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Abstract:
Using a spatially discretised model structure to represent the behaviour of calcium release sites
in a cell, this paper presents a parallel solution algorithm which treats each release site as
an independent sub-system, and manages inter-site data communication on a global timestep.
When compared to the equivalent single-thread solution algorithm, the parallel method features
a negligible reduction in accuracy, and improves computation time scaling from a quadratic,
O(n2) to a linear, O(n), with respect to the number of release sites, n, in the model.
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1. INTRODUCTION

Normal heart function relies on coordinated, rhythmic
contractions of billions of muscle cells within the heart. In
turn, rhythmic contraction of each cell depends on release
of calcium ions (Ca2+) from approximately 20, 000 release
sites distributed throughout each cell. Parallel computing
provides a tool for understanding how the physiological
process within each release site and within each cell
integrate to produce the observable heart rhythm.

A non-linear model of calcium release in heart cells, de-
veloped by Cannell et al. (2013a), considers mechanisms
of buffering, diffusion and stochastic triggering for a small
population of release sites inside a single cell. For large-
scale simulations, the model has been discretised to de-
crease the structural complexity at each release site.

The intended purpose of the model is to understand how
groups of Ca2+ release sites produce the experimentally
observable phenomena of Ca2+ sparks and waves. Sparks,
named for the bursts of light they produce in the presence
of fluorescent indicators, are localised Ca2+ release events
that occur at a single site (Kong et al., 2013). Ca2+ waves
are release events which require the coordinated activation
of adjacent release sites, and produce an increase in
cytoplasmic calcium concentration which propagates like
a wave throughout the cell. The physiological details
of the wave phenomenon remain unclear, and a better
understanding would enable further studies of the effect
of various pharmaceutical drugs on wave properties and
ultimately on heart rhythm.

With all major dynamics considered, the resulting model
is stiff in nature, and requires a sophisticated solver al-
gorithm to minimise computation time and ensure ac-
curacy. This model had been solved as a single-thread,
single-Jacobian process, causing simulations to become
prohibitively long for models on the order of 100 sites,

while a full-scale 20, 000-site cell model results in a system
order greater than 106. To enable such large scale simula-
tions, finding a more time-efficient modelling approach is
necessary such that the full-scale model can be explored,
modified and interpreted in more convenient time frames.

Parallel model structures have been succesfully developed
to simulate various diffusion-based processes which are
similar in nature to the calcium release problem. The
results from Shaikh et al. (2011), Stern et al. (2014) and
Li et al. (2010) show the potential of parallel methods
to provide accurate results with reasonable computation
times if the model is partitioned in a manner which
exploits the different time constants of the system.

In this paper, the biological model is split into independent
subsystems based on the varying diffusion dynamics in dif-
ferent regions of the system. A parallel solution algorithm
is formulated which solves the individual subsystems in a
multi-thread environment, with a communication update
interval maintained on a global timestep. Several extrapo-
lation methods are tested within the parallel framework to
identify the most accurate and robust technique. The com-
putation time of the new algorithm scales linearly O(n)
with the number of release sites, n, in the model. Further
improvements are also achieved through the treatment of
the Jacobian and global step-size control.

The paper is organised as follows: Section II provides an
overview of the discretised release model relevant to large-
scale simulations, and highlights the dynamics present in a
single release site. Section III presents the several compet-
ing methods of parallelisation and assesses their accuracy
in the calcium release context. Section IV theoretically
and experimentally validates the linearization of solution
time scaling. Section V outlines some additional numerical
techniques which can further optimise computation time,
and Section VI concludes the paper.



2. THE CALCIUM RELEASE MODEL

2.1 Geometry

In heart muscle cells, the release of calcium into the
general cytoplasm is dictated by the behaviour of dyads
located throughout the cell’s structure. The dyad consists
of several components (Cannell et al., 2013a):

(1) T-tubule which allows extracellular calcium to enter
the cell at the dyad junction.

(2) Distributed calcium store (LSR) inside the cell, with
a terminal (TSR) located in close proximity to the
ion channel of the T-tubule, creating a ‘dyadic cleft’.

(3) Cluster of calcium release channels (ryanodine recep-
tors or ‘RyRs’) on the surface of the TSR, which open
and close to control the diffusion of calcium from the
store into the cleft and general cytoplasm of the cell.

In the simplified model, each dyad is contained within
a cube shaped ‘voxel’ which contains discrete elements
relevant to the release process. Each element will possess a
lumped concentration for Ca2+, as well as concentrations
for a selection of buffers and indicators. The number of
state variables in a single voxel is of the order of 102.
Figure 1 provides a conceptual diagram of the geometry
for a discretised voxel, and indicates the typical flow of
calcium within and between release sites.

2.2 Transport of Materials

In modelling the concentrations of substances in the cell,
mechanisms of diffusion, buffering and active pumping are
considered. With the model split into discrete blocks of
cytoplasm, the equations governing these transport mech-
anisms must also be discretised around the defined volume
elements. For the case of calcium, the concentration in a
particular volume of cytoplasm is given by (Cannell et al.,
2013a)

d[Ca2+]

dt
=

p∑
i=1

Di([Ca
2+
i ]− [Ca2+])

+

r∑
i=1

FRyR,i − FSERCA −
b∑

i=1

Fbuffer,i,

(1)

where [Ca2+] is the calcium concentration in the volume.
On the RHS of (1), the first term describes diffusion from
p neighbouring volume elements, with their own calcium

Fig. 1. Voxel geometry for a single dyad, Ca2+ release site

concentrations [Ca2+i ], and diffusion coefficients Di to
the volume of interest. The second term is an expression
for the calcium fluxes, FRyR,i, from r open receptors,
which is applicable for volumes inside the dyad cleft. In
some volume elements, a ‘SERCA pump’ is present which
actively transfers calcium from the general cytoplasm to
the longitudinal SR, giving rise to the FSERCA flux. Lastly,
there are several other substances which bind to calcium,
removing the free ions from solution. These buffering
reactions are summarised by Fbuffer,i fluxes to each of
the b buffers present in the volume.

The buffering fluxes have a linear form, and for each buffer
Bi in the volume, the flux is defined by

Fbuffer,i = kon,i[Bi][Ca
2+]− koff,i[CaBi],

where kon,i and koff,i are buffer-specific constants, [Bi] is
the concentration of the unbound buffer in the volume,
and [CaBi] is the concentration of the calcium-bounded
buffer. The SERCA flux out of the general cytoplasm is
governed by the non-linear equation,

FSERCA = k1

(
k2[Ca2+]2

1 + k2[Ca2+]2
− k3

)
,

for some fixed constants k1, k2 and k3. The RyR fluxes
further increase the model complexity, as they depend on
the open probabilities of receptors in the area,

FRyR,i = k4PRyR,i([Ca
2+
TSR]− [Ca2+]),

where the calcium concentration of the terminal store
(TSR) is given by [Ca2+TSR], k4 is a constant, and PRyR,i is
the open probabilty of the i’th receptor in the volume.
The open probabilities are themselves dependent on a
stochastic triggering process which is executed at 50ms
intervals. A more comprehensive mathematical description
of the model can be obtained from Cannell et al. (2013a),
and its supplement (Cannell et al., 2013b).

2.3 Release Site Dynamics

Ideally, in order to parallelise the release model, the
boundaries for the proposed sub-systems should have a
slow rate of information exchange with respect to the
dynamics internal to the sub-systems. An investigation of
the ‘spark’ dynamics at a single release site was performed
to provide evidence that the voxels themselves are viable
candidates for conversion to parallel subsystems.

A spark begins when the dyad is triggered and receptors
latch open, allowing Ca2+ to flood out from the TSR into
the junction before diffusing to the general cytoplasm and
neighbouring release sites. After a brief period, the Ca2+

concentration in the TSR reduces to a level that cannot
continue supporting flux into the dyadic cleft, hence the
receptors begin re-closing (Cannell et al., 2013a), (Kong
et al., 2013). Figure 2 shows the calcium concentrations
for several important volumes during a release site spark.
It can been seen in plot A that a sharp concentration
spike occurs at the centre of the cleft, where calcium
floods out of the store through the receptors. The TSR
concentration (plot B) has a corresponding sharp decrease
as its calcium store depletes. The general cytoplasm (plot
C) has a significantly slower calcium influx than the dyadic
cleft, and the relative magnitude of the increase is far
smaller. The dominant behaviour in the LSR (plot D) is a
slow rise in concentration driven by the SERCA pump.



Fig. 2. Spark dynamics in modelled volume elements

The Ca2+ spark simulation reveals that the calcium dy-
namics in volumes connected to the boundary of the voxel
(general cytoplasm and LSR) are significantly slower than
some of the dynamics at the centre of the voxel in the
dyadic cleft. This result highlights the potential for model-
splitting at the voxel edges, such that each release site is
an independent subsystem.

3. METHODS OF PARALLELISATION

The previous section provided evidence that the calcium
release model could be partitioned into independent voxels
and solved in parallel, however, several problems remain
with respect to the implementation of a parallel solution
scheme:

• Choosing the interval on which communication up-
dates occur to exhange information between sites.
• Treatment of the diffusion fluxes from neighbouring

release sites in the presence of outdated information.

A reasonable solution to the first problem comes from
analysing the diffusion time constants for substances which
cross the border between voxels. The smallest time con-
stant occurs for calcium in the general cytoplasm; approx-
imately 3ms for diffusion between release sites. This time
constant can be used to inform a choice of ‘global step-size’
or timestep for communication updates, using the rule of
thumb that the step size be at least 4 times smaller than
the smallest time constant (Kulakowski et al., 2007).

The treatment of inter-site fluxes between communication
updates warrants some further investigation, and several
numerical methods were developed for application in the
parallel-split model of calcium release.

3.1 Constant Flux Method

The most computationally conservative approach would be
to hold all fluxes into and out of the subsystem constant

until new fluxes can be computed at the next update
interval, i.e. for some substance X in a boundary volume,
the flux from the volumes of neighbouring sites is given by

F[X],ext(t) =

p∑
i=1

Di([Xi]t0 − [X]t0) ∀t ∈ (t0, t1], (2)

where t0 and t1 are the times of two consecutive com-
munication updates. For p neighbouring sites, Di is the
diffusion constant from the i’th neighbouring volume, and
[Xi]t0 and [X]t0 are the concentrations at the last update
interval for the i’th external neighbour and volume of
interest respectively.

3.2 Dynamic Flux Methods

It is evident in (2) that the constant flux method does
not take full advantage of the information available to a
subsystem following a communication update. Firstly, the
substance concentration in the volume of interest has a
live value which can be accessed during the solver interval.
Furthermore, the subsystem can be sent information on
past values of neighbour concentrations in order to for-
mulate reasonable predictions of their concentrations in
the current interval. Using these additional assumptions,
a new expression for the inter-site flux can be written as

F[X],ext(t) =

p∑
i=1

Di(P[Xi](a, t)− [X](t)) ∀t ∈ (t0, t1], (3)

where P[Xi] is a function which predicts the i’th neigh-
bour’s concentration at any time t based on parameter
vector a computed at t0 during the last communication
update. More specifically, the prediction can be based on
n’th order polynomial extrapolations using the last n+ 1
concentration values up to and including [Xi]t0 . It is clear
that dynamic flux methods have higher computational
requirements, require more memory, and increase commu-
nication time between release sites at each update interval,
however, this should be offset by increased accuracy and
stability in parallel solutions.

3.3 Implementation

The original model code, developed prior to this research,
was established in the MATLAB environment. Conse-
quently, the parallelisation methods were also tested in
MATLAB (2015b). Both the split and unsplit models
made use of the ‘ode15s’ stiff solver routine, with 2nd or-
der numerical differentiation formulas (NDFs). To enable
parallel computation, the parallel jobs were dynamically
allocated to a number of physical CPU cores on a 6-core
3.50 GHz Intel Xeon processor, using MATLAB’s ‘parpool’
and ‘parfor’ commands.

3.4 Accuracy Analysis

To assess the relative accuracy of the constant and dy-
namic flux methods, a small 8-site release model was
simulated for 50ms with a single release site triggered. This
allows calcium to flow into the cytoplasm of the triggered
site and diffuse to the 7 neighbours. For the dynamic flux
methods, three polynomial predictors were evaluated; con-
stant, linear and 2nd order concentration predictions. The
simulation was repeated for each parallel method using



Fig. 3. RMS errors for parallelisation methods

several global timesteps, where the RMS errors in calcium
concentration were examined in the general cytoplasm of
each release site. The error was calculated with respect to
a single-thread, single-jacobian model output for the same
8-site system.

Figure 3 shows the RMS error in sites directly neighbour-
ing the triggered site. For small global timesteps, the 2nd
order dynamic flux method is most accurate, however the
accuracy decreases rapidly as step-size increases. The other
dynamic and constant flux methods are more robust with
respect to step-size, with linear prediction providing the
highest accuracy. The other sites in the model exhibited
similar error trends, and a dynamic flux method with lin-
ear prediction was chosen for use in all further simulations.

4. COMPUTATION TIME

The calcium release model considered in this paper is con-
structed from a 3-dimensional network of interconnected
voxels, and can have arbitrary size depending on the
number of voxels chosen for the length of each dimension.
Section I stated the requirement for 20000 release sites in
a realistic cell model, but simulating such a large network
of voxels as a single (stiff) ODE system would put im-
mense stress on the solver algorithm, which must typically
generate and manipulate a Jacobian of the system at each
iteration of the solver (Jackson, 1996). Since the size of
the Jacobian scales quadratically with system order, it is
sensible to assume that the solution time will also scale
quadratically with the number of release sites in the model.

If we consider an arbitrary stiff solver method with some
set-up overhead, the 50ms solution time for an n-site
unsplit model can be written as

tunsplitn = an+ bn2 a, b ∈ R+, (4)

where coefficients a and b describe the linear overhead and
quadratic scaling of the main algorithm respectively. Note
that the computation time required for 50ms of solution is
important because, as explained in Section III, the entire
solution process is paused at every 50ms interval for a
stochastic triggering process.

If we now examine a site-split model, there are n sites
which can be solved independently with separate solver

calls. We must call the solver more regularly, say x times
in every 50ms window, with a communication update
between each solver interval. We can assume for simplicity
that the complexity of solutions remains constant between
sites and throughout the 50ms window. It follows that

tsplit1 = a+ b/x,

where tsplit1 is the computation time required to solve one
site in one of the x sub-intervals. If the n release sites are
split evenly among a number of computing cores, ncores,
the computation time for a full 50ms of solution can be
expressed as

tsplitn =
n

ncores
· x · tsplit1 + x · tupdaten + x · tcomms, (5)

where tupdaten is the time required to compute polynomial
parameters for concentration predictions in the dynamic
flux method, and tcomms is the time required to commu-
nicate these updates to the cores at the end of each sub-
interval. The polynomial parameters are obtained for a set
number of variables per site, hence,

tupdaten = cn c ∈ R+.

Substituting tsplit1 and tupdaten into (5) and rearranging
gives the final expression,

tsplitn =

(
ax+ b

ncores
+ cx

)
n+ x · tcomms. (6)

Assuming tcomms is negligible, the computation time scales
linearly with the number of release sites in the model,
since the Jacobians are now limited to the system order
of one site. The gradient of the trend can be reduced by
increasing the number of cores (up to a limit of n), or by
increasing the global timestep (i.e. reducing x). There are
strict limitations on the second strategy, however, since
the global timestep will significantly affect accuracy and
stability of parallel solutions.

The expressions derived in (4) and (6) were validated ex-
perimentally by measuring the computation time required
for unsplit and parallel-split models of varying scales over
a 50ms solution window. Figure 4 plots the results.

Fig. 4. Computation times for unsplit and split models



5. OPTIMISING COMPUTATION TIME

5.1 Jacobian Evaluation

Stiff ODE solver methods are typically defined recursively,
and use Newton iteration to converge to the solution at
each timestep of the solver (Jackson, 1996). Performing
these iterations requires repeated evaluation of the ODE
system’s Jacobian, i.e. for an N ’th order system defined
vectorially as

dy

dt
= f(y) = f(y1, y2, ..., yN ) =


f1(y1, y2, · · · , yN )
f2(y1, y2, · · · , yN )

...
fN (y1, y2, · · · , yN )

 ,
evaluation of the Jacobian df/dy is required for some
values of y. One basic strategy for computing this matrix
is to apply the finite difference formula for each element of
the Jacobian (Curtis et al., 1974). The (i, k)’th element,
∂fi/∂yk, is computed as

fi(y1, · · · , yk + δ, · · · , yN )− fi(y1, · · · , yk, · · · , yN )

δ
,

where δ is an arbitrarily small constant (Olver, 2014).
For large ODE systems, the method can become quite
computationally intensive, as the ODE function must be
evaluated multiple times for each element of the N × N
Jacobian. If the sparsity of the Jacobian is known, the
method can be made somewhat faster by evaluating only
those entries which are likely to be non-zero (Kelley, 2003).
However, an analytical approach to Jacobian evaluation
should prove the most time efficient, as the sparsity of the
matrix can be exploited while also avoiding large numbers
of ODE function evaluations.

In the parallel-split calcium release model, each release site
is solved individually. All release sites have a generic struc-
ture, and are effectively identical, such that any method
which can evaluate one site’s system Jacobian will be
sufficient for application to every subsystem. Furthermore,
the release site Jacobians are significantly sparse (93%
zeros), due to the diffusion-based nature of the model.

To investigate decreasing computation time, the analytical
derivatives for a release site voxel were introduced to the
solution code. For a voxel model with q state variables, the
use of analytical expressions was optimised by splitting the
Jacobian contributions into three distinct q × q matrices:

(1) Jconstant - Jacobian contributions which remain con-
stant for all time. This matrix is calculated only once,
at the start of simulation.

(2) Jsite - Jacobian contributions which require knowl-
edge of the location of the release site. The matrix is
calculated at the beginning of each solver call for a
given release site.

(3) J live - Contributions which change dynamically with
the system variables in the voxel. This matrix must
be re-evaluated at every iteration of the solver.

The final system Jacobian provided to the solver method
is simply the addition of these three matrices,

df

dy
= Jconstant + Jsite + J live.

Fig. 5. Varying the solver’s knowledge of the Jacobian

To compare the performance of the finite difference and
analytical methods, a 125-site calcium release model was
simulated with varying levels of Jacobian knowledge pro-
vided to the stiff solver. In Figure 5, the results show
significant speedup when the analytical derivatives are
supplied to the solver method.

5.2 Global Step-size Control

To choose the global step-size, it is desirable to have a
timestep which is the maximum safe value for avoiding
instability and maintaining solution accuracy. If step size
could be dynamically chosen at any given point in the
simulation, then such a method could take advantage
of the time-variable dynamics in the release model. For
example, when the model is ‘inactive’, there is minimal
transport of materials between sites, and global step size
can be increased without risk of instability. When a
release site triggers, however, a portion of the model will
experience relatively fast diffusion of materials between
sites, requiring a reduction in the global time step.

A simple step size control algorithm can be constructed
using only two possible global timesteps; thigh and tlow. At
the end of each solver interval, the step size for the next
interval is chosen based on current activity levels in the
model. The activity level is quantified by inspecting the
open probabilities of RyRs in each site’s dyad, and finding
the maximum probability for the entire model. Recall from
Section II that the flow of calcium from the store into
the dyadic cleft through an RyR is proportional to the
receptor’s open probability. If the model-wide maximum
for open probability is labelled Pmax, then the ‘two-state’
algorithm is given by

tg =

{
thigh if Pmax < Pthresh

tlow otherwise
, (7)

where tg is the global step-size and Pthresh is some thresh-
old between 0 and 1. A sensible value for Pthresh can be
chosen by observing the path of Pmax during a standard
model simulation, shown in Figure 6. The periodic nature
of the variable is a result of the stochastic triggering events
which are initiated every 50ms. Between triggering events,
open probabilities are observed to stay universally low for
a significant period of time, and a threshold value between
0.1 and 0.4 would capture these low activity periods. Note
that the exceptions to this periodicity, located at around



Fig. 6. Pmax during a 450-site simulation

Table 1. Performance gains for global step-size
control at two model scales

Model
Scale
(sites)

Pthresh

Average
Computation
Time (s)

Average
Speedup
(%)

80

No step-size control 312 -
0.1 260 16.7
0.2 250 19.9
0.3 250 19.9
0.4 248 20.5

1200

No step-size control 3788 -
0.1 3432 9.4
0.2 3373 10.9
0.3 3311 12.6
0.4 3247 14.3

1000 and 1600ms, are due to waves of calcium which are
propagating through the cell.

To test the potential for computation time improvements
using step-size control, the calcium release model was
simulated for 2 seconds at various scales, with a number of
Pthresh values at each scale. Due to the stochastic nature
of the model, a Monte Carlo study was conducted where
each simulation was repeated five times at each setting to
obtain an average result. The two step-sizes, tlow and thigh,
were chosen as 1ms and 2ms respectively. Results from the
simulations are provided in Table 1.

At both model scales, the average speedup increased as
the probability threshold for switching increased. While
all simulations remained stable and maintained accuracy,
there are significant risks in setting the switching threshold
too high. Thresholds which are too large will make the
model susceptible to numerical instability, since high RyR
activity implies significant diffusion fluxes between sites.

The scale of the model was also seen to affect the size of
computation speedup afforded by a two-state control algo-
rithm. At the smallest scale, the highest average speedup
was 20.5%, as compared to 14.3% at the largest scale.
Extending the trend to a full-scale 20,000-site model would
imply only a moderate speedup from global step size
control. The relationship between scale and speedup is a
product of using a model-wide maximum as the decision
variable. As the scale of the model increases, the likelihood
of any one RyR remaining active becomes larger during a
low activity period.

6. CONCLUSION

In this paper, a scalable calcium release model was re-
structured into a network of independent subsystems, and

a parallel solution algorithm was proposed for application
to the new model structure. An analysis of accuracy losses
found that treating inter-site fluxes as dynamic, with a
linear prediction of neighbouring concentrations, produced
a method which is both accurate and robust with respect
to global step-size changes.

The parallel solution method was found to have a com-
putation time which scales linearly O(n) with the scale of
the model n, as compared to quadratic scaling O(n2) in
the original unsplit model. The split-model computation
times were found to improve even further if the stiff solver
was supplied with an analytical means of computing sys-
tem Jacobians, while a two-state global step-size control
algorithm also provided some speed-up.

A parallel model solution algorithm has been combined
with numerical techniques which exploit knowledge of the
model behaviour, and this will enable singificantly faster
simulations of the full-scale heart cell model.
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