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variant averaged null energy condition (CANEC), which is a version of the ANEC with

a certain weight function for conformal invariance. In even-dimensions, however, one has

to deal with gravitational conformal anomalies, which make relevant formulas much more

complicated than the odd-dimensional case. In two-dimensions, we derive the ANEC by

applying the no-bulk-shortcut principle. In four-dimensions, we derive an inequality which

essentially provides the lower-bound for the ANEC with a weight function. For this pur-

pose, and also to get some geometric insights into gravitational conformal anomalies, we

express the stress-energy formulas in terms of geometric quantities such as the expansions

of boundary null geodesics and a quasi-local mass of the boundary geometry. We argue
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wormhole throat.
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1 Introduction

The null energy condition (NEC) is the key to prove a number of theorems in general

relativity, such as the singularity theorems, topological censorship, and positive energy

theorems. Although it is satisfied for typical classical matter fields, as a locally formulated

condition, the NEC can be violated by quantum effects, such as Casimir effects in spacetime

with a compact spatial section.

In many of its applications, the NEC can be replaced by the averaged null energy

condition (ANEC), ∫ +∞

−∞
〈Tµν〉 lµlνdλ ≥ 0, (1.1)

for an achronal null geodesic with tangent vector lµ, where λ is the affine parameter along

the null geodesic and 〈Tµν〉 is the stress-energy tensor. This states that the integral of

the null energy over a complete null geodesic cannot be negative, as first realized in [1],
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proved for some cases [2], and improved, e.g., by [3, 4]. In Minkowski spacetime, the

(achronal) ANEC has recently been proven for general quantum fields [5, 6]. The ANEC

in the Minkowski background was also shown for strongly coupled conformal fields [7] in

the context of the AdS/CFT duality [8].

In curved spacetimes, however, the ANEC has not been fully tested yet. Although it

has recently been shown to hold in the maximally symmetric curved (i.e., de Sitter and

Anti-de Sitter) spacetimes [9] (see also [10] for a highly symmetric but non-trivial case),

the ANEC can in fact be violated for more general cases such as a conformally coupled

scalar field in 4-dimensional curved, conformally flat spacetime [11]. An example of the

ANEC violation in curved spacetimes was also shown in strongly coupled field theory in

the context of the AdS/CFT duality [12].

A violation of energy conditions is closely related to causal pathology such as the oc-

currence of naked singularities and/or causality violations. This, in turn, suggests that

a sensible causality requires a certain energy condition to be satisfied. In the AdS/CFT

context, a firmer basis of physically reasonable causal interactions between the bulk and

boundary field theory is provided by imposing the “no-bulk-shortcut condition,” which as-

serts that no bulk causal curve can travel faster than the boundary achronal null geodesics.

This assertion was precisely formulated and shown by Gao and Wald [13], assuming that

there are no pathological behavior such as naked singularity formation in the bulk and

the boundary. Conversely, if the no-bulk-shortcut condition is violated, a naked singu-

larity must appear in the bulk [12]. Thus, the no-bulk-shortcut condition is essential to

characterize the bulk-boundary causality relation in the AdS/CFT duality. In fact, the

holographic proof of the ANEC in Minkowiski spacetime [7] exploits this condition.

In the previous paper [12], the present authors applied the no-bulk-shortcut condition

in the context of AdS/CFT duality where the boundaries are d = 3 and d = 5 static

spatially compact universes, and derived the conformally invariant averaged null energy

condition (CANEC), ∫ λ+

λ−

(η(λ))d 〈Tµν〉 lµlνdλ ≥ 0. (1.2)

Here, η is the d-dimensional (d = 3, 5) boundary Jacobi field of the boundary null geodesic

congruence, representing the separation of points between the two adjacent null geodesics

on the boundary. λ± are conjugate points (focal points) of it. The formula (1.2) is consis-

tent with the Minkowski ANEC since in flat spacetime, the Jacobi field becomes constant

and focal points are λ± = ±∞. Similarly in the case of maximally symmetric boundary

spacetime, eq. (1.2) reduces to ANEC in eq. (1.1) and this agrees with the condition derived

on the Einstein-static cylinder from field theoretic point of view [9].

In even-dimensions, however, the boundary conformal field theories in general involve

conformal anomalies, which make relevant formulas much more complicated than those

in odd-dimensions, and it is far from obvious if one can generalize in any reasonable way

the notion of the CANEC to the even-dimensional case. In this paper, we apply the

holographic method of our previous paper [14] to the case of even-dimensional boundary

spacetimes. The main result in the previous paper [12] is that ANEC must involve the
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appropriate weight function by the Jacobi field. Therefore, again assuming the existence

of the holographic bulk duals and also the no-bulk-shortcut principle, we derive ANEC in

two-dimension and obtain an inequality for ANEC with an appropriate weight function in

four dimension. This results in providing the lower-bound for the ANEC with a weight

function in four-dimensional curved spacetimes. These are our main results in this paper.

However, we will postpone to proving the conformal invariance of our formula due to the

complication of conformal anomaly.

The starting point of our holographic method is the Fefferman-Graham (FG) expansion

of (d+ 1)-dimensionial asymptotically AdS bulk metric,

gabdx
adxb =

1

z2
(
dz2 + gµν(x, z)dxµdxν

)
:=

1

z2
ĝab

gµν(z, x) = g(0)µν(x) + z2g(2)µν(x) + · · ·+ zdg(d)µν(x) + h(d)µν z
d ln z2 + · · · , (1.3)

where d ≥ 2 and h(2)µν = 0. ĝab is the rescaled bulk spacetime metric which we will

use later. According to the formula [15], the stress-energy tensor 〈Tµν〉 in d-dimensional

boundary field theory is given by these expansion coefficients. When d is odd, 〈Tµν〉 is

simply proportional to g(d)µν , while when d is even, there appears an additional term

Xµν , which corresponds to the conformal anomalies of the boundary CFT and makes

the formulas significantly involved. In the d = 2 case, Xµν is in proportion to g(0)µν
and therefore the null energy 〈Tµν〉 lµlν with lµ being any null vector is simply given by

g(2)µν l
µlν . This fact helps us to control the behavior of relevant bulk and boundary null

geodesics in terms only of the boundary null energy 〈Tµν〉 lµlν and enables us to derive the

ANEC in general curved spacetime. This includes the ANEC on the complete null geodesic

generators on both the 1 + 1-dimensional cosmological and black hole horizons.

In the d = 4 case, the stress-energy tensor is composed of the coefficient g(4)µν and

the addtional term Xµν nonlinear to the curvature tensor, reflecting the conformal anoma-

lies [15]. In this case, we derive an energy inequality of the form in which a weighted

average of the null energy 〈Tµν〉 lµlν is bounded from below by boundary geometric quan-

tities, such as the expansions of boundary null geodesics, and the quasi-local mass of the

boundary spacetime. We also show that the equality holds for the deformed global vacuum

AdS spacetime with linear perturbations. This suggests that the minimum of the averaged

null energy 〈Tµν〉 lµlν is determined by the boundary physical quantities such as the ex-

pansions of null geodesics and a quasi-local mass, besides the boundary Ricci tensor. We

find that the minimum can be negative for some type of spatially compact universe (see

also refs. [16, 17]).

In the next section, we briefly recall the no-bulk-shortcut condition and holographic

stress-energy formulas. Then in section 3 we derive the ANEC in the d = 2 both spatially

compact and non-compact universes. In section 4, we derive the inequality that the aver-

aged value of the null energy 〈Tµν〉 lµlν with an appropriate weight is bounded from below

in d = 4 dimensional spatially compact universe. Then in section 5, we examine when

the equality holds in general deformed global AdS spacetime. In section 6, we supply a

curved boundary example in which the ANEC is violated. Section 7 devotes to summerize

our results.
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2 No-bulk-shortcut and boundary stress-energy

We would first like to recall the statement of the no-bulk-shortcut principle of Gao-Wald [13]

and some basic formulas for holographic renormalized stress-energy tensor [15].

We are concerned with, as our bulk spacetime, a d + 1-dimensional asymptotically

locally anti-de Sitter vacuum spacetime (Md+1, gab) with conformal boundary ∂M . Con-

sider any pair of boundary two points, p, q ∈ ∂M , which are connected by an archronal

null geodesic γ lying in ∂M (without loss of generality, we assume that q is located to the

future of p in ∂M). Suppose there exists a timelike curve in the bulk Md+1 which anchors

to these boundary two points p and q. Then, there must be another bulk causal curve

which connects p ∈ ∂M and a boundary point r ∈ ∂M which is strictly past to q ∈ ∂M . In

such a case, Md+1 ∪ ∂M is said to admit a bulk-shortcut. There may be the case in which

the boundary two points p and q are connected by a bulk null geodesic curve. However,

if such a bulk null curve contains a pair of conjugate points, it can be deformed to a bulk

timelike curve from p to q, implying the existence of a bulk-shortcut. If there is no such a

bulk-shortcut, then the achronal null geodesic segment γ in ∂M is the fastest causal curve

from p to q. If a bulk-shortcut exists, then it implies that a causality violation occurs in

boundary field theories and therefore that the AdS/CFT duality would not work properly

in such a bulk-boundary system. The no-bulk-shortcut condition is the claim that there

is no bulk shortcut in the bulk-boundary system under consideration, and this is shown

to be the case [13] when the bulk spacetime satisfies certain reasonable conditions such as

the ANEC.

In ref. [14], we have applied the no-bulk-shortcut property above and derived some

restriction to the weighted average of the null energy for the renormalized stress-energy

tensor for boundary conformal fields. For convenience we provide the holographic stress-

energy formulas of [15] here for the two and four-dimension cases. Hereafter we denote (a

part of) the conformal boundary ∂M by (Md, gµν) on which dual field theories reside.

In two dimensions, the holographic stress-energy tensor on (M2, g(0)µν) is given in

terms of the FG expansion coefficients (1.3) by

〈Tµν〉 =
2`

16πG

(
g(2)µν − g(0)µνTr

(
g(2)
))
. (2.1)

Since the second term is proportional to the boundary metric g(0) = ds2∂ , for any null vector

field lµ the corresponding null energy is simply given by the contraction of lµ with the first

term g(2)µν l
µlν .

In four-dimensions (M4, g(0)µν), the coefficient g(2)µν is expressed by the Ricci curvature

tensor of the boundary metric g(0)µν in the FG expansion (1.3), and the other subleading

terms g(4)µν , h(4)µν are expressed by g(2)µν as

g(2)µν = −1

2

(
Rµν −

R

6
g(0)µν

)
,

g(4)µν = tµν +
1

8
g(0)µν

[
(Trg(2))

2 − Tr(g2(2))
]

+
1

2
g(2)µαg(0)

αβg(2)βν −
1

4
g(2)µνTr(g(2)),

h(4)µν =
1

2
g(2)µαg(0)

αβg(2)βν −
1

8
g(0)µνTr(g2(2)), (2.2)
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where the boundary stress-energy tensor 〈Tµν〉 is related to the bulk tensor tµν in (2.2) via

the AdS/CFT duality [15] as

〈Tµν〉 =
4

16πG
tµν . (2.3)

Here, the indices are raised and lowered by the conformal boundary metric g(0)µν .

3 ANEC in 2-dimensional boundary spacetime

In this section we derive an ANEC for field theories on two-dimensional spacetime (M2, gµν),

which describes either the spatially compact universe R1×S1 or the spatially non-compact

spacetime R1×R1. As noted above, we assume that M2 be realized as (a part of) the confor-

mal boundary ∂M of a 3-dimensional asymptotically AdS vacuum bulk spacetime (M3, gab)

with the curvature scale `. We further assume that (M3, gab) allows the FG expansion (1.3)

near the conformal boundary so that we can apply the holographic method of [14]. Since

any two-dimensional spacetime is conformally flat, the two-dimensional boundary metric

ds2∂ is written in the form

ds2∂ = ef(t,ϕ)(−dt2 + dϕ2) = −ef(u,v)dudv, (3.1)

where v = t+ϕ, u = t−ϕ. In the compact universe case, ϕ is, as an angular coodinate on

S1, within the range 0 ≤ ϕ ≤ 2π.

3.1 d = 2 spatially compact case

Let us consider the causal structure of the compact universe M2 = R1 × S1. As shown in

figure 1, the null rays from a point p ∈ M2 meet up round the back of the cylinder on a

point q ∈ M2 at ϕ = π. Each null segment on M2 connecting the two points q and p is

achronal only when ∆ϕ ≤ π, where ∆ϕ is defined as the coordinate length between q and

p. As a consequence of the no-bulk-shortcut property [13], we can establish the following

theorem;

Theorem 1. We assume that there is a holographic bulk dual to M2 = R × S1 and the

AdS/CFT duality holds: in particular, FG expansion (1.3) and the holographic stress-

energy formula (2.1) apply. Furthermore assume that the no-bulk-shortcut principle holds.

We choose the null coordinate v along a null geodesic γ (with u = 0) on the boundary

M2 as an affine parameter and the metric function f is set to f(0, v) = 0. Then, let us

consider a scalar field η on M2 which is not identically zero on γ and satisfies, along γ,

the following equation with the initial value η(vp) = 0 at p:

η̈(v) =
12π

c
〈Tµν〉 lµlνη(v), (3.2)

where c is the central charge [18] and the dot denotes the derivative with respect to v and

〈Tµν〉 is the boundary stress-energy tensor. Then, there is no point r on γ between p and q

where η vanishes, i.e., there is no coordinate value vr ∈ (vp, vq) for which η(vr) = 0.
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Figure 1. Null rays on R1 × S1 cylinder. Both null rays from a point p at ϕ = 0 meet up round

the back of the cylinder on a point q at ϕ = π. The null geodesic segment with the tangent vector

∂v can only be achronal between p and q.

We prove the theorem 1 by the holographic method below.

Proof. Since the causal structure is invariant under the conformal transformation, we can

proceed in the rescaled bulk spacetime (M̂3, ĝab), where we define the 3-dimensional metric

ĝab = z2gab so that it satisfies the FG expansion (1.3) with the boundary metric g(0)µν at

z = 0 being (3.1). We can also extend the coordinates (u, v) into M̂3. Accordingly we can

view the null geodesic γ defined on M2 as a null geodesic curve γ̂ embedded in M̂3. Now

consider the bulk Jacobi field with respect to γ̂. In the FG coordinates, the magnitude η̂

of the bulk Jacobi field along the covector (dz)a obeys the following equation of motion

¨̂η = −R̂zvzv η̂ = −R̂vv η̂ , (3.3)

at z = 0 where R̂zvzv is the corresponding component of the Riemann tensor of (M̂3, ĝab).

By extrapolating the eq. (3.3) near the boundary z → 0, the curvature component in

the right-hand side can simply be replaced with −g(2)µν lµlν and using the relationship

c = 3`/2G, we can in fact identify η̂ with the boundary scalar η using the AdS/CFT

dictionary and eq. (3.3) reduces to eq. (3.2). This implies that if there were a solution of

eq. (3.2) with η(vr) = 0 at r on γ ∈ M2 between (p, q), then r is conjugate to p along γ

viewed as the null geodesic curve in M̂3. It immediately follows from the standard argument

– 6 –
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that there were a bulk timelike curve from p to q. This contradicts the assumption that

the null geodesic segment γ from p to q is achronal and the no-bulk-shortcut condition.

From eq. (3.2), it is clear that if the null-null component of the boundary stress-energy

tensor, 〈Tµν〉 lµlν is sufficiently negative, there is a pair of conjugate points along the null

geodesic segment with the coordinate length less than ∆φ = π. As shown later, the vacuum

global AdS spacetime gives the critical value.

3.2 d = 2 spatially non-compact case

We turn to the case when M2 is the non-compact universe R1 × R1. Suppose there is a

complete achronal null geodesic γ with its tangent l = ∂v, which can be extended arbitrary

in the future and past directions. In this case, we can establish the following theorem:

Theorem 2. Suppose that the integral of the null energy 〈Tµν〉 lµlν over complete γ con-

verges to a finite value; ∫ ∞
−∞
〈Tµν〉 lµlνdv = κ . (3.4)

Then, κ ≥ 0 and the equality holds only if the null energy 〈Tµν〉 lµlν vanishes along entire γ.

Again we will assume that there is a holographic bulk dual and AdS/CFT duality

holds and also that no-bulk-shortcut principle holds. Under these assumptions we will

prove the theorem 2 from the bulk. As in the compact case, let us consider the rescaled

bulk (M̂3, ĝab) and the bulk null geodesic congruence of the null line γ originally defined

on the conformal boundary. By the same argument in Theorem 1, the magnitude of the

bulk Jacobi field is identified with η, which obeys eq. (3.2). Furthermore, eq. (3.2) can be

transformed to Raychaudhuri type equation with no shear:

θ̇ = −1

2
θ2 +

24π

c
〈Tµν〉 lµlν , θ := 2

η̇

η
. (3.5)

Since −24π 〈Tµν〉 lµlν/c is identified with the null-null component of the bulk Ricci tensor

R̂µν l
µlν for the rescaled bulk (M̂3, ĝab), one can apply the focusing theorem (Theorem 2

in [19]) to show the existence of a pair of conjugate points of eq. (3.5). According to the

focusing theorem, one can show that there is a pair of conjugate points along γ, provided

that the average of R̂µν l
µlν is not negative and R̂µν l

µlν is not identically zero.1

Proof. Suppose that κ ≤ 0 and 〈T 〉µν lµlν is not identically zero. Then, by the focusing

theorem [19], there would be a point r conjugate to p along γ. Then, there were a timelike

curve from p to q > r. This contradicts the assumption that the null geodesic γ is achronal.

1Even though the generic condition is not satisfied, one can still apply the focusing theorem to eq. (3.5)

since in the present case R̂µν l
µlν is not identically zero.
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3.3 Examples

To clarify the statement of the theorem 1, let us consider the vacuum bulk solution with

the metric

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2

(
J

2r2
dt+ dϕ

)2

,

F (r) = −m+ r2 +
J2

4r2
, (3.6)

where m and J are the parameters corresponding respectively to the mass and the angular

momentum. When m > 0 and m ≥ |J |, it corresponds to the BTZ black hole [20]. The

conformal boundary metric is written by eq. (3.1) with f = 0 and, near the boundary, the

bulk metric can be transformed into the FG coordinate (1.3) by

r =
1

z
+
mz

4
+ · · · . (3.7)

According to ref. [15], the tensor tµν in eq. (3.9) proportional to the stress-energy tensor

on the boundary theory can be read off from

g(2)µν =
1

2
(Rg(0)µν + tµν), (3.8)

where R is the Ricci scalar curvature on the boundary spacetime and the tensor tµν is

defined as

tµν :=
24π

c
〈Tµν〉 . (3.9)

Then, each component of tµν becomes

ttt = tϕϕ = m, ttϕ = −J (3.10)

and the null-null components along the null geodesics l = ∂v and k = ∂u are thus

tµν l
µlν =

1

2
(m− J), tµνk

µkν =
1

2
(m+ J). (3.11)

Without loss of genericity, suppose J ≥ 0 and consider the Jacobi equation (3.2) along lµ.

If m − J ≥ 0, there is no non-trivial solution η which has two zeros. If m − J < 0, the

solution

η = ε sin

(√
J −m

2
v + δ

)
(3.12)

has a pair of conjugate points with the coordinate length (note that ∆v = 2∆ϕ along

u = 0)

∆ϕ =
π√

J −m
. (3.13)

Theorem 1 asserts that ∆ϕ ≥ π and hence

J −m ≤ 1 ⇐⇒ m ≥ J − 1. (3.14)

– 8 –
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Therefore, the minimum value of the mass parameter m is obtained at J = 0 by m = −1,

which corresponds to the global AdS spacetime. Theorem 1 also applies to some inhomo-

geneous bulk spacetime with, e.g., a perfect fluid star at the center. In general, tµν l
µlν

can be a function of u and v, and it can be negative in some region. In such a case, if the

coordinate length ∆ϕ between the two conjugate points is less than π, the bulk spacetime

violates the no-bulk-shortcut property, yielding the pathological bulk spacetime. Thus,

theorem 1 restricts the extent of the possible local violation of the null energy condition.

As an example of the spatially non-compact spacetime, let us consider a d = 2 black

hole spacetime with the metric

ds2 = −F (r)dt2 +
dr2

F (r)
,

where we assume F (r) > 0 (r > r0), F (r0) = 0, and F (r) < 0 (r < r0). It is straightforward

to find the coordinate transformation in which this metric takes the double-null from (3.1).

The event horizon at r = r0 is the bifurcate Killing horizon and its null geodesic generator

is complete and achronal. Theorem 2 states that the average of the null-null component of

the boundary stress-energy tensor cannot be negative. In particular, if it is zero, it should

be identically zero. This implies that a negative null energy locally created by quantum

effects can be compensated by larger amount of a positive null energy on any achronal

null line.

4 The weighted ANEC in d = 4 spatially compact universe

Although its main focus was on the odd-dimension case, ref. [14] also briefly discussed the

4-dimension case and derived the ANEC with a weight function for the 4-dimensional static

Einstein universe with compact spatial section. In this section, we extend the result to a

class of time-dependent universe with compact spatial section, and show that the averaged

null energy tµν l
µlν with an appropriate weight function is bounded from below by the Ricci

curvature tensor, and the expansions of the null vectors.

As a boundary spacetime M4, we consider the following metric

gµνdx
µdxν = ef(t,ρ)(−dt2 + dρ2) + r2(t, ρ)(dθ2 + sin2 θdϕ2) , (4.1)

where the topology of the t = const. hypersurface is S3, and the ρ = const. subspace

is a two-dimensional sphere. For convenience, we also introduce the null-coordinates as

v = t+ ρ, u = t− ρ so that the metric becomes

gµνdx
µdxν = −ef(u,v)dudv + r2(u, v)(dθ2 + sin2 θdϕ2) . (4.2)

One considers a boundary null geodesic segment γ with tangent vector l = ∂v along u = 0

null hypersurface from the south pole p (v = v−) to the north pole q (v = v+), where

r(0, v−) = r(0, v+) = 0. By a suitable coordinate transformation, one can always take

f(0, v) = 0, (4.3)

– 9 –
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so that v is the affine parameter. The Ricci tensor and the scalar curvature are given by

Rvv =
2ḟ ṙ − 2r̈

r
, Ruv = −ḟ ′ − 2ṙ′

r
,

Rθθ =
Rϕϕ

sin2 θ
= 1 + 4e−f (ṙr′ + rṙ′),

R =
2e−f

r2

[
ef + 4ṙr′ + 2r2ḟ ′ + 8rṙ′

]
, (4.4)

where the dot and the prime represent the derivative with respect to v and u, respectively.

4.1 Derivation of the weighted ANEC

Let us consider an achronal boundary null geodesic segment γ ∈ M4, which connects the

two points; the south pole p and north pole q on the boundary M4. Now, near γ ∈ M4,

we also consider a bulk causal curve λ in the rescaled manifold (M̂5, ĝab) which has two

endpoints at p and q on the boundary M4. The tangent vector Ka to λ is written by

Ka =

(
dz

dv
,
du

dv
, 1,0

)
,

z = εz1 + ε2z2 + · · · ,

du

dv
= ε2

du2
dv

+ ε3
du3
dv

+ ε4
du4
dv

+ ε4 ln ε2
dξ4
dv

+ · · · ., (4.5)

where ε is an arbitrary small parameter and z satisfies the boundary condition

z(v−) = z(v+) = 0. (4.6)

Due to the existence of the logarithmic term (1.3), one needs to consider the last logarithmic

term in the third line, as shown below.

Expanding ĝabK
aKb ≤ 0 as a series in ε, one obtains

gabK
aKb = ε2

(
−du2
dv

+ ż21 + z21 g(2)vv(0, v)

)
+ ε3

(
2ż1ż2 + 2z1z2 g(2)vv(0, v)− du3

dv

)
+ ε4

(
ż22 + z22 g(2)vv(0, v) + 2ż1ż3

+ 2z1z3 g(2)vv(0, v) + 2z41 ln z1 hvv(0, v)

+ 2z21 g(2)uv(0, v)
du2
dv
− du4

dv
+ z41 g(4)vv(0, v)

+ z21∂u(g(2)vv)(0, v)u2 − (∂uf)(0, v)u2
du2
dv

)

+ 2ε4 ln(ε)

(
z41 hvv(0, v)− dξ4

dv

)
+ · · ·

≤ 0. (4.7)
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Note that the functions g(2)vv(u, v) and f(u, v) are expanded around u = 0 as ζ(u, v) =

ζ(0, v) + ε2∂u(ζ(0, v))u2 + · · · .
At the leading order, O(ε2), by integrating the above equation from v = v− to v = v+,

one obtains

∆u ≥ ε2
∫ v+

v−

(ż21 + z21g(2)vv(0, v))dv, (4.8)

where ∆u is the coordinate distance between v− and v+, and the equality holds for the

null curve. Applying the variational principle to the r.h.s. of eq. (4.8), we obtain the

equation [14]

z̈1 = g(2)vv(0, v)z1 =
r̈(0, v)

r(0, v)
z1. (4.9)

The solution that satisfies the condition (4.6) is given by

z1 = r(0, v), z1(v−) = z1(v+) = 0. (4.10)

The substitution of (4.9) into eq. (4.8) yields

∆u2 = 0 (4.11)

for the bulk null curve λ. Here, note that u2 is rewritten by z1 as

u2 = z1ż1. (4.12)

Integrating (4.7) by parts at O(ε3), one can also show that

∆u3 = 0 (4.13)

for the bulk null curve λ satisfying the boundary condition (4.6).

At O(ε4 ln(ε)) in eq. (4.7), one obtains

∆ξ4 ≥
∫ v+

v−

z41 hvv(0, v)dv

=

∫ v+

v−

z41

[
−r′

{
2ṙr̈ + r

...
r

6r3

}
− ṙ′r̈

6r2
+
r̈′ṙ

2r2
+

...
r′

6r
− ṙ2

2r2
ḟ ′ − r̈

6r
ḟ ′ − ṙ

2r
f̈ ′ −

...
f ′

12

]
dv.

(4.14)

By using integration by parts and eq. (4.10), one can show that the r.h.s. of eq. (4.14)

is zero. Thus, for the null curve λ, there is no time delay at this order, i. e. , ∆ξ4 = 0,

independent of the time dependence of the boundary metric (4.2). Therefore, the time

delay between the bulk null curve λ and the boundary null geodesic γ is caused by O(ε4)

in eq. (4.7).

Just like the O(ε2) case, ∆u4 is minimized by z2 satisfying

z̈2 = g(2)vv(0, v)z2 =
r̈(0, v)

r(0, v)
z2 (4.15)
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whose solution is given by

z2 = αr(0, v) (4.16)

with a constant α. Substituting eqs. (2.2), (4.16), and (4.12) into eq. (4.7) and integrating

by parts, one obtains

∆u4 ≥
∫ v+

v−

z41 tvv(0, v)dv + 2

∫ v+

v−

z41 ln z1 h(4)vv(0, v)dv

− 1

4

∫ v+

v−

g(2)vv(0, v)Tr{g(2)(0, v)}z41dv −
1

4

∫ v+

v−

z41 ∂v(∂u(g(2)vv)(0, v))dv

+

∫ v+

v−

z21 ż
2
1

[
1

4

(
1

r2
+ θ+θ−

)
− 5Rθθ

12r2
− 7

6
Ruv

]
dv

≥ 0, (4.17)

where θ± are the expansions along the null vector ∂v and ∂u defined by

θ+ :=
2ṙ(0, v)

r(0, v)
, θ− :=

2r′(0, v)

r(0, v)
. (4.18)

Here, the equality in the first line holds for the bulk null curve λ and the inequality in the

last line comes from the no bulk-shortcut principle.

In general, the r.h.s. of eq. (4.17) includes fourth derivatives of the boundary metric

functions f and r. As shown in the appendix, by performing integration by parts, the

inequality (4.17) can be expressed by expansions θ± and the curvature on the boundary

spacetime (4.2) as∫ v+

v−

η4 tvv(0, v)dv ≥ 1

12

∫ v+

v−

η4
[
θ2+

(
Ruv +

Rθθ
r2

)
−
θ2+
2
· µ(r) +

1

2
θ+θ−Rvv

+

(
3

2r2
− Rθθ

r2
− 2Ruv

)
Rvv

]
dv (4.19)

with the help of eqs. (A.1), (A.2), and (A.3), where µ defined by

µ(r) :=

(
1

r2
+ θ+θ−

)
, (4.20)

is the quasi-local mass density, i.e., whose integral over two-sphere provides the quasi-local

gravitational mass [21]. Here, η is the Jacobi field of the null geodesic congruence of the

boundary spacetime (4.2) and it is proportional to z1, just like the case [14]. This is the

averaged null energy condition in d = 4, weighted by the Jacobi field η. Since the second

term of the r.h.s. of (4.19) is the quasi-local mass density µ of the boundary spacetime

with weight function η4θ2+, the averaged null energy is bounded by the local mass density

when the Ricci curvature is small enough compared with the expansions.

As discussed in section 6, the equality should hold when the boundary state becomes

the ground state. The r.h.s. of the inequality (4.19) gives the weighted average of the null

energy on the ground state. In particular, when the boundary spacetime includes horizons,
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or wormhole throat with zero expansion, i. e. , θ+ = 0, the integrand of the r.h.s. of the

inequality (4.19) reduces to a simple form

θ2+

(
Ruv +

Rθθ
r2

)
−
θ2+
2
· µ(r) +

1

2
θ+θ−Rvv

+

(
3

2r2
− Rθθ

r2
− 2Ruv

)
Rvv = −

(
1

r2
+ 4ḟ ′

)
r̈

r
, (4.21)

with the help of eqs. (4.4) and the condition (4.3). Therefore if we consider, for example,

the boundary spacetime with a wormhole throat at v = v0, the radius of the throat takes

its minimum there, i. e. ,

r̈(v0) > 0. (4.22)

This suggests that the averaged null energy of the boundary theory becomes negative

when the throat radius, r(v0), is small enough on the ground state. An example of such a

wormhole geometry will be given in section 6.

4.2 Schwarzschild-AdS bulk and boundary ANEC

Let us examine the averaged null energy condition (4.19) when our 5-dimensional bulk

spacetime M5 is given by the Schwarzschild-AdS metric

ds2 = −
(
r2 + 1− M

r2

)
dt2 +

(
r2 + 1− M

r2

)−1
dr2 + r2(dρ2 + sin2 ρdΩ2), (4.23)

where dΩ2 is the metric of the unit two-dimensional sphere. The conformal boundary M4

is the static Einstein universe whose metric is expressed by

ds2∂ = −dudv + sin2

(
v − u

2

)
(dθ2 + sin2 θdϕ2),

where ρ = (v − u)/2, t = (v + u)/2. The FG coordinate (1.3) is obtained by the following

coordinate transformation near the boundary:

r(z) =
1

z
− 1

4
z +

M

8
z3 +O(z4). (4.24)

The metric gµν in the above coordinate system can be expanded as

gvv = guu = −z
2

4
+
M

4
z4 + · · · ,

guv = −1

2
+

1

8

(
M − 1

4

)
z4 + · · · ,

gθθ =
gϕϕ

sin2 θ
= sin2 χ− 1

2
sin2 χ z2 +

1

16
(1 + 4M) z4 + · · · . (4.25)

Substituting eq. (4.25) into eq. (2.2), we obtain the null-null component of the tensor tµν
in eq. (2.3);

tvv =
1

16
(4M + 1). (4.26)
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On the other hand, the Ricci curvature of the boundary metric (4.24) is given by

Rvv =
1

2
, Ruv = −1

2
, Rθθ = 2 sin2 χ, Rϕϕ = 2 sin2 χ sin2 θ. (4.27)

Substitution of eqs. (4.26) and (4.27) into eq. (4.19) yields

3(4M + 1)π

64
α4 ≥ 1

12

∫ 2π

0
η4
[
θ2+

(
Ruv +

Rθθ
r2

)
−
θ2+
2
· µ+

1

2
θ+θ−Rvv

+
3

2r2
Rvv −

Rθθ
r2

Rvv − 2RvvRuv

]
dv

=
3π

64
α4, (4.28)

where v− = 0 and v+ = 2π, and η = αz1 = αr(0, v) for a constant α. This inequality

means that the mass parameter must be non-negative;

M ≥ 0. (4.29)

This example suggests that the no bulk-shortcut principle is connected with the positive

mass theorem in asymptotically anti de Sitter spacetime. This is because the Schwarzschld-

AdS spacetime with negative mass M (< 0) has a naked singularity on the bulk, and hence,

it is predicted by the theorem [12], which prohibits the appearance of naked singularities.

5 Minimum of the null energy in d = 4 spatially compact universe

The averaged null energy condition (4.19) restricts the extent of how negative null energy

appears in the spatially compact spacetime. However, the condition cannot tell us how and

when the equality in eq. (4.19) holds. According to the AdS/CFT duality [8], the boundary

stress-energy tensor is determined not only by the boundary source (conformal boundary

metric) but also by the state of the boundary quantum fields. However, it appears to

be reasonable to expect that the minimal null energy could be determined merely by the

conformal boundary metric itself, provided that the boundary field theory has a stable

ground state and also that there is no pathological behavior such as naked singularity

or causality violating region in the dual bulk. The example in the previous section is a

particular case in the sense that the boundary geometry (4.2) is the static Einstein universe

and we would like to know whether the minimum (averaged) null energy is given by the

r.h.s. of eq. (4.19) in a more general class of boundary spacetimes. In this section, we

study if the equality in eq. (4.19) holds for a deformed static Einstein boundary universe

by performing linear perturbations in the global AdS vacuum bulk.

5.1 The perturbed static vacuum bulk and the boundary null energy

We consider, as our five-dimensional bulk spacetime M5, the global AdS spacetime with

the unit curvature length,

ds2 = gabdy
adyb + r(y)2γijdz

idzj ,

gabdy
adyb :=− (1 + r2)dt2 +

dr2

(1 + r2)
,

γijdz
idzj = dρ2 + sin2 ρ(dθ2 + sin2 θdϕ2), (5.1)
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where ya = (t, r) denote the static coordinates in the two-dimensional part of the global

AdS metric and zi = (ρ, θ, ϕ) the angle coordinates of the unit three-sphere. Through this

section, the latin indices in the range a, b, . . . , h are used to denote tensors in the two-

dimensional spacetime spanned by ya and should not be confused with the indices for ten-

sors in the bulk. It is easy to obtain the FG metric (1.3) by the coordinate transformation

r =
1− z2

2z
, τ :=

t

2
, gabdy

adyb =
1

z2
{
dz2 − (1 + z2)2dτ2

}
. (5.2)

The four-dimensional boundary metric g(0)µν is given by the coordinates xµ = (τ, zi) =

(τ, ρ, θ, ϕ).

By considering static metric perturbations on this background, we construct an asymp-

totically AdS, deformed static vacuum bulk. For this purpose, we follow ref. [22] in which

thorough analysis of linear perturbations on the global AdS spacetime has been performed.

The relevant perturbations are of the scalar-type in the classification of [22], which behave

as scalar fields with respect to coordinate changes in the 3-sphere γij . Accordingly, the

scalar-type metric perturbations can be expanded in terms of the scalar harmonics S on

the 3-sphere that solve the equation(
DiDi + k(k + 2)

)
Sk = 0, k = 1, 2, · · · (5.3)

where Di is the covariant derivative operator of the metric γij . Note that k = 0 mode

corresponds to the homogeneous perturbation with respect to γij and is not relevant for

the present purpose.

The solutions of the harmonic equation (5.3) are given by the Jacobi polynomial as

Sk(ρ) = P
1
2
, 1
2

k (ξ),

P
1
2
, 1
2

k (ξ) =
(−1)k

2kk!(1− ξ)
1
2 (1 + ξ)

1
2

dk

dξk
{(1− ξ)

1
2
+k(1 + ξ)k+

1
2 },

P
1
2
, 1
2

0 (ξ) = 1, P
1
2
, 1
2

1 (ξ) =
3

2
ξ, P

1
2
, 1
2

2 (ξ) =
5

8
(4ξ2 − 1), · · · , (5.4)

where ξ := cos ρ.

In the scalar-type metric perturbation, the perturbed metric is generally written in

the form

δds2 = ε(habdy
adyb + 2haidy

adzi + hLγijdz
idzj) + ε

(
DiDj −

1

3
γijD

mDm

)
hT , (5.5)

where ε is an arbitrary small parameter, and hab, hL, and hT are expanded by Sk as

hab(r, ρ) =

∞∑
k=1

Hk,ab(r)Sk(ρ), hL(r, ρ) =

∞∑
k=1

Hk,L(r)Sk(ρ),

ha =
∞∑
k=1

Hk,a(r)Sk(ρ), hT (r, ρ) =
∞∑
k=1

Hk,T (r)Sk(ρ). (5.6)
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The gauge-invariant variables Z and Zab are composed of the perturbed functions as

Z :=
3

r

{
HL +

k(k + 2)

3
HT + 2r(∇ar)Xa

}
,

Zab := r(Hab +∇aXb +∇bXa) +
2

3
Zgab, (5.7)

where ∇a is the covariant derivative with respect to the metric gab and Xa is defined by

Xa := −Ha +
1

2
r2∇a

(
HT

r2

)
. (5.8)

These variables are obtained from the master variable Φs as

Zab = (∇a∇b − gab) (r3/2Φs), Z = Zaa, (5.9)

and the equation for Φs is described in terms of a new coordinate x as(
∂2

∂x2
+

1/4

sin2 x
− 3/4 + k(k + 2)

cos2 x

)
Φs = 0, r =

cosx

sinx
. (5.10)

Since we are interested in the static perturbation of the global vacuum AdS spacetime,

in which there is no horizon at the center, we need to impose the regularity condition at

the center. Such a regular solution is given, in terms of the hypergeometric function, by

Φs = B1(sinx)
1
2 (cosx)σ+

1
2F (ζσ, ζσ, 1 + σ; cos2 x)

= B1 ·G(x)
Γ(1 + σ)

Γ(ζσ)2

∞∑
k=0

{(ζσ)k}2

(k!)2
· (sinx)2k

× {2ψ(k + 1)− 2ψ(ζσ + k)− ln(sin2 x)}, (5.11)

where the parameters σ, ζσ, (ζ)k and the functions G(x), ψ(x) are defined by

σ := k + 1, ζσ =
σ + 1

2
=
k + 2

2
, (ζ)k :=

Γ(ζ + k)

Γ(ζ)
,

G(x) = (cosx)σ+
1
2 · (sinx)

1
2 , ψ(x) :=

d

dx
log Γ(x) . (5.12)

5.2 The Fefferman-Graham gauge

In order to reconstruct the metric functions (5.5) from the master variable, one needs to

fix the gauge. One may think of the following gauge:

Ha = HT = 0 (Xa = 0). (5.13)

In this case, however, it turns out to be difficult to transform the metric to the Fefferman-

Graham gauge (5.2) since Hzz 6= 0. So, our strategy is to first take the gauge (5.13) and

transfom the perturbed metric to attain the gauge Hzz = Hz = 0 by using gauge-freedom:

Hab → Hab −∇aξb −∇aξb,

Ha → Ha − ξa − r2∇a
(
ξ

r2

)
. (5.14)
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In the static perturbation, ξadx
a = ξzdz, and ξz and ξ are obtained by solving

Hzz − 2ξ′z −
2

z
ξz = 0 (5.15)

and

ξz + r(z)2∂z

(
ξ

r(z)2

)
= 0. (5.16)

Once ξ and ξz are obtained from the above equations, the other variables are obtained by

HT → 0− 2ξ,

HL → HL +
2k2s
3
ξ − 2r(∇ar)ξa = HL +

2k(k + 2)

3
ξ +

1− z4

2z
ξz. (5.17)

5.3 The stress-energy tensor in the deformed boundary metric

For simplicity, we hereafter restrict our attention to the k = 2 (σ = 3) mode in eq. (5.3).2

By using the relation between x and z,

cosx =
1− z2

1 + z2
, sinx =

2z

1 + z2
, (5.18)

Φs in eq. (5.11) is expanded as

Φs = ε
(2z)

1
2 (1− z2)

7
2

(1 + z2)4

∞∑
i=0

(
2z

1 + z2

)2i{
ai − 2bi ln

(
2z

1 + z2

)}
,

ai := {2ψ(i+ 1)− 2ψ(ζ3 + i)}bi, bi :=
{(ζ3)i}2

(i!)2
. (5.19)

By solving eq. (5.15), we can obtain ξz with a constant of integration. We fix the

constant so that the ττ -component of the boundary metric is set to −1, i.e ,

lim
z→0

z2Hττ = 0, (5.20)

and thus ξz becomes

ξz =
2b0
z
− 2b0

3
(1 + ln 256 + 8 ln z) + · · · . (5.21)

One can always take the condition (5.20) by using a freedom to choose a conformal factor

of the boundary metric.

ξ is also obtained from eq. (5.16) with an integration of constant. One can choose

the constant so that the south and north poles (ρ = 0,π) are regular. As a result, ξ is

obtained as

ξ = −b0
2

+
b0
3

(1 + ln 16 + 4 ln z)z2 + · · · . (5.22)

2k = 1 mode is the odd function with respect to the equatorial plane (ρ = π/2), so the both sides of the

inequality (4.19) would be zero at the linear order in ε. Thus, we consider the next mode k = 2.

– 17 –



J
H
E
P
1
0
(
2
0
2
0
)
1
0
6

By using eqs. (5.17), (5.21), and (5.22), one finally obtains the perturbed metric

Hττ = −40b0
3
− 40b0

3
(3 + ln 256 + 8 ln z)z2 + · · · ,

HL =
b0
z2
− 16b0

3
+
b0
9

(19− 80 ln(2z))z2 + · · · ,

HT = b0 −
2b0
3

(1 + 4 ln 2 + 4 ln z)z2 + · · · , (5.23)

and the coefficients g(n)µν of the Fefferman-Graham coordinate (1.3) as

g(0)µνdx
µdxν = −dτ2 +

1

4

[
1 +

5

2
εb0(1 + 2 cos 2ρ)

]
dρ2

+
1

4
sin2 ρ

[
1 +

5

2
εb0(1 + 2 cos 2ρ)

]
(dθ2 + sin2 θdϕ2), (5.24)

g(2)µνdx
µdxν = −

[
2 +

25b0
3
ε(1 + 2 cos 2ρ)

]
dτ2 −

[
1

2
+

5b0
3
ε(1 + 5 cos 2ρ)

]
dρ2

−
[

1

2
+

5b0
6
ε(5 + 7 cos 2ρ)

]
sin2 ρ(dθ2 + sin2 θdϕ2), (5.25)

g(4)µνdx
µdxν = −

[
1 +

25b0
3
ε(1 + 2 cos 2ρ)(3 + ln 256)

]
dτ2

+

[
1

4
+

5b0
24
ε {1− 48 ln 2 + (18− 32 ln 2) cos 2ρ}

]
dρ2 (5.26)

+

[
1

4
+

5b0
24
ε{9− 16 ln 2 + (10− 64 ln 2) cos 2ρ}

]
sin2 ρ(dθ2 + sin2 θdϕ2),

up to O(ε).

Now we can examine the boundary null energy in this perturbatively deformed space-

time. In terms of the double-null coordinate (4.2) with eq. (4.3) for

du = dτ −
√
g

2
dρ, dv = dτ +

√
g

2
dρ,

g(ρ) := 1 +
5

2
εb0(1 + 2 cos 2ρ), (5.27)

the null-null component of the tensor tµν defined in eq. (2.3) in the inequality (4.19) is

obtained as

tvv = 1 +
5

3
b0ε {2 + 3 cos(2ρ)}(1− ln 256), (5.28)

up to O(ε). On the other hand, the curvature tensors and the expansions θ± appearing on

the r.h.s. of the inequality (4.19) are calculated as

Ruu = 2 + 5b0ε(1 + 4 cos(2ρ)), Rvv = 2 + 5b0ε(1 + 4 cos(2ρ)),

Ruv = −2− 5b0ε(1 + 4 cos(2ρ)),

Rθθ =
Rϕϕ

sin2 θ
= {2 + 5b0ε(3 + 5 cos(2ρ))} sin2 ρ, (5.29)

θ+ = −θ− = 2 cot ρ+
5

2
b0ε{cos(3ρ)− 4 cos ρ} csc ρ, (5.30)
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Figure 2. The function r(v) is shown for various parameters of ε with l = 1 and n = 6. The

dashed (green), dotted (red), and dot-dashed (purple) curves correspond to ε = 5/3, 4/5, and

1/10, respectively. The solid (blue) curve is for r = sin(v/2), corresponding to the static Einstein

universe. As ε becomes small, a wormhole throat appears at v = π and the radius of the throat

becomes small.

up to O(ε). Substituting eqs. (5.28), (5.29), and (5.30) into the inequality (4.19), one can

check that the equality in (4.19) holds in the deformed static Einstein universe, up to O(ε).

This implies that the minimum of the averaged null energy of the boundary stress-energy

tensor with the weight function η4 is expressed by the combination of the Ricci curvature

and the expansions, as shown in the r.h.s. of the inequality (4.19).

6 An example of negative averaged null energy

In the previous sections, we have shown that the equality in eq. (4.19) holds for general

deformed static vacuum AdS spacetime within the framework of linear perturbation. Here,

assuming that the equality holds for the ground state in the boundary theory, we examine

whether the averaged null energy becomes negative or not.

We consider a class of static boundary spacetimes with the metric

ds2∂ = −dudv + r2(v − u)(dθ2 + sin2 θdϕ2),

r(v − u) = sin

(
v − u

2

)
·
{

1 + l sin2

(
v − u

2

)
− (1 + l − ε) sin2n

(
v − u

2

)}
(6.1)

where l, ε are positive constants, and n denotes a positive integer. As ε becomes smaller,

with keeping n a large value, r takes a highly concave shape with the local minimum at

v − u = π. The figure plots the radial function r(v − u) for various values of ε with l = 1

and n = 6. The integral of the r.h.s. of eq. (4.19) is analytically calculated and the values

are 0.16α4 for ε = 5/3, 0.197α4 for ε = 4/5, and −0.995α4 for ε = 1/10. This indicates

that sharp concave yields large negative null energy, and thus, the averaged null energy

can become negative.

7 Summary

We have studied averaged null energy conditions (ANEC) in 2 and 4 dimensional boundary

theories with gravity dual. The basic principle we used is the no-bulk-shortcut principle,
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which states that there is no bulk causal curve that can travel faster than the boundary

achronal null geodesics. In 2-dimensional boundary spacetime, the null-null component

of the boundary stress-energy tensor affects, via holographic argument, the behavior of

boundary null geodesics. Namely, the achronality of a boundary null geodesic is translated

to the behavior of a bulk Jacobi field. On the assumption of the no-bulk-shortcut principle,

the bulk Jacobi field cannot behave so as to admit a pair of conjugate points along the

achronal null geodesic line (or segment), otherwise, there would be a bulk timelike curve

which connects two boundary points on the achronal null geodesic, leading to a contradic-

tion. For the spatially non-compact case, theorem 2 in section 3 states that the averaged

null energy cannot be negative, agreeing with the ANEC derived in the flat spacetime [7].

This is applied to the geometry with black hole or cosmological horizons. On the other

hand, for the spatially compact case such as R1 × S1 cylinder, the averaged null energy

can become negative, but it is bounded from below, as shown in theorem 1 in section 3.

In the four-dimensional boundary spacetime case, we have derived the inequality which

bounds the averaged null energy from below for a class of spatially compact spacetimes.

The averaged null energy is bounded by the boundary geometric quantities such as the ex-

pansions of the boundary null geodesics and curvatures, which stem from the gravitational

conformal anomalies. When one considers the null geodesic that goes along the Killing

horizon of a black hole or passes through a wormhole throat with vanishing expansion, the

lower bound is described by the Ricci curvature tensor. In particular, when the achronal

null geodesic passes through a wormhole with a highly concave throat, the averaged null

energy can become negative, due to the existence of the term Rµν l
µlν which is negative

enough, as shown in section 6.

The ANEC (4.19) with an appropriate weight η4 is very similar to the conformally in-

variant averaged null energy condition (CANEC) derived in the odd-dimensional case [14].

It would be interesting to check how our inequality (4.19) behaves under conformal

transformation.

Although the ANEC (4.19) can be applied to non-static universe such as expanding

cosmology, we have assumed that the boundary geometry has two-dimensional spherical

cross-section. In this case, the boundary null geodesic congruence has no shear. In general,

if the shear is large enough, the boundary null geodesic congruence has a pair of conjugate

points within a small segment of the null geodesic, and then, there is a boundary timelike

curve which connects two points on the null geodesic beyond the segment. So, beyond

the small segment, the null geodesic segment is no longer achronal. This implies that the

no-bulk-shortcut principle cannot be easily violated for the boundary spacetime with large

shear. It would be also interesting to investigate the ANEC in such a general class of

spacetimes with shear.
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A General formulas

In this appendix, we give useful formulas to derive the null energy inequality. Integration

by parts gives∫ v+

v−

z41 ∂v(∂u(g(2)vv)(0, v))dv = −4

∫ v+

v−

z31 ż1∂u(g(2)vv)(0, v)dv

= −4

∫ v+

v−

z41
ṙ

r
∂u(g(2)vv)(0, v)dv

=

∫ v+

v−

z41θ+∂u(Rvv)dv

=

∫ v+

v−

z41θ+

(
θ+ḟ ′ −

θ−
2
Rvv −

2r̈′

r

)
dv, (A.1)

where eq. (4.4) is used in the last line. The last term in the last line is expressed by the

expansions θ± and the Ricci curvature in eqs. (4.4) as

−
∫ v+

v−

z41θ+
2r̈′

r
dv = −2

∫ v+

v−

θ+r
3r̈′dv

= 2

∫ v+

v−

( ˙θ+r
3 + 3θ+r

2ṙ)ṙ′dv

=
1

2

∫ v+

v−

θ2+ −Rvv
r2

(Rθθ − 1− r2θ+θ−)z41dv, (A.2)

where we used eq. (4.3) in the last line. Substituting eq. (A.2) into eq. (A.1) and using

eq. (4.3) , one obtains∫ v+

v−

z41 ∂v(∂u(g(2)vv)(0, v))dv =

∫ v+

v−

z41θ+

(
θ+ḟ ′ −

θ−
2
Rvv

)
dv

+
1

2

∫ v+

v−

θ2+ −Rvv
r2

(Rθθ − 1− r2θ+θ−)z41dv

= −
∫ v+

v−

z41

[
θ2+Ruv +

1

2r2
Rvv(Rθθ − 1)

]
dv. (A.3)

Similarly, the integration of h(4)vv in eq. (4.17) is rewritten in terms of expansions and the

Ricci curvature of the boundary spacetime (4.2) as∫ v+

v−

z41 ln z1 h(4)vv(0, v)dv

= − 1

12

∫ v+

v−

z41
θ+
r
r̈′dv +

1

6

∫ v+

v−

z41
ṙr′r̈

r3
dv +

1

12

∫ v+

v−

z41

(
ṙ2

r2
+
r̈

r

)
ḟ ′dv

=
1

96

∫ v+

v−

z41

[
θ2+

(
Rθθ
r2
− 2Ruv

)
− θ2+

(
θ+θ− +

1

r2

)
− 2θ−θ+Rvv + 4RvvRuv

]
dv

(A.4)

by integration by parts.
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