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Abstract: Automated brain tumor segmentation based on 3D magnetic resonance imaging (MRI) is
critical to disease diagnosis. Moreover, robust and accurate achieving automatic extraction of brain
tumor is a big challenge because of the inherent heterogeneity of the tumor structure. In this paper,
we present an efficient semantic segmentation 3D recurrent multi-fiber network (RMFNet), which
is based on encoder—decoder architecture to segment the brain tumor accurately. 3D RMFNet is
applied in our paper to solve the problem of brain tumor segmentation, including a 3D recurrent
unit and 3D multi-fiber unit. First of all, we propose that recurrent units segment brain tumors by
connecting recurrent units and convolutional layers. This quality enhances the model’s ability to
integrate contextual information and is of great significance to enhance the contextual information.
Then, a 3D multi-fiber unit is added to the overall network to solve the high computational cost
caused by the use of a 3D network architecture to capture local features. 3D RMFNet combines both
advantages from a 3D recurrent unit and 3D multi-fiber unit. Extensive experiments on the Brain
Tumor Segmentation (BraTS) 2018 challenge dataset show that our RMFNet remarkably outperforms
state-of-the-art methods, and achieves average Dice scores of 89.62%, 83.65% and 78.72% for the
whole tumor, tumor core and enhancing tumor, respectively. The experimental results prove our
architecture to be an efficient tool for brain tumor segmentation accurately.

Keywords: 3D recurrent multi-fiber network; 3D recurrent unit; 3D multi-fiber unit; 3D MRI;
brain tumor segmentation

1. Introduction

Glioma originates from glial cells in the brain and has become one of the most terrible
diseases that harm human health. Glioma is a high-risk adult brain tumor, with an annual
incidence of about 3 to 8 cases per 100,000 people. Medical imaging examinations, such as
MRI, play a key part in the diagnosis process of brain tumors [1]. Different forms of MRI
images can provide supplementary information for the analysis of different subregions
of glioma. Segmentation of brain tumors in multi-modal MRI images has always been a
hot research topic. These structural MRI images have positive significance in the majority
of cases and the radiologist must take all the four modalities into account to identify
each region. There are four standard MRI modalities: fluid attenuated inversion recovery
(FLAIR), T1-weighted (T1), T1-weighted contrast-enhanced (T1C) and T2-weighted (T2).
Clinically, an accurate segmentation image of brain tumor performs an indispensable role
in patient care and evaluation [2]. Automatic segmentation of brain tumors can provide
accurate and valuable solutions to further analyze and monitor tumors.

Robust and accurate achieving of automatic segmentation of brain tumors is challeng-
ing because of two causes: (1) gliomas have an antenna structure, and they often spread
easily and have poor contrast. In addition, their blurred boundaries make it difficult to
segment the surrounding glioma tissue. (2) Brain tumors grow anywhere in the brain in
almost any shape and size. As mentioned above, regarding the structural heterogeneity

Symmetry 2021, 13, 320. https:/ /doi.org/10.3390/sym13020320

https:/ /www.mdpi.com/journal /symmetry


https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8620-5039
https://doi.org/10.3390/sym13020320
https://doi.org/10.3390/sym13020320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13020320
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/2/320?type=check_update&version=1

Symmetry 2021, 13, 320

20f12

of brain tumors, many researchers have proposed solutions to address these problems [3].
Zeineldin et al. [4] applied a novel deep learning method called DeepSeg, which is used to
automatically detect and segment brain lesions using FLAIR MRI data. The accurate imple-
mentation of automated segmentation technology is very challenging, and it has attracted
the attention of many researchers and has become an important research field. Therefore,
the realization of automatic segmentation of brain tumors will help to accelerate the large-
scale segmentation and assist doctors. According to the above heterogeneity of brain tumor
structure, it is significant to propose an automatic brain tumor segmentation method.

Deep learning-based medical image automatic segmentation methods make remark-
able advances, convolutional neural networks (CNN) demonstrate impressive segmenta-
tion accuracy in 2D natural images [5] and 3D medical image modalities [6]. However,
the three-dimensional CNN architecture is usually used in 3D medical images, and it
is difficult to put into practice with high computational [7]. In order to deal with this
problem, our network leverages 3D multi-fiber units in this article, which greatly reduces
the computational cost. Aiming at the problem of blurred boundaries and uncertain posi-
tions of brain tumors, a new 3D recurrent multi-fiber network (RMFNet) is proposed in
the design of an automatic segmentation method. The RMFNet consists of 3D recurrent
units and 3D multi-fiber units. We connect the recurrent units to the convolutional layer,
and use the recurrent convolutional layers for feature accumulation to be sure of better
feature representation for brain segmentation tasks. In addition, we use 3D multi-fiber unit,
which contains a lightweight network integration to reduce computing cost and increase
segmentation performance at the same time.

The rest of this article is arranged as follows: Section 2 discusses related work. The ar-
chitecture of the proposed 3D recurrent multi-fiber network is presented in Section 3.
Section 4 presents detailed datasets and exhaustive results. The conclusions of this work
are obtained comprehensively in Section 5.

2. Related Work

Deep learning, especially the method based on convolutional neural network, has
obtained the most advanced performance in medical image semantic segmentation [8].
Havaei et al. [9] presented a two-pathway CNN model and took a local image block as
input in a sliding window manner to predict the label of each pixel. ResNet [10] utilized the
efficient bottleneck structure to achieve impressive performance. Ronneberger et al. [11]
proposed the earliest and most popular medical image semantic segmentation method
called “U-Net”. Since then, U-Net has become very popular and has been used effectively
in different forms of medical imaging and computational pathology. Xu et al. [12] proposed
a new deep network called LSTM multi-modal UNet, which consists of multi-model
UNet and convolution LSTM [13]. Multi-modal UNet includes high density encoders
and decoders to take full advantage of exploiting multi-modal data, and convolution
LSTM further utilizes sequential information between contiguous slices. Dong et al. [14]
adopted a deep atlas network with information consistency constraint to segment the 3D
left ventricle for handling high dimensional data and limited annotation data problem.
Heinrich et al. [15] designed a novel convolutional architecture called OBELISK-Net to
segment 3D multi-organ images. Li et al. [16] used a new type of adversarial model
based on a multi-stage learning method to segment three-dimensional multiple spinal
structures from multi-modal MRI images [17]. Their results also confirm that deep learning
has outstanding performance in resolving 3D medical image segmentation and becomes
an indispensable part of medical image processing, it has become the first choice for
various medical image segmentation applications. Furthermore, brain tumor segmentation
approaches based on deep learning have also attained good segmentation results. We
summarize brain tumor segmentation-based methods as follows.

When it comes to brain tumor segmentation, deep learning methods have recently
reached state-of-the-art accuracy for segmentation. Ping Liu et al. [18] presented a Deep
supervised 3D Squeeze-excitation V-Net (DSSE-V-Net) to automatically segment brain



Symmetry 2021, 13, 320

30f12

tumors from multi-model MRI images. On the BraTS 2017, Kamnitsas et al. [19] achieved
excellent results and proposed a robust segmentation integrating several models called
EMMA, which utilized an integrated architecture of several independent training. In partic-
ular, EMMA combined DeepMedic [20] and U-Net models and integrated the predictions
of their segmentation. In 2018, Myronenko [21] proposed a 3D encoder-decoder model
based on ResNet and won the first prize in BraTS18. Zhou et al. [22] ensembled several
different networks and used a shared backbone weights to extract multi-scale context
information. In [23], the authors used the k-nearest neighbor classifier for the real autism
spectrum disorder dataset. They considered the problem of the large amount and com-
plexity of MRI data. For this purpose, they proposed using the adaptive independent
subspace analysis (AISA) method to discover meaningful electroencephalogram activity in
the MRI scan data. Taking advantage of AISA method, they achieved 94.7% of accuracy.
Khan et al. [24] introduced an automated multi-modal classification method using deep
learning for brain tumor type classification. They initially employed the linear contrast
stretching using edge-based histogram equalization and discrete cosine transform (DCT).
Then, they performed deep learning feature extraction using transfer learning. Later on,
they adopted a correntropy-based joint learning approach, combined with the extreme
learning machine (ELM) for feature selection, and merged robust covariant features based
on partial least squares (PLS) into one matrix. The combined matrix was sent to ELM for
final multi-modal brain tumor classification.

The perspective of using channel grouping to reduce the computational cost is similar
to the idea of group convolution, which was first introduced in AlexNet [25]. Chen et al. [26]
designed a high-efficiency 3D CNN to realize real-time dense volumetric segmentation,
which built upon the multi-fiber unit [27] for facilitating information flow between groups.
These previous works clearly show that deep learning models can be used to segment
the brain into anatomical regions. However, these 3D CNN architectures bring high
computational overhead due to the use of multi-layer 3D convolutions. As a result of
limitations in some of the previous models, these limitations prompted us to propose a
new method. In order to make better use of multi-modalities and depth information, we
propose a novel network for solving the problem of brain tumors segmentation and adopt
several strategies for reducing network parameters.

3. Method

The proposed 3D RMFNet is composed of an encoder network on the pink part and
a decoder network on the blue part. Moreover, the number of input channels is set to
four since FLAIR, T1, T1C and T2 modalities are exploited to segment the tumor region,
and every modality with size 4 x 128 x 128 x 128. 128 x 128 x 128 indicates that each
MR sequence has 128 pictures, and the size of each picture is 128 x 128. In the encoding
path, the convolution block is composed of a convolution layer with the kernel size of
3 X 3 x 3, a batch normalization layer and ReLU activation function layer. To get more ac-
curate context information, the encoder path contains RMF units to extract rapidly features
representation of the input, and a 3D convolution block with a stride of 2 is replaced by
the max-pooling operation. The decoder path consists of four upsampling layers and one
convolution layer. Four upsampling layers contain MF units to reduce computing costs.
We have used concatenation to the feature maps from the encoder network to the decoder
network at the same level, which allows capturing multiple contextual information. The tri-
linear interpolation is used to upsample the feature maps, the final output is generated
by the size of 1 x 1 x 1 3D convolution layer. White boxes indicate copied feature maps.
These building blocks are explained in detail in the following subsections. Our framework
is shown in Figure 1.
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Figure 1. The 3D recurrent multi-fiber network (RMFNet) comprises an encoder network and a decoder network, the main
body of the network consists of RMF units. The input module is a four-channel 3D MRI crop, and the initial 3 x 3 x 33D
convolution is with 32 filters. In this paper, g represents the number of groups.

3.1. Recurrent Multi-Fiber (RMF) Unit

This section presents the recurrent multi-fiber unit. To better understand the role of
recurrent multi-fiber unit, we describe the newly-proposed unit as follows: recurrent con-
volutional neural networks (RCNN) are gradually applied in medical image processing.
RCNN and its variants show excellent performance in object recognition tasks using different
benchmarks. RCNN is an important part of recurrent multi-fiber (RMF). At each time-step,
the RCNN receive a new input and generates an output based on the current input and previ-
ous time-step information. Recurrent convolutional layer (RCL) is the key module of RCNN.
According to the RCNN, the states of RCL units evolve on discrete time steps. The unfolded
RCL layer graphically represents the time-step as shown in Figure 2. When t = 0 only the
feedforward input is present. Here, t = 2 (0~2) refers to the recurrent convolutional opera-
tion, including a feed-forward convolution layer and then two sub-sequential recurrent
convolutional layers.
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Figure 2. The overall structure of a 3D recurrent convolutional layer (RCL). An RCL is unfolded for
t = 2 time steps.

Let x; denote the particular input sample in the /th layer of the residual RCNN
(RRCNN) block for a pixel located at (i, j) of a particular input sample on the kth feature
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(b)

map in an RCL. Accordingly, the output of the network zg jk at the time step t is presented
as follows:

ijk(t) _ (w;{)sz(i'j)(t) " (wlr()Trl(z’,j)(t_l) by O

where fl(i’j ) (t) denotes the inputs to the feed-forward convolutional layer, and rl(i'j ) (t—1)

represents the inputs to the /th RCL. w{ and wj are the weights of the feed-forward
convolutional layer and the RCL of the kth feature map, respectively, and by is the bias.
The outputs of the RCL are presented to the rectified linear activation function and are
represented as follows:

Ol (£) = ReLU (ZLy (1)) = max (0, Z}y (1)) @)

Here, Oll. jk(t) denotes the outputs from of /th layer of the RCNN unit. The basic

residual convolutional unit of this architecture is shown in Figure 3a. As showed in
Figure 3b, let the output of the RRCNN-block be x; 1, so the output is composed of direct
mapping parts and residual parts and it can be computed by:

Xj41 =X+ Ogjk(t) 3)
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Figure 3. (a) A residual unit with two 3 x 3 x 3 convolution layers. (b) Recurrent residual convolutional units (RRCU).
(c) The developed multi-fiber (MF) design consisting of multiple separated recurrent residual units, called fibers. (d)

The recurrent multi-fiber (RMF) unit leverages a multiplexer for transferring information across separated fibers. (e) The

multiplexer acts as a router that redirects and amplifies features from all fibers.

3.2. MF Unit

The goal of multi-fiber is to reduce the number of connections between the feature
maps and kernels that make sense to calculate the overall cost. As in the examples shown
in Figure 3a, let us consider the dimensions of the input feature maps and the kernel size
is constant, let C;,, represent the number of input channels, C,,;; represent the number of
middle channels and C,;; represent the number of output channels. Let Con(b) be the
total number of connections as illustrated in Figure 3a. Thus, the amount of connections
between these two layers comes to:

Con(b) = Cjiyy X Cig + Ciia X Cout 4)
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Figure 3c shows a multi-fiber grouping strategy. We divide the ordinary residual
unit into K parallel and independent residual units that are called fibers. The number of
connections can be represented as follows:

COI’I(C) =K x (Cin/K X Cmid/K + le‘d/K X Cout/K)

®)
= (Cin X Cig + Cpig X Cout) /K
Which is K times less than Con(b). The overall width of the unit remains unchanged,
but the network parameters are greatly reduced, which significantly reduces the heavy
computational burden in 3D convolution.

3.3. Multiplexer Unit

The fibers are independent of each other and prevent them from exchanging informa-
tion. To facilitate information flow, use two 1 x 1 x 1 convolutions called a multiplexer.
The multiplexer acts as a router, redirecting and amplifying the characteristics of all fibers.
Details for the multiplexer unit are shown in Figure 3e.

The number of input channels is C;;, and then compressed to Cj;, /4, and finally enlarged
to Cj;. The parameters using two convolutions are C;;, x Ci, /4 4+ Ci, /4 X Ciy = Cizn /2.
However, using a 1 x 1 x 1 convolution layer, params = C2. Compared with using
al x 1 x 1 convolution, we employ two 1 X 1 x 1 convolutions which can reduce
half of the parameters. Therefore, the purpose of using two convolutions is to reduce
network parameters. Figure 3d describes the full multi-fiber network, where multiplexer is
connected at the beginning of the multi-fiber unit, to improve learning ability and extract
features without adding additional parameters.

4. Experiments
4.1. Benchmark Dataset and Evaluation Criteria

We evaluate our algorithm on the BraTS 2018 challenge dataset against the state-of-the-art
methods. We introduce the dataset as follows. The multi-modal 3D MRIs are provided by
the BraTS 2018 challenge [3,28,29]. The training data consist of 75 low grade and 210 high
grade gliomas. Each subject has FLAIR, T1, T1C and T2 MRI scans, and even ground truth
(GT) obtained by hand segmentation from experts. The multi-modal 3D MRIs originated
from 19 institutions and employed different protocols, magnetic field strengths and MRI
scanners [30]. Annotations include 4 tumor subregions: the normal tissue (label 0), necrotic
and non-enhancing tumor (label 1), peritumoral edema (label 2) and active/enhancing tumor
(label 4). The annotations are combined into 3 nested subregions. WT, TC and ET refer to the
regions of whole tumor (labell, label2, label4), tumor core (labell, label4) and enhancing tumor
(label4), respectively, as shown in Figure 4.

(a) Flair (b) T1 (c) T1C (d) T2 (e) Ground truth

Figure 4. MRI image modality sequence along with ground truth. The whole tumor (WT) class indicates all visible labels
(a combination of green, yellow and red labels), the tumor core (TC) class is a combination of red and yellow, and the
enhancing tumor core (ET) class is shown in yellow. The green region indicates peritumoral edema, the yellow region
indicates active/enhancing tumor and the red region indicates necrotic and non-enhancing tumor. These are the slices from
the axial plane.
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The segmentation accuracy has been evaluated using the Dice Similarity Coefficient
(DSC) and Hausdorff Distance (HD). Dice coefficient is the most common evaluation metric
in medical image segmentation. DSC is used to describe the degree of overlap between
the segmentation result and the actual truth label. The higher the Dice score, the better the

segmentation performance.

2TP
DsSC = FP+2TP+FN ©)

where TP indicates that the model predicts positive samples, TN indicates that the model
predicts negative samples, FP indicates that the model predicts positive samples and FN
indicates that the model predicts negative samples.

Hausdorff Distance (HD) are adopted to evaluate the distance between the ground
truth boundary and the predicted segmentation boundary. The Hausdorff Distance could
be calculated as follows:

H(A,B) = max{min{d(a,b)}} (7)

where a and b are points of sets A and B, respectively, and d(a, b) is the Euclidean distance
between a and b.

4.2. Implementation and Training

We employ standard five-fold cross validation on the dataset for performance analysis
and comparison. Specifically, the dataset can be randomly divided into five groups. Four
groups of them are used to train deep neural networks, and the last group is used to test
performance. This process is repeated five times. The whole experimental procedure is
implemented in Pytorch and train RMFNet on NVIDIA Tesla V100 32 GB GPU. Training
the RMFNet model for 200 epochs and the batch size is set to 2. In our experiments,
the purpose of data augmentation is to increase the sample size of training data and
enhance the robustness and generalization ability of deep Learning training algorithm. We
apply a random rotation, random intensity shift between [—0.1,0.1] and random cropping.
During the training, the MRI data are randomly cropped to 128 x 128 x 128, which can
ensure that most of the image content is still in the crop area. The probability of random
axis mirror flip (for all 3 axes) is 0.5.

To train our model, the Adaptive Moment Estimation (Adam) [31] is used for training,
with an initial learning rate of 1073 and a 12 weight decay of 107°. In terms of pre-
processing, we subtract the average value and divide by the standard deviation of the brain
region in order to normalize all input images. The Generalized Dice Loss (GDL) is used to
train the network. The formula for GDL is as follows:

12X w0 T i
my " w; Z]'I\i] (rij + pij)

®)

Lep=1-

The loss function checks each pixel separately, where m is the number of categories,
rij is the standard value of the category i at the j pixel and p;; is the predicted value of the
category i at the j pixel. The most critical thing here is w, and w represents the weight of
each category, which is determined by the number of pixels in the category as follows:

1

L ©)
(ZXary)

w; =

4.3. Results

To verify the superiority of our presented model, we compare our designed RMFNet
model with state-of-the-art models [32-38]. Among them, 3D U-Net [32] and 3D-ESPNet [33]
are the most popular convolutional neural networks and have been a great success in vari-
ous tasks.
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The proposed RMFNet achieves the best results on the brain tumor segmentation from
multi-modal 3D MRIs. Table 1 shows the results of our model and comparison model, our
results are shown in bold on the last line. The following evaluation results can be used
for analysis. In fact, the proposed algorithm achieves a Dice value of 89.62% for whole
tumor, 83.65% for tumor core and 78.72% for enhancing tumor. The HD value achieves
5.96 for whole tumor, 7.56 for tumor core and 3.94 for enhancing tumor. According to
Dice score, it is observed that, compared with previous models, our model remarkably
outperforms 3D U-Net [32] on the BraTS 2018 validation dataset. Compared with the best
algorithm [38], we can see that our method only has marginal performance gaps of 5.12%
for the enhancing tumor. However, our RMFNet only has 2.65 M parameters and 37.24 G
FLOPs, and our model has 10 times less FLOPs than [38]. It is observed that our method
can accurately segment different tumor subregions without requiring many parameters,
and can outperform the other methods on the BraTS 2018 validation dataset. Thus, our
RMFNet is a more efficient algorithm and has the potential of our method in multi-modal
3D MRI image segmentation tasks. The part segmentation results are shown in Figure 5.

(a) FLAIR Sequencel (b) Ground Truth 1 (c) Segmentation 1

(d) FLAIR Sequence2 (e) Ground Truth 2 (f) Segmentation 2

Figure 5. The result of using RMFNet with corresponding fluid attenuated inversion recovery
(FLAIR) slice and ground truth on BraTS 2018 Training dataset. Red: necrotic and non-enhancing
tumor (label 1); green: peritumoral edema (label 2); yellow: active/enhancing tumor (label 4).
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Table 1. Performance comparison with other quantitative results on the BraTS 2018 validation dataset. WT, TC, ET

denote whole tumor, tumor core and enhancing tumor, respectively. FLOPs to evaluate the complexity of the model (i.e.,

multiplication and addition).

Dice (%) HD (mm)

Method Params (M) FLOPs WT TC ET WT TC ET
3D U-Net [32] 16.21 1669.58 88.45 76.77 75.32 6.20 9.35 5.20

3D-ESPNet [33] 3.63 76.52 88.50 81.35 73.60 - - -
Cheng et al. [34] 13.68 386.20 87.80 78.57 72.87 6.33 10.20 5.96
Fang et al. [35] 20.36 598.16 85.70 72.32 72.51 7.60 13.45 5.80
Evan et al. [36] 9.52 203.98 80.67 68.62 68.03 14.35 20.05 14.48
Hu et al. [37] 10.38 201.35 85.82 76.60 71.89 10.93 9.89 5.60
Lyu et al. [38] 14.71 352.25 88.79 82.56 77.46 6.13 7.89 4.60
MENet (ours) 2.33 32.61 89.58 83.57 78.83 5.83 7.42 3.58
RMFNet (ours) 2.65 37.24 89.62 83.65 78.72 5.96 7.56 3.94

In this paper, to verify the effectiveness of the backbone established by the recurrent
unit, we compare the experimental results of MFNet and RMFNet. The results show that
the recurrent unit can improve the performance. Since the recurrent unit has the ability to
promote feature accumulation and select multi-scale context information, it can be beneficial
to scores. Table 1 clearly shows that our method is superior to complex networks, such
as 3D U-Net [32] and 3D-ESPNet [33]. When the recurrent unit is not utilized, the MFNet
has only 2.33M parameters. Nevertheless, it also has better segmentation performance.
In addition, we estimate the computing time of the network on NVIDIA Tesla V100 32 GB
GPU. The input size of RMFNet is 4 x 128 x 128 x 128 with the modalities of FLAIR,
T1, T1C and T2. We use the BraTS 2018 benchmarks to estimate the inference time of the
method. It takes an average of 2.15 s for RMFNet to segment a patient subject averagely.

4.4. Discussion

In this paper, we come up with a novel architecture for brain tumor segmentation
from multi-modal 3D MRIs. Specifically, the tumor is difficult to segment due to its random
location, blurred boundaries and irregular shapes. We present a new architecture of 3D
recurrent multi-fiber network (RMFNet) that includes RMF units, and we employ RMF
units to design a 3D recurrent multi-fiber network for automatic brain tumor segmentation
task, to address the huge computational burden in 3D convolution. Our architecture is
designed to contain a feature encoding path that encodes the detailed features to abstract
features as the network gets deeper and the decoding path with high resolution information
from the shallow layers are concatenated with deeper layers. To get as much meaningful
feature information as possible, we adopt a recurrent multi-fiber unit as the encoding
path in the architecture to better extract more precise detailed information and avoid the
degradation as the network grows larger and deeper. Moreover, using a 3D multi-fiber unit
can reduce the heavy computational burden in 3D convolution. In the decoder path, we
adopt the trilinear interpolation for upsampling the feature information. Meanwhile, we
utilize the detailed information and abstract information to segment the tumor accurately.
Through a comparative study, the results show that the proposed segmentation algorithm
is more effective than the 3D U-net architecture [32]. At the same time, this method has
achieved promising results in the extraction of different regions, which is better than
other methods. Extensive experiments on the BraTS 2018 challenge dataset verify the
effectiveness of our proposed RMFNet. For the whole tumor, the tumor core and the
enhancing tumor, we can attain dice scores of 89.62%, 83.65% and 78.72%, respectively.
Considering the 3D context, we also compare with the previous state-of-the-art methods.
Although the reduction of required parameters affects the training time and execution time,
the time is prolonged due to the complexity of the model. Therefore, in the future, we will
further modify our method to increase its generalization ability and improve the training
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speed. Meanwhile, we will adopt different post-processing methods to further improve
the segmentation results.

5. Conclusions

Automatic segmentation of a brain tumor has great influence in clinical diagnosis. It
reduces the burden of doctors to annotate the lesion area, and presents an accurate contour
of the anatomical tumors. In this paper, our model has designed an effective training
program to reduce false positives and enhance generalization, and the advantages of the
model are intuitive and easy to implement. Our RMFNet only has 2.65 M parameters and
37.24 G FLOPs.

Experimental results show that the performance of our algorithm is obviously better
than the previous algorithms. Quantitative evaluation of our method on the 2018 dataset
shows that our RMFNet achieved comparable dice sores (89.62%, 83.65% and 78.72% for the
whole tumor, the tumor core and the enhancing tumor, respectively) yet with less computa-
tional FLOPs and less model parameters, compared with the state-of-the-art brain tumor
segmentation approaches, e.g., 3D U-net architecture [32]. The quantitative results show
the effectiveness and potential of RMFNet as a clinical tool, reduce the heavy workload
of doctors and help to quickly and accurately segment brain tumors. In our experiments,
because of conducting 3D segmentation, it takes much more time to train. However, it
yields relatively good segmentation results. In the future, we will modify our method to
enhance its generalization ability and improve the training speed. Meanwhile, we will
apply different post-processing methods to further improve the segmentation results.

Author Contributions: Y.Z., X.R., K.H. and W.L. finished writing this article. Y.Z., X.R. and K.H.
designed the methods and concepts of this paper. Y.Z., X.R. and W.L. finished the analysis of the
experimental results. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute Support Jinan star science and technology plan of
Jinan Administration of Science & Technology (No. 20120104).

Acknowledgments: The authors are very grateful to the editors and reviewers for their valuable
comments and suggestions on this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al.
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival
prediction in the brats challenge. arXiv 2018, arXiv:1811.02629.

Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, ].; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The
multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 2014, 34, 1993-2024.

Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, ].S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the
cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117.
Zeineldin, R.A.; Karar, M.E.; Coburger, J.; Wirtz, C.R.; Burgert, O. Deepseg: Deep neural network framework for automatic brain
tumor segmentation using magnetic resonance flair images. Int. |. Comput. Assist. Radiol. Surg. 2020, 15, 909-920.

Luo, X.; Chen, Z. English text quality analysis based on recurrent neural network and semantic segmentation. Future Gener.
Comput. Syst. 2020, 112, 507-511.

Yuan, W.; Wei, J.; Wang, J.; Ma, Q.; Tasdizen, T. Unified generative adversarial networks for multimodal segmentation from
unpaired 3D medical images. Med. Image Anal. 2020, 64, 101731.

Shuang, Y.; Wang, Z. A novel approach for automatic and robust segmentation of the 3D liver in computed tomography images.
Meas. Sci. Technol. 2020, 31, 115701.

Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834-848.

Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor
segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18-31.

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; Volume 2016, pp. 770-778.



Symmetry 2021, 13, 320 11 of 12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Lecture Notes in
Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich,
Germany, 5-9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234-241.

Xu, F; Ma, H.; Sun, J.; Wu, R; Liu, X.; Kong, Y. Lstm multi-modal unet for brain tumor segmentation. In Proceedings of the 2019
IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5-7 July 2019; pp. 236-240.
Akilan, T.; Wu, Q.J.; Safaei, A.; Huo, J.; Yang, Y. A 3D cnn-Istm-based image-to-image foreground segmentation. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 959-971.

Dong, S.; Luo, G.; Tam, C.; Wang, W.; Wang, K.; Cao, S.; Chen, B.; Zhang, H.; Li, S. Deep atlas network for efficient 3D left ventricle
segmentation on echocardiography. Med. Image Anal. 2020, 61, 101638.

Heinrich, M.P.; Oktay, O.; Bouteldja, N. Obelisk-net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable
convolutions. Med. Image Anal. 2019, 54, 1-9.

Li, W,; Wang, G.; Fidon, L.; Ourselin, S.; Cardoso, M.].; Vercauteren, T. On the compactness, efficiency, and representation of 3D
convolutional networks: brain parcellation as a pretext task. In Lecture Notes in Computer Science, Proceedings of the International
Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25-30 June 2017; Springer: Cham, Switzerland, 2017;
Volume 10265, pp. 348-360.

Li, T.; Wei, B.; Cong, J.; Li, X;; Li, S. S 3 eganet: 3D spinal structures segmentation via adversarial nets. IEEE Access 2019,
8, 1892-1901.

Liu, P; Dou, Q.; Wang, Q.; Heng, P.-A. An encoder-decoder neural network with 3D squeeze-and-excitation and deep supervision
for brain tumor segmentation. IEEE Access 2020, 8, 34029-34037.

Kamnitsas, K.; Bai, W.; Ferrante, E.; McDonagh, S.; Sinclair, M.; Pawlowski, N.; Rajchl, M.; Lee, M.; Kainz, B.; Rueckert, D.;
et al. Ensembles of multiple models and architectures for robust brain tumour segmentation. In Lecture Notes in Computer
Science, Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 September 2017; Springer: Cham,
Switzerland, 2017; pp. 450—462.

Kamnitsas, K.; Ledig, C.; Newcombe, V.F,; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale
3D cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61-78.

Myronenko, A. 3D mri brain tumor segmentation using autoencoder regularization. In Lecture Notes in Computer Science,
Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018;
pp- 311-320.

Zhou, C.; Chen, S.; Ding, C.; Tao, D. Learning contextual and attentive information for brain tumor segmentation. In Lecture
Notes in Computer Science, Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer:
Cham, Switzerland, 2018; pp. 497-507.

Ke, Q.; Zhang, J.; Wei, W.; Damasevicius, R.; Wozniak, M. Adaptive independent subspace analysis (aisa) of brain magnetic
resonance imaging (muri) data. IEEE Access 2019, 7, 12252-12261.

Khan, M.A.; Ashraf, I.; Alhaisoni, M.; Damaeviius, R.; Scherer, R.; Rehman, A.; Bukhari, S.A.C. Multimodal brain tumor
classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics, 2020,
10, 565.

Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84-90.

Chen, C.; Liu, X;; Ding, M.; Zheng, J.; Li, ]. 3D dilated multi-fiber network for real-time brain tumor segmentation in mri. In Lecture
Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Shenzhen, China, 13-17 October 2019; Springer: Cham, Switzerland, 2019; Volume 11766, pp. 184-192.

Chen, Y,; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. Multi-Fiber Networks for Video Recognition; Springer International Publishing: Cham,
Switzerland, 2018; Volume 11205, pp. 364-380.

Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.; Freymann, J.; Farahani, K.; Davatzikos, C. Segmen-
tation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. 2017,
doi:10.7937 /K9 /TCIA.2017. KLXWJJ1Q.

Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.; Freymann, J.; Farahani, K.; Davatzikos, C. Segmenta-
tion labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 2017, 286,
doi:10.7937 /K9 /TCIA.2017.GJQ7ROEFE.

Sharif, M.L; Li, J.P; Khan, M.A; Saleem, M.A. Active deep neural network features selection for segmentation and recognition of
brain tumors using mri images. Pattern Recognit. Lett. 2020, 129, 181-189.

Kingma, D.P; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Cicek, O.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse
Annotation; Springer International Publishing: Cham, Switzerland, 2016; Volume 9901, pp. 424-432.

Nuechterlein, N.; Mehta, S. 3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation; Springer
International Publishing: Cham, Switzerland, 2019; Volume 11384, pp. 245-253.

Cheng, J.; Liu, J.; Liu, L.; Pan, Y.; Wang, J. Multi-level glioma segmentation using 3D u-net combined attention mechanism
with atrous convolution. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
San Diego, CA, USA, 18-21 November 2019; pp. 1031-1036.



Symmetry 2021, 13, 320 12 of 12

35.

36.

37.

38.

Fang, L.; He, H. Three pathways u-net for brain tumor segmentation. In Proceedings of the 7th Medical Image Computing and
Computer-Assisted Interventions (MICCAI) BraTS Challenge, 2018; Volume 2018, pp. 119-126.

Gates, E.; Pauloski, J.G.; Schellingerhout, D.; Fuentes, D. Glioma Segmentation and a Simple Accurate Model for Overall Survival
Prediction; Springer International Publishing: Cham, Switzerland, 2019; Volume 11384, pp. 476-484.

Hu, X,; Li, H.; Zhao, Y.; Dong, C.; Menze, B.H.; Piraud, M. Hierarchical Multi-Class Segmentation of Glioma Images Using Networks
with Multi-Level Activation Function; Springer International Publishing: Cham, Switzerland, 2019; Volume 11384, pp. 116-127.
Lyu, C.; Shu, H. A two-stage cascade model with variational autoencoders and attention gates for mri brain tumor segmentation.
arXiv 2020, arXiv:2011.02881.



	Introduction
	Related Work
	Method
	Recurrent Multi-Fiber (RMF) Unit
	MF Unit
	Multiplexer Unit

	Experiments
	Benchmark Dataset and Evaluation Criteria
	Implementation and Training
	Results
	Discussion

	Conclusions
	References

