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Approximate Inference-Based Motion Planning by
Learning and Exploiting Low-Dimensional

Latent Variable Models
Jung-Su Ha , Hyeok-Joo Chae , and Han-Lim Choi

Abstract—This work presents an efficient framework to gener-
ate a motion plan of a robot with high degrees of freedom (e.g., a
humanoid robot). High dimensionality of the robot configuration
space often leads to difficulties in utilizing the widely used mo-
tion planning algorithms, since the volume of the decision space
increases exponentially with the number of dimensions. To handle
complications arising from the large decision space, and to solve a
corresponding motion planning problem efficiently, two key con-
cepts are adopted in this work: First, the Gaussian process latent
variable model (GP-LVM) is utilized for low-dimensional repre-
sentation of the original configuration space. Second, an approx-
imate inference algorithm is used, exploiting through the duality
between control and estimation, to explore the decision space and
to compute a high-quality motion trajectory of the robot. Utiliz-
ing the GP-LVM and the duality between control and estimation,
we construct a fully probabilistic generative model with which a
high-dimensional motion planning problem is transformed into a
tractable inference problem. Finally, we compute the motion tra-
jectory via an approximate inference algorithm based on a variant
of the particle filter.

Index Terms—Motion and path planning, learning from demon-
stration.

I. INTRODUCTION

FOR robotic motion planning, a trajectory is designed for
robot states through a complex configuration space from

an initial state to perform a given task. The planning problem
is formulated as an optimal control (OC) problem consider-
ing the robot dynamics for a feasible motion trajectory and
the cost function for the task. The optimal trajectory is recon-
structed from the optimal cost-to-go function (also called the
value function), which is obtained by solving the Bellman equa-
tion through dynamic programming procedures. Though these
approaches guarantee the global optimality of the solution, they
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are not scalable with the dimensionality of the decision space
because of the curse of dimensionality: the size of the decision
space increases exponentially with the number of dimensions.
Sampling-based algorithms such as RRT* [1] or FMT* [2], and
their variants, are also widely used in the motion planning lit-
erature. These algorithms simultaneously construct and extend
the approximate state space (represented in a graph or a tree
structure), and then update the approximate solution. They are
applicable to medium-sized problems but it is almost impossible
to extend the graph into extremely high-dimensional space and
obtain the solution without limiting the sampling space. Another
option is a trajectory optimization based on iterative local op-
timization [3], [4]. These approaches approximate the problem
around the current solution using the first or second order Tay-
lor expansion and update the solution iteratively. The solution
from these approaches only guarantees local optimality from
its nature. For high-dimensional problems, it is often required
to give a valuable initial guess for the optimization, which is
then painstakingly handcrafted by a user/designer, because the
problem may have many poor local optima. In addition, the
local approximation for all dimensions can cause the solution
procedure to diverge, which enforces heuristic techniques to be
used.

Given this limitations, one research question that may arise
is whether or not the decision space we need to search should
be this large. It may be that the dimension of the decision space
really needed to be considered is small, if there is some prior
structures in decisions [5]. Think about a motion planning pro-
cess of our own body; when we have decided on which type of
motion we are going to make, the sequence of our poses and the
configurations we really need to consider may be limited. For
example, we would not consider walking on our hands when the
mission is to get to a certain goal position from a start position.
That is, it is reasonable to assume that, although a robot has very
high degrees of freedom, the valuable configurations take up a
very small portion in the original space, and that they form some
sort of (low-dimensional) manifolds. This is the spirit behind the
latent variable model. There have been many studies aimed at
finding the embedding of manifolds in high-dimensional space
within a low-dimensional latent space. Specifically, the Gaus-
sian process latent variable model (GP-LVM) assumes that there
exists a probabilistic model for mapping from low-dimensional
latent space to high-dimensional observation space, and then
finds the mapping and the corresponding latent space [6]. More-
over, the Gaussian process dynamical model (GPDM) extends
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the GP-LVM such that dynamics in the observation space can
be represented by that of the latent space [7]. Human motions
in 50+dimensional configuration space have successfully been
embedded into 2-3 dimensional latent space by GPDM, and the
model has been utilized to generate new motions of a human
character [7]–[9] and for 3-D tracking of people [10]. Recently,
with the successes in deep learning, there have been many at-
tempts utilizing deep neural network to construct the latent vari-
able model; one of the most popular algorithms is the variational
autoencoder (VAE) [11]. The algorithm has also been applied
to robotics applications: [12] exploited the idea of VAEs to em-
bed dynamic movement primitives into the latent space. [13]
used the conditional VAEs to learn a non-uniform sampling
methodology of a sampling-based motion planning algorithm.
[14] constructed a latent dynamical system from videos and uti-
lized the learned model to compute an optimal control policy in
a model-predictive control scheme. In [15], [16], we presented
a variational inference method to train latent models parame-
terized by neural networks and utilized the learned model for
planning in a similar way with this work.

One theoretical concept this work extensively takes advantage
is the duality between the optimal control and estimation [17]–
[22]. The idea is that, if we consider an artificial binary obser-
vation whose emission probability is given by the exponential
of a negative cost, an OC problem can be reformulated as an
equivalent inference problem. In this case, the objective is to
find the trajectory or control policy that maximizes the likeli-
hood of the observations along the trajectory. To address the
transformed inference problem, several approximate inference
techniques were utilized. If transitions between time steps are
made approximately Gaussian [4] with the current control pol-
icy, the resulting algorithm becomes (locally) equivalent to the
iterative linear quadratic Gaussian method [3]. In path integral
control approaches, particles propagated by the current approx-
imate control policy [19], or the control policy induced by a
higher-level path planner [23], are used to approximate the re-
sulting distribution of the inference. The user-designed probabil-
ity model can also be utilized as a priori to solve the transformed
inference problem [21]. Especially in [22], the planning problem
is converted into the inference problem for a factored graph of a
continuous motion trajectory represented by Gaussian process,
and an incremental inference method, Bayes Trees, is utilized
to efficiently perform replanning procedures. Finding a valu-
able proposal distribution is essential to the efficient inference
method; just like finding a valuable search-space is essential for
the planning problem.

A. Overview and Contribution

This work addresses a motion planning problem of a robot
with high-dimensional configuration space. The objective of the
planning problem is to generate a sequence of configurations
that achieves a given task and satisfies certain constraints, while
being smooth in terms of the robot dynamics. Rather than solv-
ing the planning problem in the original configuration space, we
construct a latent variable model with dynamics of much lower
number of dimensions and then solved the problem utilizing
them. The latent model with dynamics can be learned from ex-
perts’ demonstration data or from robot’s own experiences; this

Fig. 1. (a) The GPDM compresses high-dimensional sequential data, Y , into a
low-dimensional dynamic system with X, where α and β are hyperparameters
of the model. (b) The probabilistic model for optimal control; the optimal
motion plan can be computed by inferring a posterior trajectory, X, given
artificial observations, O, encoding the cost function of control problem. (c),
(d) The fully-probabilistic model for optimal motion planning with the GPDM
(hyperparameters are omitted for visualization sake).

work particularly considers the cases where the demonstration
data is available. The learned latent model shown in Fig. 1(a)
represents a probabilistic mapping from the latent space X to
the configuration space Y , and of the stochastic dynamics in the
latent space. A detailed description of latent variable models is
given in Section II.

The model is combined with the probabilistic model for op-
timal control (shown in Fig. 1(b)) that is built using the duality
between optimal control and Bayesian estimation. The intuition
behind the duality is that the likelihood of a trajectory for an
optimally controlled system is equivalent to the posterior prob-
ability when the cost related artificial observation is observed.
(More details will be addressed in Section III-A.) The com-
bined fully-probabilistic model is shown in Fig. 1(c) and 1(d).
With this, we can convert the original motion planning problem
into an inference problem, where the objective is to find the
maximum a posteriori (MAP) trajectory given the artificial ob-
servation,O1:K . This allows for efficient solution, because every
piece of dynamic information is encoded in the low-dimensional
latent space. Descriptions of the combined probabilistic model
and proposed solution method are given in Section III-B and
III-C, respectively. Finally, a multiscale acceleration method
that increases the algorithm efficiency based on the path integral
control is introduced in Section III-D. The proposed framework
has several advantages; (a) it does not require knowledge of sys-
tem dynamics, because this is learned from demonstration data;
(b) rather than exploring the original configuration space [21],
our framework uses the stochasticity of the latent space for ex-
ploration and this provides valuable search space of the motion
planning problem; (c) when computing the most likely trajec-
tory, our framework utilizes a Markov property of the result-
ing probability model. This provides a more efficient solution
method than provided by naive optimization approaches, where
the trajectory itself along all the time horizon is considered an
(huge) optimization variable [7], [8].

II. CONSTRUCTING A LATENT VARIABLE MODEL

A. Gaussian Process Latent Variable Model With Dynamics

The GP-LVM [6] is a generative model that represents a
probabilistic mapping from a latent space X to the observation
space Y . Let Y ≡ [y1 ,y2 , ...,yN ]T ∈ RN×D be the observa-
tion matrix, where each row of the matrix represents a single
high-dimensional observation of training sequential data, and
X ≡ [x1 ,x2 , ...,xN ]T ∈ RN×d be the matrix whose rows rep-
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resent corresponding latent coordinations of the observations. In
the GP-LVM, the mapping is assumed to be Gaussian process
with a covariance function kY (·, ·) : Rd ×Rd → R, and then
the likelihood of the observation data is given by: p(Y|X, β) =

1
√

(2π)ND |KY |D
exp

(
−1

2
tr

(
K−1
Y YYT

))
, (1)

where KY ∈ RN×N is a kernel matrix whose components are
computed as (KY )ij = kY (xi ,xj ) with kernel hyperparame-
ters β.

If the observations are assumed to be obtained from a dynamic
system, it would also be possible to construct a probabilistic
dynamic model in the latent space [7]. With this model, the
likelihood of the latent variable sequence is given by: p(X|α) =

p(x1)√
(2π)(N−1)d |KX |d

exp
(
−1

2
tr

(
K−1
X X2:NXT

2:N
))

, (2)

where the kernel matrix KX ∈ R(N−1)×(N−1) is constructed by
X1:N−1 with kernel hyperparameters α and x1 is assumed to
have a Gaussian prior. Given the prior of hyperparameters, p(α)
and p(β), a latent variable model with stochastic dynamics is
constructed by maximizing the posterior which is proportional
to the following joint probability:

p(X,Y, α, β) = p(Y|X, β)p(X|α)p(α)p(β). (3)

Note that the GP-LVM is a generative model that ensures
smooth mapping from the latent space to the observation space,
i.e., the mapping from X to Y is continuous and differentiable.
Therefore, the learning process optimizes the model such that
two points that are close together in the latent space are mapped
to points that are close in the observation space [24]. Equiv-
alently, two points that are far apart in the observation space
cannot have close latent coordinates, which condition is called
dissimilarity preservation, and the reverse is only guaranteed
when mapping is linear. Preserving similarity is often consid-
ered more important in dimensionality reduction, because obser-
vations sparsely lie in high-dimensional space and then similar
observations may contain more valuable information between
them. In order to make the GP-LVM have the property of similar-
ity preservation, back-constraints were introduced [24], which
enforces a smooth mapping from the observation space to the
latent space. For example, the kernel based regression model
could be used as smooth mapping: xij =

∑N
m=1 ajmk(yi ,yj ),

where closeness in the observation space is measured by the
kernel function k(·, ·). Any differentiable mapping (e.g., neural
network) could be utilized here; then, the optimization process
with respect to the latent coordination X will simply turn into
that with respect to the mapping parameters {ajm} using the
chain rule. It is also possible to inject prior knowledge into
latent space by restricting a structure of back-constraints [8].

B. Latent Space Dynamical System

With the constructed latent variable model, we have the fol-
lowing stochastic dynamics in the latent space:

xk+1 = μX (xk ) + Σ1/2
X (xk )wk , (4)

where the mean μX and the variance ΣX are given by the
posterior of the Gaussian process:

μX (x) = X2:NK−1
X kX (x),

ΣX (x) = kX (x,x)− kX (x)T K−1
X kX (x), (5)

and wk is a d-dimensional standard Gaussian random noise.
Here,kX (x) ∈ RN−1 is a vector of which ith element represents
kX (x,xi). Moreover, the corresponding pose is also normally
distributed:

yk ∼ N (μY (xk ),ΣY (xk )) , (6)

where the mean μY and the variance ΣY are given by

μY (x) = YK−1
Y kY (x),

ΣY (x) = kY (x,x)− kY (x)T K−1
Y kY (x), (7)

and kY (x) ∈ RN is similarly defined as above. Combining (4)
and (6), the graphical representation of the learned generative
model is shown in Fig. 1(a).

III. OPTIMAL MOTION PLANNING IN HIGH DIMENSION VIA

APPROXIMATE INFERENCE

A. Optimal Control via Inference

Consider a passive and controlled stochastic dynamics,

xpassivek+1 ∼ pk (·|xk ), (8)

xcontrolledk+1 ∼ πk (·|xk ), (9)

respectively, and the cost rate

lk (x, π(·|x)) = qk (x) +DKL (π(·|x)||p(·|x)) , (10)

where q(x) is an instantaneous state cost rate that encodes a
given task and DKL (π||p) is the Kullback-Leibler (KL) diver-
gence that penalizes a deviation of the controlled dynamics from
the passive one. Then, a stochastic OC problem is formulated
with the total cost:

Jπ = Ex ′∼π (·|x)

[

qK (xK ) +
K−1∑

k=0

lk (xk , πk (·|xk ))
]

. (11)

The above OC problem can be solved by defining the value
function,

vk (x) = min
π

Ex ′∼π (·|x)

[

qK (xK ) +
K−1∑

κ=k

lκ(xκ , πκ(·|xκ))
]

,

and solving the Bellman equation on it. Especially, it is known
that a solution of the above OC problem satisfies the linear
Bellman equation on the exponentiated value function, called
the desirability function, zk (x) = exp(−vk (x)) as:

zk (x) =

{
exp(−qK (x)), if k = K,

exp(−qk (x))G[zk+1(·)](x), otherwise,
(12)

where the linear operator G[f(·)](x) ≡ ∫
p(x′|x)f(x′)dx′, de-

notes the average value of the function f at the next time-
step [25]. The optimally controlled dynamics is also obtained
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as:

π∗k (x
′|x) =

pk (x′|x)zk+1(x′)
G[zk+1(·)](x)

. (13)

Then, the probability of the trajectory x1:K ≡ {x1 ,x2 , ...,xK }
when the state evolves with the optimal transition dynamics π∗
from the initial state x0 is given as: p∗(x1:K |x0) ∝

exp(−qK (xK ))
K−1∏

k=0

exp(−qk (xk ))pk (xk+1 |xk ). (14)

For the detailed derivation, we refer readers to [20], [25] and
the references therein.

The OC problem above can be transformed into the Bayesian
inference problem. Suppose we have an artificial binary obser-
vation ok whose emission probability is given by exponential of
a negative cost, i.e.,

po(ok = 1|xk ) = exp(−qk (xk )). (15)

The corresponding graphical model is shown in Fig. 1(b); the
transition of the state x is governed by pk and it emerges the
observation o with po . Then, the probability of the trajectory
x1:K given the initial state x0 and the observation ok = 1, ∀k =
1, ...,K is given as: p(x1:K |x0 , o1:K = 1) ∝

K−1∏

k=0

po(ok+1 = 1|xk+1)pk (xk+1 |xk )

∝ exp(−qK (xK ))
K−1∏

k=0

exp(−qk (xk ))pk (xk+1 |xk ). (16)

From (14) and (16), we observe that the OC problem (8)–(11)
is closely related to a Bayesian estimation problem that infers
the state trajectory x1:K when the observation o1:K = 1 and the
initial state x0 is given (see Fig. 1(b)) [18], [20]. The trajec-
tory (or state) distribution induced by the optimal control policy
is equivalent to the posterior distribution of the trajectory in
the inference problem. Once the inference problem is formu-
lated, any approximate inference method, such as expectation
propagation [4], particle belief propagation [21], or importance
sampling [19], [23], can be utilized to solve the OC problem
efficiently.

B. Motion Planning as MAP Trajectory Estimation

The framework we propose in this work combines ideas of
the latent variable model and the Bayesian interpretation of
an OC problem to solve motion planning problems for high-
dimensional systems. The graphical representation of a com-
bined fully-probabilistic model for high-dimensional motion
planning problems is shown in Fig. 1(d). When considering
locomotions, the motion data used to learn the latent variable
model do not include the global position and orientation of
an agent, but only recode their variations, e.g. (angular) veloc-
ity, because the learned model needs to encode the dynamics of
agent’s poses; once the sequence of poses are realized, the global
position and orientation can be computed by integrating their
variations. Let g ∈ R3 be the vector of the horizontal position,
(x, y), and heading angle, θ, of the robot and (y)v ∈ R3 denote
components corresponding to the forward/lateral velocities and

yaw rate of the robot.1 Then, g also has stochastic dynamics as:

gk+1 = gk +Rθ

(
μYv (xk ) + Σ1/2

Yv
(xk )εk

)
, (17)

whereRθ is a rotation matrix of the z axis and εk ∼ N (0, I3) fol-
lows the standard normal distribution. Together with the dynam-
ics in the latent space, we define the augmented latent variable
as x̄ ≡ [xT ,gT ]T , and then the arrows between the above-most
nodes in Fig. 1(d) represent the temporal structure of the motion
planning problem. Moreover, the latent state at each time step
induces robot pose, y as in (6). In the planning problem, a cost
function, qk , takes robot pose y as well as its global position
and orientation g as arguments and encodes specifications of a
given task, e.g., collision with obstacles or distance from a goal
region, etc. Therefore, {y,g} induces the emission probability
of an artificial observation in the proposed probabilistic model
in Fig. 1(d) as:

po(ok = 1|yk ,gk ) = exp(−qk (yk ,gk )). (18)

In this work, we define the optimal motion plan as the most
likely trajectory when the robot’s (stochastic) dynamics is opti-
mally controlled. From the close relationship between (14) and
(16), the problem of finding the most likely trajectory under
the optimally controlled dynamics can be converted into the
Bayesian estimation problem. For the transformed estimation
problem, the objective is to compute the MAP trajectory y∗1:K
with given initial latent and global coordinates x̄0 and artificial
observations o1:K = 1:

{y∗1:K , x̄
∗
1:K } = argmax

y1 :K ,x̄1 :K

p(y1:K , x̄1:K |x̄0 , o1:K = 1). (19)

C. Dynamic Programming for Computing MAP Trajectory
Using Particle Filter

The estimation problem in (19) includes two sources of dif-
ficulty: long time horizon and continuous space. The first dif-
ficulty can be addressed by exploiting the Markov property of
the probability model. Then, the posterior probability of the
trajectory is factorized along the time axis as:

{y∗1:K , x̄
∗
1:K }

= argmax
y1 :K ,x̄1 :K

K∏

k=1

po(ok = 1|yk ,gk )p(yk |xk )p(x̄k |x̄k−1).

(20)

If the state space is a discrete set, the estimation problem above
can be solved via a simple dynamic programming (DP) proce-
dure called the Viterbi algorithm [26]. However, the observation
space Y , as well as the latent space X in our problem, is contin-
uous; so we need a scheme for approximation of distributions
over the continuous space. In this work, the approximate infer-
ence algorithm introduced in [27] is adopted to address such
a difficulty. The algorithm basically discretizes the continuous
state space by the particles obtained from the particle filter (PF)
procedure which are expected to span valid regions of the state
space due to the resampling procedure. While the PF proce-
dure builds the approximate discrete state space, the Viterbi

1g trivially becomes an empty vector when the problem is not about locomo-
tion.
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Algorithm 1: Viterbi Algorithm With Particle Filtering.

1: δ0(1 : N) = 0 �Initialization
2: for k = 1, ...,K do �Recursion
3: for i = 1, ..., N0 do

4: g(i)
k ∼ N

(
g(i)
k−1 +Rθ

(
y(i)
k−1

)

v
, RθΣYv(x

(i)
k−1)R

T
θ

)

5: x(i)
k ∼ N

(
μX (x(i)

k−1),ΣX (x(i)
k−1)

)

6: y(i)
k = μY (x(i)

k )

7: [val, j∗] = maxj
[
δt−1(j) + log p(x̄(i)

k |x̄(j )
k−1)

]

8: δk (i) = val − qk (y(i)
k ,g(i)

k )
9: ψk (i) = j∗

10: w
(i)
k = w

(i)
k−1 exp(−qk (y(i)

k ,g(i)
k ))

11: end for
12: w

(i)
k = w

(i)
k /

∑
j w

(j )
k , ∀i ∈ {1, ..., N0}

13: Resample if
(∑

i(w
(i)
k )2

)−1
< N0/2

14: end for
15: i∗T = argmaxiδK (i) �Termination

16: y∗K = y(i∗T )
K

17: for k = K − 1, ..., 1 do �Backtracking
18: i∗k = ψk+1(i∗k+1)

19: y∗k = y(i∗k )
k

20: end for
21: return y∗1:K = {y∗1 ,y∗2 , ...,y∗K }

algorithm recursively computes the MAP trajectory along the
approximated discrete space.

The proposed algorithm, shown in Algorithm 1, is based on
the DP procedure like the Viterbi algorithm, and consists of
forward recursion and backtracking. In the forward recursion,
the algorithm constructs the discrete state space by propagating
particles of the PF and computes the optimal (partial) trajecto-
ries using the DP recursion up to the current time-step. If the
final time is reached, it finds the most-likely final state and the
backtracking procedure constructs the optimal trajectory from
the chosen state in the backward direction. In detail, through
the forward recursion, the augmented latent variables are prop-
agated as in (4) and (17), and the corresponding pose is also
realized (line 4–6). We restrict the noise in the GP realization
(6) to 0, i.e., y = μY (x), because this noise only makes re-
sulting motions rougher. However, this restriction can be easily
removed if more complex poses are necessary for the planning.
If we take the log to (20), the equation is simplified further with
summation as:

y∗1:K = {μY (x∗k )}k=1,...,K ,

x̄∗1:K = argmax
x̄1 :K

K∑

k=1

log po(ok = 1|μY (xk ),gk )p(x̄k |x̄k−1)

(21)

with constraints, yk = μY (xk ), ∀k ∈ {1, ...,K}. Then the par-
ent nodes that maximize the log-posteriors up to the current state
are determined and the log-posteriors of the partial trajectories
are computed (line 7–9). Note that in line 7, log p(x̄k |x̄k−1)
has a simple closed form because the dynamics of x and g fol-
lows the Gaussian distributions as in (4) and (17), respectively.

By computing the weights of particles in line 10, the algorithm
can perform resampling procedure which helps the discrete ap-
proximation of the space to span valid regions in the original
continuous space; the states having low posterior probabilities
(or equivalently, having high costs in the planning problem) up
to the current time-step tend not to be re-sampled (line 12–13).
After the forward recursion, the algorithm picks the most likely
final state y∗K (line 15–16), and then constructs the whole trajec-
tory with backtracking by looking at its ancestry (line 17–20).

D. Multiscale Acceleration With Path Integral Control

The proposed algorithm approximates the continuous state
space at time k by using the PF up to that time. If only a small
number of particles are used in the algorithm, they cannot ex-
pand the valid state space as shown in Fig. 5(a), where all parti-
cles failed to reach a goal region. Consequently, when a problem
has a complex cost function (induced by environmental or task
complexity), we cannot help but use a large number of particles
to span the space effectively. Having a small number of parti-
cles, however, is crucial because the computational complexities
of the PF and the DP procedures are O(N0K) and O(N0

2K),
respectively. If particles are guided into the better region with
useful heuristic, better sample efficiency can be achieved. This
is also closely related to the idea of auxiliary PF [28], where the
particles are propagated considering the future measurement.
Trivially, the best sample efficiency can be achieved by propa-
gating particles using the optimal control policy of the original
OC problem [29], but it is, of course, unrealistic because we do
not have the optimal control policy before solving the problem.

In this section, we introduce an efficient multiscale method
that guides particles to better regions. With the discrete time-step
h, K = T/h, and with slight abuse of notation, qT (·) = qK (·),
qk (·) = q(·, kh), the OC problem in (8)–(11) can be viewed
as the discretized version of the following continuous-time OC
problem:

dx(t) = F (x(t))dt+B(x(t))(u(t)dt+ dw(t)), (22)

J = E

[
qT (x(T )) +

∫ T

0
q(x(t), t) +

1
2
||u(t)||22dt

]
, (23)

because the KL-divergence term in (11) can be interpreted as the
quadratic control cost, i.e., DKL (π(·|x)||p(·|x)) = h

2 ||u||222.
The idea of the proposed method in this section is to sequentially
solve approximate discretized problems with different time-
steps Ml × h in the coarse to fine direction, where a solution
of a coarser approximate problem is utilized as a priori of a
finer approximate problem. Because the discrete time-length is
shorter in the coarser approximate problem, a larger number of
particles can be used while maintaining the computational com-
plexity. We adopt the path integral control method to obtain the
optimal control u∗ which also can be solved efficiently within
the “optimal control via inference” perspective.

Let the original OC problem be level 0 and Ml ≥ 1 be the
number of time steps aggregated in level l for l = 1, ..., L.
That is, lth level OC problem is the discretized version of

2Note that the KL-divergence between Gaussian distributions N (μ,Σ) hav-
ing difference μ but same Σ is given by 1

2 (μ1 − μ2 )T Σ−1 (μ1 − μ2 ) and, in
the case of (22), (μ1 − μ2 ) = B(x)uh and Σ = B(x)B(x)T h, which results
in this interpretation.
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Algorithm 2: PI Control With PF at Level l.

1: Input: approximate solution at (l + 1) level problem,
ul+1 .

2: Create ūl+1 by up-sampling ul+1 by a factor of Ml .
3: for k = 1, ...,Kl do
4: for i = 1, ..., Nl do

5: g(i)
k ∼ N

(
g(i)
k−1 +MlRθ

(
y(i)
k−1

)

v
,MlRθΣYv

(x(i)
k−1)R

T
θ

)

6: w(i)
k−1 ∼ N (0, Id)

7: x(i)
k = μlX (x(i)

k−1 , ū
l+1
k ) + (Σl

X (x(i)
k−1))

1/2w(i)
k−1

8: Append {w(i)
k−1 , {x(i)

k ,g(i)
k }} into {W (i)

0:k−1 ,

X̄
(i)
1:k}

9: y(i)
k = μY (x(i)

k )
10: w

(i)
k = w

(i)
k−1 exp(−Mlqk (y

(i)
k ,g(i)

k ))
11: end for
12: w

(i)
k = w

(i)
k /

∑
j w

(j )
k , ∀i ∈ {1, ..., N}

13: Resample {w(i)
k ,W

(i)
1:k , X̄

(i)
1:k} if

(∑
i(w

(i)
k )2

)−1

< N/2
14: end for
15: ūl0:Kl−1 ← {ul0 ,ul1 , ...,ulKl−1} �Equation (25)
16: return ul0:K−1 ← ūl0:Kl−1 ⊗ 1Ml

the continuous-time OC problem (22)–(23) with time-step
h×Ml . The lth level dynamics is guided by the (l + 1)th
level optimal control ul+1

k and therefore is given by xlk+1 =
μlX (xlk ,u

l+1
k ) + (Σl

X (xlk ))
1/2wk , ∀k = 1, ...,Kl − 1, where

μlX (x,u) = x +Ml(x− μX (x)) +MlΣ
1/2
X (x)uh,

Σl
X (x) = Ml

(
kX (x,x)− kX (x)T K−1

X kX (x)
)
, (24)

and Kl = T/(hMl) = K/Ml is a discrete time-length. Sup-
pose a set of Nl simulated trajectories and weights {w(i)

k ,

X
(i)
1:k}i=1,...,Nl

is obtained from the PF, which approximates the
optimally controlled trajectory distribution. The path integral
control algorithm computes the optimal control solution that
minimizes the KL divergence between the controlled trajectory
distribution and the optimal one with moment matching [30],
and the optimal control is given as:

ulk ≈ ul+1
k +

1
hMlNl

Nl∑

i=1

w
(i)
Kl

√
Mlw

(i)
k . (25)

Such a procedure at level l is summarized in Algorithm 2. First,
the approximate solution at the upper level ul+1 is up-sampled
by a factor ofMl (line 2), where uL+1

k = 0 at the coarsest level.
Guided by this, the algorithm propagates particles (line 5–7),
realizes poses of robot (line 9), and evaluates particles’ weights
(line 10, 12). The algorithm stores the particles’ coordinates and
the noises that propagated particles in the form of a trajectory,
and re-samples them when necessary (line 8 and 13, respec-
tively). After the filtering procedure, the approximate optimal
control is computed as (25), stretches it back by a factor of Ml

and returns it (line 15–16). With this procedure, the optimal con-
trol is sequentially computed from the coarsest level, l = L, to

the finest level, l = 1. Then finally, the finest solution will be uti-
lized to guide the particle propagation of Algorithm 1; that is, in
the line 6 of Algorithm 1, the mean of the particle propagation is
changed into x(i)

k ∼ N (μX (x(i)
k−1) + u1

k−1h,ΣX (x(i)
k−1)). This

guidance is expected to lead that only a small number of particles
are enough to expand the valid state space.

IV. EXAMPLE: HUMANOID LOCOMOTION PLANNING

A. Training Data and Hyperparameter Settings

As an illustrative example, we specifically consider a hu-
manoid robot with 56-dimensional configuration space. The
Carnegie Mellon University motion capture (CMU mocap)
database is used to learn the latent variable model. The 56-
dimensional configurations consist of angles of all joints, roll
and pitch angles, vertical position of center of the spine (the
root), yaw rate of the root, and horizontal velocity of the root.
The original data were written at 120 Hz, but we down-sampled
them into 30 Hz to decrease the size of the observation set
while maintaining the quality of motions for capturing the valid
temporal information.

For priors of the hyperparameters, we utilized the commo
nly-used radial basis function (RBF) for kX and kY , i.e.,
kX (x,x′) = α1 exp(−α2

2 ||x− x′||2) + α−1
3 δx,x ′ , and kY (x,

x′) = β1 exp(− β2
2 ||x− x′||2) + β−1

3 δx,x ′ , where δ is a Kro-
necker delta function. As is widely used, we used the un-
informative prior on the kernel hyperparameters as p(α) ∝∏

i α
−1
i , p(β) ∝∏

i β
−1
i , which has shown effective regular-

izations [6], [7]. We also used the back-constraints intro-
duced in [8]: because the locomotion has some periodicity,
the corresponding latent variable model also does. First, we
extracted the phase of the motion φ and augmented it to the
observation Y. Then, the back-constraints were used such
that the last two latent dimensions had periodic structures as:
xn,d−1 =

∑N
m=1 a

cos
m krbf (cos(φn ), cos(φm )) + acos

0 δn,m , and
xn,d =

∑N
m=1 a

sin
m krbf (sin(φn ), sin(φm )) + asin

0 δn,m . More-
over, the standard RBF back constraints were used in other
dimensions. The GPmat toolbox [31] is utilized to learn the
latent variable models.

B. Results

For the first numerical experiment, we trained the model us-
ing the data sets for walking, fast walking and jogging. The
latent space was set to be 3-D, where the first and the last two
dimensions were initialized as being associated with the forward
velocity of the root and the phases, respectively. Note that the op-
timization problem of GP-LVMs is non-convex and the learning
algorithm is based on the gradient descent method [6], so proper
initialization is crucial. The task for the first experiment was to
move forward without stepping on the red lines shown in Fig. 2.
We set the cost function to create a penalty for the deviation from
a desired heading angle, θd = 0, a desired x position, xd = 0,
forward velocity, vd = 5 m/s, and when the foot touched the
red lines, i.e., q(y,g) = qobs(y,g) + θ2 + 0.01|x|+ 0.1(v −
5)2 . The foot positions were computed through the forward
kinematics:

qobs(y,g) =
{∞, ifFKfoot(y,g) ∈ Dredline ,

0, otherwise,
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Fig. 2. Resulting trajectories for the experiment 1. The MAP trajectory with
the cost function (a) without and (b) with collision checking.

where FKfoot(·) is the function of the forward kinematics for
the foot joints. 500 particles were used in the Algorithm 1 with
time horizonK = 90 (i.e., Tf = 3 sec.). In addition, we ignored
the randomness in the last 2 dimensions of latent space (which
are for phase), i.e., only the learned mean dynamics is used for
phase as xk+1 = μX (xk ), because we found that the noise in
those dimensions made the resulting motion too jerky and was
not helpful for the planning. Fig. 2(a) and (b) show the MAP
trajectory without and with collision checking, respectively. It
is shown that the proposed algorithm could find the natural
movements that step over the forbidden regions while the motion
from the passive dynamics steps on the red lines. In addition,
even though our training data consisted of around 3–4 cycles
for each motion, the learned generative model produced natural
longer movements continuously.

For the second experiment, we added the datasets for left
and right turns to see the trajectory make detours around ob-
stacles. The latent space was set to be 4-D here, where the
first two dimensions were initialized as corresponding to the
yaw rate and forward velocity of the root, while the last two
dimensions were for the phases, as in the first example. The
cost function penalized the situations when the robot collided
with any obstacle, or left the domain, or reached positions too
the distant from the goal region, i.e., q(y,g) = qobs(y,g) +
qbnd(g) + 10−5qgoal(g), where qobs(y,g) and qbnd(g) are ∞ if
FK(y,g) ∈ Dobstacle and g /∈ D, receptively, and are 0 oth-
erwise; qgoal(g) is the square of the distance to the goal re-
gion, computed using the FMT* algorithm [2]. The domain
D and the goal region were set to be [−45, 45]× [0, 250] and
around (30, 230), respectively. 1000 particles were used in the
Algorithm 1 with time horizon K = 450, 150 (i.e., Tf =
15, 5 sec.) for walking and running tasks, respectively. We ran
our algorithm for the cases of various initial positions and orien-
tations and the resulting motion trajectories are shown in Fig. 3.
It is shown that the proposed algorithm was able to generate
smooth and natural motion sequences toward the goal region
without collision. Fig. 4 shows the learned 4-D latent space
constructed by various motions. It is observed that, while vary-
ing from the initial guess (in Fig. 4(a) and (c)), the motions are
well-organized in the latent space (in Fig. 4(b) and (d)). We ob-
served that the learned model separated the walking and running
motions into two clusters and the transition motion from stand
to running was embedded as the small “bridge” between them.
As a result, the learned generative model hardly produced the
transition between walking and running; we expect that more
various transition motions are necessary to make more flexible
models. It can be also seen from the supplementary video that

Fig. 3. Resulting trajectories for the experiment 2 from various initial config-
urations. The goal region is marked by the black circle. The poses are drawn for
every (a)–(c) 30 and (d) 15 steps, i.e., 1 and 0.5 second.

Fig. 4. Representation of various motions in the 4-D latent space projected to
the (x1 , x2 ) subspace. The points are colored by (a), (b) yaw rate and by (c),
(d) forward velocity of the Mocap data. (a) Initial. (b) Learned. (c) Initial. (d)
Learned.

Fig. 5. The particles from (a) the naive PF approach with 50 particles and from
the recursive multiscale procedure with (b) M3 = 8, N3 = 800, (c) M2 =
4, N2 = 400, (d) M1 = 2, N1 = 200, (e) M0 = 1, N0 = 50.

the initialized latent variable model cannot generate proper nat-
ural motions. We would refer the readers to the supplementary
video for more visualization.

Finally, we tested multiscale acceleration method. The mul-
tiscale parameters were set as Nl = 200, 400, 800 and Ml =
2, 4, 8 and N0 = 50 particles are used in the original scale.
These multiscale parameters should be chosen carefully, be-
cause the approximate solution (25) may fail to guide the finer
level dynamics properly if a gap between the scales is too large.
Fig. 5(b)–(e) depict the particles from the proposed recursive
procedure. It is observed that as the approximation level de-
creases, smaller number of particles are well-guided to the goal
region; the larger number of particles successfully expanded the
state space at the higher level, and then only 50 particles suc-
ceeded to be propagated toward the goal at the original scale. We
also compared the performances of Algorithm 1 with various
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TABLE I
COMPUTATIONAL COMPLEXITY AND SUCCESS RATE

numbers of particles (N0 = 50, 500, 1000) in various environ-
ments having different obstacles: the environment 3 is same as
that of Fig. 3(a), the environment 2 only had 2 obstacles close
to the goal region, and the environment 1 had no obstacles; the
initial state and the goal region were same as those of Fig. 3(a).
The comparison result is shown in Table I. The second, third and
fourth columns denote the relative computational complexities
of PF, i.e.,O(N0K), DP, i.e.,O(N0

2K), and computation time
for whole planning procedures, respectively. Note that, for the
algorithm with the multiscale acceleration, the computational
complexity of DP is same to the case of N0 = 50 because the
same number of particles are used, and the computational com-
plexity of PF is 7 times larger than the case ofN0 = 50 because
those are twice at each level Nl/Ml = 100, ∀l = 1, 2, 3 and
same at the original level. We found that most computational
budgets were spent by GP realizations (around 50%) and for-
ward kinematics for collision checking (around 30%), which
is proportional to the number of data N , particles N0 , and the
planning horizon K. Therefore, the planing algorithm can be
accelerated further by using ideas of sparse GP-LVMs [6] and
more efficient forward kinematics and collision checking meth-
ods; we leave it as future works. The last three columns show
the rate of each algorithm that at least one of particles achieved
the goal region. Table I shows that though a larger number of
particles need to be used as the environment becomes complex,
which results in huge computational complexity, the proposed
multiscale method can guarantee the performance while main-
taining the computational complexity properly.

V. CONCLUSIONS

In this work, we proposed an efficient framework for gen-
erating the motion trajectory of a robot with high degrees of
freedom. The framework included a probabilistic generative
model for the motion sequence from demonstration data using
the GP-LVM method. The constructed low-dimensional model
was then combined with the probabilistic model of the OC
problem. Finally, we proposed an efficient approximate MAP
trajectory estimation algorithm modified to utilize the dynamic
programming procedure and the multiscale path integral control
method to increase the sample efficiency.
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Lawrence, “Topologically-constrained latent variable models,” in Proc.
25th Int. Conf. Mach. Learn., 2008, pp. 1080–1087.

[9] S. Levine, J. M. Wang, A. Haraux, Z. Popović, and V. Koltun, “Continuous
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