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Differential network analysis has become an important approach in identifying driver genes in develop-
ment and disease. However, most studies capture only local features of the underlying gene-regulatory
network topology. These approaches are vulnerable to noise and other changes which mask driver-
gene activity. Therefore, methods are urgently needed which can separate the impact of true regulatory
elements from stochastic changes and downstream effects. We propose the differential network flow
(DNF) method to identify key regulators of progression in development or disease. Given the network
representation of consecutive biological states, DNF quantifies the essentiality of each node by differ-
ences in the distribution of network flow, which are capable of capturing comprehensive topological dif-
ferences from local to global feature domains. DNF achieves more accurate driver-gene identification
than other state-of-the-art methods when applied to four human datasets from The Cancer Genome
Atlas and three single-cell RNA-seq datasets of murine neural and hematopoietic differentiation.
Furthermore, we predict key regulators of crosstalk between separate networks underlying both neuronal
differentiation and the progression of neurodegenerative disease, among which App is predicted as a dri-
ver gene of neural stem cell differentiation. Our method is a new approach for quantifying the essentiality
of genes across networks of different biological states.
� 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Identifying significantly changed genes in development and
progression of diseases is of great benefit to uncover new biomark-
ers and prognostic signatures [1]. Differential expression analysis
is capable of narrowing the whole genome down to a short list of
candidate driver genes [2]. However, the quantification of signifi-
cance among identified genes remains an open and challenging
question [3]. Furthermore, the reductive identification of differen-
tially expressed genes by multiple-hypothesis testing fails to high-
light the complex interactions occurring in real biological systems.
To explicitly address this multiscale structure, state-dependent
molecular interactions can be abstracted as a network whose
nodes represent molecules and whose edges represent the exis-
tence and strength of their respective interactions [4,5]. Because
networks have both global and local properties, this approach epit-
omizes the ‘Systems Biology’ perspective. Differential network
analysis aims to identify the differences between networks under
different conditions [6]. Therefore, differential network analysis
becomes an essential approach to assess the importance of biolog-
ical entities (such as genes) in biological systems which undergo
change, or which utilize feedback to maintain homeostasis [7–9].

In the past ten years, many differential network analysis meth-
ods have been proposed to assess the essentiality of genes between
two biological conditions. The existing differential network analy-
sis methods mainly fall into two categories. The first category is
focused on capturing linear or nonlinear correlation differences
in gene expression between two gene regulatory networks (GRNs).
For instance, DDN [10] is the first algorithm to detect topological
differences by lasso regression in network inference. DISCERN
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[11] computes a novel perturbation score to capture how likely a
given gene has a distinct set of regulators between different condi-
tions, which is shown to be robust to errors in network structure
estimation. pDNA [12] incorporates prior information into differ-
ential network analysis using non-paranormal graphical models,
which relaxes the assumption of normality of omics data to find
more cancer-related genes.

The second category is focused on topological differences
between constructed GRNs. For instance, DEC captures the global
differential eigenvector connectivity to prioritize nodes in net-
works [7]. DiffRank [13] computes the linear combination of differ-
ential connectivity and differential betweenness centrality to order
genes. DCloc [14] computes the average proportion of changes of
each node’s neighborhood as a significance score by iteratively
removing edges with different thresholds. DiffNet [15] evaluates
topological differences between two networks based on general-
ized hamming distance and its statistical significance. TKDS [8]
measures the importance of genes by calculating the graphlet vec-
tor distance.

Two issues remain which the above methods fail to address.
First, all the above methods utilize networks which assume the
existence of edges based on co-expression. While global network
features (such as eigenvector connectivity) may be taken into
account during differential network analysis, co-expression is an
unreliable starting point based on long-standing biological results.
In particular, measured gene expression is inherently noisy due to
intrinsic (transcriptional) and extrinsic (measurement) sources of
variation [16], contributing to a high false positive rate in network
construction. Therefore, the existence of edges in a reconstructed
network must reflect the uncertainty of these observations [17].

The second issue is more subtle. While techniques such as spec-
tral analysis provide a global perspective on connectivity, these
approaches fail to encapsulate the flow of information inherent
in all biological networks. Network flow has been investigated
extensively in connection with commerce and telecommunication
[18]. The notion of optimality with regard to information flow,
originally designed around these manufactured networks, takes
into account the nonlinear contribution of all nodes, and thus is
not reductive in the sense of spectral analysis, whose rank-based
metrics reflect only linear contributions. Despite wide adoption
of these methods in their original context, characterization of bio-
logical networks (including gene-regulatory networks) by optimal
flow has not been widely explored. Although the statistical proper-
ties of dynamic networks have recently been studied in the context
of epidemiology and biochemistry [19], methods that can over-
come the uncertainty of networks and capture comprehensive
topological differences are urgently needed to quantify the essen-
tiality of genes from a systems view.

In this paper, we propose the differential network flow (DNF)
method to identify key regulators between two networks under
different biological conditions. This algorithm is built upon the
idea of network flow and information theory. Rewiring of a
GRN can be characterized as a dynamic pattern of network flow
[19], such a flow-based model captures multiple (from local to
global) features of network structure. Information theory is able
to quantify the uncertainty in networks, making networks built
upon information-theoretic measurements a more acceptable
representation of biological systems at the molecular scale
[20]. Therefore, DNF is capable of capturing comprehensive topo-
logical differences by quantifying the flow in a network. Its iden-
tification accuracy is compared with several state-of-the-art
methods, first to simulated datasets and second to clinical and
experimental datasets. In addition, DNF is applied to predict dri-
ver genes of neural stem cell differentiation in single-cell RNA-
seq datasets.
2. Materials and methods

2.1. Gene regulatory network construction by using both
transcriptomics and proteomics datasets

Network analysis requires a robust network skeleton, and the
choice of network skeleton is important, allowing network-based
approaches to achieve higher precision [21]. Constructing network
skeletons that integrate single-cell transcriptomics data and other
omics data provides attractive opportunities to mechanistically
understand this heterogeneity under different cell states [22].

To improve the performance of driver-gene prediction, we
employ a three-step process to integrate both transcriptomics
and proteomics datasets in GRN-construction. First, a network
skeleton is built by differential expression analysis using the tran-
scriptomics dataset. Specifically, the skeleton gene sets are selected
based on a given criterion, such asjlog2FoldChangej > u, p-value < v,
where u represents the fold change of gene expression and v rep-
resents the statistical significance of differential expression. Sec-
ond, the known corresponding protein–protein interactions in
the STRING database (http://string-db.org) are used to establish
the gene-gene network for the selected genes. For example, sup-
pose p skeleton genes are selected in the first step, then a network
skeleton with p nodes is described by an adjacency matrix Ai;j, such
that Ai;j > 0, i, j = 1, . . ., p, if protein i and protein j are functionally
associated. Finally, the absolute value of the spearman correlation
coefficient (scc) of expression is adopted to estimate the strength of
connections between adjacent genes, and edges Ai;jfor which scc(i,
j) < 0.1 are discarded (see Supplementary Text 1 and Supplemen-
tary Fig. 1 for more explanation of parameter selection). Following
this procedure, we construct a pair of GRNs based on a specific
transcriptomics dataset (e.g. cancer and control samples) and a

generic proteomics dataset, described as A1
i;j; i; j ¼ 1; � � � ; l;

A2
i;j; i; j ¼ 1; � � � ; r; in which l–r and l; r � p:
To effectively study the new differential network method in this

study, we use both previously existing networks for bulk RNA-seq
datasets and the networks specifically constructed for single-cell
RNA-seq datasets.

2.2. Estimating differential network flow to prioritize genes

DNF is built upon the ideas of network flow and information
theory. The novelty of DNF lies in quantifying node-to-node infor-
mation entropy according to the network flow in a gene regulatory
network, and in characterizing each node as a distribution of net-
work flow, which is equal to the distribution of information
entropy. The distribution differences of one gene in different net-
works represents its essentiality in the biological process responsi-
ble for the network’s evolution. Genes are ordered by the
magnitude of this difference to establish a ranking. Given two net-
works constructed as described in 2.1. DNF produces this ranking
in four steps:

2.2.1. Calculate signal matrix using gene-gene interaction strengths
We consider two weighted networks as two biological states,

abstracted as A1
i;j and A2

i;j , and we suppose that there are k common
genes between the two matrices.

Since scc(i, j) is a random variable, we can probabilistically esti-
mate the strength of a bi-directional signal zi;jfrom gene i to gene j
as the product of scc(i, j) and its information content [20]. Through
the transformation from edge weight to the expectation of infor-
mation, zi;jis described as the sub-item of entropy. The network
labels are suppressed in the following equations for notational
convenience,

http://string-db.org
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zi;j ¼ Ai;jlog
1
Ai;j

ð1Þ

We assume that changes in the biological state of the system
can only change the weight of the edges (as calculated in 2.1) of
a given network skeleton. Thus, by assigning a cost, capacity and
normalized flow to each edge, we can probabilistically measure
the global and local change between network flow solutions for
any treatment applied to the underlying system.

2.2.2. Quantify gene-to-gene entropy according to the network flow
Rank-based metrics like degree centrality usually only reflects

linear contributions of all nodes. The optimal flow, however, takes
into account potentially nonlinear contributions, allowing more
sensitive detection of changes in network structures, such as the
strongest and most stable connections among a group of nodes
(even if they are not neighbors) in a gene regulatory network. In
this approach, the maximum flow describes the strongest regula-
tory relationship between nodes, and the minimum cost is similar
to the concept of entropy that describes the most stable regulatory
relationship between nodes.

The optimal flow model is based on the theory of the shortest
path between any two nodes. In the flow model, each edge is given
the capacity ci;j that represents the bandwidth of that edge, the
flow f i;j through the edge, and the fixed signal zi;jof flow through
the edge. Suppose any two nodes in a network, source node s
and sink node t, s–t, the network flow Fs;t from s to t can be mea-
sured as follows,

Fs;t ¼ Min
X
i;j

f i;jzi;j

( )
ð2Þ

s:t: Max
X
i;j

f i;j

( )
;

f i;j � ci;j;

X
w

f s;w ¼
X
w

f w;t ; w is any node

Where the network flow from s to t meet the requirements of
minimum signal in multiple maximum flow strategies. The first
restriction means that the optimal flow must meet the require-
ment of maximum flow; The second restriction means that the
amount of flow through any edge of network cannot exceed its
capacity; The third restriction means that the flow flows only from
the node s to the node t. Since the network is undirected, Fs;t ¼ Ft;s.

In DNF, the capacity of each edge is set asci;j ¼ 1, and we obey
the rule that the flow f i;j on each edge of each shortest path is com-
puted only once, in other words, there is a unique sequence of
nodes between the source and the sink. Because the sum zi;j, for
all Ai;j > 0, is the Shannon entropy of scc(i, j), the information flow
Fs;t is like the concept of entropy that is weighted by the signal of
flow. In particular, the information flow Fs;t is equivalent to entropy
when it is calculated in a two-node network. The optimal flow
solution therefore defines a globally unique path as well as a
unique set of local edge signals for every pair-wise gene
interaction.

2.2.3. Characterize each node as a distribution of network flow
DNF assumes that each gene’s potency of signal propagation is

relatively stable, while the strength of signals propagating to dif-
ferent genes is variable in different conditions, contributing to
changes in the correlation between gene expression levels. Thus,
the signal propagation of a gene under a specific state can be
abstracted as a distribution. DNF aims to track the distribution-
level differences of each gene under two biological states.

To facilitate the probabilistic notion of network difference, we
require that

P
tFs;t ¼ 1. This is enforced by normalizing Fs;t as,

Fs;t ¼ Fs;tP
tFs;t

ð3Þ

Therefore, the flow from any node i to the other nodes in the
network can be characterized as a probability distribution F i,

F i ¼ Fi;1; � � � � � � ; Fi;k

� � ð4Þ
because we measure network difference via a symmetric diver-

gence score, we also require that the support of i be equal for the
two networks of interest. Therefore, only the k common nodes
between two networks are considered.

2.2.4. Measure distribution differences of network flow for each gene in
two networks

In order to quantify the difference of distribution-level of signal
propagation between two biological states, we adopt the sum of
the reciprocal Kullback-Leibler divergence (KLD) to estimate the
distance between two node-wise flow distributions Fm

i , m in{1,
2}. Therefore, the differential score Di, corresponding to the dis-
tance of common node i between two networks, is characterized
as follows,

Di ¼
X

ðF 1
i log

F 1
i

F 2
i

þ F 2
i log

F 2
i

F 1
i

Þ ¼
Xk

j¼1

ðF1
i;jlog

F1
i;j

F2
i;j

þ F2
i;jlog

F2
i;j

F1
i;j

Þ ð5Þ

where F 1
i , F 2

i represents distribution-level information flow of
common node i in two biological conditions.

3. Datasets

3.1. Simulation datasets

To compare the accuracy of our methods and other state-of-the-
art methods without bias in identifying the significant rewiring
nodes between two networks, we generate simulated dynamic net-
works as previously described [12]. In our simulated data, 100
pairs of networks, each containing 100 nodes whose degree distri-
bution follows a power-law distribution were generated. For each
pair of networks, a random selection of 10 nodes was disturbed,
reflecting critical regulation of the network from one state to
another. The edges of each disturbed node were perturbed with
fixed percentage k = 0.1, and the perturbed edges were randomly
selected based on a previously published method [12].

3.2. Four TCGA datasets

To compare the performance of DNF against other state-of-the-
art methods in identifying rewired driver genes in cancer networks
for bulk RNA-seq datasets, four kinds of cancer RNA-seq datasets
were used in this study, which were downloaded through TCGAbi-
olinks [23]: breast invasive carcinoma (BRCA), prostate adeno-
carcinoma (PRAD), liver hepatocellular carcinoma (LIHC) and lung
adenocarcinoma (LUAD). The downloaded TCGA datasets were in
read-count format, and were quality controlled and normalized
by the ‘DEseq’ package [24]. For each method, network construc-
tion of above four datasets was done as previously reported in [7].

3.3. Three single-cell RNA-seq datasets

Three single-cell RNA-seq datasets of mice are analyzed in this
study, including neural stem cell differentiation (PRJNA324289)



Fig. 1. Comparison of different methods in detecting perturbed nodes using
simulated datasets. DNF (the red bar) is compared with 5 methods (the blue bars),
including 4 state-of-the-art differential network analysis methods and the random
selection method. Results are averaged by 100 pairs of simulation networks.
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[25], neural progenitor cell differentiation (GSE76381) [26] and
hematopoietic stem cell differentiation (GSE59114) [27]. Notably,
network construction of three single-cell RNA-seq datasets fol-
lowed the protocol introduced in section 2.1, rather than the pro-
tocol used for the bulk-sequencing datasets [7]. The datasets
were downloaded in raw read counts format, their differential gene
expression analyzed by ‘edgeR’ package [28], and subsequently
transformed into counts-per-million (CPM) format by ‘DEseq’ pack-
age. Network construction was based on the transformed tran-
scriptomics datasets and generic proteomics datasets.

4. Results

4.1. Comparison with four existing methods using simulation datasets

DNF is compared against four state-of-the-art differential net-
work analysis methods on each simulated network pair. For the
comparison, we include results from DiffRank [13], DEC [7], DCloc
[14] and DiffNet [15]. In addition, a random selection method is
also compared with these differential network analysis methods.
The accuracy of each method is evaluated through the average
hit number of the top 10 scored nodes intersecting with the 10 dis-
turbed nodes.

As shown in Fig. 1, methods that rely on capturing local topo-
logical features (DiffNet and DCloc) do not perform as well as
methods that rely on capturing global topological features (DEC)
and mixed topological features (DiffRank). This is because all per-
turbed nodes present subtle topological differences (local or global,
linear or non-linear). DNF has the potential of capturing compre-
hensive topological differences from local to global feature
domains. Therefore, DNF outperforms the other four state-of-the-
art methods in mean accuracy of identifying perturbed nodes
between different networks. Furthermore, all differential network
analysis methods outperform the random selection method,
underscoring the necessity of differential network analysis.

4.2. DNF reveals rewiring driver genes in cancer networks more
consistent with the known cancer gene list for four different TCGA
datasets

4.2.1. Assessment criteria
In order to assess ranking and identification accuracy in the

TCGA data, 138 known cancer genes [29] and 723 genes from the
Cancer Gene Census (CGC) [30] were adopted as two reference sets.
For each method, the overlap between the top 20 ranked markers
and the reference defines the score for the method (see Supple-
mentary Text 2 and Supplementary Fig. 2 for more explanation
of parameter selection).

In addition, we tested whether dosage of each method’s top 20
genes can predict the treatment outcome of TCGA patients at var-
ious endpoints. Survival analysis aims to identify the candidate
cancer biomarker genes and prognosis genes by applying a log-
rank test to the end-point event for high and low dose populations
which we established by standard univariate clustering based on
expression of each predicted marker. TCGA survival analysis was
conducted through RTCGA [31], the number of significantly (p-
value < 0.05) survival-related genes was regarded as another eval-
uation criteria of performance of each differential network method.

4.2.2. Comparison with other methods in four TCGA datasets
DNF was compared with other methods on four TCGA datasets

(BRCA, PRAD, LIHC and LUAD) to compare the effectiveness of each
method in detecting known cancer genes. In our study of detecting
138 known cancer genes (Supplementary Table 1), the set of differ-
ential nodes identified by DNF reflects more known cancer genes in
BRCA, PRAD and LIHC. In LUAD, the graphical hamming distance-
based method, DiffNet, outperforms any other methods. While sys-
tematically analyzing these detected genes by each method (Sup-
plementary Table 2), we found that DNF has the largest number
of uniquely detected genes, and that the average number of genes
detected by both DNF and one of the four other methods is also the
largest. This is because the optimal flow considers both linear and
nonlinear contributions of all nodes, allowing more sensitive
detection of changes in network structure. Suggesting that DNF is
potentially a more sensitive method of identifying topological dif-
ferences between gene regulatory networks. In our study of detect-
ing 723 genes in the CGC (Table 1), DNF shows similar performance
compared to the analysis using 138 known cancer genes. In addi-
tion, the methods that rely on a single topological feature (DCloc,
DEC and DiffNet) do not perform as well as the methods that are
capable of capturing mixed topological features (DiffRank and
DNF). Overall, DNF is more sensitive than other tested methods
in detecting known driver genes of these four cancers.

From another perspective, the differential genes between can-
cer and control samples may include many survival-related genes,
whose expression level may significantly impact survival time of
patients. Additional experiments were performed on the top 20
scored genes by each method. For each gene, each sample was
divided into high and low expression groups by its median expres-
sion. Then, the log-rank test was performed between gene expres-
sion and survival time of the two groups. The genes whose median
expression divided the patient samples into two groups for which
the log-rank test rejected the null hypothesis of ‘‘no difference”
with p-value < 0.05 were regarded as survival-related genes in each
cancer. As shown in Fig. 2, many of the top 20 scored genes by dif-
ferent methods are statistically related to survival in each of the
four cancer datasets.

Overall, DNF outperforms other state-of-the-art methods, being
tied with DiffRank and DCloc for PRAD and BRCA, respectively, and
recovering more survival-related genes than other methods for
LUAD. In addition, DNF is able to uncover some survival-related
genes that other methods fail to detect. Several notable genes were
detected only by DNF (see Supplementary Fig. 3), including APEX1
in BRCA, FOXP3 in BRCA , FOSL1 in LUAD and GATA1 in PRAD. In
particular, APEX1 [32] and FOSL1 [33] are newly identified targets
in cancer treatment, and GATA1 is one of 138 known cancer-
related genes mentioned above. Hence, DNF shows promise in
the detection of new and established cancer driver-genes and
survival-related genes.



Table 1
Comparison of different methods in detecting known rewiring driver genes (723 genes in the Cancer Gene Census) in cancer networks for four TCGA datasets (numbers in table
corresponding to the number of cancer driver genes in top 20 genes detected by different methods in each dataset).

BRCA PRAD LIHC LUAD Total

DEC 6 6 10 7 29
DCloc 5 7 9 7 28
DiffRank 8 10 9 9 36
DiffNet 8 6 8 8 30
DNF 7 11 9 10 37

Fig. 2. Comparison of different methods in uncovering statistically survival-related
genes for four TCGA datasets. The height of bars corresponds to the number of
statistically (p-value < 0.05) survival-related genes uncovered by each method (top
ranked 20 genes) for each TCGA dataset.
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4.3. DNF identifies differentiation regulators for three single-cell RNA-
seq datasets

4.3.1. Assessment criteria
The Gene Ontology is a curated database of annotated markers

which has successfully guided exploratory analysis in many previ-
ous studies [34]. In order to rank predictions of the tested methods,
we utilize the GO0045595 (regulation of cell differentiation) gene
list as a reference list for differentiation processes. The
GO0045595 gene list contains 1888 genes that are related to the
process in which relatively unspecialized cells (stem cells) acquire
specialized structural and functional features. The full list of these
genes can be found in the Gene Ontology Resource [35]. The perfor-
mance of each method in this study was evaluated by the number
of intersections of top 20 ranked genes by each method and the
gene list of GO0045595.
4.3.2. Comparison with other methods
DNF was applied to three single-cell RNA-seq datasets, which

cover three differentiation processes: neural stem cells to neural
progenitor cells (PRJNA324289), neural progenitor cells to glial
cells (GSE76381), and hematopoietic stem cells to hematopoietic
progenitor cells (GSE59114). For the network construction of each
dataset, the network skeleton was established through the online
database of protein–protein intersection (https://string-db.org/).
Because the online database does not support input of>2000 pro-
teins, the skeleton genes were limited to 2000 to ensure compati-
bility with the online database. For PRJNA324289,
jlog2 Fold Changej>0.5, p-value < 0.05 was used, giving 1039 skele-
ton genes. For GSE76381 and GSE59114, jlog2 Fold Changej>1, p-
value < 0.05 was used, giving 452 skeleton genes and 647 skeleton
genes respectively.

DNF was compared to the other four state-of-the-art methods
regarding the number of detected differentiation-related genes.
As shown in Table 2, DNF finds the most cell-differentiation related
genes in total and presents consistently higher detection rates in
each dataset. In addition, the performance of DNF in detecting net-
work rewiring genes is robust to different network skeletons, while
other methods are more sensitive to prior network structure. These
results, in combination with the results of section 4.2, suggest that
DNF is more reliable in detecting and predicting driver genes in
both cancer and development across bulk RNA-seq and single-
cell RNA-seq datasets.

We also focused on the topological features of identified genes
by each method. Two basic metrics that measure the importance of
nodes in networks were adopted. The first metric is degree central-
ity, a local topology feature, which captures the important nodes
by higher numbers of connections between nodes. The second is
closeness centrality, a global topology feature, which captures
the important nodes in network by higher average distance among
other nodes. Therefore, the differential degree and closeness cen-
trality between two networks capture the local and global topology
differences of nodes. To explore the changing tendency and associ-
ated confidence intervals of the local and global topology, we used
loess regression to connect the nodes detected by each method. As
shown in Fig. 3, the topological features of identified genes by each
method vary a lot. Importantly, the DNF approach presents the
greatest change of degree and highest confidence (the area covered
by color), which implies that DNF is able to capture both local and
global network topological differences.

4.4. Predict driver genes for neural stem cell differentiation using
temporal single-cell RNA-seq datasets

Stem cells are multipotent, having the ability to replenish dif-
ferentiated cell populations. Identifying the driver genes of differ-
entiation will shed light on new biological questions [36].
However, the molecular mechanisms of stem cell differentiation
are still poorly understood [37]. Differentiation is thought to
require one or more discrete transitions from one intermediate
state to another, each of which is determined by a set of genes that
interact in a complex network, instead of a single perturbed gene
[38]. Therefore, we combined changing network topology and
functional relevance of gene sets to identify the underlying molec-
ular mechanisms.

4.4.1. A temporal single-cell RNA-seq dataset
A temporal single-cell RNA-seq dataset of neural stem cell dif-

ferentiation (PRJNA324289) [25] partially used in section 4.3 was
further analyzed in this section. It contains two continuous differ-
entiation processes, the one is from neural stem cells (NSC) to neu-
ral progenitor cells (NPC), the another is from neural progenitor
cells to astrocytes (Ast). The functional relevance of selected genes
in each processes was confirmed by gene-set-enrichment using the
GO web-based tool (the Gene Ontology Consortium [39]).

4.4.2. Prediction of driver genes
DNF was applied to order the essentiality of genes in both the

process of NSC_NPC and NPC_Ast, and the top 100 scored genes
(Formula 5) in each process were analyzed by gene ontology

https://string-db.org/


Table 2
Comparison of different methods in detecting differentiation-related genes in three
single-cell RNA-seq datasets. (numbers in table corresponding to the number of
cancer driver genes in top 20 genes detected by different methods in each dataset).

GSE59114 GSE76381 PRJNA324289 Total

DEC 3 6 1 10
DCloc 2 7 1 10
DiffNet 7 7 2 14
DiffRank 5 5 7 17
DNF 6 8 7 21
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enrichment analysis. The enrichment analysis (see Supplementary
Fig. 4) shows that NSC_NPC is significantly enriched in terms relat-
ing to cell differentiation and regulation (e.g. glial cell differentia-
tion (GO:0010001) with p-value = 9.85e-3, regulation of neuron
differentiation (GO:0045664) with p-value = 2.56e-3, central ner-
vous system development (GO:0007417) with p-value = 4.53e-6),
while NPC_Ast is significantly enriched in the enrichment terms
relating to cellular and metabolic process (e.g. cellular component
biogenesis (GO:0044085) with p-value = 2.1e-6, cellular process
(GO:0009987) with p-value = 1.01e-6, metabolic process
(GO:0008152) with p-value = 3.03e-4). This implies that the driver
genes regulating the continuous differentiation processes mainly
occur in NSC_NPC differentiation. Therefore, genes significantly
related to enrichment terms of differentiation in NSC_NPC are con-
sidered candidate genes, among which three enrichment terms are
highlighted, including glial cell differentiation (GO:0010001),
astrocyte differentiation (GO:0048708) and regulation of neuron
differentiation (GO:0045664). We then examined the first order
neighbors of these genes among the top 20 genes identified by
DNF. We observed that the network topology of NSC is almost
unconnected, while the network topology of NPC is densely con-
nected (see Supplementary Fig. 5). After combining above three
networks in NPC (Fig. 4A), we found that the shortest path between
any two nodes in the combined network is lower than six, which
makes it a small-world network. Among these genes, Sox2 [40]
and Egfr [41] are driver genes of neural stem/progenitor cell differ-
entiation, Src and Cdh2 play important roles in cell development
and growth [42], and Hdac5 [43] and Stat3 [44] are essential for
axon regeneration. Each of these genes is depicted in a color-
Fig. 3. The fitted scatter plot of the local (degree centrality) and global (closeness centra
single-cell RNA-seq datasets. Nodes in the plot are fitted by the local polynomial regressi
describes the statistical confidence of tendency in topological differences.
coded plot (Fig. 4A) where red, green and yellow represent inclu-
sion in one of the three separate GO terms, while blue represents
inclusion in the DNF top 20 genes. App is the only gene which is
present in all three GO lists in addition to the DNF top 20, and
has long been considered a key driver of neurodegenerative disease
[45]. Interestingly, App has never been implicated in neuronal dif-
ferentiation. App and the other two driver genes (Sox2 and Egfr)
are all differentially expressed consistently (Fig. 4B). Therefore,
App could be another potential driver gene regulating the neural
stem cell differentiation.
5. Discussion

To assess the performance of DNF in identification and predic-
tion of drivers, we compared its performance with that of four
other state-of-the-art methods in simulated, clinical, and experi-
mental datasets. In the simulation study, DNF shows almost best
performance in detecting perturbated nodes between two net-
works. Among bulk RNA-seq datasets from human cancer patients,
DNF detects more known cancer genes and survival-related genes,
demonstrating superior prediction of cancer biomarkers and prog-
nosis genes. For the murine single-cell RNA-seq datasets, DNF
detects more differentiation-related genes than other methods.
The topological features of these genes’ network representation
shows that DNF is able to capture multiple features of network
topology from both local and global domains.

By integrating DNF and biological function enrichment analysis,
App is predicted as a driver gene of neural stem cell differentiation.
This finding provides compelling motivation for future therapeutic
research. The underlying cause of many neurodegenerative dis-
eases is not well understood [46]. It is possible that de-regulation
of App and other differentiation factors could lead to the depletion
of multipotent neuronal stem cells through unchecked differentia-
tion. Next-generation treatments for neurodegenerative disease
may be able to utilize somatic cell reprogramming to activate mul-
tipotency among a population of differentiated cells [47]. It is pos-
sible that targeting genes such as App (whose function may be
reversable) to facilitate reprogramming, may have the added ben-
efit of counteracting the pathological deregulation of these genes.
lity) differential network topology of detected nodes by different methods for three
on, and the color of area represents the confidence area of 95%, this confidence area



Fig. 4. Network topology and gene expression analysis to identify driver genes in neural stem cell differentiation. (A) The combined network topology of three gene ontology
enrichment terms and their first-order neighbors in the top 20 nodes scored by DNF. The size of nodes represents the degree of genes in the network. The red represents the
term of GO:0045664, the yellow represents the term of GO:0010001, the green represents the term of GO:0048708, and the blue represents the top 20 nodes score by DNF. (B)
The average gene expression of temporal single-cell RNA-seq datasets. The gene expression of three cell types is standardized into read-counts-per-million (CPM) format.
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Differential network methods provide novel insights into the
complex mechanisms of life processes, and contribute to the iden-
tification of rewiring drivers for gene regulatory networks. We
have developed a new differential network analysis approach
based on information flow to identify key regulators between
two networks under different biological conditions. The novelty
of DNF lies in its potential to capture comprehensive topological
differences from local to global feature domains, by quantifying
the node-to-node information flow in a network. Each node in
the network is a distribution-level representation of information
flow, while differences between the distribution of nodes in differ-
ent biological conditions imply the change of multiple features of
network structure. Thus, the key driving genes that are not neces-
sarily identifiable as single-scale features or linear combinations of
other features are detected by DNF. In summary, DNF is a stable
and general method for quantifying the essentiality of genes across
different networks. To compare networks of limited overlapping
nodes, one can potentially first use a network alignment method
(e.g. HGA method [48]) to construct the most similar mapping
between the two networks, and then directly apply DNF based
on this mapping. Although DNF in this study was applied to undi-
rected networks, it could, in principle be applied to directed net-
works, with modification to the edge potentials of the underlying
network skeleton.
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