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ABSTRACT The mission of the power system operator has become more complicated than before due to
increasing load demand, which causes power systems to operate near their security limits. The deregulation
of electricity markets, which requires independent system operation driven by economic considerations,
is still an essential requirement of modern power systems. This study presents an enhanced model of
developed adaptive artificial neural network (AANN) technique for security enhancement of Malaysian
power grids, inclusive of a remedial action (generation redispatch/load shedding) at any scale of system
operation. Automatic data knowledge generation systems for AANN inputs and data selection and extraction
methods are developed. Results show that the proposedAANNcan provide the required amount of generation
redispatch and load shedding accurately and promptly for computing large sample data.

INDEX TERMS Security assessment, artificial neural network (ANN), backpropagation, remedial action,
contingency analysis.

I. INTRODUCTION
The security of power system operations remains an essential
issue in many countries. Normal operations are imperative
to ensue in any post-contingency situation. Checking the
security of power systems requires tools that quantify power
system safety concerns arising from operational interfer-
ences. Power system security assessment encompasses static
security assessment (SSA) and dynamic security assessment
(DSA). An SSA involves security situation factors, such as
overload and overvoltage. During the post-contingency con-
ditions via the load flow calculation of the power system.
Conversely, DSA analyses the post-fault transient stability of
the power system in real time [1]–[3].

Recent noteworthy occurrences of blackout incidents are
a disturbance in Western Europe in September 2003 [4],
a power shutdown in northern India in July 2012 [5], a power
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cut in Pakistan in January 2015 [6]–[8], and a widespread
power blackout in March 2015 in Turkey [9]. Malaysia
faced a similar incident when a blackout affected the entire
Peninsular Malaysian power grid in August 1996 [10]. Such
blackouts can cripple the economy by disrupting all types
of commerce and cause public safety problems. Immediate
restoration of power is the primary concern during power
outages, but it requires careful planning in the execution of the
restoration. The reenergizing of power system modules must
happen in the correct sequence; errors can destroy individual
components, such as generator units, transmission lines, and
substation buses [11].

After a grid disturbance, the SSA of the power system
ensues to determine whether the steady-state operating con-
dition infringes the system’s operational constraints. The
power network must maintain equilibrium, and energy distri-
bution must remain within acceptable limits. Overload con-
ditions often arise due to the disconnection of sections of the
power grid. These electrical power overload conditions cause
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additional thermal load and risk burning out components.
Recent studies have considered security monitoring solutions
using static power system approaches to prevent line outages.
These studies have focused on two types of solutions, namely,
conventional methods and (2) artificial intelligence (AI) algo-
rithms. Both solutions provide tools that assist policymakers
and grid operators to plan a reliable power network [12]–[14].
The conventional method utilizes a scalar performance index
(PI) that forms the basis for judging the static security per-
formance of the power system. For example, the authors
in [15] proposed a method for calculating voltage PI using
Newton–Raphson load flow. Testing the PI requires classify-
ing the voltage security level by performing (N−1) contin-
gency on an IEEE 39-bus test system. The authors in [3] used
an algorithm named least absolute shrinkage and selection
operator (LASSO). LASSO applies to an online SSA (OSSA)
and bases itself on an applied security index, which selects
and screens contingencies. However, many of these studies
have ignored the regulation capability of the power sys-
tem by using adjustable devices, such as the transform-
ers and reactive power compensation devices in the power
system.

Other suggested power system security technologies
for evaluation, which incorporate statistical learning
theory, include backpropagation artificial neural net-
works (BPANNs) [16], self-organizing-map (SOM) neu-
ral networks [17], adaptive neuro-fuzzy inference system
(ANFIS) [18], support vector machines (SVM) [19], and
artificial neural networks (ANNs) [20]. Most studies have
discussed the applications of feedforward backpropagation
(FFBP) ANN, which can resolve many problems, and its
extensive use has suggested reliability [21], [22]. However,
backpropagation (BP) learning algorithms contain numerous
parameters that need random tuning; as an over gradient
method, it has overfitting problems, and it might slowly
converge to reach the local minima.

The authors in [23] applied a SOM method to a data set
consisting of tested online data from an actual power system.
They classified the load profile from a Greek power system to
obtain the security criterion by regression to reliably estimate
the post-disturbance variables. They used a hybrid method
of learning based on input–output or peer-to-peer mapping
called ANFIS. The ANFIS model forms ‘‘if–then’’ decision
pairs, and it has remarkable appeal because it uses nonlinear
modeling to extract rules in time series and forecasting [24].
The authors in [25] applied support vector regression with
ANFIS models to obtain four security statuses, namely, stan-
dard, alert, emergency_1, and emergency_2. They used these
statuses to classify the security of the system. ANNs should
be adept at solving nonlinear functions, sorting data, recog-
nizing patterns, optimizing processes, predicting or forecast-
ing outcomes, identifying system processes, and simulating
and managing system functions [26]. The authors in [27]
applied an ANN algorithm to enhance the security of power
systems. In [28], the static security index was predicted by
adopting the ANN algorithm for contingency screening and

ranking. In [13], the ANN algorithm was applied to enhance
the security of power systems. In [14], an ANN module was
used for SSA by considering the voltage and load flow in the
power system

A team of scientists led by Rumelhart and McClelland
in 1986 first proposed BPANN, a multilayered feedforward
network that trains using an error BP algorithm. BPANN has
become the most commonly used neural network model [29].
In [30], an integrated radial basis neural network with par-
ticle swarm optimization was used to reduce the training
time and improve the intelligent agent performance for SSA
with a single contingency. However, the authors considered
the security index as part of the security assessment, which
could be considered state of the art, and developed further
to include the remedial actions. In [28] and [31], multilayer
feedforward artificial neural network was applied for security
classification and contingency selection and ranking and then
compared it with radial basis function network implementa-
tion. Both techniques showed the competence of accurately
assessing the security of the power system against single-line
outage and significantly faster than other conventional meth-
ods. These techniques demonstrated the online implementa-
tion for SSA and monitoring. The adaptive artificial neural
network (AANN) takes this further by including the remedial
action with the security assessment to act rationally with the
system conditions.

The offline training speed for theAI system presents a chal-
lenging issue in the static risk assessment calculation [32].
A statistical analysis of wind farm historical data was used to
train a chain model and SVM. However, the system could not
adapt a new case after training. The adaption issue increases
system performance, especially in large power system appli-
cations.

Meng-yu andHsiao-dong [33] tested the accuracy of power
flow and quasi-static state under different load conditions.
The numerical evaluation showed some misclassifications of
some security cases with heavy loading conditions. However,
the load variations and generation redispatch patterns were
considered during the increases in loading conditions. The
authors suggested developing a full power flow model by
including reactive power/voltage control aspects, which has
been considered in the AANN algorithm.

This study aims to develop an AANN application module
based on the ANN algorithm. To this end, the methodology
is enhanced to screen contingencies and develop a security
assessment ranking that subsequently reduced the compu-
tation scale of a real-time SSA. This developed application
comprises the following procedural elements. (1) Automatic
SSA data generation is developed. It evaluates the security of
the power system’s operating status and distinguishes them
as secure, alarmed, and insecure states. (2) Variables, such as
the status of the lines and the corresponding security to the
developed AANN module, are adapted in the power system.
(3) Prediction is performed on the basis of the power system
variables under operating state from the test after adapting the
new data to the training sets.
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The main contributions of this study are as follows.
1. An OSSAmodule that screens and ranks the severity of

contingencies automatically is developed in this study.
This module considers the effects of adjustable devices
and identifies the operating status using current oper-
ating point variables (its computational time challenge
that has been solved by using the AANN).

2. A novel method is developed based on AANN algo-
rithm. The method predicts the security status and eval-
uates the operating status from any cascading case by
suggesting the estimated generator redispatch and/or
load shedding.

3. The system considers the varying base load conditions
and generation aspects to estimate the remedial control
action in a short computational time.

The rest of this paper is organized as follows.
Section 2presents the implementation of the proposed AANN
method in security assessment. Section 3 describes the tests
and the findings. The final section concludes and highlights
the important contributions of this work.

II. AANN IMPLEMENTATION IN SECURITY ASSESSMENT
An AANN is applied to predict the optimum amount of gen-
eration redispatch and load shedding in megawatts. The defi-
nition of an AANN emphasizes its use in conjunction with an
automatic data generation method. However, the additional
adjective, that is, adaptive, refers to the enhancement of the
ANN to be adaptive with the power system changing, not just
within the neural network. Another aspect is to improve the
learning for the BP algorithm by using the root mean square
error (RMSE) for the error concentration [27].

The AANN is developed to be included as a steady-state
security assessment tool for supplying a possible control
action to mitigate an insecure situation when a credible
contingency occurs. It is based on function approximation,
which is centered on the mapping between a pre-disturbance
operation point and the security margin, including the con-
trol action of the contingencies. The AANN is developed
by object-oriented programming using Python 2.7, which
allows parallel processing for multiple neural networks. The
implementation of the AANN for the Malaysian power grid
security assessment shown in Fig. 1, which requires four
neural networks running in parallel. Two stopping criteria
factors are considered for the AANN training schema. The
first factor is when the RMSE reaches a performance goal
value. The second factor is when the training reaches a cer-
tain number of iterations, and the network cannot reach the
threshold error value. The limitation of the neural network is
that the time taken for the training depends on the stopping
criteria. For the first training, the neural network takes a
long time when the RMSE is selected with a small value.
Thus, numerous iterations should be assumed to stop the
process. The AANN testing error increases with the RMSE.
Therefore, a change in the number of hidden nodes should be
applied. For this study, the selection of 4.0E+4 epochs shows
good promise for the Malaysian power system.

FIGURE 1. AANN implementation for power system security assessment.

Practically, in a large system, a clustering method is used
on the basis of system islands or areas [34]. The system
is divided into many areas on the basis of the number of
buses, generators, and loads. Furthermore, several networks
are used to handle a large system, where each area uses
different neural network architectures at the control central
unit. Parallel computing can be implemented for the proposed
control method because it has been previously used for the
voltage and line flow security assessment [35] to speed up
the training time of the neural network. At the final stage,
the predicted action with optimal amount is finalized at the
decision unit before final implementation.

A. AUTOMATIC DATA KNOWLEDGE GENERATION
The superior quality of data is essential for the neural network
approach. Therefore, training data should be correctly gener-
ated, and the neural network should have good generalization
capability. Therefore, the power system simulator will ensure
all generated cases at different load levels are included in
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the training data knowledge. The following several points are
considered for the developed AANN:

1. The automatic procedure at the data knowledge unit
guarantees good data quality because various system
operating points and contingencies are demonstrated
for each load level by the simulator.

2. The accuracy and applicability of the proposed
approach are based on the use of feature selection and
extraction methods in data generation. Parameters from
the contingency analysis are extracted as statistical
features and used as an input feature for the classi-
fication problem. The simulation model is developed
using PSSe software engine to build the training knowl-
edge data for the neural network. However, the AANN
adapts any new simulated case, making the neural net-
work extendable.

3. The training data are generated from the minimum
load up to maximum load level by constant increments.
In this manner the capability of the robust AANN in
detecting a situation and recommending an appropriate
action can be verified.

4. Optimization methods are used for the parameter esti-
mation of the AANN. The RMSE equation improves
the neural network sensitivity when the error reaches
its minimumwith a reduced number of iterations. Three
optimization methods are used for the parameter esti-
mation of the AANN.

a) The number of hidden neurons is optimized for
the best AANN performance.

b) The optimization includes the selection of control
actions to eliminate the voltage violations and line
overloads.

c) AANN is used to predict the optimum amount
of generation redispatch and load shedding in
megawatts after a contingency occurs to enhance
system security

These factors enhance the performance of the neural
network application in predicting the desirable out-
put accurately. The automatic data knowledge gener-
ation is based on the variation of operating points,
which, in turn, is based on the load profile, produc-
tion, contingency, and operational practices. Most con-
tingency effects can be reduced by applying preven-
tive/corrective control action. Conversely, the output
or target data (amount of generation redispatch and
load shedding) are automatically generated for each
contingency to be included with a sample of the neural
network. Generation rescheduling and load shedding
are considered as a solution for increasing system reli-
ability and security.

Each load level or operating point is analyzed by power
flow computation. All contingencies are considered without
any ranking process to allow the AANN to solve the control
issue. However, the training might be slow but not the testing,
and not all contingencies require control action. The security

FIGURE 2. Schema of automatic data generation system.

margins are determined using the load flow by a simple
computation method.

The load level profile is selected using the system load pro-
file, as shown in Fig. 2 (usually it functions from a minimum
operating point of 60% up to the maximum operating point
of 100% using a specific increment of load scale distributed
over all loads). The data are divided into different schemas,
where the data has to be saved before the training. These
schemas are divided as follows:

• Contingency analysis data: contain bus voltage, terminal
line flow, and generation/ load amounts for each area and
subarea;

• Corrective action data: contain the amount of generation
redispatch and load shedding.

With these schemas, the neural network can determine
its output over various levels of system operating points.
However, a small increment of load level results in generating
additional cases or patterns and vice versa. The scaling of a
nonslack generator is required before running the load flow
solution to ensure nomismatch tolerance in the system, which
is used to check for the largest initial active or reactive power
mismatch. In other words, no additional generation occurs
when the load is increased or decreased. The maximum and
minimum machine active power output, namely, PMAX and
PMIN, are entered in megawatts and set as power limits
contained in the working case.

Contingency analysis is used for security assessment.
Thus, a report can be presented at this stage for the bus voltage
or line overloading violation, as shown in Fig. 3, where i is the
bus number, and three security classifications exist, namely,
alert, emergency, and extreme emergency. These classifica-
tions are estimated using conventional methods for testing
and verification purposes (Appendixes A.1–A.4).

The aforementioned reports help in enhancing the system
design by diagnosing the weak parts of the system. However,
the contingency analysis depends on the model of the power
system, which is used to study the outage effects and alert the
operator of any overload or voltage violation.
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FIGURE 3. Schema of security assessment.

After corrective action is taken and stored in the data
knowledge, the running case is saved for the record. Con-
tinually, this procedure is repeated until the maximum load
level at which the system can operate without suffering any
blackout case is reached.

B. DATA NORMALIZATION
Normalization is conducted at the beginning of the AANN
to convert the data into a form that the neural function can
handle [27]. Negative values are presented for generator
rescheduling. Hence, normalizing the vector data for the
inputs and targets are required to position all the data in the
range between −1 and 1 to prevent any volatility in the net-
work weights. For the same reason, the selection of the activa-
tion function for the hidden and output nodes is based on the
input and output data range [36]. The number of neurons in

the hidden layer is not specified. Therefore, an optimization
method is developed to handle this matter [37]. The two other
factors that can affect the ANN output are the learning rate
coefficient, which changes the size of the weight adjustments,
and the momentum term, which can improve the convergence
rate when added to a grand expression. An effective selection
method for the learning and momentum rates, which was
reported in [38], is considered in the current study.

C. TRAINING PROCESS
The BP algorithm is similar to the perceptron network algo-
rithm with more than one layer, as shown in Fig. 4. It contains
three layers. The first one is connected to the inputs. The
second layer contains the activation function. The third layer
is the output of the network. The FFBP algorithm is the most
commonly used method for training multilayer feedforward
networks [39]. This technique was popularized by Rumelhart
et al. [40], and it is similar to the perceptron network algo-
rithm with more than one layer (Fig. 4). In the current work,
FFBP is developed as a training algorithm for the AANN.
The proposed network architecture consists of three layers
that satisfy the performance requirements.

FIGURE 4. BP model architecture.

Theweights are initializedwith random values. The error is
calculated at every single iteration, and the learning procedure
is repeated for all patterns (p = 1, 2, . . . ,N ) or epochs
([Input, Output]) to correct the initial value for all the weights.
The BP algorithm has a high mathematical foundation. With
smooth training, it can provide accurate testing results.

The AANN is applied to enhance system security by con-
trolling the generator supplies and loads. In other words,
the AANN is used to predict the optimum amount of gen-
eration redispatch and load shedding in megawatts after a
contingency occurs to enhance the system security.

During training, the inputs are applied against their output
targets and propagated through the network layers to calculate
the sum of the errors. An enhancement is determined by using
the sum of theRMSE, as shown in Equation (1). The RMSE
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FIGURE 5. Training for the first time running ‘‘Training_new’’.

FIGURE 6. Training for new data adaption ‘‘Training_adapt’’.

shows a better performance than the mean square error in
terms of sensitivity and accuracy.

RMSE = Esum =

√√√√√ 1
N

N∑
p=1

(tpo − O
p
o)2, (1)

where N is the total number of patterns.
The activation function of the hidden and output neurons

is a hyperbolic tangent function (the advantage of using a
function is to be symmetrical with respect to the origin [40]).
The threshold error (RMSE) is calculated for finding the
training error. Fig. 5 presents the pseudocode of the training
process at the first stage. The AANN is plugged into the
system where the training is performed to adapt any new data
(not included in the first training data set) for the same power
system area or cluster, as shown in Fig. 6. The AANN training
class for each power system area or cluster is shown in Fig. 7.

D. TESTING PROCESS
Testing is the last step of the implementation approach to
verify the model performance. Once the networks finish the
training process and reach one of the two stopping criteria,
network testing is required to verify the AANN and check if it
is working remarkably under the required conditions. To this
end, another input data set called testing data, which is not
included in the training, is generated. In other words, the same
system model with different load scales to those used in the
training is selected. In this manner, a data set with the same

FIGURE 7. Training for AANN algorithm ‘‘Training’’.

number of inputs but under different operating conditions is
generated.

Many contingencies can be tested under various load
levels. Thus, the verification method compares the AANN
output with the original output, as calculated by using the
PSSTME simulator [41]. The result is displayed and saved
after destabilization, which is conducted to return to the
original values of the generator redispatch/load shedding in
megawatts. Once the network completes training and passes
the testing step, it is ready to be connected to the power
system for predicting the optimum amount of generation
redispatch and load shedding under steady-state analysis or
real-time operation. The implemented testing is presented
in Fig. 8.

FIGURE 8. Testing for AANN algorithm ‘‘Testing’’.

III. RESULTS AND DISCUSSION
The novelty of this work is avoiding the retraining for new
loading scenarios. Therefore, a long training is required to
reach the expected results, and it is required for one time
once the AANN is installed into the system. The new loading
scenarios do not take a long time (depending on the number
of cases that need to be adapted) because it is a discrete
training process. Thus, the neural network starts from the
last point (In the condition that it is the same system). The
only case that requires to start the training again is when new
transmission lines exist, the network structure is changed,
or new generators are installed.
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Regarding testing, error decreases up to some epochs and
then increases. The final optimal results are achieved after
a long optimization process and stability check. Stability
check is performed bymonitoring errors and ensuring that the
error values are not frequently increased over the training and
testingprocesses. The optimal network is used over different
load level scenarios to check the validity of the developed
AANN.

The proposedmethod is tested on a practical 87-bus system
after an initial training of approximately 3 h. Nevertheless,
the time during the adaption process is only a few moments.
A long time is required for training a large-scale power
system comprising several thousand buses. In this regard,
the proposed method is addressed to reduce the computa-
tional time during the ANN training when the system con-
figuration is changed slightly. The new cases are generated
by the automatic data generation model and adapted to the
AANN data knowledge. The weights between the neural
network layers are changed and saved for the next adaption.
The AANN output (amount of generation redispatch and
load shedding) is compared with the actual data from the
conventional steady-state security assessment and control to
evaluate the performance of the suggested AANN.

The Peninsular Malaysian grid is divided into four areas,
namely, north, east, central, and south (Fig. 9). The northern
area is divided into four zones representing the states of
Perlis, Kedah, Pulau Pinang, and Perak. The eastern area
includes the zones of Kelantan, Terengganu, and Pahang. The
central area consists of Selangor and Wilayah Persekutuan.
The southern area comprises the states of Negeri Sembilan,
Melaka, and Johor. The total of the system production and
system load is 10652.4 and 10456.5 MW, respectively (the
year is 2007). The percentage of system losses is 1.84% over
the total generation. The subsystems interchange the power
between each other to satisfy system security. A strategy of
using a different neural network for controlling each area
is applied. In this case, four neural networks are used to
provide the optimal amount of generation redispatch and load
shedding.

The new algorithm is demonstrated on the Malaysian
power grid by using the developed AANN tool written in
Python 2.7, which is tested on Windows 7 with Intel Core
i7 processor and 4 GB RAM. The neural network is tested on
three load levels (i.e., light load, medium load, and heavily
congested) to check the capability of using an adaptive neural
network application tool for security assessment.

The (N−1) contingency analysis is conducted on the sys-
tem for the automatic data knowledge generation. Then, it is
used to estimate the control action with different loading
margins for any line outage. The data knowledge has four
data sets representing the four areas in the system. Therefore,
different AANN architectures are designed to provide an
optimal value of the preventive/corrective action when the
system is under a contingency and control action is required.
The number of hidden neurons is adjusted on the basis of
the network inputs and outputs in each area. The AANN

FIGURE 9. Single-line diagram of the Malaysian power grid.

TABLE 1. Adaptive neural network architecture for each area.

configuration, including its input, hidden, and output layers
for each area, is presented in Table 1. The number of neurons
in the input layer is fixed by the number of selected buses and
lines. The number of neurons in the output layer is fixed by
the number of selected generators and loads. The number of
neurons in the hidden layer is based on optimization method,
which depends on system training and testing errors.

The number of neurons in the input layer depends on the
number of buses and lines in a particular area. Likewise,
the number of neurons in the output layer depends on the
number of generators and loads in the selected area. This
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method has been applied in many studies, such as in [42].
Four clustered AANNs are used in parallel for the Peninsular
Malaysian grid (central, east, north, and south). The number
of neurons in the output layer depends on the number of
generators and loads in each selected area for generation
redispatch and load shedding. Therefore, the total number
of outputs are 79 (23+12+23+21) with 79 remedial actions
when it is required.

The inputs are bus voltages and thermal flow percentages
exclusive of transformers and generator buses. For all the
cases conducted, the weights and thresholds are initialized
with random values between −0.5 and +0.5. In addition,
the number of hidden neurons is optimized for best AANN
performance. The momentum factor is dynamically changed
in the range of 0.1–0.04 on the basis of the redundancy of the
RMSE in the BP algorithm to provide a smooth training error
curve. The change results in a remarkable performance. The
learning rate is set as constant at 0.01 for best accuracy.

The data knowledge of the training data containing (N−1)
contingencies starts from the minimum load level (60% of
the total system load) up to the maximum load with a 5%
increment. The training patterns are generated by increasing
the total load by 5%, assuming the increases are distributed
equally. However, this practice is applied in the simulation
stage in the industry, and the same practice by the Advance
Power Solution Company is followed. This company pro-
vides consultation, simulation, and testing to verify the sys-
tem configuration in the Peninsular Malaysian grid and prove
the AANN performance and robustness to be applied for the
power system SSA, which can supply the neural network
with historical data in any further research. The main con-
tribution of this study is the generation redispatch and load
shedding in each zone. The distribution system simulation
provides the load changing in each load. Therefore, the 5%
increase, starting from the minimal load operating at 60%,
can be covered. During testing, a different point is assigned
to obtain new data within the range of 5%. The data can
also be generated randomly. However, this possibility can be
considered in another study where the AANN can be tested.
The total number of contingencies used in the training data is
shown in Table 2.

TABLE 2. Training data knowledge for the Peninsular Malaysian grid.

Meanwhile, the testing data sets are generated at different
load levels (Table 3). Each area is tested using three load level
scenarios to check the AANN accuracy at different operating
points. Three testing load scenarios for each area are demon-
strated to verify the AANN performance corresponding to a

TABLE 3. Testing load scenarios in the Peninsular Malaysian grid.

TABLE 4. Number of generators, loads, buses, branches, and switched
shunts.

various level of security. The number of generators, loads,
buses, branches, and switched shunts are listed in Table 4.

Generally, a contingency in one area can affect the security
in another area due to the power interchange among these
areas. However, further development is required to eliminate
these problems. In this case study, an individual area con-
troller is considered a solution for the power system security
assessment.

Fig. 10 shows the testing results obtained from the AANN
for the northern area of the system. The percentage RMSE of
the training is 2.1524% using 4.0E+4 epochs. The difference
between the maximum error and baseload (1129.521 MW)
is in the neighborhood of 50 MW, thereby indicating an
accuracy of more than 95.57% in the AANN test results.
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FIGURE 10. Sample of AANN testing result for the northern area: (a) light
load, (b) medium load, and (c) heavy load.

FIGURE 11. Sample of AANN testing result for the east area: (a) light
load, (b) medium load, and (c) heavy load.

The AANN specifies the range of operation and the
control actions allowed for different equipment and auto-
matic controls. The most severe contingency depends on
the location and the type of stability phenomenon consid-
ered. The influences of equipment outage or automatic con-
trols are different, and they are specified for each security
issue.

The east area of the system has a reduced number of
contingencies. Hence, it has a better AANN performance,
with an RMSE of 0.2111%, during training compared with
other areas. Fig. 11 shows the AANN testing error in MW
for each unit. The maximum difference between the actual
and AANN outputs is less than 8 MW (Case (c) in Fig. 11).
On this basis, the accuracy is approximately 99.99%.

For the central area, the AANN training RMSE is 1.71%
using 4.0E+4 epochs. Fig. 12 shows a clear trend of an
increase in the AANN testing error for some units. This
increase is caused by the security criteria arising inside
an area when the load is more than the generation. How-
ever, comparing the maximum testing error shows a sig-
nificant accuracy of less than 52 MW with respect to

FIGURE 12. Sample of AANN testing result for the central area: (a) light
load, (b) medium load, and (c) heavy load.

FIGURE 13. Sample of AANN testing result for the southern area: (a) light
load, (b) medium load, and (c) heavy load.

the total load of 5201.18 MW when the system is highly
loaded. The AANN performance in this area is approximately
99.99%.

As shown in Fig. 13, the AANN controller performswell in
the southern area of the system. The training RMSE is 2.35%
using 4.0E+4 epochs. Therefore, the AANN tool can provide
the optimal amount of generation redispatch and load shed-
ding inmegawatts. TheAANNperformance is approximately
99.99%.

Modern energy management systems frequently perform
a steady-state security assessment and control to provide the
power system the capability to withstand numerous credible
contingencies.

The assessment of these contingencies involves the
selection of credible contingencies and then the esti-
mation of the system response to each particular con-
tingency. Therefore, a remedial action and optimization
process should be concerned with the selection of control
actions to eliminate the voltage violations and line over-
loads. In this system, the AANN shows good promise in
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A.1 Security assessment report for the northern area. A.1 (Continued.) Security assessment report for the northern area.

A.2 Security assessment report for the east area.

Light load 

Flow violations > 80% of rating A 

None 

Low-voltage range violations 

None 

High-voltage range violations 

None 

Medium load 

Flow violations > 80% of rating A 

None 

Low-voltage range violations 

None 

High-voltage range violations 

None 

 
Heavily congested 

Flow violations > 80% of rating A 

From 
bus 

To bus Bus 
(kV) 

Rating AMP 
flow 

Flow 
(%) 

Contingency 
no. 

Security 
classification 

2250 2334 275 587 587.2 100 SINGLE 2 Extreme 
emergency 

Low-voltage range 
violations 

     
None 

High-voltage range violations 

None 

handling single contingencies at different load levels with
high-speed response time (less than one millisecond per
contingency).

180102 VOLUME 7, 2019



A. N. Al-Masri et al.: Development of AANN Security Assessment Schema for Malaysian Power Grids

A.3 Security assessment report for the central area.

Light load 

Flow violations > 80% of rating A 

From 
bus 

To 
bus 

Bus 
(kV) 

Rating AMP 
flow 

Flow 
(%) 

Contingenc
y no. 

Security 
classification 

72 2338 275 587 587.6 100.1 SINGLE 4 Extreme 
emergency 

72 2340 275 587 587.6 100.1 SINGLE 5 Extreme 
emergency 

73 2338 275 587 587.6 100.1 SINGLE 1 Extreme 
emergency 

73 2340 275 587 587.6 100.1 SINGLE 2 Extreme 
emergency 

2340 2684 275 683 752.4 110.2 SINGLE 26 Extreme 
emergency 

2340 2684 275 683 752.4 110.2 SINGLE 25 Extreme 
emergency 

Low-voltage range violations 

None 

High-voltage range violations 

Bus no. Voltage level (kV) Bus voltage 
(p.u.) 

Contingency 
no. 

Security 
classification 

 

2908 275 1.05599 SINGLE 16 Insecure 

5520 500 1.05641 SINGLE 44 Insecure 

Medium load 

Flow violations > 80% of rating A 

From 
bus 

To bus Bus 
(kV) 

Rating AMP 
flow 

Flow 
(%) 

Contingency 
no. 

Security 
classification 

72 2338 275 587 554.4 94.4 SINGLE 4 Emergency 

72 2340 275 587 554.2 94.4 SINGLE 5 Emergency 

73 2338 275 587 554.4 94.4 SINGLE 1 Emergency 

73 2340 275 587 554.2 94.4 SINGLE 2 Emergency 

2340 2684 275 683 912.7 133.6 SINGLE 26 Extreme 
emergency 

2340 2684 275 683 912.7 133.6 SINGLE 25 Extreme 
emergency 

2698 2130 275 683 567.7 83.1 SINGLE 44 Alert 

2698 2130 275 683 567.7 83.1 SINGLE 44 Alert 

Low-voltage range violations 

None 

High-voltage range violations 
Bus 
no. 

Voltage 
level (kV) 

Bus voltage 
(p.u.) 

Contingency no. Security 
classification 

 

2908 275 1.05559 SINGLE 16 Insecure 

5520 500 1.05601 SINGLE 44 Insecure 

 
Heavily congested 

Flow violations > 80% of rating A 
From 
bus 

To bus Bus 
(kV) 

Rating AMP 
flow 

Flow (%) Contingency 
no. 

Security 
classification 

72 2338 275 587 677.6 115.4 SINGLE 4 Extreme 
emergency 

72 2340 275 587 743.1 126.6 SINGLE 5 Extreme 
emergency 

73 2338 275 587 677.6 115.4 SINGLE 1 Extreme 
emergency 

73 2340 275 587 743.1 126.6 SINGLE 2 Extreme 
emergency 

2182 2226 275 587 487 83 SINGLE 32 Alert 

2338 2468 275 683 683.7 100.1 SINGLE 20 Extreme 
emergency 

2339 2468 275 683 656.1 96.1 SINGLE 21 Emergency 

2340 2684 275 683 1093.
3 

160.1 SINGLE 26 Extreme 
emergency 

2340 2684 275 683 1093.
3 

160.1 SINGLE 25 Extreme 
emergency 

A.3 (Continued.) Security assessment report for the central area.

IV. CONCLUSION
This study presents an enhanced algorithm for the schema
of Malaysian power system security assessment inclusive of
remedial actions using developed AANN application. The
AANN presented was designed to determine the effects of
different disturbances and estimate the optimal amount of
generation redispatch and load shedding in megawatts. Fea-
ture selection and data extraction methods, as well as power
system clustering, were used to reduce the number of inputs
and enhance the model generalization capability. The RMSE
equation also brought advantages in terms of improving neu-
ral network sensitivity. This improvement was confirmed by
the results obtained from testing. The proposed algorithm
showed good promise to provide an appropriate solution for
secure operation. The advantages of the presented approach
are as follows.

1. The weights can be updated when new cases need to be
adapted.

2. The testing procedure of the AANN model is rapid.
3. A security indication is provided quickly with a con-

trol action to recover the system from any security
interruption.

4. Power system network clustering is applied to reduce
the number of inputs/outputs. As a result, it can control
each area individually and consider different network
topologies.

5. The training data provide the opportunity for the
AANN model to control the system under a contin-
gency for a wide range of load levels.

6. Economic operation is increased by achieving mini-
mum power losses when the system is operating under
a contingency.

7. The accuracy of the proposed approach is based on
automatic data generation and the use of feature selec-
tion and extraction methods.
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A.4 Security assessment report for the southern area.

The proposed method showed better accuracy than the
neuro-fuzzy logic controller method when it was applied to
the Peninsular Malaysian grid for determining the amount
of load shed, for which the neuro-fuzzy logic controller
achieved accuracy was in the range of 93%–99%. By con-
trast, the proposed method achieved accuracy in the range of
95%–99.99%. However, the AANN implementation included
preventive/corrective control action consisting of generation
redispatch and load shedding, whereas methods in Refer-
ences [43], [44] considered only load shedding as a control
action. The results proved the capability of the proposed
algorithm for steady-state security assessment and control
within one millisecond.

APPENDIX
See Tables A.1–A.4.

ACKNOWLEDGMENT
The authors would like to express their great appreciation to
the Advanced Power Solutions Sdn. Bhd. for the facilities
provided and data support during the planning and develop-
ment of this research work.

REFERENCES
[1] S. Kamali and T. Amraee, ‘‘Blackout prediction in interconnected electric

energy systems considering generation re-dispatch and energy curtail-
ment,’’ Appl. Energy, vol. 187, pp. 50–61, Feb. 2017.

[2] R. Zaman and T. Brudermanna, ‘‘Energy governance in the context of
energy service security: A qualitative assessment of the electricity system
in Bangladesh,’’ Appl. Energy, vol. 223, pp. 443–456, Aug. 2018.

[3] Y. Li, Y. Li, and Y. Sun, ‘‘Online static security assessment of power
systems based on lasso algorithm,’’ Appl. Sci., vol. 8, no. 9, p. 1442,
Aug. 2018.

[4] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kun-
dur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, R. Schulz,
A. Stankovic, C. Taylor, and V. Vittal, ‘‘Causes of the 2003 major grid
blackouts in North America and Europe, and recommended means to
improve system dynamic performance,’’ IEEE Trans. Power Syst., vol. 20,
no. 4, pp. 1922–1928, Nov. 2005.

[5] S. Mukherjee, ‘‘Northern India power grid failure due to extraterrestrial
changes,’’ Earth Sci. Climate Change, vol. 6, no. 2, pp. 1–3, Feb. 2015.

[6] I. Ahmad, F. Khan, S. Khan, A. Khan, A.W. Tareen, andM. Saeed, ‘‘Black-
out avoidance through intelligent load shedding in modern electrical power
utility network,’’ J. Appl. Emerg. Sci., vol. 8, no. 1, pp. 48–57, 2018.

[7] I. Marwat, F. Khan, and A. Rehman, ‘‘Avoidance of blackout using auto-
matic node switching technique through ETAP,’’ Int. J. Sci. Eng. Res.,
vol. 8, no. 10, pp. 715–720, Oct. 2017.

[8] O. P. Veloza and F. Santamaria, ‘‘Analysis of major blackouts from 2003
to 2015: Classification of incidents and review of main causes,’’ Electr. J.,
vol. 29, no. 7, pp. 42–49, Sep. 2016.

[9] A. Ukil, Intelligent Systems and Signal Processing in Power Engineering.
Berlin, Germany: Springer-Verlag, 2007.

[10] N. A. Ahmad and A. A. Abdul-Ghani, ‘‘Towards sustainable development
in Malaysia: In the perspective of energy security for buildings,’’ Procedia
Eng., vol. 20, pp. 222–229, Jul. 2011.

[11] D. N. A. Talib, H. Mokhlis, M. S. A. Talip, K. Naidu, and H. Suyono,
‘‘Power system restoration planning strategy based on optimal energiz-
ing time of sectionalizing islands,’’ Energies, vol. 11, no. 5, pp. 1–17,
May 2018.

[12] Q. Zhou, J. Davidson, and A. A. Fouad, ‘‘Application of artificial neural
networks in power system security and vulnerability assessment,’’ IEEE
Trans. Power Syst., vol. 9, no. 1, pp. 525–532, Feb. 1994.

[13] S. Varshney, L. Srivastava, and M. Pandit, ‘‘ANN based integrated security
assessment of power system using parallel computing,’’ Int. J. Elect. Power
Energy Syst., vol. 42, no. 1, pp. 49–59, Nov. 2012.

[14] H. Jmii, A. Meddeb, and A. Chebbi, ‘‘Voltage contingency ranking for
IEEE 39-bus system using Newton–Raphson method,’’ WSEAS Trans.
Power Syst., vol. 12, no. 29, pp. 248–253, 2017.

[15] Y. J. Lin, ‘‘Prevention of transient instability employing rules based on
backpropagation based ANN for series compensation,’’ Int. J. Elect. Power
Energy Syst., vol. 33, no. 10, pp. 1776–1783, Dec. 2011.

[16] K. S. Swarup and P. B. Corthis, ‘‘Power system static security assess-
ment using self-organizing neural network,’’ J. Indian Inst. Sci., vol. 86,
pp. 327–342, Jul./Aug. 2006.

[17] K. Pandiarajan and C. K. Babulal, ‘‘An ANFIS approach for overload
alleviation in electric power system,’’ J. Elect. Syst., vol. 10, no. 2,
pp. 179–193, Jun. 2014.

[18] S. Kalyani and K. Shanti Swarup, ‘‘Classification and assessment of power
system security using multiclass SVM,’’ IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 41, no. 5, pp. 753–758, Sep. 2011.

[19] I. S. Saeh and M. W. Mustafa, ‘‘Artificial neural network for power system
static security assessment: A survey,’’ J. Teknol., vol. 66, no. 1, pp. 753–
758, Dec. 2010.

[20] A. K. Sharma, A. Saxena, B. P. Soni, and V. Gupta, ‘‘Voltage stability
assessment using artificial neural network,’’ in Proc. IEEMA Eng. Infinite
Conf. (eTechNxT), New Delhi, India, 2018, pp. 1–5.

[21] R. K. Misra and S. P. Singh, ‘‘Steady-state security analysis using arti-
ficial neural network,’’ Electr. Power Compon. Syst., vol. 32, no. 11,
pp. 1063–1081, Jun. 2010.

[22] E. M. Voumvoulakis, A. E. Gavoyiannis, and N. D. Hatziargyriou, ‘‘Appli-
cation of machine learning on power system dynamic security assess-
ment,’’ in Proc. Int. Conf. Intell. Syst. Appl. Power Syst. Niigata, Japan:
Toki Messe, 2007, pp. 1–6.

[23] M. F. Z. Souza, Y. Reis, A. B. Almeida, I. Lima, and A. C. Z. de Souza,
‘‘A neuro-fuzzy method as tool for voltage security assessment of systems
with distributed generation,’’ in Proc. 3rd Renew. Power Gener. Conf.
(RPG), Naples, Italy, 2014, pp. 1–6.

[24] M. Amroune, I. Musirin, T. Bouktir, and M. M. Othman, ‘‘The amalgama-
tion of SVR and ANFIS models with synchronized phasor measurements
for on-line voltage stability assessment,’’ Energies, vol. 10, no. 11, p. 1693,
Oct. 2017.

[25] S. Saravanan, S. Kannan, andC. Thangaraj, ‘‘Forecasting India’s electricity
demand using artificial neural network,’’ inProc. IEEE Int. Conf. Adv. Eng.
Sci. And Manage. (ICAESM), Nagapattinam, India, Mar. 2012, pp. 79–83.

180104 VOLUME 7, 2019



A. N. Al-Masri et al.: Development of AANN Security Assessment Schema for Malaysian Power Grids

[26] A. N. Al-Masri, M. Z. A. Ab Kadir, H. Hizam, and N. Mariun, ‘‘A novel
implementation for generator rotor angle stability prediction using an adap-
tive artificial neural network application for dynamic security assessment,’’
IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2516–2525, Aug. 2013.

[27] R. Sunitha, R. S. Kumar, and A. T. Mathew, ‘‘Online static security
assessment module using artificial neural networks,’’ IEEE Trans. Power
Syst., vol. 28, no. 4, pp. 4328–4335, Nov. 2013.

[28] W. Sun and Y. Xu, ‘‘Financial security evaluation of the electric power
industry in China based on a backpropagation neural network optimized
by genetic algorithm,’’ Energy, vol. 101, pp. 366–379, Apr. 2016.

[29] M. Lekshmi andM. S. Nagaraj, ‘‘Online static security assessment module
using radial basis neural network trained with particle swarm optimiza-
tion,’’ in Intelligent and Efficient Electrical Systems (Lecture Notes in
Electrical Engineering), vol. 446, M. Bhuvaneswari and J. Saxena, Eds.
Singapore: Springer, 2018.

[30] P. Sekhar and S. Mohanty, ‘‘An online power system static security assess-
ment module using multi-layer perceptron and radial basis function net-
work,’’ Int. J. Elect. Power Energy Syst., vol. 76, pp. 165–173, Mar. 2016.

[31] Z. Yun, Q. Zhou, Y. Feng, D. Sun, J. Sun, and D. Yang, ‘‘On-line static
voltage security risk assessment based on Markov chain model and SVM
for wind integrated power system,’’ in Proc. 13th Int. Conf. Natural Com-
put., Fuzzy Syst. Knowl. Discovery (ICNC-FSKD), Guilin, China, 2017,
pp. 2469–2473.

[32] M.-Y. Ruan and H.-D. Chiang, ‘‘On the accuracy of the online static
security assessment under different models: Assessment and basis,’’ IEEE
Trans. Power Syst., vol. 34, no. 6, pp. 4352–4360, Nov. 2019.

[33] A. Maiorano and M. Trovato, ‘‘A neural network-based tool for preventive
control of voltage stability in multi-area power systems,’’Neurocomputing,
vol. 23, nos. 1–3, pp. 161–176, Dec. 1998.

[34] V. S. S. Vankayala and N. D. Rao, ‘‘Artificial neural networks and their
applications to power systems–a bibliographical survey,’’ Elect. Power
Syst. Res., vol. 28, no. 1, pp. 67–79, Oct. 1993.

[35] A. N. Al-Masri, M. Z. A. Ab Kadir, H. Hizam, N. Mariun, A. Khairuddin,
and J. Jasni, ‘‘Enhancement in static security assessment for a power
system using an optimal artificial neural network,’’ Int. Rev. Elect. Eng.,
vol. 5, no. 3, pp. 1095–1102, May 2010.

[36] S. Rajasekaran andG.A. V. Pai,Neural Networks, Fuzzy Logic andGenetic
Algorithms: Synthesis and Applications. New Delhi, India: PHI Learning,
2011.

[37] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, ‘‘Neural
networks for control systems—A survey,’’ Automatica, vol. 28, no. 6,
pp. 1083–1112, Nov. 1992.

[38] D. Rumelhart, G. Hinton, and R. Williams, ‘‘Learning internal representa-
tions by error propagation,’’ Nature, vol. 323, pp. 533–536, Oct. 1986.

[39] Program Application Guide for PSS E Version 32.0, Siemens Power Tech-
nologies International, Siemens, Munich, Germany, 2009, vol. 2.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal
representations by error propagation,’’ Inst. Cogn. Sci., Univ. California
San Diego, San Diego, CA, USA, Tech. Rep. ICS-8506, 1985.

[41] A. M. A. Haidar, A. Mohamed, A. Hussain, and N. Jaalam, ‘‘Artificial
Intelligence application toMalaysian electrical powersystem,’’Expert Syst.
Appl., vol. 37, no. 7, pp. 5023–5031, Jul. 2010.

[42] R. Hooshmand and M. Moazzami, ‘‘Optimal design of adaptive under
frequency load shedding using artificial neural networks in isolated power
system,’’ Int. J. Elect. Power Energy Syst., vol. 42, no. 1, pp. 220–228,
Nov. 2012.

AHMED N. AL-MASRI received the Ph.D. degree
from University Putra Malaysia. He is currently an
Associate Professor with the College of Computer
Information Technology, American University in
the Emirates. He has over eight years of experience
in teaching and research in the fields of electrical
engineering and artificial intelligence. His current
research interests include E-learning, the Internet
of Things, data analytics, machine learning, and
data mining. He is a regular Editor of various

journals specializing in electrical power system and artificial intelligence.

MOHD ZAINAL ABIDIN AB KADIR received
the B.Eng. degree in electrical and electronic engi-
neering from Universiti Putra Malaysia (UPM),
in 2000, and the Ph.D. degree in high-voltage
engineering from The Universiti of Manchester,
U.K., in 2006. He is currently a Professor with
the Faculty of Engineering, UPM, after serving
as the Head of Department and the Deputy Dean
(Research and Innovation), from 2011 to 2014
and from 2014 to 2017, respectively. He is also

currently being a seconded to Universiti Tenaga Nasional (UNITEN), as
a Strategic Hire Professor, under BOLD 2025 Initiative. He is the Chair
for the National Mirror Committee of TC 81 on Lightning Protection,
the Past Chair of the IEEE PES Malaysia, a WG member of the IEEE
PES Lightning Performance on Overhead Lines, a Research Advisor of the
African Center for Lightning and Electromagnetic, and the Advisor of the
Center for Electromagnetic and Lightning Protection Research, UPM. He is
a local convener for CIGREC4 on System Technical Performance, a working
group member of SC C4.39 on Surge Arrester, and a board member of the
National Lightning Safety Institute, USA. He is a Professional Engineer and
a Chartered Engineer. He is also a Distinguished Lecturer of the IEEE PES.

ALI SAADON AL-OGAILI received the B.Sc.
degree in electrical engineering from Baghdad
University, Baghdad, Iraq, in 2005, and the M.Sc.
and Ph.D. degrees in electrical power engineering
from UPM, Serdang, Malaysia, in 2012 and 2018,
respectively.

He is currently a Postdoctoral Researcher
with the Institute of Power Engineering, Tenaga
Nasional University. His research interests include
power electronic circuit design and simulation,

electric vehicles, and solar energy.

YAP HOON was born in Sitiawan, Perak,
Malaysia, in 1990. He received the B.Eng. degree
in electrical and electronic engineering and the
Ph.D. degree in electrical power engineering from
UPM, Serdang, Malaysia, in 2013 and 2017,
respectively.

After completing his Ph.D., he served as a
Postdoctoral Researcher at the Advanced Light-
ning, Power, and Energy Research Centre, UPM.
He is currently a Lecturer with Taylor’s University.

His research and teaching interests include power electronics, power quality,
artificial intelligence, and multilevel inverter.

VOLUME 7, 2019 180105


