
symmetryS S

Article

An Incremental and Backward-Conflict Guided Method for
Unfolding Petri Nets

Dongming Xiang 1,*, Xiaoyan Tao 2 and Yaping Liu 3

����������
�������

Citation: Xiang, D.; Tao, X.; Liu, Y.

An Incremental and

Backward-Conflict Guided Method

for Unfolding Petri Nets. Symmetry

2021, 13, 392. https://doi.org/

10.3390/sym13030392

Academic Editor: Nicolae Herisanu

Received: 26 January 2021

Accepted: 23 February 2021

Published: 28 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 MoE Key Lab of Embedded System & Service Computing, Tongji University, Shanghai 201804, China;

1988txy@tongji.edu.cn
3 The School of Transportation Management, Zhejiang Institute of Communications, Hangzhou 310018, China;

liuyp061054@zjvtit.edu.cn
* Correspondence: dmxiang@zstu.edu.cn

Abstract: The unfolding technique of Petri net can characterize the real concurrency and alleviate the
state space explosion problem. Thus, it is greatly suitable to analyze/check some potential errors in
concurrent systems. During the unfolding process of a Petri net, the calculations of configurations,
cuts, and cut-off events are the key factors for the unfolding efficiency. However, most of the
unfolding methods do not specify a highly efficient calculations on them. In this paper, we reveal
some recursive relations and structural properties of these factors. Subsequently, we propose an
improved method for computing configurations and cuts. Meanwhile, backward conflicts are used
to guide the calculations of cut-off events. Moreover, a case study and a series of experiments are
done to illustrate the effectiveness and application scenarios of our methods.

Keywords: Petri net; concurrent systems; unfolding; reachability graph

1. Introduction

Nowadays, concurrent systems have been successfully applied to various scenarios,
e.g., large-scale websites, railway traffic systems, and telecom operation-support systems.
Although high concurrency can indeed enhance their performance and throughput, it easily
leads to some errors, such as deadlocks, a lack of synchronization, and data inconsistencies,
especially when a concurrent system deals with a great amount of data. For example,
Apache Httpd (an open-source web server) suffered from deadlocks that were caused
by its unix mutex (https://www.sqlite.org/src/info/a6c30be214, (accessed on 2 January
2021)). The errors of data inconsistency in an IPO (Initial Public Offering) Cross system
made NASDAQ (Nasdaq OMX Group, Inc, NewYork, USA) lose $13 million in May,
2012 (https://www.computerworld.com/article/2727012/nasdaq-s-facebook-glitch-came-
from-race-conditions.html, (accessed on 5 January 2021)). Therefore, some model-checking-
based methods are proposed for checking the correctness and reliability of concurrent
systems. Petri net is widely used to model and verify concurrent systems due to its great
capability of explicitly specifying parallelism, concurrency, and synchronization [1–3].
The classical reachability graph (CRG) of Petri net is a commonly used technique for
checking deadlocks, reachability, and soundness of concurrent systems [4–6]. However,
this technique easily has the problem of the state space explosion because it is based on
the interleaving semantics [7] of concurrent events/actions. The interleaving semantics of
CRG only considers the partial orders of business activities, and utilizes the global states of
concurrent systems to describe and analyze their behaviors. Thus, a CRG needs to find out
all precedence relations between activities, generate successor states, and eventually form
some symmetry diamond structures.

When compared with the reachability-graph-based method, the unfolding tech-
nique [8] of Petri nets can both alleviate the state space explosion problem and characterize

Symmetry 2021, 13, 392. https://doi.org/10.3390/sym13030392 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13030392
https://doi.org/10.3390/sym13030392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.sqlite.org/src/info/a6c30be214
https://www.computerworld.com/article/2727012/nasdaq-s-facebook-glitch-came-from-race-conditions.html
https://www.computerworld.com/article/2727012/nasdaq-s-facebook-glitch-came-from-race-conditions.html
https://doi.org/10.3390/sym13030392
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13030392?type=check_update&version=2

Symmetry 2021, 13, 392 2 of 21

the concurrency relations because it is based on the true concurrency semantics. In fact,
some methods are proposed to conduct a concurrency analysis of Petri nets, such as
reachability set [9], concurrent sequential automata [10], and c-exact hypergraphs [11].
By comparison, the unfolding technique uses an acyclic net to represent all behaviors of a
Petri net. On the one hand, this acyclic net can directly record all concurrent operations.
On the other hand, it uses a much smaller space to store all states especially when a system
has many concurrent events/actions. If a Petri net is unbounded or it is bounded but has a
repeatedly firable action sequence, its unfolding is naturally infinite. Thus, an important
task in this case is to determine a cut-off event and obtain a finite complete prefix (FCP) of
infinite unfoldings. Currently, there have been many methods of Petri nets to generate an
FCP [12], such as ERV (“ERV” is the abbreviation of authors: Esparza, Romer, and Vogler)
unfolding, directed unfolding (DU), and merged process (MP). ERV [13] is a classical
unfolding method, which proposes partial orders and improves the McMillan’s unfolding
algorithm [8]. The merged process [14] generates a condensed unfolding of a Petri net’s
behavior based on merged conditions. Directed unfolding [15] utilizes heuristic functions
to guide the unfolding of Petri nets towards the desired states. Moreover, these unfold-
ing techniques have been successfully applied to many fields, e.g., fault diagnosis [16],
Artificial Intelligence (AI) planning [17], and test cases generation [18].

For these methods of generating an FCP, the calculations of configurations, cuts,
and cut-off events greatly affect the unfolding efficiency of a Petri net. These related
calculations make up an absolutely significant share (70%) of the total unfolding time,
as shown in Figure 1. However, most unfolding techniques do not specify a highly
efficient calculations on them. On the one hand, the existing computing approaches
of configurations and cuts depend on a lot of repetitive work. On the other hand, once a
new event is generated and added into a given prefix, the current methods still need to
match it up with all existing events so as to determine whether it is a cut-off event.

Figure 1. The ratios of different kinds of calculations (e.g., configurations, cuts, and cut-off events) to
the total time of unfolding a Petri net (The statistics come from our experiments on The BPM Academic
Initiative Model Collection. https://bpmai.org/download/index.html (accessed on 10 December 2020)).

In this paper, we reveal some deep properties of configuration, cuts, and cut-off
events, and then utilize recursion formulas and characterized structures to improve these
calculations. Some algorithms are developed to perform these calculations and generate
finite complete prefixes (FCPs). What is more, all of these improvements can be applied
into the existing unfolding techniques and they contribute to the related model checkings.

The main contributions are summarized, as follows:

(1) Incremental methods are proposed to calculate configurations, cuts and concurrent
conditions.

(2) Backward conflicts are used to guide the determination of cut-off events.
(3) A tool is developed to implement our improved methods for unfolding a Petri net.

https://bpmai.org/download/index.html

Symmetry 2021, 13, 392 3 of 21

2. Related Work
2.1. The Unfolding Techniques of Petri Nets

McMillan [8] initially proposed the net unfolding technique with partial-order seman-
tics of Petri nets. As an improvement of McMillan’s unfoldings, Esparza et al. [13] proposed
a family of algorithms (i.e., ERV unfolding method) to construct a finite complete prefix.
Whereafter, its parallel unfolding [19] came up. Khomenko et al. [20] proposed a cutting
context to determine static cut-off events and generate canonical prefixes. Bonet et al. [12]
generalized the notion of cutting context and provided a user-oriented framework of
the unfolding technique. Couvreur et al. [21] proposed a new model of branching pro-
cesses without any finiteness or safeness assumptions, which are suitable for describing
the behavior of general Petri nets. Bonet [15] utilized the problem-specific information
as a heuristic function to guide the unfolding of Petri net towards the desired marking.
Rodriguez et al. [22] combined partial order reductions (POR) with net unfoldings to tackle
the state space explosion problem. Chatain et al. [23] proposed a goal-driven unfolding
technique with model reduction to explore the minimal configurations that can lead to a
given marking.

These studies of unfolding methods mainly focus on how to generate a smaller FCP by
unfolding a Petri net, or explore different kinds of Petri net unfoldings, e.g., unbound Petri
net [24], timed Petri net [25], colored Petri net [26], contextual Petri net [27], and Nested
Petri nets (NP-net) [28]. However, they easily have a low efficiency in the calculations of
configurations, cuts, and cut-off events. We propose an improved method for unfolding a
Petri net in this paper in order to solve this problem.

2.2. Model Checking Based on Petri Net Unfolding

The unfolding technique of Petri net has been widely used in model checking, e.g., di-
agnosing faults in asynchronous discrete event systems [16], making a concurrent plan-
ning [17], generating test cases for multi-threads [18], and checking deadlock [29], sound-
ness [5], reachability, and coverability [30].

McMillan [8] first used the unfolding technique to verify asynchronous circuits.
De León et al. [31] presented a test generation algorithm for a complete test suite w.r.t. con-
current conformance relation based on the unfolding of IOPN. Jezequel et al. [32] extended
a distributed unfolding technique with time stamps to build testers for distributed systems.
Saarikivi et al. [33,34] computed the minimal test suites for multi-threaded programs based
on unfolding techniques. Liu et al. [5] proposed the basic unfolding of Petri net to check
the soundness of workflow systems. Lutz-Ley et al. [35] analyzed the stability of discrete
event systems that are based on the unfolding technique of Petri net. Meyer et al. [36]
translated finite control processes into a safe Petri net, and utilized the unfolding-based
method to verify Mobile Systems. Ponce-de-Leon et al. [37] used the unfolding technique
of Petri net to discover a process model. Weidlich et al. [38] calculated the behavioral
consistency of process models based on Petri-net unfoldings. Xiang et al. [39] used the
unfolding of PD-net to detect the errors of data inconsistency.

When compared with these model checking methods, we can more effectively check er-
rors of concurrent systems based on our unfolding method, since it records as much contex-
tual information as possible and improves the calculational efficiency of Petri net unfolding.

3. Basic Notations

Some basic notations are introduced in this section, e.g., Petri net, occurrence net,
and branching process.

Definition 1. A net is a triple N = (P, T, F), where

(1) P and T are two disjoint and finite sets, which are, respectively, called place set and transition
set; and,

(2) F ⊆ (P× T) ∪ (T × P) is a flow relation.

Symmetry 2021, 13, 392 4 of 21

A marking of a net is a mapping M: P → N, where N = {0, 1, 2, · · · } is a set of non-
negative integers. In this paper, a multiset of places represents a marking. A Petri net is a net
N with an initial marking M0, and denoted as Σ = (N, M0). For a node x ∈ P∪ T, its pre-set
is denoted as •x = {y|y ∈ P ∪ T ∧ (y, x) ∈ F} and post-set x• = {y|y ∈ P ∪ T ∧ (x, y) ∈ F}.
For a node set X ⊆ P ∪ T, its pre-set is •X =

⋃
x∈X

•x and post-set X• =
⋃

x∈X x•.
Furthermore, ••x = {x′ | x′ ∈ •X ∧ X = •x} and x•• = {x′ | x′ ∈ X• ∧ X = x•} are called
prep-set and postp-set of x, respectively. Especially, if x is a transition, then ••x (resp. x••) is
called prep-transitions (resp. posp-transitions).

Given a Petri net Σ = (P, T, F, M0), a transition t ∈ T is enabled at a marking M
if ∀p ∈ P: p ∈ •t ⇒ M(t) ≥ 1, which is denoted by M[t〉. After firing an enabled
transition t at M, a new marking M′ is generated and denoted as M[t〉M′, where ∀ p ∈
P: M′(p) = M(p)− 1 if p ∈ •t \ t•; M′(p) = M(p) + 1 if p ∈ t• \ •t; and, otherwise,
M′(p) = M(p). A marking M′ is reachable from another marking M, if there exists a
firing transition sequence t1t2· · · tn such that M[t1〉M1[t2〉M2· · ·Mn−1[tn〉M′. The set of
reachable markings from M is denoted by R(M). For example, Figure 2a is a Petri net,
where •t0 = {p0, p1}, t••0 = {t2, t3}, M0(p0) = M0(p1) = M0(p2) = 1, M0[t0〉M1 and
M1 = p2 + p3 + p4 .

Figure 2. A Petri net Σ and its branching processes β1, β2 and β3.

Definition 2 (Causality, conflict and concurrency). In an acyclic net N = (P, T, F), given two
nodes x, y ∈ P ∪ T,

(1) x and y are in causality, which is denoted by x ≤ y, if the net contains a path from x to y.
Especially, if x 6= y, it is denoted as x < y.

(2) x and y are in conflict, which is denoted by x#y, if ∃ t1, t2 ∈ T: •t1 ∩ •t2 6= ∅, t1 ≤ x,
and t2 ≤ y; or,

(3) x and y are in concurrency, denoted by x co y, if there is neither x < y, nor y < x, nor x#y.

For the example of Figure 2b, the nodes e1 and e4 are in causality, e0 and e1 are in
conflict, and b3 and b4 are in concurrency.

An occurrence net is a special net, and its formal definition is given, as follows.

Definition 3 (Occurrence net [8]). A net N = (P, T, F) is called an occurrence net if

(1) ∀x, y ∈ P ∪ T: x < y⇒ y ≮ x;
(2) ∀p ∈ P: | •p| ≤ 1; and,
(3) no transition is in self-conflict, i.e., ∀t ∈ T:¬(t#t).

In an occurrence net, places and transitions are usually called conditions and events,
respectively. In general, we use O = (B, E, G) to denote an occurrence net, where B,
E, and G are, respectively, sets of conditions, events, and arcs. Min(O) is the set of

Symmetry 2021, 13, 392 5 of 21

minimal elements of B ∪ E with respect to the causal relation, i.e., ∀x ∈ Min(O) : •x = ∅.
For example, Figure 2b is an occurrence net, where Min(O) = {b0, b1, b2}.

Based on occurrence net, a branching process of a Petri net is defined, as follows.

Definition 4 (Branching process [13]). Let (N, M0) = (P, T, F, M0) be a Petri net. (O, h)
is a branching process of (N, M0) if the occurrence net O = (B, E, G) and the homomorphism
h : B ∪ E→ P ∪ T satisfy:

(1) h(B) ⊆ P and h(E) ⊆ T;
(2) for every e ∈ E, the restriction of h onto •e (resp., e•)) is a bijection between •e and •h(e)

(resp., between e• and h(e)•);
(3) the restriction of h onto Min(O) is a bijection between Min(O) and M0; and,
(4) for every e1,e2 ∈ E, if •e1 = •e2 and h(e1) = h(e2), then e1 = e2.

Definition 5 (Prefix). Let (Oi, hi)=(Bi, Ei, Gi, hi) be two branching processes of a Petri net
where i ∈ 1, 2. (O1, h1) is a prefix of (O2, h2) if B1 ⊆ B2 ∧ E1 ⊆ E2.

For example, Figure 2b–d are three branching processes of Figure 2a, where Figure 2b
is a prefix of Figure 2c, and Figure 2c is a prefix of Figure 2d.

4. The Existing Unfolding Method of Petri Nets
4.1. Finite Complete Prefix

All of the branching processes of a Petri net Σ form a partially ordered set w.r.t. the
binary relation prefix. Its greatest element is called Unfolding of Σ, which is denoted as
Un f (Σ). In order to generate the unfolding of a Petri net, some related definitions and
calculations are introduced, such as configuration, co-set, and cut-off event.

Definition 6 (Configuration [8]). A configuration C of a branching process is defined as a set of
events, such that C is causally closed (i.e., e ∈ C ⇒ ∀e′ ≤ e: e′ ∈ C) and conflict-free (i.e., ∀e, e′

∈C : ¬(e#e′)).

A local configuration of an event e is [e] ={e′ | e′ ≤ e, e′ ∈ E}. Especially, if an event set
E′ satisfies ∀e1, e2 ∈ E′: e1 co e2, then its local configuration is [E′] =

⋃
e∈E′ [e]. The set of all

(resp. local) configurations of a branching process β is denoted by Cβ (resp. CL
β). Obviously,

a (local) configuration represents a possible partial run of a Petri net [8].
A set of conditions is a co-set if its elements are pairwise in concurrency relation. A cut

is a maximal co-set with respect to the set inclusion relation ⊂. The set of all cuts of a
branching process β is denoted by CTβ. For the example of Figure 2c, [e5] = {e0, e2, e3, e5},
[e2, e3] = {e0, e2, e3} and {b2, b9} is a cut.

In fact, configurations, cuts, and reachable markings are closely connected by the
following formulas [13], i.e.,

Cut(C) = (Min(O) ∪ C•)\• C (1)

M = Mark(C) = h(Cut(C)) (2)

where C is a finite configuration of a branching process β, M ∈ R(M0) is a reachable
marking, Cut : Cβ → CTβ is a cut function that maps a configuration set into a cut set,
and the function Mark : Cβ → R(M0) represents the reachable marking by firing a finite
configuration. Especially, M is called a local marking if M = Mark(C) ∧ ∃e ∈ E : C = [e].
For the example of Figure 2c, Cut([e5]) = {b2, b9} and Mark([e5]) = p2 + p9.

Although the unfolding records all the running information of a Petri net, it is infinite
if there exists an infinite firing transition sequence. For example, the unfolding of Figure 2a
is infinite, because there is a loop from t4 to t6. Thus, it is hard to utilize an infinite unfolding
to analyze a concurrent system. In order to solve this problem, a finite and complete prefix
(FCP) [4,5,39] is proposed.

Symmetry 2021, 13, 392 6 of 21

A prefix Fin is an FCP if it satisfies finiteness and completeness, i.e.,

• Fin only contains finitely many events and conditions; and,
• for every reachable marking M there exists a configuration C in Fin such that Mark(C) = M,

and for every transition t enabled by M there exists a configuration C ∪ {e} such that e /∈ C
and e is labeled by t.

4.2. The Classical Algorithm for Generating an FCP

In order to generate an FCP, cut-off events (Definition. 7) are proposed to determine
which events are not added into a given prefix when guaranteeing its finiteness and
completeness. In other words, the unfolding of Petri net is truncated by cut-off events.
For the example of Figure 2d, e6 is a cut-off event, because Mark([e6]) = Mark([e1]) = {p0,
p5} and [e1]<e[e6], where <e is an adequate order and was first used in Petri net unfolding
by Esparza et al. [13].

Definition 7 (Cut-off event). Let β be a prefix, and e1, e2 be two events. The event e2 is a
cut-off event if [e1]C [e2] ∧Mark([e1])= Mark([e2]), where C is an adequate order that is a strict
well-founded partial order on a set of prefix and it refines ⊂, i.e., C1 ⊂ C2 ⇒ C1 C C2.

An FCP can be generated with many unfolding methods. In general, their basic idea
is that for a given finite prefix, one of its possible extensions (corresponding to enabled
transitions) is selected and added into it if the possible extension is not a cut-off event;
and, then, for this new finite prefix, the above operation is continually conducted until
all of the possible extensions are cut-off events or there is no possible extension. In this
basic process, possible extensions are those transitions that can be added into a given
prefix, while cut-off events determine its boundaries and scales. Corresponding to the basic
idea, Algorithm 1 [13] shows a general method for producing an FCP. In this algorithm,
the function PosExtend(Fin) is used to calculate all possible extensions of a given prefix
Fin, i.e.,

PosExtend(Fin) = {(t, X)|X ⊂ B, t ∈ T, X is a co-set,

h(X) = •t and (t, X) /∈ Fin}. (3)

Algorithm 1 A finite complete prefix (FCP) algorithm

Require:
A Petri net Σ;

Ensure:
A finite complete prefix Fin of Un f (Σ);

1: Cuto f f := ∅; /∗Cut-off events∗/
2: Fin := ∅;
3: Add instances of the places from M0 into Fin
4: Pe := PosExtend(Fin);
5: while Pe 6= ∅ do
6: Choose an event e from Pe;
7: if [e] ∩ Cuto f f 6= ∅ then
8: Extend Fin with e and e•∪•e;
9: Pe := PosExtend(Fin);

10: if e is a cutoff event then
11: Cuto f f := Cuto f f ∪ {e};
12: end if
13: else
14: pe := pe\{e};
15: end if
16: end while
17: return Fin;

Symmetry 2021, 13, 392 7 of 21

4.3. Discussion

Many unfolding methods of generating FCPs have been proposed based on Algorithm 1,
such as merged process and directed unfolding. Although these methods can generate
different FCPs for a given Petri net, all of them cannot work without the calculations of
configurations, cuts (or concurrent conditions), and cut-off events, since they are performed
according to Definitions 6 and 7 and Equations (1)–(3). Obviously, these calculations can
directly affect the unfolding efficiency of Petri nets. However, the related computing methods
of configurations, cuts, and cut-off events easily suffer from the following problems:

(1) The repeated calculations of configurations and cuts.

The calculations of configurations and cuts need to be repeatedly conducted without
considering the causality and recurrence relations between events. For example, in order to
calculate the local configuration of e6 in Figure 2d, it needs to find out all of the events that
are in casuality with it. Thus, we can get [e6] = {e1, e4, e6} according to Definition 6. In fact,
some events of [e6] have been previously obtained by calculating the local configurations
of e6’s prep-sets. This is because e4 < e6 and ∀e ∈ [e4] : e < e4 ⇒ e < e6. Similarly, in order
to calculate the cut of [e6], it needs to find out all the pre-/post-sets of [e6], i.e., Cut([e6]) =
(Min(β3) ∪[e6]

•)\•[e6]. In fact, some results can be calculated by e6’s prep-sets since their
local configurations have been obtained.

(2) The blindness in determining cut-off events.

According to the definition of cut-off events, we know that, once a new event is
generated and added into a given prefix, it needs to match with all of the existing events,
so as to determine whether it is a cut-off event. For example, if we determine whether e6 is
a cut-off event in β3 of Figure 2d, it has to find out one event e from the existing event set
{e0, e1, e2, e3, e4, e5} satisfying [e]C [e6] ∧Mark[e]= Mark[e6]. In fact, some transitions with
certain structures correspond to these cut-off events. Hence, we can utilize them to guide
the determination of cut-off events rather than the blind matchings with all events.

5. An Improved Computing Method for Unfolding Petri Nets

In this section, we propose an incremental and backward-conflict guided method for
calculating configurations, cuts, and cut-off events. Furthermore, an improved unfolding
algorithm is developed to do some model checkings.

5.1. The Incremental Calculations of Configurations and Cuts

We can easily derive Lemma 1 because a configuration is causally closed and conflict-free.

Lemma 1. (1) [e] = [••e] ∪ {e};
(2) [e]• = [••e]• ∪ e• = (

⋃
e′∈ ••e[e′]•) ∪ e•;

(3) •[e] = •[••e] ∪ •e = (
⋃

e′∈ ••e
•[e′]) ∪ •e.

From Lemma 1, we can find that the local configuration of an event can be recursively
calculated by its prep-sets. Furthermore, these prep-sets can also compute the post-/pre-set
of this local configuration.

In this paper, all of the local configurations can be represented by a configuration
matrix. Thus, once a new event is added into a given prefix, its new local configuration can
be calculated by Lemma 1, and a new configuration matrix of this prefix is accordingly
updated. Figure 3 shows the configuration matrices of β1 and β2 in Figure 2b,c, respectively.
From Figure 3, we can find that the local configuration of e5 can be calculated by a logical
OR operation on the local configurations of e2 and e3 in the configuration matrix of β1.

Symmetry 2021, 13, 392 8 of 21

Figure 3. The configuration matrices of Figure 2b,c.

We propose the following theorems to reveal the recursive relations between an event
and its prep-sets in order to improve the calculations of cuts.

Theorem 1. If C is a configuration of a branching process β, then there exists a set of events
E′ ⊆ C satisfying [E′] = C, where E′ = {e ∈ C|∀e′ ∈ C\{e} : e ≮ e′}.

Proof. If e ∈ [E′], then e ∈ C. It is assumed that ∃e′ ∈ C : e′ 6∈ [E′]. From this assumption,
we can easily get e′ /∈ E′. Because C is a configuration, then ∃e′′ ∈ E : e′ ≤ e′′. However,
e′′ ∈ E. Obviously, it contradicts the above assumption. Hence, if e′ ∈ C, then e′ ∈ [E′].
Therefore, [E′] = C.

According to Theorem 1, we can further obtain the following formula.

Cut(C) = (Min(O) ∪ [E′]•)\•[E′] =

(Min(O) ∪
k⋃

i=1

[ei]
•)\

k⋃
i=1

•[ei] (4)

where C = [E′] and E′ =
⋃k

i=1 ei. Especially, if C = [e] and e ∈ E , then

Cut([e]) = (Min(O) ∪ [e]•)\ •[e] =
(Min(O) ∪ e• ∪

⋃
e′∈ ••e

[e′]•)\(•e ∪
⋃

e′∈ ••e

•[e′]) (5)

Theorem 2. Let e be an event of a branching process. If the pre-event set of e is a non-empty set,
i.e., ••e 6= ∅, then Cut([e]) = (Cut([••e]) ∪ e•) \ •e.

Proof. From Equation (2), we can obtain Cut([e]) = (Min(O) ∪ [e]•) \ •[e]. Let S = ••e.
If S 6= ∅, then Cut([e]) = (Min(O) ∪ ([S]• ∪ e•)) \ (•[S] ∪ •e) = ((Min(O) ∪ [S]•) \ (•[S] ∪
•e)) ∪ (e• \ (•[S] ∪ •e)). Since e• ∩ •[S] = ∅ and e• ∩ •e = ∅, then Cut([e])= (((Min(O) ∪
[S]•) \ •[S]) \ •e) ∪ e• = (Cut[S]\•e) ∪ e• = (Cut[S] ∪ e•) \ •e.

Based on Theorem 2 and Equation(5), we can utilize these recursive relations between
an event and its prep-set to calculate the related cuts. For the example of Figure 2c,
Cut([e4]) = (Cut([e1]) ∪ e•4) \ •e4 = {b0, b8}, where e1 = ••e4 and Cut([e1]) = {b0, b5}.

Therefore, the contexts (Definition 8) of every event can be computed and recorded
during the process of producing an FCP. What is more, they can be reused in the subsequent
calculations of another events. For the example of Figure 2c, the context of e4 is ζ(e4) = ([e4],
•[e4], [e4]

•, Cut([e4])) = ({e1, e4}, {b1, b2, b5}, {b5, b8}, {b0, b8}), and it can be reused to
calculate the context of e6, since e4 = ••e6.

Definition 8 (Context). The context of an event e is a four-tuple ζ(e) = ([e], •[e], [e]•, Cut([e])).

Although Equation (3) gives the calculation of possible extensions, it is not easy to find
out all of the co-sets in the unfolding process of Petri nets. For example, if we determine

Symmetry 2021, 13, 392 9 of 21

whether the transition t5 can be added into the prefix β1 in Figure 2b, it has to find out all
related concurrent conditions from the existing ones. In fact, we can utilize the concurrency
relation of the prep-sets of a condition to recursively calculate its concurrent conditions,
and then compute all possible extensions.

Therefore, in order to determine whether a transition t can be added into a given prefix
β, it is necessary to find a co-set X in β much more efficiently, which satisfies h(X) = •t and
(t, X) /∈ β. Because of the fact that concurrent conditions make up a co-set, we can utilize
the recursive relation between an event and its prep-sets to improve their calculations.

Stefan Romer [40] gives this recursive relation, and shows that the concurrent condi-
tions of one condition can be recursively calculated by its prep-sets. That is, if Cob(b) = {b′|b
co b′, b′ ∈ B} denotes the concurrent conditions of a condition b, then

Cob(b) =
⋂

b′∈ ••b
Cob(b′). (6)

For the example of Figure 2c, Cob(b9) = Cob(b6) ∩ Cob(b7) = {b2, b7} ∩ {b2, b6} =
{b2} and ••b9 = {b6, b7}.

In this paper, all the concurrent relations of conditions can be represented by a con-
currency matrix. Thus, once a new event is added into a given prefix, the new concurrent
conditions can be calculated by Equation (6), and a new concurrency matrix is accordingly
updated. Figure 4 shows the concurrency matrices of β1 and β2 in Figure 2b,c, respectively.
From Figure 4, we can find that the concurrent conditions of b9 can be calculated by a
logical AND operation on the concurrent conditions of b6 and b7 in the concurrency matrix
of β1.

Figure 4. The concurrency matrices of Figure 2b,c.

Based on the recursive calculation of concurrent conditions, we give a specific algo-
rithm for calculating possible extensions, as shown in Algorithm 2.

Algorithm 2 Possible extension algorithm

Require:
A prefix β and its concurrency matrix A of conditions;

Ensure:
A set of possible extensions Pe;

1: for each t ∈ T do
2: Find out a set of event X such that h(X) = •t;
3: if X is a co-set in A and (t, X) /∈ Pe then
4: Add (t, X) into Pe;
5: According to Equation (6), calculate the concurrent conditions of the new event

and update A;
6: end if
7: end for
8: return Pe;

Symmetry 2021, 13, 392 10 of 21

5.2. The Backward-Conflict Guided Calculations of Cut-Off Events

According to the definition of cut-off events (Definition 7) and Theorem 2, our incre-
mental calculations of configurations and cuts are also conductive to the determination
of cut-off events since they are closely related with these calculations. In this part, we
utilize backward conflicts (Definition 9) [17] to further guide the calculations/matchings of
cut-off events.

Definition 9 (Backward conflict). Two different transitions, t1 and t2, are in backward conflict if
t•1 ∩ t•2 6= ∅.

As is well known, the initial marking M0 of a Petri net is possibly equal to the Mark
function value of the local configuration of an event e in a prefix, i.e., Mark([e]) = M0.
In fact, this event is a cut-off event, and it guarantees the finiteness and completeness of
this prefix. Therefore, in order to efficiently calculate cut-off events in this case, we first
transform the places with tokens and input transitions into backward-conflict structures
(Notice that this transformation does not affect the properties of original Petri nets). That
is to say, if there exists a place p in a Petri net Σ that satisfies M0(p) > 0 ∧ |p•| > 0, we
add a new place p′, a new transition t′ and some arcs (i.e., flow relations {p′} × {t′}
and {t′} × {p}) into Σ. Meanwhile, the new initial marking becomes M′0, and it satisfies
M′0[t

′〉M0 ∧ M′0(p′) = M0(p) ∧ M′0(p) = 0. Figure 5 shows this transformation process of
a Petri net before unfolding it.

Figure 5. The pre-process of a Petri net before unfolding it.

After transforming into some backward-conflicts, we can use these structures to guide
the related matchings with certain existing events, so as to determine cut-off events.

Lemma 2. If an event e2 is a cut-off event of a branching process with respect to an event e1, then
∃e′1 ∈ [e1]: h(e′1)

• ∩ h(e2)
• 6= ∅ ∧ ∃e′2 ∈ [e2]: h(e′2)

• ∩ h(e1)
• 6= ∅.

Proof. From the definition of cut-off events, we can get Mark[e1]= Mark[e2] and Cut[e1]=
Cut[e2]. It is assumed that there is no event e′1 ∈ [e1] satisfying h(e′1)

• ∩ h(e2)
• 6= ∅, then

∃ex ∈ E \ [e1]: h(ex)• ∩ h(e2)
• 6= ∅. Hence, ex ≮ e1 ∧ e1 ≮ ex. No matter that ex#e1 or ex co

e1, it cannot satisfy Cut[e1]= Cut[e2]. Therefore, ∃e′1 ∈ [e1]: h(e′1)
• ∩ h(e2)

• 6= ∅. Similarly,
we can come to the other conclusion that ∃e′2 ∈ [e2]: h(e′2)

• ∩ h(e1)
• 6= ∅.

For example, e6 is a cut-off event with respect to e1 in Figure 2d, where h(e6)
• ∩

h(e1)
• 6= ∅. In fact, the transitions h(e6) and h(e1) are in backward conflict. Therefore,

Lemma 2 shows the relation between cutoff events and backward-conflict transitions.
Furthermore, we can determine whether an event is a cutoff event only when it corresponds
to a backward-conflict transition.

Specifically, a function of possible cut-off transitions with respect to a Petri net Σ is given
to guide the determination of cut-off events in this paper, i.e.,

Symmetry 2021, 13, 392 11 of 21

PosCuto f f (Σ) = {t ∈ T|∃p ∈ P : t ∈ •p ∧ (|•p| > 1)}. (7)

Furthermore, we can easily get the following theorem.

Theorem 3. Let Σ be a Petri net and β be a branching process of Σ. If e is a cut-off event of β, then
h(e) ∈ PosCuto f f (Σ).

According to Theorem 3, we match a new event with PosCuto f f (Σ) to determine
whether it is a cut-off event. For the example of Figure 2d, e6 is a cut-off event with respect
to e1, where t•1 ∩ t•6 6= ∅, PosCuto f f (Σ) = {t1, t6}, and h(e6) ∈ PosCuto f f (Σ).

5.3. An Improved Algorithm for Generating an FCP

Based on the above new calculations of configurations, cuts, and cut-off events, we pro-
pose an improved method for unfolding a Petri net, as shown in Figure 6. Corresponding
to this basic process, we develop an incremental and backward-conflict guided algorithm
for generating an FCP, as shown in Algorithm 3.

• The contexts of events are calculated in Lines 10–15 according to Equation (5) and
Theorem 2.

• Algorithm 2 is utilized to calculate the possible extensions.
• Linked hash tables are used to store the contexts of events and concurrent conditions,

which contribute to the calculations of set operations in Equations (4) and (5).
• Cut-off events are determined by Theorem 3, and Lines 19–22 correspond to this point.

Figure 6. The basic process of our improved method for unfolding a Petri net.

Symmetry 2021, 13, 392 12 of 21

Algorithm 3 An incremental and backward-conflict guided algorithm for generating an
FCP
Require:

A Petri net Σ;
Ensure:

A finite complete prefix Fin of Un f (Σ);
(1) Initialize

1: Fin := ∅;
2: Hash := ∅; /∗The contexts of events∗/
3: Cuto f f := ∅; /∗Cut-off events∗/
4: Pre-process Σ and transform some structures into backward conflicts;
5: Pc := PosCuto f f (Σ); /∗Backward-conflict transitions ∗/

(2) Unfolding process
6: Add the place instances from M0 into Fin;
7: Pe := PosExtend(Fin); /∗ Algorithm 2 ∗/
8: while Pe 6= ∅ do
9: Choose a minimal event e := (t, X) with respect to an adequate order in Pe such that

h(e) = t;
10: if [e] ∩ Cuto f f == ∅ then
11: Extend Fin with e and e•∪•e;
12: if | ••e| == 1 then
13: Cut([e]) := (Cut([e′]) ∪ e•)\•e, where e′ ∈ ••e;
14: else
15: Cut([e]) := (Min(O) ∪ e• ∪⋃

e′∈ ••e[e′]•)\(•e ∪
⋃

e′∈\ ••e
•[e′])

16: end if
17: Hash.put(e, ζ(e)); /∗ Record the context of e∗/
18: Pe := PosExtend(Fin); /∗ Algorithm 2 ∗/
19: if h(e) ∈ Pc then
20: Determine whether e is a cutoff event through Hash and Pc;
21: if e is a cutoff event then
22: Cuto f f := Cuto f f ∪ {e};
23: end if
24: end if
25: else
26: pe := pe\{e};
27: end if
28: end while
29: Delete events, conditions and arcs that are caused by pre-processing Σ.
30: return Fin;

5.4. The Validation of Our Improved Unfolding Method

The prefix generated by Algorithm 3 is finite and complete, since it is the same as
that by the classical unfolding. What is more, our new computing methods can improve
the unfolding efficiency of Petri nets as compared with Algorithm 1 due to the fact that
recursive relations, contextual information, and backward conflicts are considered in
our specified calculations. Moreover, the result of our improved method is guaranteed
by the following factors. On the one hand, we derive Equations (4)–(6) according to
Lemma 1, Theorems 1 and 2. Based on these Equations, we can utilize the prep-transition
e′ (i.e., predecessor) of an event e to calculate its cuts if | ••e| = 1 (Algorithm 3). That
is, Cut([e]) := (Cut([e′]) ∪ e•)\•e, where e′ ∈ ••e. Otherwise, some calculated contextual
results (Definition 8) can be directly reused in order to compute the cuts of e. By comparison,
the classical unfolding methods need a lot of repetitive calculations of pre-sets and post-
sets for each event in [e]. Thus, our improved unfolding method saves much time in the
runtime of calculating configurations and cuts. On the other hand, we match a new event
with PosCuto f f (Σ) (Equation (7)) to determine whether it is a cut-off event according to
Lemma 2 and Theorem 3. By comparison, the classical unfolding methods need to match a

Symmetry 2021, 13, 392 13 of 21

new event with all existing events. What is more, the time complexity of classical unfolding
methods is generally O(L2), while our improved calculation is O(KL), where L is the
number of total events and K is the number of events that map to PosCuto f f (Σ). Note that,
K is much less than L (i.e., K << L) with the increase of L. Thus, our improved unfolding
method saves much time in the runtime of calculating cut-off events. Nevertheless, our
method takes up more space than the classical unfolding, because it needs to store many
more contextual results.

5.5. Model Checkings Based on the Improved Unfolding Method

Our improved computing method for unfolding Petri nets can be applied to many
model checkings.

(1) Embedded into the existing unfolding techniques

The new calculations of configurations, cuts, concurrent conditions (possible exten-
sions), and cut-off events can be applied in various kinds of unfolding techniques, e.g., ERV
unfolding, merged process and directed unfolding. As is well known, ERV unfolding
proposes a new classical algorithm for improving the McMillan’s unfolding. The merged
process (MP) generates a condensed unfolding of a Petri net’s behavior. Directed unfolding
(DU) utilizes heuristic functions to guide the unfolding process of Petri nets. Given these
unfolding techniques, our improved computing methods can replace their calculations of
configurations, cuts, and cut-off events. Meanwhile, our new calculations can be further
combined with partial orders, merged conditions and heuristic functions in their related
unfolding methods of Petri nets. By this means, our new computing methods can enhance
these unfolding techniques and improve their model checkings.

(2) Checking reachability, properly completed, and deadlocks

Some errors can be detected based on the unfolding techniques. In this paper, we refer
to some previous studies [5,34,37,41,42], and utilize our improvements to efficiently check
reachability [15,30], properly completed [43,44] and deadlocks [45,46].

• Reachability
On the one hand, we can utilize the directed unfolding technique [15] to verify the
reachability of markings or places. On the other hand, some incremental calculations of
configurations (e.g., configuration matrix) can be used to check whether a transition is
reachable to the other one in the execution of a Petri net. That is, given two transitions
t1, t2 ∈ T and two events ei, ej ∈ E, if the configuration matrix A of an FCP satisfies
A(i,j) = 1 ∧ h(ei) = t1 ∧ h(ej) = t2, then we can come to the conclusion that t2 is
reachable to t1. Notice that ei and ej are, respectively, the i-th and j-th elements of E.

• Properly completed
As is well known, a WF-net Σ = (N, M0) is properly completed if it satisfies ∀M ∈
R(M0) : M(o) > 0⇒ M = {o}, where o is the sink place [44]. In order to verify this
property, we can determine whether there exist some conditions that are concurrent
with sink conditions (i.e., corresponding to the sink places) in our concurrency matrix.
If these conditions exist, they indicate that Σ is not properly completed or sound.

• Deadlocks
Because the context of an event is calculated in our improved unfolding method, we
can utilize its cuts and Mark functions to check deadlocks, i.e., a marking M is a
deadlock if ∃e ∈ E : M = Mark([e]) and no transition t ∈ T is enabled at M.

6. Case Study

In order to illustrate the application scenarios of our improved method for unfolding
Petri nets, a case study of airport check-in is given, as follows.

A passenger must check in at theairport before boarding an airplane. Figure 7 shows
the basic business process of an airport check-in system (IBM: https://www.ibm.com/
developerworks/rational/library/2802.html, (accessed on 5 January 2021)). In this business
process, the passengers’ reservations are first checked. If their reservations are correct, these

https://www.ibm.com/developerworks/rational/library/2802.html
https://www.ibm.com/developerworks/rational/library/2802.html

Symmetry 2021, 13, 392 14 of 21

passengers can choose/change their seats. Otherwise, the incorrect reservations are sent
to the airport travel agency. After choosing seats, the airport can receive the passengers’
baggages and print their receipts. Meanwhile, the boarding cards are concurrently printed.
Finally, all travel of the documents is provided to passengers.

Figure 7. The business process of an airport check-in system.

As for the above business process, we first use a Petri net Σ of Figure 8a to model it.
Table 1 lists the meanings of all transitions in Σ, where the backward-conflict transition set
is {t2, t7, t4, t5}. Thus, we can obtain the possible cut-off transitions, i.e.,

PosCuto f f (Σ) = {t2, t7, t4, t5}.

Table 1. Activities.

Transition Activity Transition Activity

t0 Verify reservations t4 Receive baggages and print receipts
t1 Choose/change seats t5 –
t2 Handle incorrect reservations t6 Print boarding cards
t3 – t7 Give travel documents to passengers

According to Algorithm 3, we unfold Σ and generate its FCP, as shown in Figure 8b.
During this unfolding process, Table 2 records all contexts of events and Figure 9 shows
the incremental calculations of configurations and concurrent conditions. Meanwhile,
backward-conflict transitions are utilized to guide the matchings between events e4 and e5,
where Mark([e4]) = Mark([e5]) and [e4]<e[e5]. Thus, e5 is a cut-off event with respect to e4.

Symmetry 2021, 13, 392 15 of 21

Table 2. The contexts of events.

Events Contexts

Local Configurations ([e]) Pre-Sets (•[e]) Post-Sets ([e]•) Cuts (Cut([e]))

e0 {e0} {b0} {b1} {b1}
e1 {e0, e1} {b0, b1} {b1, b2} {b2}
e2 {e0, e2} {b0, b1} {b1, b3} {b3}
e3 {e0, e1, e3} {b0, b1, b2} {b1, b2, b4, b5} {b4, b5}
e4 {e0, e1, e3, e4} {b0, b1, b2, b4} {b1, b2, b4, b6} {b5, b6}
e5 {e0, e1, e3, e5} {b0, b1, b2, b4} {b1, b2, b4, b7} {b5, b7}
e6 {e0, e1, e3, e6} {b0, b1, b2, b5} {b1, b2, b5, b8} {b4, b8}
e7 {e0, e1, e3, e4, e6, e7} {b0, b1, b2, b4, b5, b6, b8} {b1, b2, b4, b6, b8, b9} {b9}
e8 {e0, e1, e3, e5, e6, e8} {b0, b1, b2, b4, b5, b7, b8} {b1, b2, b4, b5, b7, b8, b10} {b10}

Figure 8. (a) A Petri net Σ that models an airport check-in system; (b) the ERV unfolding of Σ; (c) the
merged process of Σ; and, (d) the directed unfolding of Σ, where p5 + p6 is a reachable marking.

Symmetry 2021, 13, 392 16 of 21

Figure 9. (a) The incremental calculations of concurrent conditions; (b) the incremental calculations
of configurations.

Additionally, we can generate a merged process and directed unfolding of Σ, respec-
tively, as shown in Figure 8c,d. Based on these unfoldings, we can verify some properties,
such as deadlocks, properly completed, and reachability.

(1) There is no deadlock in Σ because there always exist enabled transitions at any local
markings (except for the final state).

(2) Σ is properly completed, because no condition is concurrent with the sink condition
b9 in the concurrency matrix of Figure 9a.

(3) Because events b6 and b8 are included in the directed unfolding and satisfy h(b6) = p5
∧ h(b8) = p6 ∧ b6 co b8, the marking {p5, p6} is reachable from the initial marking {p0}.

(4) According to the configuration matrix of Figure 9b, the transition t0 is reachable to
the transition t7 in the execution of Σ, since the events e0 and e7 satisfy e0 ∈ [e7] ∧
h(e0) = t0 ∧ h(e7) = t7.

From this case study, we can find that our improved computing method for unfolding
a Petri net is feasible, and its result is correct. Moreover, this method can be applied to
different unfolding techniques and model checkings.

7. Experiments and Results
7.1. Data Collections and Tool

The experiments in this paper are respectively done on the benchmarks of BPM_AIMC
(The BPM Academic Initiative Model Collection: https://bpmai.org/download/index.
html (accessed on 30 December 2020)) and Dining Philosophers [41]. BPM_AIMC is a
famous data collection of formal models, and it has 100 + Petri nets. By now, this benchmark
has been utilized by hundreds of academic institutes. The n-Dining-Philosopher is a
classical problem in the synchronization of concurrent events/actions, and we can use Petri
nets to formalize this problem, where n is from two to 20. For these two benchmarks, we
use our tool DICER (DICER is developed based on PIPE (an open source tool), which can
unfold Petri nets and PD-nets, and detect errors of data inconsistency.) [39] to implement
the new methods and conduct a group of experiments.

7.2. Implementation and Results

In order to illustrate the unfolding efficiency of our improved computing method,
we compare it with some unfolding methods in terms of runtime, such as ERV unfolding,
merged process (MP), and directed unfolding (DU). That is, our improved calculations
of configurations/cuts, concurrent conditions, and cut-off events are applied to these
unfolding techniques, i.e., improved ERV unfolding (IERV), improved merged process
(IMP), and improved directed unfolding (IDU), respectively.

(1) The experiments on BPM_AIM

Because to the fact that Petri nets in BPM_AIMC are JSON documents, we first utilize
the parsers of JSON and XML to transform them into some PNML (Petri Net Markup

https://bpmai.org/download/index.html
https://bpmai.org/download/index.html

Symmetry 2021, 13, 392 17 of 21

Language) [47] documents, which can be loaded by DICER. After getting PNML-based
Petri nets, we select bounded ones from them with more than 10 transitions. Meanwhile,
we assume that their initial places only have one token. Finally, we import 37 Petri nets of
BPM_AIMC into DICER, and then generate their unfoldings. All of these experiments are
done in a PC with Intel Core i5-2400 CPU (3.10GHz) and 4.0G memory.

Figures 10–12 are the results of our experiments on BPM_AIMC. From Figure 10,
we can see that IERV spends less time than ERV to generate an FCP. Similarly, IMP (resp.
IDU) takes less time than MP (resp. DU). Obviously, our improved computing method
is more effective than others in the runtime of unfolding Petri nets, although the scale of
BPM_AIMC is not too large in reality.

Figure 10. The unfolding time (ms) of Esparza, Romer, and Vogler (ERV) and improved ERV unfolding (IERV), where ERV
is an unfolding technique and IERV applies our improved computing method to ERV.

Figure 11. The unfolding time (ms) of merged process (MP) and IMP, where MP is an unfolding technique and IMP applies
our improved computing method to MP.

Figure 12. The unfolding time (ms) of directed unfolding (DU) and IDU, where DU is an unfolding technique and IDU
applies our improved computing method to DU.

Symmetry 2021, 13, 392 18 of 21

(2) The experiments on Dining Philosophers

Some experiments are done on Dining Philosophers in order to further show the
advantage of our method. We first import 10 Petri nets of Dining Philosophers into
DICER, and then generate their unfoldings. For example, Figure 13 shows a Petri net of
two-philosophers’ dining problem in DICER.

Figure 14a–c are the results of our experiments on Dining Philosophers. From these
results, we can see that ERV (resp. MP, DU) spends much more time than IERV (resp. IMP,
IDU) to generate FCPs with the increment of n philosophers.

Figure 13. The Petri net of 2-philosophers’ dining problem in DICER.

Figure 14. The unfolding time (ms) of different unfolding techniques on n-philosophers’ dining problem, where n is from 2
to 20. (a) IERV vs. ERV; (b) IMP vs. MP; (c) IDU vs. DU; and, (d) is a part of (c).

Symmetry 2021, 13, 392 19 of 21

8. Conclusions

Concurrent systems easily suffer from some errors, such as deadlocks, lack of syn-
chronization, and data inconsistencies. Although reachability-graph-based methods are
proposed to check these errors, they generally have the problems of state space explosion.
This is because these methods are based on the interleaving semantics, and the need to
consider all partial orders of business activities to analyze their global behaviors of concur-
rent systems. By comparison, the unfolding technique of Petri net can characterize the real
concurrency and alleviate the state space explosion problem, since it uses an acyclic net to
represent the system running. Thus, it is greatly suitable to analyze/check some potential
errors in a concurrent system.

As for the unfolding technique of Petri nets, the calculations of configurations, cuts,
and cut-off events are key factors that make up an absolutely significant share of the total
unfolding time. However, most of the unfolding methods do not specify highly efficient
calculations on them. They mainly focus on how to generate a smaller FCP, or explore
different kinds of Petri net unfoldings and their model checkings. In fact, their calculations
of configurations and cuts need a lot of repetitive work, and new events need to match them
up with all existing events so as to determine whether they are cut-off events. In order to
solve these problems, we propose an improved computing method for unfolding Petri nets.
Some recursion formulas and theorems are derived to calculate configurations and cuts.
Backward conflicts are used to guide the determinations of cut-off events. Furthermore,
we develop some improved algorithms for generating FCPs.

In the future work, we plan to carry out the following studies:

(1) we apply our new calculations with heuristic functions into many more model check-
ings of concurrent systems;

(2) timed concurrent systems are simulated and analyzed based on the unfolding tech-
niques of Petri nets; and,

(3) we explore the unfolding-based technique of WFD-net [48] to check concurrency
bugs [49–51].

Author Contributions: D.X. proposed the idea in this paper and prepared the software application;
D.X. and X.T. designed the experiments; D.X. performed the experiments; Y.L. analyzed the data;
D.X. wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Zhejiang Provincial Natural Science Foundation of
China under Grant LQ20F020002, and in part by the Key Laboratory of Embedded System and
Service Computing (Ministry of Education) under Grant ESSCKF 2019-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moutinho, F.; Gomes, L. Asynchronous-channels within Petri net-based GALS distributed embedded systems modeling.

IEEE Trans. Ind. Inform. 2014, 10, 2024–2033. [CrossRef]
2. Zhou, M.C.; Wu, N. System Modeling and Control with Resource-Oriented Petri Nets; CRC Press, Inc.: Boca Raton, FL, USA, 2009.
3. Qi, L.; Zhou, M.; Luan, W. A two-level traffic light control strategy for preventing incident-based urban traffic congestion.

IEEE Trans. Intell. Transp. Syst. 2016, 19, 13–24. [CrossRef]
4. Esparza, J.; Schröter, C. Unfolding based algorithms for the reachability problem. Fundam. Inform. 2001, 47, 231–245.
5. Liu, G.; Reisig, W.; Jiang, C. A Branching-process-based method to check soundness of workflow systems. IEEE Access 2016,

4, 4104–4118. [CrossRef]
6. Liu, M.; Wang, S.; Zhou, M.; Liu, D.; Al-Ahmari, A.; Qu, T.; Wu, N.; Li, Z. Deadlock and liveness characterization for a class of

generalized Petri nets. Inf. Sci. 2017, 420, 403–416. [CrossRef]
7. Franco, A.; Baldan, P. True Concurrency and Atomicity: A Model Checking Approach with Contextual Petri Nets; LAP LAMBERT

Academic Publishing: Saarbrucken, Germany, 2015.

http://doi.org/10.1109/TII.2014.2341933
http://dx.doi.org/10.1109/TITS.2016.2625324
http://dx.doi.org/10.1109/ACCESS.2016.2597061
http://dx.doi.org/10.1016/j.ins.2017.08.014

Symmetry 2021, 13, 392 20 of 21

8. McMillan, K.L. Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In Computer
Aided Verification; Springer: Berlin/Heidelberg, Germany, 1992; pp. 164–177.

9. Buchholz, P.; Kemper, P. Hierarchical Reachability Graph Generation for Petri Nets. Form. Methods Syst. Des. 2002, 21, 281–315.
[CrossRef]

10. Wisniewski, R.; Karatkevich, A.; Adamski, M.; Costa, A.; Gomes, L. Prototyping of Concurrent Control Systems with Application
of Petri Nets and Comparability Graphs. IEEE Trans. Control Syst. Technol. 2017, 26, 575–586. [CrossRef]

11. Wiśniewski, R.; Wiśniewska, M.; Jarnut, M. C-exact hypergraphs in concurrency and sequentiality analyses of cyber-physical
systems specified by safe Petri nets. IEEE Access 2019, 7, 13510–13522. [CrossRef]

12. Bonet, B.; Haslum, P.; Khomenko, V.; Thiébaux, S.; Vogler, W. Recent advances in unfolding technique. Theor. Comput. Sci. 2014,
551, 84–101. [CrossRef]

13. Esparza, J.; Römer, S.; Vogler, W. An improvement of McMillan’s unfolding algorithm. Form. Methods Syst. Des. 2002, 20, 285–310.
[CrossRef]

14. Khomenko, V.; Kondratyev, A.; Koutny, M.; Vogler, W. Merged processes: A new condensed representation of Petri net behaviour.
Acta Inform. 2006, 43, 307–330. [CrossRef]

15. Bonet, B.; Haslum, P.; Hickmott, S.; Thiébaux, S. Directed unfolding of petri nets. In Transactions on Petri Nets and Other Models of
Concurrency I; Springer: Berlin/Heidelberg, Germany, 2008; pp. 172–198.

16. Haar, S. Types of asynchronous diagnosability and the reveals-relation in occurrence nets. IEEE Trans. Autom. Control 2010,
55, 2310–2320. [CrossRef]

17. Hickmott, S.L.; Rintanen, J.; Thiébaux, S.; White, L.B. Planning via Petri Net Unfolding. In Proceedings of the International Joint
Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; Volume 7, pp. 1904–1911.

18. Leon, H.P.d.; Saarikivi, O.; Kahkonen, K.; Heljanko, K.; Esparza, J. Unfolding Based Minimal Test Suites for Testing Multi-
threaded Programs. In Proceedings of the 15th International Conference on Application of Concurrency to System Design,
Brussels, Belgium, 21–26 June 2015; pp. 40–49.

19. Heljanko, K.; Khomenko, V.; Koutny, M. Parallelisation of the Petri net unfolding algorithm. In Proceedings of the 8th
International Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS), LNCS, Grenoble, France,
8–12 April 2002; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2280, pp. 371–385.

20. Khomenko, V.; Mokhov, A. An algorithm for direct construction of complete merged processes. In Proceedings of the
International Conference on Application and Theory of Petri Nets and Concurrency, Paris, France, 24–25 June 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 89–108.

21. Couvreur, J.M.; Poitrenaud, D.; Weil, P. Branching processes of general Petri nets. Fundam. Inform. 2013, 122, 31–58. [CrossRef]
22. Rodríguez, C.; Sousa, M.; Sharma, S.; Kroening, D. Unfolding-based Partial Order Reduction. In Proceedings of the 26th Interna-

tional Conference on Concurrency Theory (CONCUR 2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Madrid, Spain,
1–4 September 2015.

23. Chatain, T.; Paulevé, L. Goal-Driven Unfolding of Petri Nets. In Proceedings of the 28th International Conference on Concurrency
Theory (CONCUR 2017), Berlin, Germany, 5–8 September 2017.

24. Lu, F.; Tao, R.; Du, Y.; Zeng, Q.; Bao, Y. Deadlock detection-oriented unfolding of unbounded Petri nets. Inf. Sci. 2019, 497, 1–22.
[CrossRef]

25. Jiroveanu, G.; Boel, R.K.; Schutter, B.D. Fault Diagnosis for Time Petri Nets. In Proceedings of the International Workshop on
Discrete Event Systems, Ann Arbor, MI, USA, 10–12 July 2006.

26. Chatain, T.; Fabre, E. Factorization Properties of Symbolic Unfoldings of Colored Petri Nets. In Proceedings of the International
Conference on Applications & Theory of Petri Nets, Braga, Portugal, 21–25 June 2010.

27. Rodriguez, C.; Schwoon, S.; Baldan, P. Efficient Contextual Unfolding. In Proceedings of the International Conference on
Concurrency Theory, Aachen, Germany, 6–9 September 2011.

28. Lomazova, I.A.; Ermakova, V.O. Verication of Nested Petri Nets Using an Unfolding Approach. In Proceedings of the International
Workshop on Petri Nets & Software Engineering, Torun, Poland, 20–21 June 2016.

29. Khomenko, V.; Koutny, M. LP deadlock checking using partial order dependencies. In Proceedings of the International
Conference on Concurrency Theory, State College, PA, USA, 22–25 August 2000; Springer: Berlin/Heidelberg, Germany, 2000;
pp. 410–425.

30. Rodriguez, C.; Schwoon, S. Verification of Petri nets with read arcs. In Proceedings of the International Conference on Concurrency
Theory, Newcastle, UK, 4–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 471–485.

31. De León, H.P.; Haar, S.; Longuet, D. Model-based testing for concurrent systems: Unfolding-based test selection. Int. J. Softw.
Tools Technol. Transf. 2016, 18, 305–318. [CrossRef]

32. Jezequel, L.; Madalinski, A.; Schwoon, S. Distributed computation of vector clocks in Petri nets unfolding for test selection.
In Proceedings of the Workshop on Discrete Event Systems (WODES), Sorrento Coast, Italy, 30 May–1 June 2018.

33. Kähkönen, K.; Saarikivi, O.; Heljanko, K. Using unfoldings in automated testing of multithreaded programs. In Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering, Essen, Germany, 3–7 September 2012;
pp. 150–159.

34. Saarikivi, O.; Ponce-De-León, H.; Kähkönen, K.; Heljanko, K.; Esparza, J. Minimizing test suites with unfoldings of multithreaded
programs. ACM Trans. Embed. Comput. Syst. (TECS) 2017, 16, 45. [CrossRef]

http://dx.doi.org/10.1023/A:1020321222420
http://dx.doi.org/10.1109/TCST.2017.2692204
http://dx.doi.org/10.1109/ACCESS.2019.2893284
http://dx.doi.org/10.1016/j.tcs.2014.07.003
http://dx.doi.org/10.1023/A:1014746130920
http://dx.doi.org/10.1007/s00236-006-0023-y
http://dx.doi.org/10.1109/TAC.2010.2063490
http://dx.doi.org/10.3233/FI-2013-782
http://dx.doi.org/10.1016/j.ins.2019.05.021
http://dx.doi.org/10.1007/s10009-014-0353-y
http://dx.doi.org/10.1145/3012281

Symmetry 2021, 13, 392 21 of 21

35. Lutz-Ley, A.; López-Mellado, E. Stability Analysis of Discrete Event Systems Modeled by Petri Nets Using Unfoldings. IEEE
Trans. Autom. Sci. Eng. 2018, 15, 1964–1971. [CrossRef]

36. Meyer, R.; Khomenko, V.; Strazny, T. A practical approach to verification of mobile systems using net unfoldings. Fundam. Inform.
2009, 94, 439–471. [CrossRef]

37. Ponce-de León, H.; Rodríguez, C.; Carmona, J.; Heljanko, K.; Haar, S. Unfolding-based process discovery. In Proceedings of the
International Symposium on Automated Technology for Verification and Analysis, Shanghai, China, 12–15 October 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 31–47.

38. Weidlich, M.; Elliger, F.; Weske, M. Generalised computation of behavioural profiles based on petri-net unfoldings.
In Proceedings of the International Workshop on Web Services and Formal Methods, Hoboken, NJ, USA, 16–17 September 2010;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–115.

39. Xiang, D.; Liu, G.; Yan, C.; Jiang, C. Detecting data inconsistency based on the unfolding technique of petri nets. IEEE Trans. Ind.
Inform. 2017, 13, 2995–3005. [CrossRef]

40. Römer, S. Theorie und Praxis der Netzentfaltungen als Grundlage Für die Verifikation Nebenläufiger Systeme. Ph.D. Thesis,
Technical University, Munich, Germany, 2000.

41. Dong, L.; Liu, G.; Xiang, D. Verifying CTL with Unfoldings of Petri Nets. In Proceedings of the International Conference on
Algorithms and Architectures for Parallel Processing, Melbourne, Australia, 9–11 September 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 47–61.

42. Liu, C.; Zeng, Q.; Duan, H.; Wang, L.; Tan, J.; Ren, C.; Yu, W. Petri net based data-flow error detection and correction strategy for
business processes. IEEE Access 2020, 8, 43265–43276. [CrossRef]

43. Liu, G.; Jiang, C.; Zhou, M. Process nets with channels. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42, 213–225.
[CrossRef]

44. Wynn, M.T. Soundness of workflow nets: Classification, decidability, and analysis. Form. Asp. Comput. 2011, 23, 333–363.
45. Guo, X.; Wang, S.; You, D.; Li, Z.; Jiang, X. A siphon-based deadlock prevention strategy for S 3 PR. IEEE Access 2019,

7, 86863–86873. [CrossRef]
46. Zhou, M.C.; Fanti, M.P. Deadlock Resolution in Computer-Integrated Systems; CRC Press, Inc.: Boca Raton, FL, USA, 2004.
47. Hillah, L.M.; Kordon, F.; Petrucci, L.; Treves, N. PNML Framework: An extendable reference implementation of the Petri Net

Markup Language. In Proceedings of the International Conference on Applications and Theory of Petri Nets, Braga, Portugal,
21–25 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 318–327.

48. Xiang, D.; Liu, G.; Yan, C.G.; Jiang, C. A Guard-driven Analysis Approach of Workflow Net With Data. IEEE Trans. Serv. Comput.
2019, 1, [CrossRef]

49. Kim, K.H.; Yavuz-Kahveci, T.; Sanders, B.A. JRF-E: Using model checking to give advice on eliminating memory model-related
bugs. Autom. Softw. Eng. 2012, 19, 491–530. [CrossRef]

50. Xiang, D.; Liu, G.; Yan, C.; Jiang, C. Detecting data-flow errors based on Petri nets with data operations. IEEE/CAA J. Autom. Sin.
2017, 5, 251–260. [CrossRef]

51. Zhang, M.; Wu, Y.; Shan, L.U.; Qi, S.; Ren, J.; Zheng, W. A Lightweight System for Detecting and Tolerating Concurrency Bugs.
IEEE Trans. Softw. Eng. 2016, 42, 899–917. [CrossRef]

http://dx.doi.org/10.1109/TASE.2018.2830385
http://dx.doi.org/10.3233/FI-2009-138
http://dx.doi.org/10.1109/TII.2017.2698640
http://dx.doi.org/10.1109/ACCESS.2020.2976124
http://dx.doi.org/10.1109/TSMCA.2011.2157136
http://dx.doi.org/10.1109/ACCESS.2019.2920677
http://dx.doi.org/10.1109/TSC.2019.2899086
http://dx.doi.org/10.1007/s10515-012-0109-4
http://dx.doi.org/10.1109/JAS.2017.7510766
http://dx.doi.org/10.1109/TSE.2016.2531666

	Introduction
	Related Work
	 The Unfolding Techniques of Petri Nets
	 Model Checking Based on Petri Net Unfolding

	Basic Notations
	The Existing Unfolding Method of Petri Nets
	Finite Complete Prefix
	The Classical Algorithm for Generating an FCP
	Discussion

	An Improved Computing Method for Unfolding Petri Nets
	The Incremental Calculations of Configurations and Cuts
	The Backward-Conflict Guided Calculations of Cut-Off Events
	An Improved Algorithm for Generating an FCP
	The Validation of Our Improved Unfolding Method
	Model Checkings Based on the Improved Unfolding Method

	Case Study
	Experiments and Results
	Data Collections and Tool
	Implementation and Results

	Conclusions
	References

