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a b s t r a c t 

Recently, it has been proposed that the harmonic patterns emerging from the brain’s structural connectivity underlie the resting state networks of the human brain. 

These harmonic patterns, termed connectome harmonics , are estimated as the Laplace eigenfunctions of the combined gray and white matters connectivity matrices and 

yield a connectome-specific extension of the well-known Fourier basis. However, it remains unclear how topological properties of the combined connectomes constrain 

the precise shape of the connectome harmonics and their relationships to the resting state networks. Here, we systematically study how alterations of the local and 

long-range connectivity matrices affect the spatial patterns of connectome harmonics. Specifically, the proportion of local gray matter homogeneous connectivity 

versus long-range white-matter heterogeneous connectivity is varied by means of weight-based matrix thresholding, distance-based matrix trimming, and several types 

of matrix randomizations. We demonstrate that the proportion of local gray matter connections plays a crucial role for the emergence of wide-spread, functionally 

meaningful, and originally published connectome harmonic patterns. This finding is robust for several different cortical surface templates, mesh resolutions, or widths 

of the local diffusion kernel. Finally, using the connectome harmonic framework, we also provide a proof-of-concept for how targeted structural changes such as the 

atrophy of inter-hemispheric callosal fibers and gray matter alterations may predict functional deficits associated with neurodegenerative conditions. 

1. Introduction 

Understanding the structure-function relationships in large-scale 
brain networks is an active research topic in neuroscience ( Sporns 
et al., 2004; Honey et al., 2010; Mii et al., 2016 ). In clinical neuro- 
science, these relationships can elucidate the role of structural changes 
in neurological diseases and their respective symptoms. Graph theoret- 
ical analysis of brain connectivity has led to new insights about cor- 
tical wiring patterns ( Jirsa and McIntosh, 2007; Bullmore and Sporns, 
2009 ) such as small-world topology, presence of hubs, hierarchical prop- 
erties, and enabled the development of quantitative measures of net- 
work resilience ( Rubinov and Sporns, 2010 ). These metrics are now 

commonly used to understand the organization of brain function and 
dysfunction ( Fornito et al., 2015 ), including Alzheimer’s disease ( Stam 

et al., 2006, 2008 ), dementia ( Agosta et al., 2013 ; Vecchio et al., 2015 ), 
schizophrenia ( Alexander-Bloch et al., 2013 ; Gollo et al., 2018; van den 
Heuvel et al., 2010, 2013; Lynall et al., 2010 ) and Huntington’s disease 
( Harrington et al., 2015 ; McColgan et al., 2015 ). 

Several studies have applied the graph Laplacian, a discrete version 
of the continuous Laplace operator, to brain connectivity matrices and 
inferred progression of neurodegenerative diseases ( Raj et al., 2012 ), 
brain malformation ( Wang et al., 2017 ), time of attention switch- 
ing in a cognitive task ( Huang et al., 2018 ; Medaglia et al., 2018 ), 
macroscale coupling gradient between brain regions ( Preti and Van De 
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Ville, 2019 ), and altered dynamic connectivity in patients with con- 
cussion ( Sihag et al.. 2020 ). These studies focus on long range white- 
matter connectivity and use brain connectivity matrices derived from 

parcellation schemes that range from a few dozens to several hundred 
regions-of-interests (ROI) ( Desikan et al., 2006 ; Destrieux et al., 2010 ). 
Recently, another framework has been proposed for the application of 
graph Laplacian to the human connectome, wherein the local connec- 
tivity of the gray matter cortical structure estimated from the magnetic 
resonance imaging (MRI) data is combined with the long-range con- 
nectivity of the white-matter thalamo-cortical fibers estimated from the 
diffusion MRI (dMRI) data without incorporating any parcellation of 
the cortical surface ( Atasoy et al., 2016, 2017a ). This densely sampled 
connectome model has the advantage of offering the minimum amount 
of discretization possible in the given resolution of the MRI and dMRI 
data and yielding the closest approximation of the continuous Laplace 
operator, as the graph Laplacian converges to its continuous counter- 
part when the number of uniformly sampled data points taken from the 
underlying manifold increases ( Belkin and Niyogi, 2008 ). In contrast to 
other parcellation-based approaches, the input structure of this frame- 
work consists of a graph, where each node represents a vertex from 

the cortical surface mesh without applying any parcellation. Hence, this 
approach provides an increase in the number of nodes by two orders 
of magnitude compared to other methods utilising brain parcellations. 
The eigenvectors of this dense connectome Laplacian (called ”connec- 
tome harmonics ”) yield a set of frequency-ordered harmonic patterns 
emerging on the cortex and provide a connectome-specific extension 
of the well-known Fourier basis to the human brain. Connectome har- 
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Fig. 1. Overview of the workflow for the construction of the connectome harmonics. Local connectivity from cortical surface mesh (bottom left) and long-range 

connections from tractography (top left) are combined in a high-resolution structural connectome (middle), from which a graph Laplacian L is computed based on 

the adjacency ( A ) and the degree ( D ) matrices of the combined connectivities. Connectome harmonics (right) are the eigenvectors of the graph Laplacian. 

monics produced by this framework suggest a relationship between low 

frequency harmonics and brain’s resting state networks such as the de- 
fault mode network (DMN) and reveal unique and frequency-specific 
changes in brain activity measured by functional magnetic resonance 
imaging (fMRI) data ( Atasoy et al., 2017b, 2018 ). 

However, connectome reconstruction methods generally suffer from 

many caveats that hinder the accurate and reproducible reconstruction 
of connectomes ( Jbabdi and Johansen-Berg, 2011 ; Jones et al., 2013 ). 
Here, we aim to provide a systematic assessment of connectome har- 
monic patterns by quantifying their sensitivity to variations of structural 
connectivity, and apply the resulting framework to characterize brain 
changes during neurodegeneration. We demonstrate the effects of dif- 
ferent framework parameters on the emergence of reliable connectome 
harmonics using widely acknowledged and validated template datasets. 
By systematically altering properties of the local connectivity of vari- 
ous cortical surfaces, characteristics of long-range connections, and the 
proportion of local and long-range connectivities, we evaluate the sensi- 
tivity of the framework to produce reliable connectome harmonics. Our 
results reveal that both local gray matter connectivity and long-distance 
white matter fiber tracts determine the exact shape of the connectome 
harmonic patterns, yet the local gray matter connectivity plays a crucial 
role in the emergence of functionally meaningful spatial patterns on the 
cortical surface. Our sensitivity analysis further extends previous appli- 
cations of connectome harmonics by introducing structural white matter 
and gray matter alterations to observe their consequences on functional 
patterns emerging on the cortical surface. Finally, we also discuss im- 
plications of the presented connectome alterations possibly relating for 
existing disease conditions such as Huntington’s and other neurodegen- 
erative disorders. 

2. Methods 

2.1. Multi-modal imaging framework and dataset 

We implemented the systematic construction of connectome har- 
monics ( Fig. 1 ), that we integrated into an existing processing pipeline 
(SCRIPTS, ( Proix et al., 2016 )). Briefly, SCRIPTS is an open-source 
pipeline that processes MRI and dMRI to build subject-specific surface 
meshes, parcellations and corresponding connectivity matrices. We ex- 
tended this pipeline with new features allowing for computing subject- 
specific and subject-averaged high-resolution surface-based connectiv- 
ity matrices, and connectome harmonics. The framework combines local 
and long-range connectivity matrices to form a high-resolution struc- 
tural connectome, on which the graph Laplacian is applied, and from 

which the connectome harmonics are computed. Only parameters rel- 
evant to the high-resolution connectome and the construction of those 
harmonics are explored in this work. 

To alleviate the known shortcomings associated with subject-specific 
imaging methods ( Bürgel et al., 2006 ; Willats et al., 2014 ) from our 
study, we used validated template datasets from open-source studies to 
generate our results. For the surface mesh, we used subject-averaged 
FreeSurfer templates cvs_avg35_in_MNI152 (default), of 20,000 vertices, 
as well as fsaverage5 (20,484 vertices) and fsaverage4 (5,124 vertices). 
All surfaces were registered in the MNI space so the impact of differ- 
ent mesh resolutions could be assessed without manual intervention. 
For the white-matter streamlines, we used the Gibbs dataset, which 
contains 20,712,081 streamlines computed by probabilistic tractogra- 
phy from 169 subjects ( Horn and Blankenburg, 2016 ). All streamlines 
are registered in MNI coordinates and normalized to minimize inter- 
subject differences of brain sizes and shapes. The dataset has been 
cross validated across cortico-cortical and cortico-thalamo-cortical at- 
lases ( Behrens et al., 2003 ; Bürgel et al., 2006 ; Horn and Blanken- 
burg, 2016 ). See Supplementary Text 1 for further details about the ac- 
quisition and processing of images from the Gibbs connectome database, 
whereby individual subjects were registered in MNI space and normal- 
ized using the DARTEL procedure ( Ashburner, 2007 ) in order to correct 
for inter-subject differences in brain volume and estimate a group con- 
nectome. 

2.2. Local and long-range connectivity 

Gray matter intracortical connectivity includes both branched ax- 
onal ramifications within the gray matter (typically at lengths of 0 − 2 
mm ( Braitenberg and Schuz, 2013 ), and the intrinsic horizontal con- 
nectivity that can reach up to 8 mm within the gray matter along un- 
branched axons that run parallel to the cortical surface ( Gonzlez-Burgos 
et al., 2000; Melchitzky et al., 2001; Voges et al., 2010a,b; Braitenberg 
and Schuz, 2013 ). The horizontal gray matter connections can terminate 
in patches across brain regions, resulting in anisotropic propagation of 
brain activity throughout the gray matter and thus playing a role in 
first order processing among sensory areas ( Voges and Perrinet, 2012 ). 
White matter connectivity is usually derived from dMRI and tractogra- 
phy analysis and includes both streamlines of lengths less than 40 mm 

( Bajada et al., 2019 ), including U fibers, known to be unreliably counted 
due to limitations in dMRI spatial resolution ( Gigandet et al., 2008 ), 
and medium and long-range streamlines that are 80 − 160 mm long, 
believed to be associated with areas involved in functional integration 
( Bajada et al., 2019 ). Note that to show U-fibers as short as 3 mm re- 
quires a specific tractography algorithm parameter of step size less than 
1 mm and a high resolution MRI, which differs from the standard proto- 
col ( Song et al., 2014 ). In our study, we use the term local connectivity to 
refer to intrinsic horizontal gray matter connectivity of length 1 − 6 mm, 
but not including the single cortical column scale of less that 1 mm. This 
choice is consistent with the cortical surfaces used herein, whereby the 



S. Naze, T. Proix, S. Atasoy et al. NeuroImage 224 (2021) 117364 

Table 1 

Summary table of parameters. 

Parameter Default value; [range] Unit Interpretation 

f i 0; [0; 8; 21; 89] ∅ Smoothing coefficient of the cortical surface mesh 

z C 1; [0–10] standard deviation of weight distribution Adjacency weight threshold used for binarization of 

long-range connectivity matrix 

Λs 2; [1; 2] node distance (number of graph edges away) Width of the local connectivity kernel 

𝜂 0; [0–100] % Percentage of long-range connection trimmed based on 

averaged white matter track length 

𝜅 0 [0–100] % Percentage of interhemispheric long-range connections 

randomly removed ( callosectomy ) 

𝜌 0 [0–100] % Percentage of local connections randomly removed 

( anisotropy ) 

average edge lengths are 2.9 mm, 3.1 mm and 5.6 mm for fsaverage5, 

cvs_avg35 and fsaverage4 , respectively (see also Suppl. Figure 1C ). We 
use the term long-range connectivity to refer to any white matter connec- 
tion fibers with a minimum track length of 10 mm. This lower bound of 
10 mm for a tractography step size of 2 mm is consistent with previous 
seminal work wherein tracks shorter than 5 mm were discarded when a 
tractography step size of 1 mm was used ( Zalesky et al., 2010 ) in order 
to avoid the inclusion of spurious tracks (see Suppl. Figure 1B ). The 
shortest of the white matter connections are referred to as short-range 
white matter connections, but should not be confused with the local 
gray matter connectivity described above. 

2.3. Computation of high-resolution connectome 

We computed the vertex-based high-resolution connectome using 
streamlines reconstructed by tractography and vertices from the cortical 
surface meshes. We manually checked that tracks and mesh were prop- 
erly aligned (see Suppl. Figure 1A ), for distance between track bounds 
and nearest cortical surface mesh (see Suppl. Figure 1B ). Intersections 
between the streamlines with FreeSurfer’s cortical surface mesh tem- 
plates were assessed using the coordinates of two points of the tracks at 
each bound (see Suppl. Figure 2 ). If an intersection was found for each 
bounds i and j , the connection weight C i,j between the vertices nearest 
to the intersection points is incremented by 1. Otherwise, if for one or 
both bounds the track was too short to reach the surface mesh (no inter- 
section point), a linear extension of 3 mm using the direction defined by 
linearly interpolating the bound and the third last coordinates from the 
bound was added to the track, and the intersection was assessed again. 
If no intersection is found in one or both bounds even after extension, 
the track is discarded. Length of track bound and size of the extension 
are adjustable parameters, and several cortical meshes are available us- 
ing white-matter gray-matter boundary (WMGM) or gray matter (pial) 
surfaces. 

2.4. Computation of connectome harmonics 

As in ( Atasoy et al., 2016 ), we use the graph Laplacian L as the dis- 
crete counterpart of the Laplace operator applied to the brain connectiv- 
ity matrix. The graph Laplacian can be interpreted as a particular case 
of the discrete approximation of the continuous Laplace-Beltrami oper- 
ator, a generalization of the Laplace operator to Riemannian manifolds. 
We use the graph Laplacian ( Levy, 2006 ) defined as: 

𝐿 = 

1 
2 
(
( 𝐷 − 𝐴 ) + ( 𝐷 − 𝐴 ) 𝑇 

)
, (1) 

where A is the adjacency matrix of the combined connectome consisting 
of white-matter and gray-matter connectivity, and D its degree matrix. 
Note that other formulae exist for computing the discrete Laplacian. 
Our choice of this Laplacian formula is mainly driven by its numeri- 
cal stability as discussed in ( Levy, 2006 ). The combined connectome is 
the adjacency matrix A obtained by combining the local connectivity 
adjacency matrix A 𝓁 derived from the cortical surface mesh and the 

long-range connectivity adjacency matrix A c constructed by tractogra- 
phy methods: 

𝐴 = 𝐴 𝓁 ∪ 𝐴 𝑐 , (2) 

whereby both A 𝓁 and A c are m × m matrices with m being the number 
of vertices of the cortical surface mesh. The long-range connectivity ad- 
jacency matrix A c is derived by removing the weakest weights of the 
z-scored long-range connectivity matrix C 

z (referred in this article as 
thresholding): 

𝐴 𝑐 𝑖,𝑗 
= 

{ 

1 if 𝐶 𝑧 
𝑖,𝑗 
> 𝑧 

𝐶 
, 

0 otherwise 
(3) 

for all 𝑖, 𝑗 = 1 , … , 𝑚, with 𝑧 𝐶 being the adjacency weight threshold. Note 
that we applied z-score normalization to the long-range connectivity 
matrix C in order to have integer values of 𝑧 

𝐶 
relating to the standard 

deviation of connection weights: 

𝐶 𝑧 = 

(
𝐶 − 𝜇

𝐶 

)
∕ 𝜎

𝐶 
, (4) 

where 𝜇
𝐶 

is the mean connectivity strength of the long-range connec- 
tome C , and 𝜎

𝐶 
its standard deviation. A 𝓁 represents the local gray mat- 

ter connectivity matrix. As in ( Atasoy et al., 2016 ), two nodes are locally 
connected when they are connected through the mesh as direct neigh- 
bors. 

We then decompose the graph Laplacian L into a finite number of 
eigenvalues 𝜆k and eigenvectors, or connectome harmonics, 𝜓 k : 

𝐿 𝜓 𝑘 = 𝜆𝑘 𝜓 𝑘 . 

2.5. Connectome alterations 

Local and long-range connectivities can be altered by changing pa- 
rameters at several stages of the framework and are summarized in 
Table 1 . At early stages, smoothing of the cortical surface mesh ( f i ) and 
the number of streamlines to retain from tractography are important 
parameters to consider in building connectivity matrices (we used by 
default all available streamlines). At later stages, different parameter se- 
lections are possible for creating adjacency matrices from weighted con- 
nectivity matrices by thresholding ( z C ), for trimming ( 𝜂, 𝜅) of the long- 
range white matter connections, and for the diffusion kernel width ( Λs ), 
mesh resolution ( n v ), and anisotropy ( 𝜌) of the local gray matter con- 
nections. These parameters influence the outcome of the framework by 
modifying the graph structure, the proportion of local or long-range con- 
nections in the combined connectome used for computing harmonics, or 
selectively removing specific connections or connectivity patterns. 

Default parameter values were chosen based on a preliminary pa- 
rameter space exploration so that harmonics could be generated most 
reliably while varying a subset of other parameters. Mapping of the De- 
fault Mode Network (DMN) to the Desikan-Killiany atlas is provided in 
Suppl. Table 1 . 
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2.5.1. Local connectivity alterations 

Cortical surface mesh smoothing. Cortical surface meshes are often 
averaged or smoothed in studies looking at averaged brain properties 
( Fischl et al., 1999 ). Here, smoothing was performed to soften the 
strong curvature of the surface prior to computing the connectome by 
the surface-tracts intersection routine (see Suppl. Figure 2 ). Because 
linearly extended tracts can terminate obliquely or not cross the mesh, 
this routine can result in a reassignment of the track bound to a 
different cortical surface node, or the track not being assigned at all, for 
computing the brain wide connectivity matrix. Here when indicated, 
cortical surface meshes from Freesurfer’s templates were smoothed us- 
ing the smoothPatch function from an open source MATLAB toolbox 
( https://www.mathworks.com/matlabcentral/fileexchange/26710- 
smooth-triangulated-mesh ) using the Laplacian smoothing with inverse 
vertice-distance based weights and by varying the smoothing coefficient 
f i . The numbers of smoothing iterations were taken from the Fibonacci 
sequence, up to 89 iterations, and visually inspected. 

Local diffusion kernel width and mesh resolution. We applied two 
widths Λs of diffusion kernels over the cortical surface to compute the lo- 
cal gray matter connectivity matrix ( Atasoy et al., 2016 ). Widths Λs com- 
prised either one or two nearest neighbors, each resulting in a different 
proportion of local to long-range connection when the number of long- 
range white matter connections are fixed. If instead the proportion of lo- 
cal to long-range connections was held constant, a larger local diffusion 
kernel width allows to increase the number of long-range connections 
incorporated to the combined connectome. For example, a local:long- 
range proportion of 1: 1 with a local kernel of only immediate neigh- 
bors resulted in a combined connectome comprising around 100,000 
long-range connections. The same 1: 1 proportion with a local kernel 
spanning immediate neighbors and their neighbors resulted in a com- 
bined connectome comprising around 400,000 long-range connections. 
The default local kernel width chosen throughout the study was two, but 
the results do not change with only direct neighbor connections ( Fig. 8 ). 
To vary the mesh resolution, we used a mesh with 20,484 vertices ( fsav- 

erage5 ) and a coarser version of 5,124 vertices ( fsaverage4 ). Changes in 
mesh resolution affect the position of vertices and can result in a differ- 
ent vertex attribution of track bounds or in discarded tracks. 

Anisotropy. We introduce the removal of cortical surface mesh edges 
in a process termed anisotropy , whereby mesh edges are removed either 
randomly (with probability 𝜌), by ascending order, or by descending 
order of edge lengths. A visualization of the resulting graphs structure 
for gradual changes to 𝜌 is provided in Suppl. Fig. 10 for illustrative 
purpose. 

2.5.2. Long-range connectivity alterations 

We performed two distinct operations to alter the long-range con- 
nectivity: thresholding, which is based on the number of tracks between 
vertices (weight-based), and trimming, which is based on the average 
track length between vertices (distance-based). 

Long-range connectivity thresholding. For thresholding, the z-scored 
weighted long range connectivity matrix C 

z ( Eq. 4 ) was binarized ac- 
cording to an adjacency weight threshold value 𝑧 𝐶 . The ratio r of local 
versus long-range connections is defined as 𝑟 = tr ( 𝐴 𝓁 )∕ ( tr ( 𝐴 𝓁 ) + tr ( 𝐴 𝑐 )) , 
which is the number of local connections divided by the summed num- 
bers of local and long-range connections. Because the local gray matter 
connectivity matrix is determined by the cortical surface mesh and the 
diffusion kernel, we kept it constant (unless otherwise mentioned) and 
varied the white matter connectivity threshold 𝑧 

𝐶 
, which thereby con- 

trols the proportion r of local connections. As weights represent the num- 
ber of streamlines connecting distant nodes, when 𝑧 𝐶 increases, only the 
most prominent tracks of the white matter remain. 

Long-range connectivity trimming. Trimming was simulated by re- 
moving some percentage 𝜂 of the long range connectivity entries based 
on their average track length. Different scenarios were implemented: 1) 

removing the longest tracks first; 2) removing the shortest tracks first; 
and 3) removing tracks in random order. Note that we applied trimming 

to the long-range white matter connections after applying the threshold 
𝑧 𝐶 = 1 , thereby setting the proportion of local connections to r ≃ 0.7. 
Thus, the reported percentage of trimming affected only the remaining 
long-range white matter connections after thresholding. 

Callosectomy. Finally, we introduce the removal of inter-hemispheric 
connections in a process termed callosectomy , whereby inter- 
hemispheric connections are removed either randomly (with probability 
𝜅) or by descending order of track lengths. A visualization of the re- 
sulting graphs structure for gradual values of 𝜅 is provided in Suppl. 

Figure 10 for illustrative purpose. 

2.6. Comparison metrics 

To assess the sensitivity of a given parameter of the framework, we 
compared connectome harmonics by computing Pearson correlations 
between the harmonic patterns emerging from unaltered and altered 
connectomes. We also compared each harmonic to the DMN using mu- 
tual information as in ( Atasoy et al., 2016 ). These metrics serve differ- 
ent purposes: Pearson correlation permits quantification of similarity 
between harmonics, while mutual information indirectly measures the 
structure-function relationships between each harmonic and the DMN. 

2.6.1. Correlation 

Each connectome harmonic is represented by a vector of the size of 
the number of vertices in a cortical surface mesh. When smoothing the 
cortical surface mesh or changing its resolution, the ordering of vertices 
is affected. To overcome such disorganization, the harmonic vectors are 
projected onto the coarser space of the Desikan-Killiany atlas, which is 
conserved by region mapping. We refer to this coarser atlas space as 
the lower resolution alternative to the higher resolution mesh space. The 
similarity between harmonics of two different meshes is then assessed 
in the lower resolution atlas space by computing the correlation P be- 
tween the two coarse harmonic vectors. As two sets of connectome har- 
monics become identical, a very high correlation value results ( P → 1) 
for pairs of harmonics with the same index, results in a diagonal har- 
monics correlation matrix ( Fig. 6 , 7 and 8 ). Divergence from the diag- 
onal matrix reflects a decrease in correlation between harmonics of the 
same index across the two sets, reflecting a disorganization of the eigen- 
decomposition output in the form of eigenvalue/eigenvector pairs. 

2.6.2. Mutual information 

The Mutual Information (MI) between a connectome harmonic 𝜓 k 
and the DMN vector v DMN was computed as follows: 

𝑀 𝐼 ( 𝜓 𝑘 , 𝑣 DMN ) = 

𝑁 ∑
𝑛 =1 

𝑀 ∑
𝑚 =1 

𝑝 𝜓 𝑘 ,𝑣 DMN 
( 𝑛, 𝑚 ) log 

( 

𝑝 𝜓 𝑘 ,𝑣 DMN 
( 𝑛, 𝑚 ) 

𝑝 𝜓 𝑘 ( 𝑛 ) 𝑝 DMN ( 𝑚 ) 

) 

(5) 

where p ( n ) is the probability distribution of n , and p ( n, m ) is the joint 
probability distribution of n and m , with v DMN being the vector rep- 
resenting the Default Mode Network in atlas space. The values of the 
harmonic vector were discretized into N = 16 bins, while the DMN is 
represented by a binary vector (M = 2 bins), whether the cortical mesh 
vertex is part of the DMN or not ( Atasoy et al., 2016 ). Mapping of the 
Default Mode Network (DMN) to the Desikan-Killiany atlas is provided 
in Suppl. Table 1 . 

2.7. Surrogate and statistics 

Different surrogates of the connectome harmonics were obtained 
by using different methodological types of randomization of the high- 
resolution connectome. We used the Monte-Carlo method with the null 
hypothesis that harmonics estimated from the structural connectivity 
matrix after randomizing the long-range connectivity (randomized har- 
monics 𝜓̃ 𝑘 ) have the same similarity, as measured by MI, compared to 
the ones generated from the original connectome. Each type of random- 
ization was repeated 100 times, involved shuffling long-range but not 

https://www.mathworks.com/matlabcentral/fileexchange/26710-smooth-triangulated-mesh
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Fig. 2. Weight-based thresholding of long- 

range white matter connections increases MI 

between connectome harmonics and the de- 

fault mode network (DMN) . (A) Proportion r 

of local gray matter connections in the adja- 

cency matrix A of the graph Laplacian, for dif- 

ferent threshold value z C applied to the long- 

range white matter connectivity. (B) Distribution 

of connectome weights (number of white matter 

streamlines W between vertices) in log-log scale, 

described as probability given that the weight is 

positive ( P ( W | W > 0)). Vertical lines correspond 

to 𝑧 𝐶 values with same color code as A). (C-D) 

Mutual information (MI) between the first 100 

connectome harmonics and the DMN for a range 

of z C resulting in a range of proportion r of local 

connections. Color code is consistent across pan- 

els. (See Suppl. Figure 3 for MI with other RSNs). 

local connectivity, and was performed using the brain connectivity tool- 
box ( Rubinov and Sporns, 2010 ) wherein a selected ratio of connections 
are shuffled while keeping the degree of each node unchanged (i.e. the 
total number of connections per node remained the same for each node). 
This constraint maintains the hubness of the graph, and as such is not as 
destructive to graph features as is a completely unconstrained shuffling 
method. Allowing for hubness deterioration was not within the current 
scope of work but may be investigated in the future. We term the ran- 
domization type involving shuffling only inter-hemispheric connections 
of the long-range connectivity matrix inter , and randomization involving 
shuffling only intra-hemispheric connections of the long-range connec- 
tivity matrix intra . For inter+intra randomization, both inter- and intra- 
hemispheric connections were shuffled by isolating each quadrant of the 
matrix and shuffling them independently. For global randomization, all 
long-range connections are shuffled in a single batch. 

We computed a surrogate summary statistic by calculating the proba- 
bility, 𝑝 

𝑀𝐼 surr 
, that the 𝑀𝐼 surr being greater than the original 𝑀𝐼 orig for 

𝑁 surr surrogates of a subset of n k consecutive connectome harmonics 
𝜓 𝑘 ∈𝐾={ 𝑘 0 , …,𝑘 0 + 𝑛 𝑘 } , starting at rank k 0 . In the most common case through 
this manuscript, 𝑘 0 = 7 and 𝑛 𝑘 = 5 as we are interested in harmonics 7 
to 11. 

𝑝 
𝑀𝐼 surr 

= 

1 + 

𝑁 surr ∑
𝑛 =1 

𝑛 𝑘 −1 ∑
𝑚 =0 

{ 

1 if 𝑀 𝐼 orig 𝑘 0 + 𝑚 
≤ 𝑀 𝐼 surr 𝑛,𝑘 0 + 𝑚 

0 otherwise 

1 + 𝑁 surr × 𝑛 𝑘 
where 𝑁 surr = 100 is the number of surrogates for each randomization 
type. Statistics were computed for all values of 𝑧 𝐶 but only reported for 
𝑧 𝐶 = 1 since it is the critical value for which large scale patterns emerge 
on the cortical surface. We corrected p-values for multiple comparisons 
using the Benjamini-Hochberg procedure with false-discovery rate 0.1 
( McDonald, 2009 ). 

3. Results 

To understand the effect of the two different types of struc- 
tural connectivities composing the human connectome as defined in 

( Atasoy et al., 2016 ), namely the local gray matter connectivity and the 
long-range white matter connectivity, we altered several parts of the 
framework influencing either the long-range white connectivity only, 
local gray matter connectivity only, or both together. 

3.1. Effects of white matter connection changes on connectome harmonics, 

affecting only long-range connectivity 

Weight-based thresholding 

We first investigated the effect of applying different threshold val- 
ues z C to the weights of the long-range white-matter connections in- 
cluded in the human connectome (see Methods ). As expected, the ratio 
𝑟 = tr ( 𝐴 𝓁 

2 )∕ 
(
tr ( 𝐴 𝓁 

2 ) + tr ( 𝐴 𝑐 
2 ) 
)

of the number of local over total number 
of connections increases as a function of the adjacency weight thresh- 
olds 𝑧 𝐶 ( Fig. 2 A) applied to the white matter connectivity. This leads to 
the incremental removal of long-range connections with lowest weights 
( Fig. 2 B). We computed the mutual information (MI) between each con- 
nectome harmonic pattern and the DMN, projected onto the cortical 
surface mesh (see Methods ). We observed that for low frequency connec- 
tome harmonics, the MI generally increases with increasing 𝑧 𝐶 ( Fig. 2 C). 
This suggests that local connections play a key role in the emergence of 
functionally relevant connectome harmonic patterns. For high propor- 
tions of local over long-range connectivity (e.g., resulting from z C > 0.6), 
connectome harmonics 𝜓 𝑘 ∈𝐾={2 , 3 , 4 , 7 , 8 , 9 , 10 , 11} yielded the highest MI indi- 
cating the strongest overlap of these harmonics with the DMN. These 
MI values (MI ≃ 0.05) are consistent with the ones previously reported 
in ( Atasoy et al., 2016 ). To prove the robustness of the framework, we 
also reproduced those findings in a single HCP subject (see Suppl. Fig- 

ure 5A-D ). 
Our work focuses on the DMN, but the MI measured between har- 

monics and other resting state networks (RSN) follows a similar pattern 
( Suppl. Figure 3 ), whereby higher z C leads to higher MI. Interestingly, a 
first peak is commonly observed across several RSNs around the 3 rd har- 
monic, and a broader second peak is observed before or around the 9 th , 
which seems more specific to each RSN. A third peak between the 30 th 

and 40 th harmonics is present for the DMN. In the following, our net- 
work of interest remains the DMN, and the MI is systematically reported 
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Fig. 3. Mutual Information (MI) between connectome harmonics and the DMN for several randomized versions of long-range white matter connectivity. 

Mean and standard deviation of connectome harmonics’ 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} MIs for different proportions of local to long-range connections (parameterized by the 

adjacency weight threshold 𝑧 𝐶 as in Figure 2 ). Different types of connectome surrogates are shown: original (no randomization), inter (interhemispheric only), intra 

(intrahemispheric only), inter+intra (inter and intrahemispheric separately), and global (inter and intrahemisphere combined), see Methods ). ⋆ indicates 𝑝 < 0 . 05 of 

Monte-Carlo statistical test of 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} MI values with the DMN for original harmonics vs. surrogate data MI distributions for 𝑧 𝐶 = 1 of the different types of 

randomizations. MI with other RSNs for those randomizations are shown in Suppl. Figure 9 . 

for harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} as motivated by the range reported to 
match the DMN pattern in ( Atasoy et al., 2016 ) and Fig. 2 . 

Randomizations 

We then assessed whether the specific organization of the long-range 
connections significantly affects the connectome harmonic patterns and 
their relation to the DMN. 

We generated surrogate data with several types of randomizations 
of the long-range connections (i.e. inter, intra, inter+intra , and global , 
see Methods ) for each value of 𝑧 𝐶 in order to study their effects on 
MI between connectome harmonics and the DMN. Local connectivity 
was kept fixed and MIs between randomized connectome harmonics 
𝜓̃ 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} and the DMN were computed ( Fig. 3 ). As previously, 
long-range connections were eliminated by increasing the threshold z C 
(and therefore the ratio r ) which is entirely dependent on the number of 
streamlines (weight) of each long-range white matter connection, with 
weaker connections removed first. 

The difference of MI between the original connectome harmon- 
ics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} and the DMN compare to those same harmonics 
when inter-hemispheric connections are randomized, without signifi- 
cant difference ( ∀𝑧 𝐶 , 𝑝 > 0 . 1; Fig. 3 original vs inter ). However, as soon 
as intra-hemispheric connections are randomized, the MI with the DMN 

decreases significantly ( 𝑝 < 0 . 05 for original vs. intra, original vs. in- 

ter+intra , and original vs. global , FDR corrected, reported for 𝑧 𝐶 = 1 
for clarity, corresponding to a proportion r ≃ 0.7 of local connections). 
Suppl. Figure 7 shows the resulting first 10 harmonics projected onto 
the cortical surface mesh for visualization of the obtained spatial pat- 
terns for those different types of randomizations. 

Regardless of the randomization method, MI increases with higher 
proportions of local to long-range connections (as in Fig. 2 ). Suppl. Fig- 

ure 8 shows that these results are also observed when the MI is com- 
puted on the 3 rd harmonic alone or a wider range of harmonics (e.g. 
from 2 to 20, 𝜓̃ 𝑘 ∈𝐾={2…20} ). Together, these observations suggest that 
functionally relevant features of the low-frequency connectome har- 
monic patterns observed for proportions of local connections r > 0.4 
(corresponding to z C > 0.3) disappear with intrahemispheric and global 
randomization. This is further supported by Suppl. Figure 9 , showing 

that these observations are valid not only for the DMN but also for other 
RSNs. We mainly report the relation to the DMN for consistency with 
the original study ( Atasoy et al., 2016 ). 

Distance-base trimming 

We investigated the role of shorter versus longer streamlines in 
the white matter connectivity by removing the long-range connections 
based on their streamlines average lengths, a process that we call trim- 
ming. 

When the longest white-matter fibers were trimmed first ( Fig. 4 A), 
the MI between connectome harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} and the DMN 

showed a rapid increase (i.e. for 0 –40% white matter connections cut), 
whereas when shortest connections were trimmed first ( Fig. 4 B) we ob- 
served low MI values until a certain threshold was crossed correspond- 
ing to ~ 60% of white matter connections being removed. This result 
indicates that the presence of long-range streamlines is a main contribut- 
ing factor for the observed low MI between harmonics and the DMN. 
Trimming long range connections in random order also showed lower 
MI values for 0–40% cut ( Fig. 4 C), and further increases of MI values 
above 0.05 for trimming above 60%. This is not surprising, since the dis- 
tribution of fiber lengths is skewed towards the short fibers (see Suppl. 

Figure 1B , middle histogram), leading to a higher probability of remov- 
ing shorter streamlines first, and thus confirming our findings reported 
above. 

Callosectomy 

Next, we assessed the contribution of inter-hemispheric connections 
to the functional relation of connectome harmonics to the DMN ( Fig. 5 ). 
Inter-hemispheric connections were trimmed by ascending and descend- 
ing fiber lengths or randomly in a process referred to as callosectomy 

(as in Wang et al., 2017 ). Note that the alteration based on length 
is deterministic, while the random removal is not, and thus can be 
run multiple times to establish statistics. Fig. 5 shows that harmonics 
𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} are not strongly affected by the callosectomy until at 
least 50% of the inter-hemispheric connections are removed. The re- 
lation of harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} to the DMN is more sensitive to 
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Fig. 4. Effect of different white matter fiber lengths on the emergence of functional harmonics patterns. Mutual information (MI) between the DMN and 

connectome harmonics’ 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} for different percentages of trimming of the white matter connectivity. Trimming was performed by eliminating longest tracks 

first (A) , shortest tracks first (B) , and in random order (C) . Baseline connectome used for 𝑧 𝐶 = 1 corresponding to r ≃ 0.7 before trimming. 

Fig. 5. Mutual Information between connectome harmonics and the DMN for gradual removal of inter-hemispheric white matter connectivity . Mutual 

information (MI) between DMN and harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} for gradual trimming of inter-hemispheric connections (termed callosectomy ) by descending (A), 

ascending (B) orders of track length, and randomly (C). Adjacency weight threshold is set to 𝑧 𝐶 = 1 , corresponding to the proportion r ≃ 0.7 of local connections 

before alteration. ⋆ indicates 𝑝 < 0 . 05 of Monte-Carlo statistical test between distributions of MIs using 100 samples. Note that we used a maximum callosectomy of 

99% in order to avoid totally disconnected hemispheres. 

short than long inter-hemispheric fibers when those corresponding con- 
nections are remove first ( Fig. 5 A-B). When randomly trimmed, MI be- 
tween the DMN and harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} is not significantly dif- 
ferent ( 𝑝 > 0 . 1 using 100 samples, after Bonferroni correction for multi- 
ple comparisons). Suppl. Figure 11 shows the resulting 10 first har- 
monics projected onto the cortical surface mesh for visualization of 
the obtained spatial patterns for gradual removal of inter-hemispheric 
connections. 

A special case occurs when all inter-hemispheric connections are re- 
moved (i.e. at 100% callosectomy) such that left and right hemispheres 
are separated and patterns appear consecutively on one hemisphere and 
the other ( Suppl. Figure 12A , middle). In such a case, eigenvalues are 
organized by pairs i.e. ( 𝜆1 , 𝜆2 ) , ( 𝜆3 , 𝜆4 ) , ( 𝜆5 , 𝜆6 ) , … as shown in Suppl. 

Figure 12B , with two zero-valued eigenvalues 𝜆1 and 𝜆2 indicating the 
two isolated sub-graphs ( Chung, 1996 ), one for each hemisphere. As 
such, we also re-constructed the harmonics on the whole brain by com- 
bining eigenvectors computed on each hemisphere separately ( Suppl. 

Figure 12A , right). We assessed the MI between these newly generated 
harmonics and the DMN for different values of white matter connectiv- 
ity threshold z C ( Suppl. Figure 12C ) and observe the same pattern of 
higher MI as z C increases. 

3.2. Effects of cortical surface mesh changes on connectome harmonics, 

affecting both local gray matter and long-range white matter connections 

We assessed how changes in the cortical surface mesh geometry and 
resolution affect the patterns of connectome harmonics. 

Smoothing 

Firstly, we investigated the changes in harmonic patterns when using 
a gray matter surface cortical mesh (Freesurfer’s pial surface) versus a 
white-matter gray-matter boundary surface (WMGM, Freesurfer’s white 

surface ( Fig. 6 and Suppl. Figure 2 ). In order to investigate the effect 
of the precise geometry of the cortex on the particular shape of the con- 
nectome harmonic patterns, we applied mesh smoothing to different 
meshes of the cortical surface and iteratively increased the amount of 
smoothing. We measured the correlation between harmonics in the at- 
las space to compare harmonic patterns emerging on different cortical 
surface meshes (see Methods). Note that smoothing of the cortical sur- 
face mesh also affects the white-matter connectome, as the long-range 
connectivity matrix is generated based on the track-mesh intersections. 

We found that when using the WMGM surface mesh, smoothing did 
not have a significant influence on the lowest frequency harmonics up 
to the 15 th , indicated by high diagonal values in the correlation matrices 
in Fig. 6 , constructed by correlating the original cortical surface (rows) 
and the smoothed surfaces (columns). Higher frequency harmonics were 
moderately affected by these changes, as seen by high values of correla- 
tion shifting from being exactly on the diagonal to being a few elements 
off diagonal, indicating a re-ordering of eigenvalue-eigenvector pairs by 
only a few ranks. When using the gray matter pial surface, we observed 
a degradation of the correlation between harmonic patterns (lower val- 
ues in the diagonal of the correlation matrix, Fig. 6 , right). In this case, 
correlation values for low frequency harmonics 𝜓 𝑘 ∈𝐾={1 , 2 , 3 , 4 , 5} remained 
unaffected, but decreased for low frequency harmonics 𝜓 𝑘 ∈𝐾={6 , …, 20} . 
Here, low frequency harmonics corresponding to the lowest 20 eigen- 
values of the eigenspectrum represent only 0.1% of the harmonic spec- 
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Fig. 6. Low frequency harmonics are robust to cortical surface changes. High-resolution connectome and connectome harmonics are recomputed for different 

smoothing levels of WMGM cortical surface (left), or pial surface (right) and compared to original WMGM surface mesh using Pearson correlation in atlas space for 

the first 100 harmonics. Adjacency weight threshold is set to 𝑧 𝐶 = 1 , corresponding to a proportion r ≃ 0.7 of local connections. 

Fig. 7. Low frequency harmonics are robust to mesh resolution changes. Region-wise correlation of connectome harmonics 𝜓 𝑘 ∈𝐾={1 , …, 100} using fsaverage4 

(5,124 vertices) and fsaverage5 (20,484 vertices) cortical surface mesh templates from FreeSurfer. Proportion r of local connections is indicated by different degrees 

of connectome adjacency weight threshold 𝑧 𝐶 . Insets show a magnified version of the correlation matrix for connectome harmonics 𝜓 𝑘 ∈𝐾={1 , …, 20} . 

trum. Changes were even more prominent in higher frequency modes 
where the diagonal line disappear. We also reproduced those findings in 
a single HCP subject ( Suppl. Figure 5E ), showing that the on-diagonal 
correlation values are very strong including for high-frequency harmon- 
ics, which supports that the framework is robust to perturbations of the 
WMGM surface such as smoothing. 

Mesh resolution 

We also examined the impact of using different mesh sizes to rep- 
resent the cortical surface ( Fig. 7 ), while varying z C and therefore the 
proportion of local connections r . 

We found that when the proportion of local connectivity is high 
compared to the long-range connections (i.e. r > 0.7), the patterns of 
the emerging low frequency harmonics 𝜓 k < 15 were robust to these 
changes in local gray matter connectivity, as seen by the diagonal on 
the correlation matrices for z C > 1. Note that since different mesh 
resolution implies that the ordering of vertices from one mesh reso- 
lution to the other does not pair, the correlation matrices are com- 
puted in atlas space rather than in vertex space, resulting in more noisy 
values. 
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Fig. 8. Low frequency harmonics are robust to local diffusion kernel width changes. Vertex-wise correlation of connectome harmonics 𝜓 𝑘 ∈𝐾={1 , …, 100} using 

cvs_avg35 template decimated to 20,000 vertices, using Λ𝑠 = 1 ( Λ1 ) vs. Λ𝑠 = 2 ( Λ2 ) neighboring vertices as local connectivity kernel. Proportion r of local connections 

for each kernel sizes (separated by a dash Λ1 − Λ2 ) is indicated by different degrees of connectome adjacency weight threshold 𝑧 
𝐶 
. Insets show a magnified version 

of the correlation matrix for connectome harmonics 𝜓 𝑘 ∈𝐾={1 , …, 20} . 

Fig. 9. Mutual Information between connectome harmonics and the DMN for gradual disruptions of local gray matter connectivity . Mutual information 

(MI) between DMN and harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} for gradual removal of local gray matter connections (termed anisotropy ) by descending (A), ascending (B) order 

of edge length and in random order (C). Adjacency weight threshold is set to 𝑧 𝐶 = 1 corresponding to a proportion r ≃ 0.7 of local connections before alteration. ⋆ 

indicates 𝑝 < 0 . 05 of Monte-Carlo statistical test between distributions of MIs using 100 samples. 

3.3. Effects of gray matter connection changes on connectome harmonics, 

affecting only local connectivity 

Local diffusion kernel width 

We then focused on alterations affecting only the local gray mat- 
ter connectivity, first by changing the spatial extent Λs of the lo- 
cal connectivity ( Fig. 8 ) while varying z C and therefore the propor- 
tion of local to long-range connections r . As previously reported, we 
found that when the local connectivity was sufficiently strong with 
respect to the long-range connections (i.e. r > 0.7), the patterns of 
the emerging low frequency harmonics 𝜓 k < 15 were robust to the 
widening or narrowing of the local gray matter connectivity kernel 
width, as seen by a clear diagonal on the correlation matrices for 
z C > 1. 

Note that the proportion r of local gray matter connections also 
vary according to the local connectivity kernel width Λs since wider 
kernels create more local connections. We also reproduced those find- 
ings in a single HCP subject ( Suppl. Figure 5F ), showing that the on- 
diagonal correlation values are very strong including for high-frequency 
harmonics, which supports that the framework is robust to such 
changes. 

Anisotropy 

The last modification of the local gray matter connectivity consisted 
of removing edges from the mesh forming the local connectivity matrix, 
a process termed anisotropy . As for the callosectomy, we performed such 
trimming either by ascending or by descending order of edge lengths, or 
randomly ( Fig. 9 ). Note again that the alteration based on edge length 
is deterministic, while the random removal is not and thus can be run 
multiple times to establish statistics. It can be observed that when edges 
are removed randomly or when longest edges are removed first ( Fig. 9 A 

and 9 C), the MI between harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} and the DMN de- 
creases for anisotropy 𝜌 above 10% ( 𝑝 < 0 . 05 using 100 samples, after 
Bonferroni correction). In the other case, when shortest edges were re- 
moved first ( Fig. 9 B), the MI between harmonics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} and 
the DMN decreases faster, for 𝜌 of 5%. Suppl. Figure 7 shows the re- 
sulting 10 first harmonics projected onto the cortical surface mesh for 
visualization of the obtained spatial patterns. 

4. Discussion 

In this work, we have presented a quantitative evaluation of how 

changes in the structural connectome affect the emergence of connec- 



S. Naze, T. Proix, S. Atasoy et al. NeuroImage 224 (2021) 117364 

tome harmonic patterns. On one hand, we demonstrate that the pro- 
portion of local gray matter to long-range white matter connections is 
a critical determinant for the emergence of spatial harmonic patterns 
on the cortical surface consistent with functional brain networks. On 
the other hand, changes to the cortical surface mesh only weakly af- 
fect the lowest frequency connectome harmonics. The relationship be- 
tween the structural connectome and the RSNs is a covered topic ( Honey 
et al., 2007; Deco et al., 2011 ), and many factors have been shown to 
influence this relationship, including the topology of the connectome 
( Goñi et al., 2014 ; Messé et al., 2015 ). The important differentiator of 
the connectome harmonics framework is that it not only uses white mat- 
ter connectivity (as other studies do) but in addition incorporates local 
gray matter connectivity of 1-6mm, which we show is critical to obtain 
a meaningful decomposition of structure into functional patterns on the 
cortical surface that possibly support RSNs. Notably, our findings that 
such local gray matter connectivity must account for 30–80% of all corti- 
cal connections is consistent with neuroanatomical observations in cats 
and rodents ( Stepanyants et al., 2009; Boucsein et al., 2011 ). 

Interpretation of local gray matter connectivity constructed from 

the cortical surface mesh 

Interconnecting cortical surface mesh edges to model gray matter 
connectivity is relatively common ( Spiegler and Jirsa, 2013; Ecker et al., 
2013; Lo et al., 2015; Spiegler et al., 2020, 2016 ). The spatial extent of 
the local connectivity kernel width in our study is consistent with gray 
matter tracing studies ( Gonzalez-Burgos et al., 2000; Melchitzky et al., 
2001; Braitenberg and Schuz, 2013 ). Other approaches for construct- 
ing local gray matter connectivity from the cortical surface mesh have 
been proposed. For example, Ecker et al. (2013) used the radius and 
perimeter of a cortical patch, whose surface is given by a fixed ratio of 
the total cortical surface, as a proxy for gray matter intrinsic cortico- 
cortical wiring cost. This cost, they determined, is altered in autism. 
Other techniques could also be applied, whereby local connectivity be- 
tween adjacent regions of an atlas-based parcellation is estimated by the 
boundary length between regions. The analysis of such a framework, 
through which graph spectral properties and their relationships to con- 
nectome harmonics can be observed, is an exciting direction for future 
studies. 

Role of local gray matter versus long-range white matter 

connections 

We found that the local gray matter connections encoded in the 
connectivity of the cortical surface mesh is preponderant for observing 
high mutual information between low frequency connectome harmon- 
ics 𝜓 𝑘 ∈𝐾={7 , 8 , 9 , 10 , 11} (as in Atasoy et al., 2016 ) and the DMN. However, 
without the presence of long-range interhemispheric connections, spa- 
tial maps are restricted to separate hemispheres, and thus whole brain 
maps are not observed. Yet, our results demonstrate that long-range con- 
nections alone are not sufficient for the emergence of whole brain maps 
when using a high-resolution connectome of several thousands nodes, 
as they have the side effect of causing brain networks to divide into 
many isolated components without the formation of large-scale pat- 
terns on the cortical surface. This “isolated components ” issue occurs 
because under this condition, the graph is disconnected. Connectedness 
means mathematically that there exists (at least) a path from one ver- 
tex to any other vertex through the graph. Within the high-resolution 
connectome, the white matter connectivity matrix often does not fulfill 
this condition; the local connections through the cortical surface mesh 
alleviates this problem. Hence, our findings emphasize that a careful 
blend of local and long-range connectivity is necessary for the emer- 
gence of functionally meaningful harmonic patterns spanning the whole 
cortical surface. Our results confirm that connectome harmonics natu- 
rally provide a representation, where low frequencies exhibit more ro- 
bust, stable, and generic patterns across subjects, while high frequency 
harmonics provide more variable, sensitive, and possibly more subject- 
specific patterns. Our finding that local connectivity is preponderant for 

observing high MI between connectome harmonics and the DMN does 
not invalidate previous studies that retrieved a degree of correlation be- 
tween the white-matter connectivity and the DMN ( Horn et al., 2014 ), 
the functional connectivity computed from diffusion models with noise 
( Honey et al., 2009 ; Saggio et al., 2016 ), or more complex non-linear 
models with time delays ( Honey et al., 2009; Cabral et al., 2011 ). Rather, 
it suggests that local gray matter connectivity may also play an impor- 
tant role in the emergence of resting states. Strong reverberating lateral 
loops present in gray matter microcircuits likely influence the emer- 
gence and sustenance of localized cortical activity recorded in EEG and 
fMRI, and is present in some other work ( Honey et al., 2009 ). These 
loops are incorporated into the connectome harmonics framework via 
the local connectivity kernel and our results demonstrate that the incor- 
poration of both local and long-range connections provides an interest- 
ing basis to address the role of gray versus white matter in large scale 
cortical dynamics. Further refinement of the local gray matter connec- 
tions to include region-specific connectivity profiles shall be examined 
in the future in order to assess specifically which aspects of gray matter 
connectivity influence large scale functional networks. 

Relation to disease conditions 

Interestingly, our gradual removal of inter-hemispheric white matter 
connections can be related to the degeneration occurring in the corpus 
callosum as observed in cohorts of patients with Huntington’s disease 
( McColgan et al., 2017 ). In this condition, lateral callosal degeneration 
is associated with pre-manifest stages of the disease, and evolves with 
the disease progression to white matter disruption in medial areas. Strik- 
ingly, functional studies show that the DMN remains unaffected by the 
disease until much later stages when the patient becomes strongly symp- 
tomatic ( Poudel et al., 2014 ), an observation which is consistent with 
our prediction about the effects of callosectomy. Similarly, our disrup- 
tion of gray matter connectivity, here referred to as anisotropy, could 
be related to later phases of normal aging, wherein gray matter atrophy 
is observed ( Sala-Llonch et al., 2015 ), and may in turn induce degener- 
ative disorders ( Thompson et al., 2003 ; Whitwell et al., 2010 ). In those 
conditions, gray matter disruptions are often localized to specific brain 
regions, while in our study they are applied to the whole cortex. Nev- 
ertheless, the investigation of these disease specific disruptions through 
the prism of graph spectral theory is promising ( Sihag et al., 2020 ) and 
will be the subject of future studies. 

Other uses of graph spectral theory in neurosciences 

Other frameworks utilizing the graph Laplacian on brain struc- 
tural connectivity rely on coarser resolution connectomes ( Raj et al., 
2012; Huang et al., 2018; Preti and Van De Ville, 2019; Tewarie 
et al., 2019 ), defined by atlases of larger brain regions, each of 
which usually spanning several cubic centimeters ( Desikan et al., 2006 ; 
Destrieux et al., 2010 ; Glasser et al., 2016 ). Employing such atlases 
alleviates the problem of ”isolated components ” because isolated sub- 
networks do not emerge given the chosen size of brain areas. An im- 
portant limitation of the parcellated approach is that it yields sharp 
boundaries between coarse brain regions, such that two neighbouring 
points on the cortex can be affiliated with two different brain areas, 
and resulting in whole brain connectivity matrices reflecting only the 
white matter tracks and not adequately taking into account gray mat- 
ter conduction. The effect of local gray matter versus long-range white 
matter connectivity on large-scale brain dynamics using coarse con- 
nectomes have nonetheless been investigated using neural field models 
( Proix et al., 2016 ). It has been suggested that white matter connectivity 
shapes the cortical slow rhythms while faster dynamics are dependent 
on short-range connections. Hence, further extension of these studies 
to the use of high-resolution connectomes such as utilized here and in 
( Atasoy et al., 2016, 2017a) can be an important direction for future 
research. 
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Different methods for connectome reconstruction 

Different approaches can also be utilized in reconstructing a 
weighted connectome from tractography streamlines ( Smith et al., 2015; 
Donahue et al., 2016; Horn and Blankenburg, 2016 ). For example, in 
( Horn and Blankenburg, 2016 ) each fiber weight decays exponentially 
with distance of track bounds to cortical surface. In this study, we have 
only excluded fiber tracks whose endpoints are farther than 5mm from 

the cortical surface. We acknowledge that streamline end-points local- 
ization are associated with some degree of spatial error, due to the lim- 
itations of tractography and accumulation of errors during streamline 
propagation ( Jones et al., 2013 ). Some degree of spatial smoothing on 
the high-resolution connectome could be performed to alleviate this spa- 
tial error, and will be incorporated to future releases of the framework. 
It must also be noted that high-resolution connectomes are computation- 
ally expensive to create and manipulate. Specifically, since the eigende- 
composition of a matrix with n entries has a computational complexity 
of  ( 𝑛 3 ) , it becomes quickly intractable for matrix sizes above 30,000 
vertices. For reference, the algorithm took 1 to 5 minutes to converge 
using the 20,484-by-20,484 matrix corresponding to fsaverage5 on a lab- 
oratory workstation. 

In line with previous studies ( Besson et al., 2014 ; Donahue 
et al., 2016 ), we found the intersection between white matter and gray 
matter cortical surface to yield the most effective connectivity matrix, 
since the intersection between the white-matter fiber tracks and this 
cortical mesh are more reliable and anatomically more meaningful than 
their intersection with the pial surface. The use of template datasets fur- 
ther introduces possible errors in the intersection between the cortical 
surface and the tracks. These templates allowed our findings to gen- 
eralize well at the group level, but with the drawback of losing inter- 
individual specificity, which may be crucial for medical applications. 
This further highlights an important difference with the original work 
from Atasoy et al. (2016) who used subject specific tractography stream- 
lines with their cortical surface meshes in the same native space (n = 10 
subjects). Instead, we used normalized tractography streamlines from 

the 169 subjects of the Gibbs dataset ( Horn and Blankenburg, 2016 ) 
with template cortical meshes provided in FreeSurfer. Tracks and sur- 
face were registered in MNI coordinates and visually checked for proper 
alignment with the 20.7 million streamlines from the Gibbs dataset. The 
track-mesh intersection algorithm presented here results in a connec- 
tome with more than 10 million entries, using a minimal track length 
constraint of 10 mm. On the one hand, this approach has the advantage 
of a much larger cohort and higher quality tractography streamlines 
that have been validated across several white matter atlases ( Horn and 
Blankenburg, 2016 ). On the other hand, our use of template cortical 
surface meshes, whose geometry in template space may not perfectly 
correspond to the normalized streamline bounds in native space, repre- 
sents a sensible pitfall. For future studies, it will be important to favor 
the use of cortical surfaces in native space so that streamline bounds are 
perfectly aligned to the cortical mesh as we did for the HCP subject in 
Supplementary Materials. 

Relation to Spherical Harmonics and Surface Laplacian 

Connectome harmonics can also be viewed as an extension of spher- 
ical harmonics, which correspond to the eigenfunctions of the Laplace 
operator applied to a sphere. In the absence of any long-range white 
matter connectivity, connectome harmonics of each hemisphere, de- 
riving only from the gray matter connectivity, correspond to spheri- 
cal harmonics mapped to the cortical surface. Similar decompositions 
of cortical activity patterns into spherical harmonics have been previ- 
ously brought by ( Jirsa et al., 2002 ; Robinson et al., 2016 ), whereby 
each brain hemisphere is modeled as a perfect sphere. A similar ap- 
proach based on spherical harmonics has also been utilized in electroen- 
cephalogram (EEG) and magnetoencephalography (MEG) source recon- 
struction, where the scalp is modelled as the homogeneous surface of 
a sphere on which the electrical signals propagate isotropically from a 
neuronal source ( Nunez and Srinivasan, 2006; Petrov, 2012; Carvalhaes 

and de Barros, 2015 ). While conceptually similar, the connectome har- 
monics framework extends other spherical harmonic approaches and 
embeds the full structural connectivity of the human brain by taking 
into account both local gray matter and long-range white matter con- 
nectivities. 

Lastly, we point out that as connectome harmonics provide an exten- 
sion of the Fourier basis and spherical harmonics to the human connec- 
tome, they also yield a frequency-specific functional basis which enables 
the represention of any pattern of cortical activity. This important prop- 
erty of connectome harmonics has been utilized for the spatial frequency 
analysis of functional magnetic resonance imaging (fMRI) data, which 
has demonstrated crucial differences in the signatures of different brain 
states ( Atasoy et al., 2017a, 2017b, 2018 ). 

5. Data and code availability 

The data used in this study is publicly available. Tractogra- 
phy streamlines are part of the open source Gibbs connectome 
dataset ( https://www.nitrc.org/projects/gibbsconnectome/ ) and cor- 
tical surface meshes are provided by FreeSurfer software suite 
( https://surfer.nmr.mgh.harvard.edu/ ). The framework for construct- 
ing connectome harmonics is integrated to the open source SCRIPTS 
pipeline, in the branch ConnectomeHarmonics ( https://github.com/ 
ins-amu/scripts/ ). 

Template connectome harmonics 𝜓 𝑘 ∈𝐾=1…100 are provided in .mat 
format alongside intermediate graph measures for the cortical surface 
meshes cvs_avg35_inMNI152, fsaverage4 and fsaverage5 , using the Gibbs 
connectome with default framework parameters from Table 1 . The files 
are hosted on Zenodo at https://zenodo.org/record/4027989 . 
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