruent (the letter and digit are associated with different
responses). With the exception of the Stroop task, participants report
responses using button presses.

3.4. Cognitive Control Demand

The current set of trial-based analyses center upon the ability to identify
neural signatures of cognitive control. Although cognitive control is a het-
erogeneous construct, we specifically studied the conflict resolution aspects
of cognitive control, so we use the terms control-demand and conflict inter-
changeably when referring to these tasks, and contrasts between trial types.
In particular, we operationally identify cognitive control demand as the
difference in neural activity measures during high and low-conflict trials for
each task. In the AX-CPT, we contrast BX trials (high conflict) vs. BY (low
conflict). The BX trials are high conflict because of the target-association
with the X-probe, which require contextual cue information to override.
For the Sternberg task, we contrast trials with recent negative probes (high
conflict) and trials containing novel negative probes (low-conflict). Thus,
recent negative trials are high conflict because the familiarity of the probe,
requires information actively maintained in memory to override. In the
Stroop task, we contrast incongruent (high conflict) and congruent (low
conflict) trials. The incongruent trials are high conflict because the task
goals (name the font color) are required to override the dominant tendency
to read the color-name. Lastly, in the Cued-TS we also contrast incongruent
(high conflict) and congruent (low conflict) trials. The incongruent trials
are high conflict because it is critical to process the task cue, in order to
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know what response to make (for congruent trials, the same response would
be made regardless of the task being performed).

3.5. Task Manipulations

The four tasks (AX-CPT, Sternberg, Stroop, and Cued-TS) were chosen
to measure/engage cognitive control. On the first scanning day, participants
performed a “baseline” version of each task. On the subsequent days,
however, participants performed modified version of each task, meant to
promote either proactive or reactive cognitive control strategies. On the two
subsequent scans participants performed all the reactive-mode conditions
of the tasks on one day and all the proactive-mode conditions of the tasks
on another, with the order of proactive vs. reactive days counter-balanced
across subjects. In the current work we do not consider the influence of
cognitive-control mode and combine data for each task across scanning
sessions, to increase statistical power.

3.6. Behavioral Measures

In each task we recorded two behavioral measures: reaction time (RT)
and accuracy. Reaction times for button presses were recorded digitally,
whereas reaction time for the Stroop task was defined by the duration
of silence (time until participant begins a verbal response; see [24]). For
the current work, we focused upon the difference in performance measures
between trial-types with high cognitive control demand and those with low
cognitive control demand (see below). As in previous work with these tasks,
we observed lower performance (higher RTs and lower accuracy) on the
high demand trials indicative of a cognitive control effect ([24]). For the RT
data, we defined cognitive control effects as the difference in normalized
RTs between high and low-control trials:

RTHL = z(RTHigh)− z(RTLow) (5)

with z denoting z-score normalization. We separately normalized the high
and low RT conditions to account for potential heterogeneity of variance
between conditions. However, we could not separately normalize accuracy
by condition as some of the low-control distributions were near-degenerate
(e.g. in one Stroop session over 90% of subjects had 100% accuracy for
low-control trials). As such, we normalized accuracy after subtracting high
and low-control conditions since the low-control variance was not stable:

AccHL = z(AccHigh − AccLow) (6)

As with neural data, we averaged the normalized response times between
sessions for each task. Interestingly we found that, unlike RTs, neural data
using conventional techniques only predicted errors in the baseline session.
Therefore, we only used the baseline error rates for benchmarking (averaged
over tasks) and similarly for neural data.
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3.7. Pre-processing and Parcellation

Raw resting-state and task data were preprocessed using the same
pipeline, implemented with fMRI-prep software ([29],[30]). The whole-
brain surface data were then parcellated into 400 cortical parcels defined by
the 400 parcel Schaefer atlas (Schaefer [31]; 7-network version). Subcortical
volumetric data was divided into 19 regions derived from FreeSurfer ([32]).
Motion time-series consisted of the 3-dimensional coordinate changes for
rigid-body (brain) rotation and translation (6 total). Motion and linear
drift were regressed out of pre-processed resting-state data before MINDy
model fitting and from task data prior to filtering. Since motion time-series
are also covariates within our task GLMs (as is common), this step does
not bias results, as motion is implicitly removed from the unmodeled data
during GLM estimation (see below). However, we also implemented controls
(see Sec. 3.10) which used this same data (i.e. motion pre-regressed) with
conventional analyses.

3.8. Task GLM Analyses

Statistical models of task fMRI were estimated using general linear models
(GLM) as implemented in AFNI. The same analyses were performed for
both the original task data and the model-subtracted data. The GLM
design consisted of a mixed block/event-related design in which trial-type
effects were modeled using a modified Finite-Impulse-Response (FIR,[33],
[34], [35]) framework (AFNI TENT; [36]), whereas block effects (task vs.
inter-block interval) were modeled using a canonical HRF convolved with
the block regressors. The TENT bases consisted of overlapping linear-
interpolation splines spanning two TRs each with 1TR spacing between
bases (i.e. 1TR resolution with stimulus-alignment between TRs). The
FIR models were generated by projecting TENT coefficients by the mean
TENT basis-set for each trial-type (within-subject). The GLM design also
included block onset/offset (modeled with a canonical HRF) and the six
motion regressors corresponding to rigid body translation and rotation (3
each). Timepoints containing excessive motion (Framewise Displacement
> 0.9mm) were censored from task GLMs. Estimation was performed using
the built-in AFNI function “3dREMLfit”.

3.9. MINDy Modeling

Mesoscale Individualized NeuroDynamic (MINDy, [1][17]) models were
generated from each subject using the parcellated, pre-processed resting-
state data for each subject, combined across scanning sessions. Thus,
a single MINDy model was estimated for each subject and was used in
analyzing task-data across scanning sessions. We simultaneously estimated
the neurovascular coupling/HRF and latent brain networks by combining
the original MINDy model with Surrogate Deconvolution as in [17]. This
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combination simultaneously estimates HRF kernel parameters for each
brain region as well as the connectivity matrix, region-specific transfer
function shape, and local decay parameter (time-constant). Previous work
indicates that the inclusion of Surrogate Deconvolution renders MINDy
estimates robust to spatial variation in the HRF. Moreover, the spatial
distribution of estimated HRF properties such as time-to-peak are consistent
with empirical literature at the group level and are also reliable at the level
of individual differences ([17]). Hyperparameters used in MINDy model
fitting were identical to previous studies ([1]).

3.10. Control Pipelines

In addition to comparing the proposed pipeline with conventional analy-
ses, we also repeated all task analyses for several control pipelines. These
control pipelines considered two factors that might explain results: 1)
pre-processing and 2) mechanistic components of the model (SI Sec. 7.2).
The MINDy modeling framework assumes that nuisance covariates such
as motion and drift have already been removed from time-series prior to
model fitting. Therefore, to address #1, we implemented a control in which
standard GLM analyses were computed directly upon the fMRI BOLD
task timeseries, with motion covariates already regressed out first. The
same regressors also appear in the task GLM model (which is shared across
all pipelines), but regressing these factors out first will rescale estimated
beta-coefficients due to the input normalization performed by many fMRI
processing packages (e.g. AFNI). This control ensured that improvements
in group-level sensitivity were due to increased similarity of estimated
spatiotemporal patterns rather than theoretically uninteresting factors due
to pre-processing pipelines. We refer to this control as “pre-regressed”
(pre-Reg).

In the SI (Sec. 7.2), we address #2 by considering the influence of
anatomically local dynamics vs. interactions between brain regions. This
contrast is significant for three reasons. First, it is theoretically significant
to distinguish between purely local neural dynamics and inter-regional
brain dynamics. Secondly, long distance interactions between brain re-
gions cannot be explained solely in terms of neurovasculature since the
regions involved may share anatomically distinct blood supply (i.e. different
cerebral arteries). As a result, improvements identified in whole-brain
models, but not purely local models, cannot be explained solely as a benefit
of hemodynamic modeling (although other contaminants such as motion
could still be a factor). Lastly, analyses using the purely local models
are equivalent to region-specific frequency-domain filtering. Although this
equivalence does not imply that neural dynamics are insignificant, the
signal-processing interpretation is simpler and could render the proposed
neural modeling framework unnecessary (i.e. less parsimonious). Thus, the
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local dynamics control serves to ensure that our guiding neural modeling
framework provides additional value above its (partial) relationship to ex-
isting signal-processing techniques. This control was implemented in two
distinct variants: either heterogeneous (region-specific) or homogeneous
(region-invariant) autoregressive models fit to each subject.

The homogeneous model consists of an autoregressive model that is
specific to subject, but not parcel:

BOLDt+1 = βBOLDt + νt (7)

We assumed that the noise-component was independent and identically
distributed between parcels and solved for β using linear regression (collaps-
ing BOLD across parcels). The “input” estimates from this model consist
of the residuals (νt). We fit the heterogenous model analogously to the
homogeneous model, but with region-specific autoregressive terms:

BOLD
(i)
t+1 = βiBOLD

(i)
t + ν

(i)
t (8)

for parcel “i”. We use these two cases to determine whether regional
heterogeneity is a significant factor in any improvements due to local
modeling. We refer to the homogeneous and heterogeneous models as global
(“glob”) and local (“loc”) autoregressive (AR) models, respectively.

4. Validation and Comparison Criteria

In order to assess potential advantages of MINDy-based Filtering, we
considered two types of comparisons: benchmarking (is method “a” better
than “b”?), and sensitivity/robustness (how does factor “x” influence
method “a” vs. “b”?). The first case establishes whether MINDy-based
Filtering offers additional statistical power in detecting task effects. The
second case establishes whether MINDy-Based Filtering enhances statistical
power for detecting task effects in a selective (i.e., to the regions showing
significant task effects to begin with) or more global manner.

4.1. Benchmarking Event-Related Effects

Trial-types were defined by high cognitive control demand vs. low
cognitive control demand across the four tasks (see Sec. 3.4). Trial-specific
activity was modeled using a Finite Impulse Response (FIR) model with
1TR resolution (1.2s) and task-specific length (see Sec. 3.8). Group-level
statistics were compared for the peak effect (parcel × method specific)
over a task-specific 2TR interval. This interval was chosen during study
piloting using the peak times in conventional analyses. Thus, the analysis
targets are statistically biased against the proposed technique since they
were chosen to maximize conventional analyses. These times qualitatively
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correspond with a typical HRF time-to-peak after the probe-events which
define high vs. low control trials (see Sec. 3.4). Previous literature and
present results suggest that these effects are primarily one-sided, with
activity increased in the high-conflict (control demand) trials relative to
low-conflict (low control demand) in relevant brain regions. Conversely,
task-negative effects (significant decreases) have largely been associated
with sustained signals as opposed to high vs. low control events. For these
reasons, we only considered significant increases in activity for trial-type
analyses. Group-level t-tests (within parcel) were compared for all parcels
with significant increases (either method), or for a set of 34 parcels (pre-
defined from independent conventional analyses which showed consistent
control-demand effects across all tasks, SI Table 1, [24]). Since these parcels
were pre-selected based upon conventional analyses, they are statistically
biased against the proposed method (i.e. in favor of conventional methods).

4.2. Benchmarking Sustained Effects

In addition to event-related analyses, we also considered the identifica-
tion of sustained effects (block-related changes). Results of these analyses
are primarily presented in the SI (Sec. 7.3). As with event-related analy-
ses. Sustained effects in a mixed block/event design refer to “background”
activity that is present regardless of whether participants are performing
a task ([37], [38]). Since we used FIR models to span each trial type,
sustained effects in our analysis only refer to activity during inter-trial
periods (non-trial periods of task-blocks) since effects during other periods
are absorbed in the trial vs. rest-block contrasts ([37], [38]). We compared
the group-level effect size of each technique (MINDy-based Filtering and
several controls) in detecting sustained effects. Methods were compared
pairwise, and benchmarking analyses were only conducted on parcels which
had a significant effect for either method in a pair. Sustained analyses
considered both signal increases and decreases, so the target metric was
absolute t-value (1-sample group test) for the GLM sustained betas (see
Sec. 3.8).

4.3. Testing Selective vs. Global Improvements

We further analyzed benchmarking results by testing how MINDy-based
Filtering changes the distribution across parcels. The primary question
was whether the MINDy-based Filtering: a) uniformly changes statistical
power across the brain (by shift or scale); b) primarily identifies previously
insignificant regions or c) primarily alters previously significant regions.
This analysis is important for determining whether the technique globally
improves statistical power or differentiates task-relevant regions from the
rest of the brain. We test these effects using multilevel linear models to
compare MINDy-based Filtering to the different control models. These
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multilevel models (presented in more detail later) contain task-specific
main effects of method (anatomically global) and additional terms for
task-implicated (statistically significant parcels). We use these models to
test the significance of model improvements (increased effect sizes) after
discounting anatomically global changes.

4.4. MINDy + Hemodynamic Normalization

In addition to a näıve, linear method for estimating h ∗ It, we consid-
ered two other variants which we present primarily in the SI (Sec. 7.5).
These variants consist of implementing MINDy-based Filtering with either
hemodynamic normalization or the Kalman filter. With hemodynamic
normalization, estimates of latent brain effects (It) are calculated as usual
using individualized brain/HRF models. This approach differs however
in that rather than reconvolving It with the subject-specific HRFs, the
conversion from brain to BOLD-level inferences is performed using the
group-average (parcel-specific) HRF’s identified from resting-state MINDy
models. Thus, we leverage individualized HRF models to identify latent
neural activity but reconvolve estimates with a common HRF. This normal-
ization could be advantageous by reducing the inter-subject variation due
to neurovasculature thereby better isolating common neural substrates.

4.5. MINDy + Kalman Filtering

We also tested whether leveraging the Kalman filter improves estimates of
the latent input variable It. Kalman filtering comprises a Bayesian method
to improve estimates of latent states (neural activity xt) by incorporating
priors based upon an underlying dynamic model (i.e. MINDy) and models
of noise structure. Noise is divided into measurement noise (e.g. artifact)
and process noise which reflects natural stochasticity in the underlying
dynamical process. We considered the same stochastic-process form as
before, but with It replaced by a stochastic variable εt:

xt+1 = Wψα(xt) + (1−D)xt + εt (9)

BOLD
(i)
t = [hi ∗ (x(i)τ + η(i)τ ]t + νt (10)

For simplicity, we again used Wiener deconvolution to produce an estimate
of latent neural activity (xt) partially obscured by noise at the neurovascular
coupling (ηt):

yt = xt + ηt ≈ h∗̂−1BOLD (11)

We then used the Kalman filter to estimate the latent neural activity from
the deconvolved estimates. In this context, the deconvolved timeseries (yt)
functions as “measurements” in the Kalman filter terminology and the
“measurement error” (ηt) corresponds to neurovascular stochasticity (i.e.
errors in the neurovasculature’s “measurement” of brain activity). Errors
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produced by fMRI artifact (νt) are mitigated in the previous step of Wiener
deconvolution and do not factor into our Kalman filter. We implemented
the Kalman filter using statistical linearization to calculate the mean and
variance of the nonlinear function ψ ([39]) using numerical sampling (n=50)
at each iteration due to the lack of a simple closed-form solution. We
defined the It estimate as the difference between the prior prediction of
xt and the posterior estimate given by the Kalman Filter (i.e. prediction
errors multiplied by the Kalman gain). We estimated noise variances of 0.6
and 0.1 for ε and η respectively based upon resting-state data (see SI Sec.
7.1).

4.6. Sensitivity to Cognitive States

Sensitivity analyses were performed to assess the impacts of cognitive
states, individual differences, and motion. In the current case, cognitive
states differ between tasks and trials. Although, each of the four tasks
are commonly used to index cognitive control, cognitive tasks are not
construct-pure. For instance, tasks featuring delays (AX-CPT, Cued Task
Switching, and Sternberg) are thought to be more dependent upon working
memory than those without delays (i.e. the Stroop task). However, many
task-specific factors are the same between high and low control trials of the
same task (i.e. all events prior to the probe). Thus, we control for cognitive
similarity across tasks by comparing results across increasing levels of
cognitive similarity: low-control trials, high-control trials, and the contrast
high vs. low control trials. These levels increasingly isolate the cognitive
control construct by increasing control demand (high-control trials) and
controlling for other task events (high vs. low contrast). Methods which
are sensitive to cognitive states will produce more similar results between
task contexts when the cognitive states measured are more similar. Thus,
we tested whether MINDy-based Filtering increased similarity between
tasks for the high vs. low contrast relative to low-control trials. We
measured this using Intraclass Correlation (ICC; [40]). Tasks differed
in effect magnitude and there was no theoretical basis for assuming this
factor should be identical between tasks (i.e. we don’t assume each task
equally taxes cognitive control), so we normalized the group-average data
(divided by root-sum-of-squares) for each task × method before applying
ICC/generalizability analyses.

4.7. Significance Testing for Construct Identification

We used permutation statistics to compare the significance of gener-
alizability tests between methods. When testing the generalizability of
group-level patterns, we treated brain regions as the object of measure-
ment in intraclass correlations (ICC, [40]) over task classes and estimated
confidence intervals with bootstrap sampling over the set of brain parcels.
We defined individual differences in terms of z-scored data relative the
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group (computed task × parcel × method). We tested significance via
permutation testing z-scored data that was randomly permuted between
methods and then z-scored again before ICC computation (thereby main-
taining the within-task distribution). Confidence intervals were computed
with bootstrapped sampling over subjects.

4.8. Sensitivity to Individual Differences

We also analyzed the degree to which each method was sensitive to
individual differences. This analysis also used ICC across the different
levels/contrasts of control demand. However, the data of interest consisted
of individual differences, which were defined by z-scores relative the group
(i.e. normalized deviations from the group tendency). We computed ICCs
separately for each DMCC34 parcel and determined significance using
parametric statistics on the distribution over parcels.

4.9. Robustness to Motion

In an SI analysis (Sec. 7.6), we compared methods in their robustness
to motion confound. While previous work has established that the model-
fitting technique (MINDy) is robust to motion ([1]) it remains unknown
whether MINDy-based Filtering technique also exhibits similar motion
robustness. Therefore, we compared methods in terms of sensitivity to
motion artifact. We considered three motion metrics for task data including
the number of frames censored based upon framewise-displacement (FD)
criteria (< 0.9mm), the median framewise displacement, median-absolute-
deviation (MAD) of DVARS ([41]). We analyzed sensitivity by comparing
the similarity (ICC) of results between high-motion and low-motion groups
of subjects (median split for each motion measure).

5. Results

5.1. Structure and Presentation of Results

We designed analyses to answer four questions: 1) do resting-state
MINDy models (partially) generalize to task? 2) does the proposed tech-
nique improve power in answering cognitive-neuroscience questions? 3) can
these methods test hypotheses which were previously impractical? and
4) do improvements reflect theoretically interesting concepts (e.g. signal
propagation) or do they stem from signal-processing/filtering side-effects?
The first question resolves whether the intrinsic dynamics modeled at rest
meaningfully generalizes to task (although not perfectly, as we are interested
in the task versus rest differences). The second and third questions identify
methodological contributions, whereas the last question addresses whether
these techniques also offer additional theoretical insight (i.e. their success
reflects some principle of brain function). This question is important for
determining whether results reflect the activity-flow framework or can be
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Fig 2. Resting-state MINDy models generalize to task. A) MINDy models trained on
resting-state data produce similarly accurate predictions for task data. Goodness-of-fit
is quantified in terms of the mean R2 value across all brain parcels ([31]) and scanning
runs (n=6) in predicting the difference time series: Xt+1 −Xt ([1]). B)
Individual-differences in model accuracy are highly correlated between resting-state and
task data.

more parsimoniously explained in terms of (non-neural) signal processing
effects.

In the main text, we emphasize comparing methods in event-related
analyses due to the popularity of event-related designs. However, we
also compared methods for the analysis of sustained-effects in a mixed
block/event design. These results are presented in SI Sec. 7.3 and 7.4. We
also tested the specific contribution of modeling connectivity by comparing
MINDy-based Filtering with analogous filters using reduced (autoregressive)
models (SI Sec.7.2).

5.2. Resting-state Model Predictions Generalize to Task

We first test whether the proposed technique actually serves as a concep-
tual “filter” in removing intrinsic-dynamics from task, rather than making
this information more salient (as would occur when there is little overlap
between task and rest). Our framework assumes systematic discrepancies
between task and resting-state (i.e., we are interested in the difference
between contexts), but we assume that there is some overlap of task and
resting-state dynamics for us to “remove”. In statistical terms, we first
ensure that the approach removes variation from task data (associated with
covariance of task-rest dynamics) rather than adding additional variation as
would occur when subtracting independent factors. To test this possibility,
we first quantified the goodness of fit for resting-state models (MINDy; [1],
[17]) in predicting both task and resting-state data within subject. Paired
(within-subject) analyses indicated greater goodness-of-fit for resting-state
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Fig 3. MINDy-based Filtering reduces variability within and between subjects. A)
MINDy-based Filtering accounts for a significant portion of unique variability within
each subject’s data. This effect holds across tasks (results averaged over all parcels,
subjects). Variance partitioning was performed after removing variation due to nuisance
factors (motion and drift). B) Difference in the relative group-explained variability
between MINDy and the original data. Note that MINDy-based filtering actually
decreases the proportion of group variance in some regions, but increases for
task-implicated regions (e.g. lPFC). C) MINDy-based Filtering reduces the
between-subject variability of task-evoked signals. Example shown is the mean signal
over the DMCC34 parcels for the Cued-TS high control-demand condition (incongruent
trials). D) Variability also decreases for contrasts between conditions. Example shown is
for the AX-CPT (BX-BY contrast).

scans (R2 = .55±.06) relative to task scans (mean R2 across tasks=.52±.08,
paired-t(52) = 4.37, p = .5.9E − 5; Fig.2A), but the magnitude of this dif-
ference was not particularly large (∆R2 = .03± .05). Moreover, individual
differences in goodness-of-fit were consistent across tasks (Fig. 2B), which
indicates that model accuracy is also highly preserved within-subject. We
conclude that the short-term evolution of brain activity is similar (but
not identical) in resting-state and various task contexts. By leveraging
large-scale resting-state models (MINDy) the proposed technique filters out
intrinsic dynamics common to resting and task state.

5.3. MINDy-based Filtering Accounts for intra and inter-subject Variability

We also tested whether these intrinsic dynamics explain unique variability
above the task GLM. This test is important for determining whether MINDy
serves to predict the mean brain-response for each trial-type or whether
it also predicts trial-to-trial variability. We quantified these properties
through sum-of-squares partitioning (ANOVA). Across all tasks, we found
that the proportion of unique variance explained by MINDy was significant
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(39.1% on average, Fig. 3A). However, MINDy predictions and the task
effects do have some overlap (a non-zero MINDy×task sum-of-squares, Fig.
3A), thus MINDy predictions account for some of the variation in both
the trial-to-trial variability (variation unique to MINDy) and the typical
response across trials (MINDy × task interaction). We also tested how
MINDy-based Filtering impacts variability in the evoked-response between
subjects. We restricted these analyses to the pre-defined set of regions
(the DMCC34 parcels, [24]) which were previously identified as having a
significant control-demand effect across tasks. Results demonstrated that
MINDy filtering decreased inter-subject variability in both main effects of
trial-type (e.g. Fig. 3C) and the contrast between trial-types (e.g. Fig.
3D). In particular, these analyses and associated event-related timecourse
visualizations reveal that the peak task-related effects become sharper
(more well-defined), as well as more temporally-precise, after MINDy-based
filtering. We used ANOVA to partition variance in the cognitive control
effect into group-level variance and individual variance over the relevant
trial periods.

We then tested whether MINDy increased the proportion of cognitive
control effects attributed to a common group factor (sum-of-squares for the
group effect divided by the total effect). As expected, regions implicated in
cognitive control, such as the lateral and medial prefrontal cortex, anterior
insulae, and posterior parietal cortex, had larger proportions of variability
explained by the common group factor (analogous to Fig. 4A). Interestingly,
although MINDy-based Filtering increased group variability (decreased
inter-subject variability) in task-implicated regions, it decreased the common
group factor for regions not implicated in cognitive control (Fig. 3B). The
proportion variance explained by a common group effect increased across the
DMCC34 parcels (paired-t(33) = 3.91, p = 4.3E − 4). Thus, by removing
individual-differences in intrinsic brain dynamics, MINDy-based Filtering
reveals more similar task-effects between subjects.

5.4. Improved Group-Level Detection Power

We tested whether MINDy-based Filtering improved statistical power
in detecting group-level neural effects for each task, and in an omnibus
test across tasks (Fig. 4A,B). For each event-related pairwise compar-
ison of methods, we tested the change in effect-size (group t-value) for
parcels demonstrating a significant increase (p < .01, uncorrected) for
either method within a pair. Results indicate that MINDy-based Filtering
significantly increased statistical detection power on all tasks (four of four)
for the event-related contrast relative to controls (all p‘s≤1.5E-7; Fig. 4
B). For omnibus analyses, we collapsed observations across tasks (Fig. 4A).
Results indicated that MINDy-based Filtering generally increases detection
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Fig 4. MINDy-based Filtering increases power in detecting event-related task effects.
A) Spatial distribution of high-vs.-low conflict effects averaged across tasks using the
proposed technique. B) Paired comparisons of effect size between control methods and
the proposed approach in identifying high-vs.-low conflict effects for significant brain
parcels (p < .01). Values greater than zero indicate that the propose technique improves
upon controls. Comparison techniques are denoted:“Orig”=original analysis (no filter),
“prReg”= motion and drift pre-regressed before GLM fitting. “34” references analyses
constricted to the DMCC34 set of parcels (see SI Table 1, [24]), rather than all
significant parcels. Or34 compares these parcels after MINDy filtering to the original
analysis and pr34 to analyses with the pre-regressed data.

power for event-related analyses relative to controls (vs. original: paired-
t(541) = 28.3, p ≈ 0, vs. pre-regressed: t(540) = 27.8, p ≈ 0). We conclude
that the proposed techniques improve group-level detection of task effects.

One limitation of the previous tests, however, concerns the determination
of which parcels are included in analysis: we compared effect sizes in parcels
that were statistically significant (i.e., large effect sizes). This approach is
anatomically parsimonious in that the comparison regions are informed by
data rather than prior assumptions. However, this dependency could pro-
duce biases due to differences in higher-order features (e.g. overdispersion)
between methods. Therefore, we repeated the previous analyses over a fixed
set of 34 pre-specified brain parcels (SI Table 1, [24]) that demonstrated
significant increases due to cognitive conflict (event-related contrast) across
all four tasks during independent and pre-specified analyses (see Methods,
[24]). The implicated parcels agree with previous studies mapping the
neuroanatomy of cognitive control and are largely located along lateral pre-
frontal cortex and anterior insula (Salience/Ventral Attention and Control
networks; [42], [31]). Analyses over this restricted, pre-specified group of
parcels agreed with the previous results: the omnibus (all task) statistical
detection power improved relative all controls (maximum p = 4.6E − 4;
Fig. 4B). Thus, results indicated that MINDy-based Filtering improved
statistical detection even when analyses were restricted to this group of 34
pre-specified parcels.
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Fig 5. MINDy-based Filtering enhances task-related signals relative to controls. A)
Comparison of parcel significance before and after MINDy-based Filtering collapsed
across tasks. The multi-level model fit (averaged across the main effect of task) is
plotted in red and the threshold-nonlinearity indicates sensitivity to parcel-significance.
B) Same as (A) but for the pre-regressed control. C) Task-specific comparisons relative
the original analyses. Improvements can be seen in the number of parcels exhibiting
higher t-values after MINDy-based Filtering relative to conventional analyses (i.e.,
above the identity line). Yellow dots indicate significant parcels (in terms of the
control-demand effect) which also had increased effect sizes from MINDy-based
Filtering, while blue dots denote significant parcels whose effect sizes were larger with
conventional analyses. Teal dots denote parcels which did not exhibit a significant
control-demand effect for either method.

5.5. MINDy-based Filtering Selectively Enhances Task-Related Neural Sig-
nals

Results in the previous section indicate that the proposed technique
increases the statistical detection power of task effects (Fig. 4B). Statistical
power and effect sizes are useful benchmarking criteria as they are easy
to interpret and relate to potential applications. However, these markers
are also limited in that they indicate the ability to reject a generic null
hypothesis of no task effects. Yet this generic null is not always a useful
benchmark from which to provide additional scientific insight. For instance,
approaches which magnify anatomically global effects may provide little ben-
efit to functional “brain-mapping” studies, which are most meaningful when
they differentiate between brain regions. Therefore, we tested whether the
improvements found with MINDy-based Filtering are anatomically global
or serve to further differentiate regions (i.e., are anatomically selective).

We consider two sorts of global effects: additive “shifts” in the global sig-
nal and global “scaling” of task effects. In statistical modeling terminology,
the former reflects a main-effect (intercept) of method, whereas the latter
reflects the method-specific slope. We modeled the differentiation between
brain regions as either a main effect of regional significance (i.e., whether a
region has a significant effect) or as an interaction with regional significance
reflecting either a shift or rescaling of effect sizes of significant regions
due to MINDy-based filtering, relative to the control models. We use the
logical-valued variable Sigtask,Parc to denote whether a parcel exhibits a
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significant effect for either method in a given second-level task analysis.
We denote the MINDy-filtered second-level estimate (group-T) for each as
Xtask,Parc which is modeled as a function of matched control analyses (e.g.
the original GLM or pre-Regressed) which are denoted Ytask,Parc:

Xtask,Parc = βtask + β0Ytask,Parc + Sigtask,Parc(β1 + β2Ytask,Parc) + εtask,Parc.
(12)

We assume that ε is independently and identically distributed across tasks
and parcels (iid.). The coefficient β1 represents the main effect of parcel
significance as a binary factor, while β2 represents the interaction with
parcel effect size in control methods. Conceptually, these two components
represent the degree to which MINDy-based Filtering further separates
task-implicated and non-implicated parcels and the degree to which differ-
ences among task-implicated regions are further magnified, respectively.

Results indicate that the MINDy-based Filtering technique demonstrates
differential sensitivity, in that improvements are greater in task-implicated
regions (Fig. 5A, B). The main effect of event-related regional significance
was significant for all controls (vs. original and vs. pre-Reg: t(1669)=13.34,
p ≈0, t=14.36, p ≈0, respectively). This result indicates that MINDy-based
Filtering further separates event-implicated and non-implicated regions
rather than simply increasing global statistical features. This feature also
held at the single-task level in which linear models revealed a main effect
of regional significance in all four tasks for both original and pre-regressed
controls (min. p = .007; Fig. 5C). MINDy-based Filtering also differentially
magnified effect sizes relative the original analysis (t(1669) = 3.3, p = .001),
but this effect was small and did not reach significance for the pre-regressed
control (t = 1.51, p = .13, 2-tailed). Thus, task-implicated regions experi-
enced the greatest improvements due to MINDy-based Filtering. For the
current dataset, this approach primarily functioned to further highlight
task-implicated brain regions (a main effect of regional significance) rather
than magnifying the differences between task-implicated regions. These
results imply that MINDy-based Filtering is sensitive to task-implicated
brain regions rather than inducing anatomically global effects.

5.6. Advanced estimates for It could improve performance

In the present work we have emphasized the power of a simple differencing
approach to estimate It, namely by taking the difference of observed BOLD
and predictions based upon the resting-state MINDy model. However, we
also considered two variations on this approach: one in which estimates
for It are normalized based upon the group-average HRF for each parcel
(estimated with resting-state MINDy) and another in which It was estimated
using the Kalman Filter (which uses Bayesian estimation). We found cases
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Fig 6. MINDy-based Filtering improves identification of cognitive control demand. A)
Cross-task generalizability (ICC) for group means in the low-conflict condition (low
construct purity across tasks) and the high vs. low conflict contrast (high purity) by
method. B) Anatomical distribution of generalizability for the proposed technique and
C) The difference in cross-task generalizability between MINDy-based Filtering and
conventional analyses. Comparison techniques are denoted:“Orig”=original analysis (no
filter), “Pre-Reg”=motion and drift pre-regressed before GLM fitting, and
“MINDy”=MINDy-based Filtering.

in which these approaches further improved the detection of group-level
effects above the benefits conferred by näıve MINDy-based filtering. A
full account of these alternatives is detailed in the SI (Sec. 7.5). However,
we chose to emphasize the näıve MINDy-based filter for the main text so
that improvements could be more directly linked to the underlying neural
framework (i.e., input to a dynamic system) since this filter does not add any
additional mitigation of nuisance factors. By contrast, improvements in the
other estimators might be due, in part, to the mitigation of nuisance factors
such as inter-subject variation in neurovasculature (HRF normalization)
and “noise” factors (Kalman filter).

5.7. Identifying Individual Differences in a Latent Cognitive Construct

The previous analyses indicate that MINDy-based Filtering enhances the
identification of neural activity associated with a set of contrasts between
trial-types (theoretical high control-demand trials minus low control-demand
trials). However, many cognitive neuroscience studies seek to understand
cognitive constructs, as opposed to unitary tasks. In the current section,
we explore how well each method identifies the neural correlates of one such
construct: cognitive control. The four tasks we studied have all been previ-
ously used to index cognitive control (typically via the difference between
high-control and low-control trials). However, because the tasks themselves
are not construct-pure (i.e., they tap multiple cognitive constructs) the
neural activity associated with tasks is also expected to be non-identical.
To control for this fact, we used the different trial types to generate lev-
els of “construct-purity” in terms of cognitive control: low-control trials
(low purity) and the high-vs.-low contrast (high purity). We consider the
high-vs.-low contrast to be more “construct-pure” in terms of cognitive
control since it controls for many of the other cognitive processes that
differentiate tasks. For instance, speech production (unique to the Stroop
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task), is identical between high and low-conflict trials (the same set of
words are produced). Likewise, working memory maintenance during delays
(Sternberg, AX-CPT, and Cued-Task Switching) does not differ between
high and low control-demand trials since these trial-types are identical
through the delay period (up until the probe). The high-control trials
form an intermediary between the “high-purity” high-vs.-low contrast and
the “low-purity” low-control trials. We use this condition for illustration
(i.e. it suggests a continuous relationship in Fig. 6A) but did not perform
statistical testing as we did not have any explicit hypotheses regarding this
condition.

We tested how sensitive each approach was to the cognitive control
construct via the relationship between “construct-purity” and cross-task
similarity of neural effects. For this test, we indicate that a measure is
“sensitive” to a factor (cognitive constructs) if the similarity in measure-
ments reflects the similarity in that factor. We therefore consider a measure
“sensitive” to cognitive constructs if it reports higher similarity between
tasks for the high “construct-purity” condition (high-vs.-low control demand
contrast) than for the low “construct-purity” condition (low demand trials).

We quantified “similarity” across the four tasks using Intra Class Correla-
tion (ICC, [40]), and performed analyses in terms of both the group-average
and individual-differences. For group-average analyses, ICC “units of
observation” consisted of the mean beta for each brain parcel (all 419
brain regions) and “classes” consisted of the different tasks. Results indi-
cated that the proposed technique was sensitive to the cognitive control
construct at group level (Fig. 6A). In the “low-purity” condition, with
MINDy-based Filtering there was significantly lower similarity between
tasks (ICC = .46 ± .01) than conventional approaches (both p′s < .001,
5,000 bootstraps). Thus, MINDy-based Filtering does not generically in-
crease the similarity of task results irrespective of cognitive construct. By
contrast, for the “high-purity” condition, MINDy-based Filtering generated
significantly more similar results across tasks (ICC = .63 ± .01) than
conventional analyses (all p′s < .001, 5000 paired bootstraps). We conclude
that MINDy-based Filtering improves sensitivity to the cognitive control
construct at group-level. Based on the nature of how these ICCs were calcu-
lated, the finding can also be interpreted as indicating that the anatomical
profile of effects (i.e., the gradient of effect sizes across the brain) becomes
more similar or consistent across tasks after MINDy-based filtering, relative
to conventional analyses, and the controls.

We next tested the generalizability of individual differences. For these
analyses we normalized data between subjects for each method × task ×
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parcel before computing ICC separately for each parcel (using subjects
as the “units of observation”). In general, ICC values were highest for
task-implicated regions (e.g. lateral prefrontal cortex, anterior insulae
and posterior parietal cortex; Fig. 6B) and the MINDy-based Filtering
demonstrated particularly high generalizability at posterior parietal cortex
relative to conventional techniques (Fig. 6C). We tested the generalizability
of individual differences restricted to the DMCC34 set of parcels. Results
indicated that MINDy-based Filtering improves identification of individ-
ual differences over conventional techniques for the high vs. low control
contrast (vs. original: paired − t(33) = 2.47, p = .019; vs. pre-regressed:
t = 3.56, p = .001). As with the group-level analysis, generalizability did
not increase over conventional analysis for the low construct-purity (low
demand) condition. Thus, MINDy-based Filtering improves the estimation
of neural individual differences related to a cognitive construct but does
not artificially increase generalizability across cognitively dissimilar task
conditions.

These results also offer (speculative) theoretical interpretations. The
inter-task variability of conventional techniques and MINDy-based Filtering
are linked since “input” is defined as the difference between the observed
brain activity and the propagation along intrinsic dynamics (xt+1 = f(xt) +
It). Consequently, this section’s results suggest that cognitive control
signatures are most similar between tasks when they first impact the brain
(as “inputs”) but lead to more task-specific patterns of activity (xt) as they
evolve (or propagate) according to intrinsic brain dynamics. Analogous
results suggest that individual differences follow the same principles. Of
course, these interpretations are post-hoc and mainly serve to demonstrate
the potentially utility of MINDy-based Filtering. Future studies should
explore these possibilities in more detail.

5.8. MINDy-based Filtering Enhances Brain-Behavior Relationships

The previous section demonstrated that neural effects identified with
MINDy-based Filtering better generalized across task conditions tapping
a common construct (cognitive control). In this section we demonstrate
that this relationship also holds for behavior by using individual differences
in task effects to predict the corresponding variation in cognitive control
effects. These effects are measured by the difference in behavioral response
time (RT) and accuracy during high-control vs. low-control trials. For
each subject× task × session, we summarized event-related effects in each
task× method via the difference of normalized (z-scored over subjects) high
and low control trial coefficients averaged over the DMCC34 set of parcels
and similarly for sustained effects. Behavioral measures were similarly
defined by the difference in normalized RT and accuracy between high and
low control trials. Interestingly, we found that across methods, individual
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Fig 7. MINDy-based Filtering enhances prediction of individual differences in cognitive
control effects. Behavioral measures correspond to the difference of high control trials
minus low control trials in normalized response times (RT) and accuracy (Acc). A)
Individual differences in DMCC34 sustained responses predict accuracy while
event-related responses (high vs. low control contrast) predict RTs in the baseline
session (collapsed across tasks). Data plotted correspond to the original (non-MINDy)
analyses. B) MINDy-based Filtering enhances correlations between event-related
responses and RTs in each task (collapsed across the 3 scanning sessions). C)
MINDy-based Filtering also enhances the correlation between sustained responses in
DMCC34 and error-rates (baseline session). Confidence intervals correspond to 68.3%
(i.e., ± 1 SD in a normal distribution)

differences in RT were positively correlated with the conflict-related (event)
brain response but had a weaker relationship to sustained activity (Fig. 7A).
By contrast, individual differences in accuracy were positively correlated
with sustained activity, but unrelated to event-related activity (Fig 7).
Therefore, we compared methods in predicting RT using event-related
estimates and in predicting accuracy using estimates of sustained activity.
We found that MINDy-based Filtering increased the recorded correlations
with RT for each task (Fig. 7B) and the change in mean correlation across
tasks was statistically significant (vs. original, pre-regressed: p < .05, 5,000
bootstraps). Similarly, our approach increased correlations with accuracy
(p < .05, 5,000 bootstraps, Fig. 7C). Results using the pre-regressed control
are depicted in SI Fig. 10. We conclude that after MINDy-based Filtering,
individual differences in brain responses better predict behavioral measures
associated with cognitive control.

6. Discussion

We demonstrated that MINDy-based Filtering increases the ability to
detect both event-related (cognitive control-demand) and sustained brain
responses in task fMRI (Sec. 5.4, SI Sec. 7.3). These effects are strongest
in task-implicated brain regions (Sec. 5.5) and generate higher temporal
precision than the original BOLD timeseries. By accounting for intrinsic
dynamics, MINDy-based Filtering accounts for both trial-to-trial variability
within subjects, and variability between subjects (Sec. 5.3). However,
while the absolute magnitude of subject-to-subject variability decreased,
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individual differences (and group—level activity) in a latent cognitive
construct (control-demand) generalized better between tasks after MINDy-
based Filtering (Sec. 5.7). MINDy-estimated task effects were also more
predictive of individual differences in behavior (Sec. 5.8). These results
suggest that MINDy-based Filtering can enhance the detection of task-
evoked brain activity.

6.1. Relationship with Frequency-Based Filtering

Frequency-based (spectral) filtering has been applied to fMRI signals in
many previous studies ([43],[44]). High-pass filtering is commonly applied
to both resting-state and task data to remove signal drift which is thought
to largely reflect changes in non-neuronal variables. Low-pass filtering is
also sometimes applied, primarily for resting-state data. Although these
approaches were common in early fMRI experiments, the changing nature
of fMRI acquisitions (e.g. TR length) and analyses (e.g. functional con-
nectivity) has led to renewed debate over these techniques ([45]) and the
development of more sophisticated methodologies (e.g. [46],[47]). In the
current work, we did not perform spectral filtering (instead using AFNI’s
“polort” function for polynomial basis de-drifting). Likewise, MINDy-based
Filtering is not a direct replacement for spectral filtering, which can be
applied before our technique, afterwards or not at all. However, as previ-
ously mentioned, when the connectivity parameter of our model is zero, the
proposed technique reduces to a form of spectral filtering based purely upon
autoregressive models. Empirically we have demonstrated that MINDy-
based filtering outperforms filters based upon autoregressive models (SI
Sec. 7.2, SI Fig. 8 A), so effects cannot be attributed solely to removal of
particular frequency components within each region.

Notably, MINDy-based Filtering improves detection in both sustained
and event-related analyses over both conventional methods and autore-
gressive filters. By contrast, filters based upon autoregressive models
are expected to underperform in the identification of (low-frequency) sus-
tained effects as we confirmed in our analyses (Sec. 5.4, Fig. 4D). At a
statistical-level, dynamical systems models (including MINDy) capture the
multivariate partial autocovariance between successive time-points (i.e. how
xt+1 is related to xt). As a result, removing these predictions from the
training data (Rest) inherently yields a timeseries with lower autocovariance.
The improved detection of sustained effects is therefore significant as it
indicates that the proposed technique reveals systematic differences between
the resting-state and task dynamics rather than simply acting as a high-pass
filter. These effects are also more pronounced in task-implicated parcels
(Sec. 5.5, Fig. 5A-C) indicating that these features are also context-related.
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6.2. Relationship with other approaches

The current approach is conceptually related to several current initiatives
for linking resting-state and task-state brain activity. Our approach uses
resting-state brain dynamics to extrapolate patterns of intrinsic dynamics
that also factor into brain activity during task states. Frameworks such
as Activity Flow ([8]) have demonstrated similarity between the spatial
aspects of evoked responses and resting-state network structure. Likewise,
functional connectivity patterns have been found to be roughly similar be-
tween resting-state and task ([48]). However, whereas these frameworks are
largely employed to discover similarities between spontaneous and evoked
activity, we analyze the manner in which task-state deviates from resting-
state activity over short time-scales.

Other approaches have also investigated the difference between brain
dynamics in task-state and resting-state. Previous work ([11], [10]) has
demonstrated that intrinsic dynamics shape task-evoked activity on a
trial-by-trial basis and modeling studies have reproduced the statistical
differences between task and resting-state activity ([12]). Our approach
furthers these efforts by leveraging these underlying concepts into an em-
pirical modeling/analysis framework.

Dynamic Causal Modeling (DCM, [19]) frameworks have also used em-
pirical dynamical systems models to improve estimates of task effects. As
previously mentioned (Sec. 1.2), DCM techniques allow task effects to man-
ifest changes in the exogeneous drive to brain regions and (for small-scale
DCMs) the effective coupling between brain regions. By contrast, the cur-
rent MINDy-based Filtering technique only models a single factor: changes
in the input to each brain region, which collapses both of these mechanisms
into a single term as is common in larger-scale DCM models (e.g. [21]).
Our approach differs from all DCMs, however, in two fundamental ways.

First, whereas DCMs fit all data simultaneously, we parameterize our
dynamic (MINDy) models solely from resting-state data. As a result, our
model parameters are not impacted by any preconceived models of task
effects (i.e., that they follow a certain temporal pattern). Secondly, we do
not explicitly model task effects. Whereas DCMs directly fit parameters
to task conditions, MINDy-based Filtering produces a full timeseries of
estimated effects based solely upon the observed fMRI scan data (i.e. no
task information is used). Thus, our approach estimates the evolution of
latent variables (task-related “input” to each region) rather than estimating
coefficients for a pre-specified temporal model of task effects. As such,
MINDy-based Filtering is much more flexible than DCM, as it functions as
a processing step rather than a full analysis pipeline in and of itself. In the
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current work, we used statistical GLMs to analyze the MINDy-filtered data
with Finite Impulse Response models fit for each trial type and additional
components to model task blocks (mixed block-event design). However,
the end-product of our technique (a timeseries) could, in principle, be
analyzed with a wide variety of methods, including parcel-level multivariate
techniques (e.g., multivariate pattern analysis; MVPA). Thus, although
DCM and MINDy-based Filtering both use empirical dynamical systems
models with similar assumptions, the approaches differ radically in how
these models are leveraged.

6.3. Limitations

The proposed work rests upon three related claims: 1) intrinsic dynamics
are roughly conserved between task periods and rest, 2) that by subtracting
intrinsic dynamics we identify changes in “input” to each brain area and
3) that the signal generated by this calculation is a better marker of
task effects (ostensibly task-related cognition). The first two claims are
interdependent. We have mathematically defined changes in “input” as
the signal components which are not explained by intrinsic dynamics (the
residual after subtracting the modeled intrinsic component). The accuracy
of estimated changes in “input” thus hinges upon whether the modeled
intrinsic dynamics meaningfully generalize. We attempted to address
this question empirically (see Sec. 5.2), and the results suggest that this
assumption does hold. We also note that the generalizability assumption is
“soft” in the sense that small changes in effective connectivity do not violate
our assumptions. Since each connection describes the strength of input to
the “post-synaptic” region, changes in connection strength are absorbed in
the input estimate (summing over “pre-synaptic” sources). However, we do
assume that our filter removes variance which could be violated by some
forms of large, systematic changes in effective connectivity. Fortunately,
this assumption is easy to check (e.g., see Sec. 5.2) and we have not found
evidence of its violation.

6.3.1. Methodological Considerations

The bulk of our results concern the last claim (improved detection power)
and the demonstration that observed statistical improvements are related
to task-specific neural processes. We performed these tests using several
controlled comparisons and lines of inquiry. However, our efforts in this
domain are limited by using a specific subset of cognitive tasks: those used
to index cognitive control. As the set of potential cognitive constructs
remains vast, further testing in other cognitive domains may be useful.

Another limitation concerns how MINDy models are parameterized.
Since we parameterize models based upon resting-state data, we require
the collection of both resting-state and task data for each subject which
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increases data requirements. Moreover, this dependency could prove prob-
lematic for low-quality resting-state data, as mis-specified resting-state
models could corrupt task estimates. We found that individual differences
in goodness-of-fit were consistent across tasks (Fig. 2B) so this possibil-
ity cannot be ruled out. However, previous analyses of MINDy modeling
indicated that the goodness-of-fit is not related to individual differences
in motion ([1]). The results also do not support model overfitting, as
goodness-of-fit did not uniformly decrease when applied to novel (task)
data relative to training (rest) data (Fig. 2A). Further study may therefore
be beneficial in determining which factors (neural or nuisance) influence
individual differences in goodness of fit, as these factors could influence
estimated individual differences in task variables.

6.3.2. Mechanistic Considerations

Future study is necessary is necessary to disambiguate which biologi-
cal mechanisms contribute to the calculated “input” signal. For decades,
computational neuroscience models have largely formalized task context
as an exogeneous forcing (“input” or “bias”) term in neural networks and
connectionist models (e.g. [49], [50], [51], [52], [53]). This formulation
is appealing for its simplicity; however, external contexts serve only as
“inputs” during sensory transduction, since brain activity is known to mod-
ulate even sensory neurons (e.g. [54], [55]). Even when these effects are
neglected, many modeling studies assume that brain regions receive task
“inputs”, even if these regions are not directly enervated by sensory nerves
(e.g. [51]). As a result, these “inputs” should not be interpreted as literal
inputs to the brain (i.e. signals from sensory nerves). Rather, these “inputs”
include the initial propagation of such signals over the fMRI sampling rate
(1 TR), so our approach is limited by the temporal resolution of fMRI BOLD.

The nature of these “inputs” is also somewhat underspecified. In the
current approach, we use MINDy to model the propagation of brain signals
during resting-state. The model predicts task-fMRI activation based upon
the effective connectivity parameters estimated from resting-state. How-
ever, these parameters are limited to describing the relationship of bulk
activity between brain regions. Many brain regions contain diffuse sets of
neurons with heterogeneous axonal connectivity profiles. Several lines of
evidence suggest that task-contexts can modulate the effective connectivity
between brain regions via selective recruitment of neurons in synchronous
ensembles ([56], [57], [58]). Our approach is therefore limited, in that it
does not explicate how changes in “input” relate to changes in the effective
coupling between brain regions. Future studies may improve upon the
current approach by further modeling how task events modulate effective
connectivity between brain regions. Such studies could either directly pa-
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rameterize connectivity × task interactions (as in DCM), or extend the
filtering approach to estimate time-varying (or state-varying) connectivity.

6.4. Task Dynamics Could Potentially Influence Statistical Improvements

The current approach serves to estimate latent changes in input to each
brain area. In the present study we found that MINDy-based Filtering con-
sistently improved statistical detection power across tasks. However, there
may be contexts in which brain activity (x(t)) is a more consistent marker
of task context than input (I(t)). Such cases occur when different input
patterns (i.e., inter-trial variability in input) lead to the similar outcomes
in terms of activity. In these cases, MINDy-based Filtering might actually
decrease detection power, since the “input” on each trial is less consistent
than its long-term consequences. Future studies might identify such cases
using a wider variety of tasks.

One area in which our approach could also be limited is in detecting
slow neural events in which task-related activity evolves over multiple TRs.
Since our approach acts as a pre-processing filter (i.e. doesn’t use task
information) it is possible that it could filter out the propagation of very
slow task-related activity in addition to task-unrelated activity. However,
this cancellation is only expected when task-related activity propagates
identically (has the same dynamics) to spontaneous brain activity. In
practice, we have found that MINDy-based Filtering improves the detection
of sustained brain activity and strengthens brain-behavior linkages (Sec.
5.8, SI Sec. 7.3).

6.5. Conclusion

In the current work, we proposed a new technique to estimate the
influence of external contexts (task conditions) on brain activity (in our case
fMRI). This technique forms a mathematical filter and therefore functions
as a preprocessing step rather than as a direct tool for hypothesis testing.
This property is advantageous as it allows this approach to be used in
conjunction with a variety of existing methods. We have demonstrated that
using MINDy-based Filtering improves statistical power (Fig. 4), increases
sensitivity to task-implicated regions (Sec. 5.5; Fig. ??)), and better
identifies the neural signatures of a latent cognitive construct (cognitive
conflict) in both individuals and group-level (Fig. 6). Moreover, MINDy-
based Filtering enhances the strength of brain-behavior reslationships (Fig.
7). These improvements are not sensitive to motion within a reasonable
range (SI Sec. 7.6). Our technique can be easily inserted into most fMRI
processing pipelines and we have made code available via the primary
author’s GitHub to facilitate this process.
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7. Supplemental Information

7.1. Estimating Error Variances for the Kalman Filter

We implemented a nonlinear Kalman Filter using numeric statistical
linearization ([39]) of the nonlinear function ψ in computing expected values
and variances. Kalman Filtering was performed in the deconvolved space
(see Sec. 4.5) so the “measurement” noise consisted of stochasticity in the
neurovascular coupling. To avoid biasing results, we assumed that both
process (neural) and measurement (vascular) noise were identically and
independently distributed between brain regions which left two remaining
scalar parameters: the measurement (R) and process (Q) noise variances.
To estimate these quantities, we first constrained the total contribution of all
stochastic terms (estimation error, measurement noise and process noise) to
roughly match the prediction error variance in the deconvolved space (.6-.8
depending upon parcel). For three random subjects we finely sampled the
2D space of Q,R variances (valued between 0 and 1) and compared Kalman
filters with the associated parameters in terms of prediction accuracy
(log-likelihood of measurements given predictions) for resting-state scans.
These results generally favored a small value for R relative to Q but
were relatively smooth. We then compared prediction accuracy over task
scans for all subjects using three candidate value-pairs: {Q = .6, R = .1},
{Q = .3, R = .5}, and {Q = .5, R = .5}. As expected, we found the best
predictions (highest likelihood) for {Q = .6, R = .1} on all tasks, so we
used these values for further analyses. However, we note that the other two
candidates produced more accurate estimates of individual response-times
on the Cued-TS and Sternberg tasks than the chosen values (see Sec. 5.8),
whereas all other properties were nearly identical.

7.2. Comparison with Reduced Models

We compared estimation of inputs using MINDy models to analogous
estimates to reduced autoregressive forms with autoregressive terms which
were either subject-specific (but not parcel-specific) or terms which were
specific to subject and parcel (see Methods Sec. 3.10). Since the MINDy
model also features an autoregressive term (the “Decay”), these alternative
models serve as reduced special cases which don’t include the effects of
inter-regional signaling (connectivity). As such, improvements of the full
MINDy model over these alternative (autoregressive) models indicate the
contribution of modeling connectivity, as opposed to simply accounting for
purely local dynamics.

Results indicated that group-level detection power for MINDy-based
Filtering was greater than both the homogeneous and heterogeneous au-
toregressive comparison models. Detection power was greater across all
four tasks for both event-related (maximum p = .028, Fig. 8A,B) and
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Fig 8. MINDy-based Filtering provides greater detection power using the full model
over autoregressive (AR) reduced models which do not model connectivity.
Comparisons are for the high-control vs. low-control contrasts. A) Pair-wise difference
in detection power (group T) for significant parcels and the DMCC34 parcels by task
and model. “Loc” denotes the locally-parameterized (heterogeneous) AR while “Glob”
denotes the globally-parameterized (anatomically homogeneous) AR model. The suffix
“34” denotes when the DMCC34 parcels were used as opposed to all significant parcels.
B) Scatterplots of parcel significance when filtering with the local AR model vs. full
MINDy model for each task. Yellow dots indicate significant parcels (in terms of the
control-demand effect) which also had increased effect sizes from MINDy-based
Filtering, while blue dots denote significant parcels whose effect sizes were larger with
conventional analyses. Teal dots denote parcels which did not exhibit a significant
control-demand effect for either method. Note that for all tasks, the most significant
parcels (top right) benefit from using the full MINDy model even when the average
effect over all significant parcels is small (e.g. AX-CPT and Stroop in A).
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Fig 9. MINDy-based Filtering generally improves the detection of sustained effects.
Unlike event-related effects, we permitted bidirectional sustained effects hence we
compared the absolute magnitude of group-T statistics. The definition of significance
was likewise 2-tailed. A) Pair-wise difference in detection power (group T) for significant
parcels by task and control (“Orig”=original, “prReg”=motion pre-regressed)/filtering
model(“Loc”=locally-parameterized AR, “Glb”=globally-parameterized AR model). B)
Scatterplots of parcel significance using conventional analyses (no filtering) vs.
MINDy-based Filtering for each task. Yellow dots indicate significant parcels (in terms
of absolute sustained effect) which also had increased effect sizes from MINDy-based
Filtering, while blue dots denote significant parcels whose effect sizes were larger with
conventional analyses. Teal dots denote parcels which did not exhibit a significant
control-demand effect for either method. Red lines indicate the multilevel model fits to
each task (linear + a bidirectional main effect of parcel significance)

sustained analyses (maximum p = .0008, Fig. 9A). The main effect of
regional significance during multilevel modeling (see Sec. 5.5) was also
greater in the proposed technique than autoregressive comparison models
(local: t(1669) = 2.49, p = .013, global: t(1669) = 2.36, p = .018). However,
the proposed method did not significantly magnify effect sizes over AR
control models (t = .51, .71 for local and global, respectively). Thus, the
modeling of connectivity in MINDy primarily serves to further differentiate
task-implicated and non-implicated parcels. MINDy-based filtering also
improved the cross-task generalizability of cognitive-control effects rela-
tive autoregressive controls at both the group-level (local ICC=.56± .01,
global ICC=.55 ± .01 vs. MINDy-based ICC=.63 ± .01, p¡.001, 5000
bootstraps) and individual differences over the DMCC34 parcels (local:
paired-t(33) = 2.2, p = .032, global: t = 2.49, p = .018).

7.3. Detection of Sustained Effects

As mentioned in the previous section, sustained effects were magnified
for each task relative the two auto-regressive controls (maximum p = .0008,
Fig. 9A). However, sustained effects during Cued-TS did not significantly
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improve relative to conventional analyses (paired-t(107) = .20, p = .84, Fig.
9A,B) or the pre-regressed control (paired-t(99) = 1.64, p = .10, Fig. 9A).
Sustained effects for all other tasks did significantly increase (maximum
p = 9E − 5). Collapsed across tasks, MINDy-based Filtering improved
the estimation of sustained effects relative both conventional controls and
autoregressive models (maximum p = 6E − 15). Thus, the proposed
technique generally increased statistical power in detecting sustained effects.
MINDy-based Filtering also increased the cross-task generalizability of
group-average sustained effects (MINDy=.68±.02, all controls< .6, p < .001,
5000 bootstraps). However, it’s important to note that sustained effects are
not “construct-pure” and their distribution was highly skewed (strong visual
component) so we urge caution in interpreting cross-task generalizability of
sustained responses (although see Sec. 5.8 for its relevance to construct-
specific behavior).

7.4. Sensitivity of Sustained Effects

As with event-related analyses, we examined whether improvements in
the detection of sustained effects were limited to task-implicated regions.
As before, we considered bidirectional effects for sustained analyses (i.e.
parcels with significant increases or decreases in sustained activity). For
this reason, we slightly modified Eq. 12 to model improvements in terms of
magnitude rather than a linear main effect:

Xtask,Parc = βtask+β0Ytask,Parc+Sigtask,Parc(β1sign(Ytask,Parc)+β2Ytask,Parc)+εtask,Parc.
(13)

Note that the coefficient β1 is now multiplied sign(Ytask,Parc). Results for
sustained analysis mirrored those of the event-related analysis. As with
event-related analyses, the proposed technique differentially increased effect
sizes over task-implicated parcels when compared to both conventional
controls (t(1669)=7.98, p ≈ 0 vs. original and t=8.55, p ≈ 0 vs. pre-
regressed, Fig. 9B) and these increases were even greater relative to AR
controls (t(1669)=10.72, p ≈0 vs. local and t=12.75, p ≈0 vs. global).
As with event-related analyses, differential magnification met significance
vs the original analysis (t = 2.95, p = .0033) but not the pre-regressed
control (t = 1.93, p = .054) indicating that improvements largely impact
a main-effect of parcel significance (i.e. increased categorical distinction
between task-implicated and non-implicated parcels).

7.5. Using Alternative Techniques to Estimate Input

We also compared results using the simple, linear estimation of input
signals with two more advanced techniques: either normalizing results
with respect to the estimated hemodynamics or performing estimation
using a nonlinear Kalman Filter. We found that HRF normalization sig-
nificantly improved the detection of event-related effects in 3 of 4 tasks
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Fig 10. MINDy-based Filtering enhances prediction of individual differences in
cognitive control effects. Behavioral measures correspond to the difference of high
control trials minus low control trials in normalized response times (RT) and accuracy
(Acc). A) Individual differences in DMCC34 sustained responses predict accuracy while
event-related responses (high vs. low control contrast) predict RTs in the baseline
session (collapsed across tasks). Data plotted correspond to the original (non-MINDy)
analyses. B) MINDy-based Filtering enhances correlations between event-related
responses and RTs in each task (collapsed across the 3 scanning sessions). C)
MINDy-based Filtering also enhances the correlation between sustained responses in
DMCC34 and error-rates (baseline session). Confidence intervals correspond to ±1 SD.

(maximum p = .0014), but worsened detection for the Stroop task (paired-
t(246) = −10.65, p ≈ 0) relative to MINDy-based Filtering without normal-
ization. In all four tasks it significantly increased detection power relative
conventional approaches (p ≈ 0). There was no difference in event-related de-
tection power collapsed over tasks (paired-t(581) = .74, p = .46). HRF nor-
malization also slightly decreased cross-task generalizability (ICC = .623 vs.
.635, p < .05, 5000 bootstraps) but did not impact generalizability of indi-
vidual differences over the DMCC34 parcels (paired-t(33) = −1.31, p = .20).

MINDy-based Filtering with the Kalman filter improved event-related
detection in 2 of 4 tasks (maximum p = .02) relative to the näıve filter and in
3 of 4 tasks relative to conventional analyses (AX-CPT was not significant).
The näıve MINDy-based Filter had greater event-related detection in the AX-
CPT and Stroop tasks (p ≈ 0). Collapsed over tasks, detection power was
greater than conventional techniques (maximum p = 6E−10), but less than
the näıve filter (paired-t(574) = −14.1, p ≈ 0). Detection power of sustained
effects increased in 2 tasks relative to the näıve MINDy-based Filter (Cued-
TS and Stroop. maximum p = 4.7E − 5) and did not significantly differ
in the other two tasks. Collapsed across tasks, the increase in detection
power was significant (paired-t(654) = 4.702, p = 3.16E−6). MINDy-based
Filtering with the Kalman Filter also increased cross-task generalizability
of group-level effects (ICC = .664 ± .01, p < .05, 5000 bootstraps), but
decreased generalizability of individual differences in the DMCC34 parcels
(paired-t(33) = −3.05, p = .0045) relative the näıve filter. We also performed
behavioral analyses with the Kalman filter variant of MINDy based Filtering
(other results for this method are reported in SI Sec. 7.5). This variant
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significantly improved predictive power (mean across tasks) over both the
original and pre-regressed controls (p < .05, 5,000 bootstraps) although the
increase over simple MINDy-based Filtering was not statistically significant
(SI Fig. 10 B).

7.6. Sensitivity to Motion

Lastly, we compared the sensitivity of approaches to motion artifact.
For each task and scanning session we computed three motion statistics:
the number of frames censored due to passing a critical value of framewise
displacement, the median framewise displacement and the median DVARS
statistic ([41]) for each task run and averaged over runs. We then used
resampling to test the relationship between each motion variable and the
group effect-size of the high-vs.-low conflict contrast and sustained effect
for each task. In brief, we randomly drew 5,000 samples of 30 subjects each
without replacement. We computed group-level statistics for motion and
the cognitive control contrast and then tested whether the average motion
or variability of motion (inter-subject) of a sample predicted the sample’s
group-effect (one-sample t-scores averaged over the 34 parcels). We also
used the same technique for predicting the difference between methods (i.e.
do improvements under our approach require low motion?). Results did not
indicate a significant effect of motion for the current dataset and subject
pool. The relationship between motion and the difference between methods
(MINDy versus original averaged over tasks) was insignificant for event-
related analyses and did not display a consistent sign (proportion of frames
censored:r = .013, FD: r = −.015, DVARS: r = −.06). Likewise, we did
not observe differential sensitivity to motion in the sustained effects (frames
censored: r = 0, FD: r = .002, DVARS: r = −.002). Thus, the degree to
which MINDy-based Filtering improves upon conventional methods is not
influenced by motion within reasonable bounds.
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[13] M. Demirtaş, J. B. Burt, M. Helmer, J. L. Ji, B. D. Adkinson, M. F.
Glasser, D. C. Van Essen, S. N. Sotiropoulos, A. Anticevic, J. D.
Murray, Hierarchical heterogeneity across human cortex shapes large-
scale neural dynamics, Neuron 101 (6) (2019) 1181–1194. doi:10.

1016/j.neuron.2019.01.017.

[14] P. Wang, R. Kong, X. Kong, R. Liégeois, C. Orban, G. Deco, M. P.
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