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ABSTRACT As a non-invasive medical imaging scanning device, ultrasound has greatly increased the
efficiency and accuracy of medical diagnosis. In recent years, portable ultrasound is being more widely
used for its convenience and lower cost. Patients and physicians can receive the scanned images on their
mobile phones at any time via a wireless network with low latency. However, it is difficult for portable
ultrasound devices to capture images with the same quality as standard hospital ultrasound image acquisition
systems. Usually, the images captured by portable ultrasound equipment have considerable noise. This noise
undoubtedly affects the diagnosis of the physician. It is imperative to develop methods to remove the noise
while preserving important information in the image. For this reason, we propose a novel denoising neural
network model, called Feature-guided Denoising Convolutional Neural Network (FDCNN), to remove noise
while retaining important feature information. In order to achieve high-quality denoising results, we employ
a hierarchical denoising framework driven by a feature masking layer for medical images. Furthermore,
we propose a feature extraction algorithm based on Explainable Artificial Intelligence (XAI) for medical
images. Experimental results show that our medical image feature extraction method outperforms previous
methods. Combined with the new denoising neural network architecture, portable ultrasound devices can
now achieve better diagnostic performance.

INDEX TERMS Biomedical image processing, Image denoising, Feature extraction, Image fusion

I. INTRODUCTION

ULTRASOUND devices have several advantages over
other medical imaging modalities (e.g., MRI, X-ray

and CT). They use an instrumented probe to emit ultrasound
signals into the human body [1]. After ultrasound reflection
and information processing, tomographic images of the body
can be plotted. This process eliminates the need to expose
patients and physicians to ionizing radiation [2]. This dramat-
ically reduces the health risks of some of the other medical
imaging methods, like X-ray and CT. Also, ultrasound equip-
ment is considerably cheaper and more widely available than
other safe methodologies, like MRI.

Unlike other bulky medical imaging systems, handheld
portable ultrasound devices can make instant diagnosis pos-
sible. Doctors can perform quick tests at a patient’s bedside
without traveling to a specific medical lab or imaging room.
At the same time, portable ultrasound equipment is less
expensive to use. For our experiment, the Clarius handheld

portable ultrasound device [3] can be purchased for less than
$3,000.

Unfortunately, most handheld portable ultrasound devices
have poor image acquisition quality. The presence of speckle
noise significantly affects the diagnosis. Also, since different
brands of portable ultrasound devices have different empha-
sis on image acquisition, it is difficult to use a simple de-
noising model that works for all portable ultrasound devices.
For the same portable ultrasound device, the noise level may
be slightly different depending on the location of the human
organ being scanned. All these issues pose several challenges
in our work.

Despite the abovementioned difficulties, noise removal is
crucial in the field of computer vision, such as for image
segmentation [6]. Specifically, organ segmentation can help
doctors quickly reconstruct information about human tissues
[4] [5]. One of the prerequisites for effective segmentation
is having noise free input medical images. Existing methods
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based on machine learning and interpretable artificial intel-
ligence are already widely used for automatic diagnosis of
diseases [7]. If there is noise in the input image, this will
inevitably reduce the confidence in the diagnostic informa-
tion. Based on the above observations, noise removal from
medical images has become an essential step in medical
image information processing. As a medical imaging device
with quality limitations, portable ultrasound equipment can
greatly benefit from the noise removal process.

We present a novel Explainable AI (XAI) based approach
for medical image feature extraction. At the same time, we
also improve an existing denoising neural network architec-
ture. In the training phase, we adopt a hierarchical noise
addition strategy. The noise is added only in regions where
no medical feature information is present. After our improve-
ment, this network architecture for normal image denoising
achieves excellent performance for medical image denoising.
Finally, we combine the medical image feature information
with the denoising network. This denoising pipeline ensures
that the neural network robustly removes speckle noise while
retaining the most meaningful feature information. It is worth
mentioning that we subtly utilize the neural network image
reconstruction technique to map the medical image feature
information. The advantage of this approach is that our pro-
posed feature extraction algorithm can be perfectly adapted
to different medical imaging devices. We will describe this
innovation in detail in the experimental introduction section.

We call the proposed novel portable ultrasound image
denoising network the Feature-guided Denoising Convo-
lutional Neural Network (FDCNN). Experimental results
demonstrate that our network outperforms existing denoising
methods. For the feature extraction part, compared to tradi-
tional methods, our proposed method can accurately detect
the important features contained in medical images. This
also verifies the superiority of our XAI-based approach over
traditional methods for medical image feature extraction. The
ultrasound image denoising problem can be solved much
better by our proposed method. At the same time, our method
has the potential to be adapted for other similar medical
devices.

The data used in our experiments is collected with the Clar-
ius handheld ultrasound device. We mainly acquire images of
the knuckles and heart regions of the human body. In addition
to our proposed novel method, we show the results of existing
methods for comparison.

II. REVIEW OF CLASSICAL FILTERING APPROACHES
In this section, we introduce several classical image noise
reduction algorithms. These algorithms use different filtering
methods to achieve denoising. Overall, different denoising
methods have different strengths and weaknesses in terms of
removal of different types of noise.

Median filtering is widely considered to be one of the most
classical and effective methods for image noise removal [12].
Previous work on noise removal from ultrasound images has
also introduced median filtering as a decent method [13].

Since the median value is not affected by the maximum
and minimum values of neighboring pixels, median filtering
has good performance in removing salt-and-pepper noise.
However, when the neighborhood of the median filter is large,
the processed image has a strong smoothing effect, with
edges not retained properly. Thus, median filtering alone is
not sufficient to meet our needs.

Wavelet filtering takes advantage of time-frequency local-
ization and multi-resolution features. These two properties
ensure that the wavelet filter can remove noise while retaining
signal bursts and image edges. In previous work, Achim
et al. used a Bayesian estimator to create rules for noise
removal from ultrasound images [14]. However, the authors
acknowledge that the characteristics of noise vary across sig-
nal detection. A perfect model to detect the noise component
is difficult to construct using simple statistical models.

Anisotropic diffusion filtering overcomes the drawbacks of
Gaussian blur [15]. Broadly speaking, anisotropic diffusion
filtering first treats the image as a heat field. As a result,
each pixel in the image can be seen as a heat flow. Based on
this assumption, if a neighborhood pixel differs significantly
from the current pixel, it means that the neighborhood pixel
is likely to diffuse. Thus, this neighborhood pixel is most
likely a boundary. However, anisotropic diffusion filtering
has limitations in medical image processing. First, the edge
information of ultrasound images is often fuzzy. As a result,
the edge estimation for anisotropic diffusion filtering is of-
ten inaccurate. Second, anisotropic diffusion filtering further
smoothes the ultrasound image. As a consequence, important
medical diagnostic information can be lost.

As a nonlinear filter, bilateral filtering [16] uses a weighted
average to represent the intensity of a pixel. Compared to
the ordinary Gaussian low-pass filter, which only takes into
account the effect of position on the center pixel, bilateral fil-
tering can achieve a smoothing effect with edge preservation
and noise reduction. In terms of ultrasound image denoising,
bilateral filtering preserves more image edge information
than anisotropic diffusion filtering. However, for important
diagnostic information, the weighted average method over-
smoothes much of the important information. This is unac-
ceptable for medical images.

III. REVIEW OF DEEP LEARNING APPROACHES
In the state-of-the-art, many deep learning approaches have
been proposed to remove noise in images. Noise2Self [9]
is a typical method, which can be combined with existing
neural networks, such as DnCNN, to remove noise in images.
Without using the signal prior, the noise estimation and the
clean ground truth, it can still remove blind-level noise in
images by learning with a single image. The Noise2Self
method solves the limitation of clean ground truth and ob-
tains persuasive denoising results.

In addition to the Noise2Self approach, a fast and flexible
denoising convolutional neural network (FFDNet) [10] can
also remove noise from images. Many existing CNN meth-
ods have over-smoothing artifacts during the denoising step,
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which can make resulting images blurry and result in the loss
of important features. Differing from these CNN approaches,
FFDNet is a non-blind model. It designs a tunable noise level
map, which can control the trade-off between the noise re-
moval performance and the detail preservation performance.
It also involves the down-sampling of sub-images, which
can guarantee a good trade-off between inference speed and
denoising performance.

In addition to FFDNet, Denoising Convolutional Neural
Networks (DnCNN) [11] is another popular CNN architec-
ture for noise removal. DnCNN is modified from the VGG
network [18]. More specifically, the size of the convolutional
filters in DnCNN is set to 3 × 3 and pooling layers are
removed from the VGG architecture. DnCNN contains three
different types of layers: Conv + ReLU, Conv + BN + ReLU
and Conv. It takes the Adam algorithm [17] as the gradient-
based optimizer, which can guarantee the performance of
residual learning.

Similar to DnCNN, Image Restoration Convolutional Neu-
ral Network (IRCNN) [31] is also a CNN architecture for
noise removal. The network contains seven dilated convolu-
tion layers, which can enlarge the receptive field. Batch nor-
malization and residual learning are used to accelerate train-
ing, and smaller-size training images are used to solve the
problem caused by boundary artifacts. Similar to DnCNN,
the IRCNN model also takes the Adam algorithm as the
gradient-based optimizer.

IV. THE PROPOSED FEATURE-GUIDED DENOISING
CNN MODEL
We propose the Feature-guided Denoising Convolutional
Neural Networks (FDCNN) for ultrasound images. As part
of its novelty, FDCNN can remove noise hierarchically ac-
cording to the features with different degrees of importance.
The most important features are retained during the fusion
step. The remaining features in the original image can also be
partly preserved after noise removal, resulting from improve-
ments to the neural network architecture. In particular, we
exploit the potential of Guided Backpropagation in feature
extraction to retain features. In addition, we utilize feature
information to guide noise addition so that the denoising
network can achieve better feature preservation. More details
are given in the following subsections.

1) Feature Detection
In the feature extraction phase for ultrasound images, we
explore the potential of Guided Backpropagation, as an XAI
(Explainable AI) method, for feature extraction. In general,
XAI is used to explain the logic behind every decision
made by an AI algorithm [21]. This research can be broadly
divided into local interpretation and global interpretation.
The goal of the Guided Backpropagation algorithm is to
map the decision path of a neural network. Thus, the Guided
Backpropagation algorithm is a local interpretation method.
The Guided Backpropagation algorithm is widely used to
explain the classification task of neural networks. In the

classification task, key areas of evidence in a picture that are
considered for classification are marked out. We have bor-
rowed this special attribute of Guided Backpropagation. That
is, if Guided Backpropagation is used in a medical image
recovery network, key medical image regions will also be
marked during the recovery process. In a broader sense, these
marked regions are the feature information for the medical
images. With this approach, our feature extraction algorithm
outperforms almost all traditional feature extraction methods
on ultrasound images.

As opposed to normal backpropagation, Guided Back-
propagation limits backpropagation to gradients less than
zero [20]. Thus, when the Guided Backpropagation algorithm
is used, the partial derivative of the gradient for a particular
feature map is given by the following equation.
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For comparison, the corresponding formula for ordinary back
propagation is:
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The reason for limiting the return to gradients less than 0 is
that the portion of the gradients smaller than 0 corresponds to
the part that weakens the feature we want to visualize; while
our goal is to find the part of the image that maximizes the
activation of a feature. Thus, when the above formula is used
to pass ReLU, the maximally activated part of the picture
can be marked. Compared to traditional feature extraction
methods, the neural network feature map captures both low-
dimensional and high-dimensional information of a picture.
For low-level feature maps, the low-level neurons mainly
extract features like edges and stripes. Conversely, for higher-
level feature maps, these feature maps mainly capture more
abstract, high-dimensional features. By using the Guided
Backpropagation algorithm, we can maximize the effect of
each layer on the input image to describe features.

In this work, we apply Guided Backpropagation to a med-
ical image recovery network based on the U-net architecture
[22]. U-net does not have fully connected operations in
the network. On the left side of the network is a series of
downsampling operations consisting of convolution and Max
Pooling. These downsampling operations are also known as
contracting path. The contracting path consists of 4 blocks.
Each block uses three convolutions and one Max Pooling
to downsample. After each downsampling, the number of
feature maps is divided by two, resulting in a feature map
of size 32 × 32. The right side of the network is called
the expansive path, which also consists of 4 blocks. Before
passing through each block, the size of the Feature Map
is multiplied by two by deconvolution. The U-Net network
ensures the coherence and accuracy of feature map learning
by symmetric coding and decoding as well as propagation
path merging. In our experiments, we take the original image
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as input. Then, the output of the network is compared to
the original image for loss calculation. This way, we can
train a medical image recovery network to perform well.
The reason for the training is to ensure that the Feature Map
learns the details in different dimensions that are needed to
recover the image. Therefore, the Guided Backpropagation
algorithm can accurately capture the feature information of a
medical image. Figure 1 shows the results of feature detection
for some ultrasound images. We can clearly see that this
feature detection method can avoid the effect of noise. At the
same time, it preserves the most important part for medical
diagnostics.

FIGURE 1: Feature detection results based on Guided Back-
Propagation: (left) the feature mask layer; (right) the original
image. We can see that this feature detection method can
avoid the undesirable effects of noise.

Here, we explain why the direct application of traditional
image feature extraction algorithms, such as FAST (Features
from Accelerated Segment Test) [19] or ORB (Oriented
FAST and Rotated BRIEF) [23], is less effective. Specifi-
cally, two reasons account for this low effectiveness. First,
traditional feature extraction methods are less robust in noisy
regions. As shown in Figure 2, both the FAST and ORB
algorithms mark feature points in the noisy regions of an
ultrasound image. This problem is due to the fact that most
traditional algorithms only consider local information of the
image. For example, the FAST algorithm counts a discretized
Bresenham circle with a radius equal to 3 pixels. Then, spe-
cific rules are used to decide whether a pixel point is a feature
point or not. This undoubtedly leads to some noisy regions
with a large area or aggregation being incorrectly identified
as feature points. The failure of traditional feature extraction
algorithms on noisy ultrasound images also reminds us of the
need to devise a feature extraction algorithm that incorporates
structure and global information on ultrasound images. Based
on this concept, we can maximize the robustness of the
algorithm in noisy regions. Second, the feature extraction
results of traditional methods are relatively fragmented and
independent. This goes against our subsequent denoising
framework. The feature extraction results will be used for
hierarchical noise addition and image fusion. These two steps
require that the feature regions of an ultrasound image are
clearly indicated. If the extraction results of a traditional
method are used directly, the denoising effect of the neural
network will not be improved. Instead, it will be burdened by

the addition of incorrect noise addition regions. Thus, using
traditional feature extraction methods actually reduces the
noise reduction effect. In the experimental results section,
we compare the denoising and fusion results for networks
trained by different feature extraction algorithms. These com-
parisons demonstrate the two issues mentioned above. Thus,
we propose a feature extraction algorithm for medical images
based on Guided Backpropagation as one of the important
contributions of this experiment [20].

FIGURE 2: Results of different feature extraction algorithms.

2) Noise Addition
After the features are detected, we need to add Gaussian noise
to the original images, guided by the feature information.
We implement residual learning [24] so that the dilated
convolutional neural network can learn how to remove noise
following the differences between the original and the noise-
added images. The noise addition step is only involved during
training. For testing, FDCNN directly removes the noise in
the original ultrasound image without adding noise.

In the state-of-the-art, to achieve residual learning, Gaus-
sian noise is randomly added to the original image. Accord-
ing to residual learning, random noise could be added to
the important features of the images, which can mislead a
neural network into mapping the features as noise. This effect
decreases the clarity of the image features and violates the
denoising goal for ultrasound images. This situation is not
obvious if the neural network is trained with a low noise
level. Once we train the network with high noise levels, the
probability of adding noise to features will increase. This can
make the neural network learn more about feature removal
[25] and make the denoised images fuzzy.

To resolve this problem, we propose the feature-guided
architecture to achieve noise removal while preserving image
features. Instead of adding noise to the entire image, we

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3059003, IEEE Access

G.Dong et al.: Feature-guided CNN for Denoising Images from Portable Ultrasound Devices

FIGURE 3: The Denoising Network Architecture.

utilize the detected features to avoid adding noise on the
features. Specifically, we generate random Gaussian noise
with an adaptive noise level depending on the size of the
original ultrasound image. Given the unknown noise level in
ultrasound images, we train the neural network with blind
noise levels; i.e., we generate noise within a moderate range
instead of a fixed level. Specifically, we train the neural
network with a noise level ranging from 15 to 50. Then,
we modify the noise array to remove noise that appear on
features, so that feature-guided noise can be obtained. After
adding feature-guided noise, we utilize the feature-guided
noisy images to train the neural network.

It is worth mentioning that the feature guiding step is not
only involved in the training and validation steps, it is also
utilized during testing. In the testing step, we first use the
pre-trained detector model to obtain the important features
and save the feature information in a feature array. Then,
we remove the noise in the original ultrasound image to
obtain the coarse denoised image. To integrate the preserved
features with the denoised image, we utilize the Laplacian
pyramid to obtain the final feature-guided denoised image.
We do not directly use trained models to remove noise in
the feature-removed ultrasound image, and add the features
back to the resulting image. We abandon this easy approach
because the intensity of the resulting image is slightly de-
creased during noise removal on the feature-removed image.
This intensity-decreasing effect is common for denoising
techniques, which can make these features stand out after
adding the preserved features back to an image. Therefore,
we implement the Laplacian pyramid as the image fusion
technique, which makes the intensity transition natural. Fol-
lowing this approach, features with different degrees of im-
portance can be preserved. The most important features are
retained during the fusion step. The remaining features in the
original image can also be partly preserved due to the feature-

guided denoising model.

3) FDCNN Architecture

The architecture of the FDCNN model is adapted from the
VGG network [18] and IRCNN [31]. Compared to the VGG
network, we remove max pooling and incorporate dilation in
our architecture. The dilated convolution is used to enlarge
the receptive field, which can guarantee a larger image region
for capturing context information. To make the architecture
work well for ultrasound image denoising, we set the depth
of the neural network to 17 and the size of convolution filters
to 3× 3. The number of feature maps for each of the middle
layers is set to 64. In addition, batch normalization and
residual learning are used to accelerate training, and smaller-
size training images are used to solve the problem caused by
boundary artifacts. The architecture of the FDCNN denoiser
is shown in Fig. 3. In our proposed architecture, FDCNN
contains six different types of layers: 1D-Conv + ReLU, 1D-
Conv + BN + ReLU, 2D-Conv + BN + ReLU, 3D-conv + BN
+ ReLU, 4D-conv + BN + ReLU and 1D-Conv. The first layer
is a ReLU + Dilated Convolution with a dilation factor of 1,
where 64 feature maps are generated by 64 filters with size
3 × 3 × 1. In this case, the receptive field will be increased
to 3 × 3. Following Conv, rectified linear units (ReLU) are
involved for non-linearity. To further increase the receptive
field, we also increase the dilation factor for the following 5
layers. The second to sixth layers are BN + ReLU + Dilated
Convolution with the dilation factors of 2, 3, 4, 3, and 2,
respectively. Even though batch normalization can boost the
training speed [28], the training time can still be increased
significantly due to the increase in the dilation factor. To
control the overall training time, we decrease the dilation
factor to 1 from the seventh layer with reservation of batch
normalization and ReLU. The last layer of the architecture is
a Dilated Convolution with a dilation factor of 1, where the
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output is reconstructed by a 3× 3× 64 filter.

4) Image Fusion
Our proposed noise reduction network can accurately remove
the noise present in an image. However, the denoised im-
age is usually accompanied by a brightness change in the
diagnostic information, an erroneous removal of some im-
portant diagnostic information, and an increase of unknown
information. Figure 4 shows some of the common problems
resulting from deep learning based noise reduction networks.
For medical images, these errors can be unacceptable. A
small change can result in a wrong diagnosis by a doctor.
Based on this consideration, we introduce image fusion for
feature information with noise reduced images. Zhang et
al. devised a method to enhance images through pyramidal
fusion [26]. We adopted their design concept to address the
above-mentioned common problems.

FIGURE 4: In the denoised image, the joint of the hand
has some feature information clearly removed. Also, the
brightness is increased compared to the original image. In
addition, there is a suspicious dashed line. These are some
troublesome issues. Our image fusion strategy solves these
problems perfectly.

Figure 5 show the overall workflow of FDCNN. Among
all the steps, we focus on the image fusion process. First, the
feature extraction image is not a binary map. The brightness
of each pixel actually represents the importance of the feature
at that location. However, for image fusion, we want the
features to have a consistent level of importance. So, we
binarized the image first. All pixels greater than 0 are con-
sidered as feature regions; this creates a feature mask layer.
This mask layer represents the regions that are used for fusion
in the original image. For these regions, we use Laplacian
pyramids to fuse them into the noise reduced image. The
result is an image that preserves diagnostic features while
removing noise.

FIGURE 5: This figure explains the overall workflow of
FDCNN. First, the original image is extracted with a feature
mask layer via a U-net network based on Guided Backprop-
agation. Then, we add noise to the featureless areas using
the mask layer. After that, we feed the image into the noise
reduction network and perform residual learning. Then, we
merge the feature information and the denoised images by
a Laplacian fusion algorithm [27]. Finally, our result can
remove noise while preserving feature information in an
ultrasound image.

We briefly introduce the Laplacian pyramid fusion algo-
rithm [27]. First, each image involved in the fusion is decom-
posed into a multi-scale pyramid. The low-resolution images
are in the upper layers, while the high-resolution images
are in the lower layers. A synthetic pyramid is obtained by
fusing the pyramids of all the images at the corresponding
layers with certain rules. The synthetic pyramid is then
reconstructed according to the inverse process of pyramid
generation to obtain the fusion pyramid. For the Laplacian
pyramid, we first construct a Gaussian pyramid. Constructing
a Gaussian pyramid requires first blurring the image of the
next layer with a Gaussian blur. Then, even rows and columns
of the blurred image are removed to reduce the image size.
For the Laplacian pyramid, the image at each layer is the
image of the Gaussian pyramid at the same layer minus the
previous layer. Then, the image for each layer will also be
Gaussian blurred to obtain the final result. The formula is
given below.

Li = Gi −UP (Gi+1)⊗ G5×5

After the above step, we pass in the mask layer. We sum
the two images of the Laplacian pyramid according to the
mask layer. The result of the summation is a new pyramid. At
the same time, we apply the same operation to the Gaussian
pyramids of the two images. Each layer of the new pyramid
is then up-sampled and summed with the previous layer. The
final result is the Laplacian Pyramid Fusion image. Because
Gaussian blur is used in the process of building the pyramids,

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3059003, IEEE Access

G.Dong et al.: Feature-guided CNN for Denoising Images from Portable Ultrasound Devices

the edges of the fusion are smooth.

V. EXPERIMENTAL RESULTS
In this section, we provide details on how we collect and
arrange our data to work on the proposed architecture.
Furthermore, we demonstrate the improvements attained by
the proposed approach on ultrasound images by comparing
our approach to the performance of other networks driven
by different feature extraction algorithms. To illustrate the
denoising performance, we also compare with five classical
filtering methods; namely, median filter, wavelet filter, non-
local means filter, anisotropic diffusion filter and bilateral
filter. Deep learning approaches, such as DnCNN, IRCNN,
Noise2Self and FFDNet, are also included in the compar-
isons. To evaluate the denoising performance, we consider
both peak signal to noise ratio (PSNR) [29] and structural
similarity index (SSIM) [30] for objective evaluation.

A. EXPERIMENTAL SETTINGS
1) Data
Given the lack of public ultrasound image datasets, we use
our Clarius handheld ultrasound device to collect ultrasound
images for training and testing. Our data focuses on two parts
of the human body: knuckles and the heart. Our data includes
500 ultrasound images, which includes 400 ultrasound im-
ages of size 180 × 180 for training, 46 ultrasound images of
size 321 × 481 for validation and 54 ultrasound images of
size 440× 380 for testing.

2) Arrangement
For the experiments, we use separate datasets for training,
validation and testing steps. For the filtering methods, we
involve the training and validation sets to determine the
parameter chosen, and use the testing set to test the denoising
performance of the five filtering methods. For existing deep
learning methods and our proposed method, we use three
datasets separately for training, validation and testing. Fol-
lowing this arrangement, all the approaches are tested on the
same testing set so that the evaluation can be quantitative and
qualitative.

B. EVALUATION
In this section, we demonstrate the effectiveness of our
approach in improving the quality of ultrasound images
captured by our handheld device. In order to test the denois-
ing performance, state-of-the-art approaches add Gaussian
noise to the original clean image and test the denoising
performance on the noise-corrupted image. However, this
testing method can only prove the denoising performance
on noise-corrupted images instead of real noisy images. In
our experiments, we tested our proposed approach on the
original ultrasound images. These original ultrasound images
are real noisy images directly captured by the device. We
calculate the PSNR and SSIM values for the denoised and
original images to evaluate the denoising performance. Also,

FIGURE 6: Denoising results of FDCNN driven by different
feature extraction algorithms.

we perform a user study to demonstrate performance based
on subjective human evaluations.

TABLE 1: PSNR and SSIM results of FDCNN driven by
different feature extraction algorithms.

Methods Guided-BP ORB FAST
PSNR 0.9801 0.9698 0.9652
SSIM 40.3113 36.1567 35.7888

1) Image Analysis
In order to illustrate the denoising performance of our pro-
posed method, we first test our feature-guided architecture
with two other feature extraction methods. In particular, we
compare the performance of FDCNN driven by Guided-BP
with networks driven by FAST and ORB. The denoising
results of FDCNN driven by different feature extraction
algorithms are shown in Fig. 6 and Table. 1. To evaluate
the denoising performance on ultrasound images, we need to
pay attention to the noise removal performance and feature
preservation in the ultrasound images. From Fig. 6, we can
see that our proposed architecture (driven by Guided-BP)
can successfully remove the noise appearing in the magnified
dark area. In addition, the features are clear without over-
smoothing artifacts. Compared to our proposed architecture,
the networks driven by FAST and ORB cannot achieve
promising results. From Fig. 6, we can find that the results of
ORB and FAST generate negative artifacts near the bottom
left corner and the intensity of the important features are
decreased compared to the original image. The reason for
these artifacts is that ORB and FAST can only detect limited
features. When we utilize these features to guide the noise
addition, the possibility that the noise is generated on the un-
detected features is still high. This situation can mislead the
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FIGURE 7: Denoising results for different methods: (a) Original image; (b) FDCNN with fusion; (c) FDCNN without fusion;
(d) DnCNN; (e) IRCNN; (f) Noise2Self; (g) FFDNet; (h) Median Filter; (i) Wavelet Filter; (j) Anisotropic Diffusion Filter; (k)
Bilateral Filter; and (l) Non-local Means Filter.

TABLE 2: PSNR AND SSIM RESULTS OF DIFFERENT METHODS ON TESTING SET.

Methods FDCNN
(with fusion)

FDCNN
(without fusion) DnCNN IRCNN Noise2Self FFDNet Median

Filter
Wavelet

Filter
Anisotropic

Filter
Bilateral

Filter
NLM
Filter

PSNR 40.3113 36.1387 33.5115 33.3894 29.4837 34.1458 32.3649 28.2906 31.3950 34.6056 33.8018
SSIM 0.9801 0.9503 0.9093 0.9067 0.9086 0.8434 0.6955 0.1973 0.6702 0.8674 0.8183

TABLE 3: SUBJECTIVE USER EVALUATION RESULTS FOR DIFFERENT METHODS.

Methods FDCNN
(with fusion)

FDCNN
(without fusion) DnCNN IRCNN Noise2Self FFDNet Median

Filter
Wavelet

Filter
Anisotropic

Filter
Bilateral

Filter
NLM
Filter

Overall 87 79 72 75 62 73 23 37 15 20 47

network into mapping the features as noise, which can result
in over-smoothing artifacts and lower intensity of features.

In order to demonstrate the performance of our proposed
method, we also compare our FDCNN with five traditional
filtering methods and the four deep learning methods men-
tioned in Section 2. The comparison results can be seen in
Fig. 7. From Fig. 7 we can see that FDCNN can preserve
features quite well. The feature details are preserved, which
are very similar to the original image. We can also see that
FDCNN successfully removes noise in the magnified dark
area. Compared to FDCNN, DnCNN makes the resulting im-
ages a little blurred, which can result in loss of details. Com-
pared to DnCNN, IRCNN can preserve the image features
better and reduce noise in the dark target area. Compared to
our proposed architecture, Noise2Self and FFDNet can also
remove the noise quite well. However, these two approaches
have over-smoothing artifacts on ultrasound images.

Compared to the filtering methods, our proposed archi-
tecture achieves much better denoising performance. From
Fig. 7 we can see that the median filter and anisotropic
diffusion filter cannot achieve good denoising performance
on ultrasound images. Their denoised results are quite blurry,
making it difficult to even recognize detailed textures. Com-
pared to the median and anisotropic diffusion filters, the
result from the wavelet filter is much clearer, with a legible
boundary. However, the wavelet filter also removes consid-

erable feature information near the boundary, which runs
counter to the goal of feature preservation. Compared to other
filtering methods, the bilateral filter performs the best among
the four filtering methods, and provides acceptable denoising
performance. From Fig. 7 we can see that the noise in the
dark area is reduced. Even if the image feature in the demo
image is a little blurry, it is still clearer than the median and
anisotropic diffusion filters. Non-local means filter achieves
similar denoising performance. The result is slightly blurry
compared to the bilateral filter, but it is still better than the
median filter. Compared to the five filtering methods and four
deep learning methods, our proposed approach has superior
denoising performance based on an analysis of the results.

2) Statistical Analysis
In addition to analyzing the result images, we also evaluate
the denoising performance by conducting a statistical anal-
ysis. From Table 1 we can see that our FDCNN driven by
Guided-BP can achieve better denoising performance than
the networks driven by ORB and FAST. From Table 2, we
can see that our proposed FDCNN also has top rankings.
Specifically, performance of FDCNN with fusion slightly
exceeds FDCNN without fusion. In addition, DnCNN and
IRCNN also provide reliable results with SSIM over 0.9 and
PSNR over 33. The Noise2Self method returns higher SSIM
than IRCNN with lower PSNR value. FFDNet has opposite

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3059003, IEEE Access

G.Dong et al.: Feature-guided CNN for Denoising Images from Portable Ultrasound Devices

performance, producing higher PSNR and lower SSIM. For
the filtering methods, Bilateral filter and non-local means
filter perform best with PSNR values around 34 and SSIM
values around 0.8. From the above statistical analysis, we
can see that the proposed feature-guided denoising CNN
architectures can achieve excellent denoising performance.

3) Subjective User Evaluation
In addition to the PSNR and SSIM metrics, we also in-
troduce a study based on human subjective evaluation. For
this evaluation, we select 10 participants. Five of them are
from the University of Alberta’s Department of Computing
Science and have a background in denoising techniques.
The remaining five participants are from their families and
have no experience with denoising techniques. We present
the results of 11 deep learning and traditional filter-based
approaches to the participants without telling them the exact
method. After viewing all the test images, they are asked to
evaluate the results for each method. During the evaluation,
we allow subjects to compare with the original image. The
comparison scores lie in a range of 0 to 10, where 0 is the
worst and 10 is the best. Table 3 shows the results of this
user evaluation. Clearly, we can see that FDCNN achieves the
leading score without fusing the feature images. After fusion,
the final results beat all the methods we tested.

VI. CONCLUSION
We presented a feature-preserving denoising approach for
portable ultrasound images. In our algorithm, we first devel-
oped a novel feature extraction technique for medical images.
This feature extraction technique adapted ideas from inter-
pretable artificial intelligence and the U-net image recon-
struction network. Benefiting from the application of guided
back-propagation path tracking, we detected the specific
location of the features accurately. Following this, we uti-
lized an optimized neural network for strong denoising. We
then combined the previously obtained feature images with
the Laplacian Pyramid Fusion method. Based on the above
methods, we were able to retain the original medical features
as much as possible, while strongly denoising the images.
At the same time, Laplacian Pyramid Fusion also avoids the
problem of sharp edges that can occur during fusion. In the
end, we can conclude that noise from portable ultrasound
images can be almost perfectly removed by our method. Our
research can allow portable ultrasound images to approach
medical diagnostic capabilities as large ultrasound devices in
medical labs and hospitals.
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