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ABSTRACT Monocular depth estimation is a fundamental problem for various vision applications, and is 

therefore gaining increasing attention in the field of computer vision. Though a great improvement has been 

made thanks to the rapid progress of deep convolutional neural networks, depth estimation of the object at 

finer details remains an unsatisfactory issue, especially in complex scenes that has rich structure 

information. In this paper, we proposed a deep end-to-end learning framework with the combination of 

multi-scale convolutions and joint attention mechanisms to tackle this challenge. Specifically, we firstly 

elaborately designed a lightweight up-convolution to generate multi-scale feature maps. Then we 

introduced an attention-based residual block to aggregate different feature maps in joint channel and spatial 

dimension, which could enhance the discriminant ability of feature fusion at finer details. Furthermore, we 

explored an effective adaptive weight adjustment strategy for the loss function to further improve the 

performance, which adjusts the weight of each loss term during training without additional hyper-

parameters. The proposed framework was evaluated using challenging NYU Depth v2 and KITTI datasets. 

Experimental results demonstrated that the proposed approach is superior to most of the state-of-the-art 

methods.  

INDEX TERMS Monocular depth estimation, multi-scale convolutions, joint attention mechanisms, weight 

adjustment. 

I. INTRODUCTION 

Monocular depth estimation is a fundamental but challenging 

task in computer vision, the goal of which is to predict a 

dense depth map from a given image. The technical progress 

in this area can be applied to widespread applications, such 

as scene understanding [1], [2], action recognition [3], 3D 

reconstruction [4], robotics [5], [6], etc. However, it is still a 

very challenging topic since one image may correspond to 

several real scenes and there are no other available clues, e.g. 

stereo correspondences, or motions.  

Traditional solutions for this problem [7]-[11] mainly 

include two steps: hand-crafted feature extraction and 

structural prediction. However, these methods have no 

generality to suit the needs of various kinds of real-world 

scenes, which has limited the performance of such predicted 

models. 

In recent years, deep learning methods make a huge 

breakthrough on many computer vision’s studies, including 

image classification [12]-[14], scene parsing [15]-[17] and 

pose estimation [18], etc. Efforts based on deep 

convolutional neural networks (DCNNs) have also been 

successfully introduced to monocular depth estimation tasks 

[19], [28], [29]. The use of deep features is superior to hand-

crafted features, and therefore significantly improves the 

estimation performance. 

Depth estimation networks often consist of encoder which 

decreases spatial resolution while learning the feature 

representation, followed by decoder who gradually recovers 

the original depth map resolution to realize the end to end 

learning. But the pooling operation in the classification 

networks greatly reduces the spatial resolution of feature 

maps which is undesirable for depth estimation. Many 
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methods have been adapted to obtain high quality depth map, 

including skip connection [21], [22], multi-scale networks 

[23], [26], [27] or concatenated hierarchical features [24], [25] 

to sort out feature map with higher resolution. Though great 

achievements have been made, there are three reasons 

hindering the better improvement, which are the motivations 

for our new approach. 

Firstly, in order to complete a fine-grained prediction, the 

fine-grained multi-scale representation is very important. 

Despite the gain in performance, common multi-scale 

convolutions often stack the convolutional layers with big 

kernel size in parallel. This approach increases the memory 

requirement and the model size substantially.  

Secondly, different RGB image regions, such as the 

smooth regions and the regions with dense detailed textures, 

have different context information, which results in a 

different contribution for the final depth prediction. 

Therefore, due to the regional incoherence, fusing feature 

maps with a global image feature vector that considers each 

image region equally may result in a sub-optimal precision.  

Thirdly, for predicting dense depth map with better quality, 

several loss terms are often combined to construct the total 

training loss [24]-[28], [37]-[40]. Weights of the loss terms 

are empirically determined and do not change during training. 

However, the ratios between different loss terms vary in a 

large range during training. Therefore, setting value of each 

weight to be invariable will obviously leads the total loss for 

gradient descent algorithm to be sub-optimal. Compared with 

the module architecture design and loss term selection in the 

literature, there are few discussions about these weights 

setting methods that one task with multiple loss terms. 

Based on the above considerations, we build a deep 

convolutional network to settle these issues. Specifically, we 

realize a lightweight up-convolution that uses the dense 

connected way in sequential multi-scale convolutions. We 

name it dense multi-scale up-sample block (DMUB). The 

DMUB enriches the multi-scale representation during up-

sampling with little parameter. To address the second 

problem above, we design a residual block with joint 

attention mechanisms to fuse the feature maps of the encoder 

and decoder part. We name it attention-based residual fusion 

block (ARFB). The ARFB aggregates the feature maps with 

fully consideration of the characteristics of the scenes. It 

enhances the fine-grained information processing ability of 

the model. We also propose an adaptive weight adjustment 

strategy in our loss function. Our strategy adjusts the weight 

of each loss term during training without additional hyper-

parameters. It further improves various metrics on the 

benchmark datasets. Our main contributions can be 

summarized as follows: 

 We propose a deep end-to-end learning framework 

with the combination of multi-scale convolutions and 

joint attention mechanisms. It includes a lightweight 

up-convolution to generate multi-scale feature maps, 

and an attention-based residual fusion block to 

enhance the discriminant ability of feature fusion at 

finer details.  

 An adaptive weight adjustment strategy for 

combination of multiple loss terms is adapted to 

optimize the network training, which can further 

improve the predicted accuracy.  

 Our proposed network is trained in an end-to-end 

fashion and achieves the state-of-the-art depth 

estimation performance on two public benchmark 

datasets (NYU Depth v2 and KITTI). 

The rest of this paper is organized as follows: Sect. Ⅱ. 

introduces the review of related work. Sect. Ⅲ. presents our 

proposed depth estimation method. Sect. Ⅳ. gives the 

experimental results and analyses. Finally, Sect. Ⅴ. concludes 

the work. 

II. RELATED WORK 

In this section, we concentrate on how to better use 

supervised DCNNs to settle the problem of monocular depth 

estimation and our method mainly concerns with the 

attention-based methods and the loss function design. 

Therefore, we will briefly classify the related works into 

three aspects: the supervised DCNNs-based methods for 

depth estimation, attention-based methods, and loss function 

design. 

A. SUPERVISED DCNNS-BASED METHODS 

The supervised DCNNs-based methods have effectively 

improved the performance of depth estimation by their 

powerful feature extraction ability. Eigen et al. [19] first 

proposed a multi-scale deep network for dense depth 

estimation. Laina et al. [28] employed the ResNet [41] 

structure with a well-designed up-sampling operator and 

achieved a better performance. Cao et al. [29] considered the 

depth estimation problem as a pixel-wise classification task 

by training a fully convolutional deep residual network based 

on the long tail property of depth data distribution. 

The methods above usually applied a deep neural network 

designed from image classification in a full convolutional 

way as the feature extractors. The repeated pooling 

operations in these feature extractors inevitably decrease the 

spatial resolution of feature maps and have a bad effect on 

the local detail depth prediction. In order to solve this 

problem, Godard et al. [21] and Xie et al. [22] adopted the 

skip-connection strategy to fuse low-spatial resolution depth 

maps in deeper layers with high-spatial resolution depth 

maps in lower layers. Zheng et al. [24] and Hu et al. [25] 

applied concatenated hierarchical features to finish the 

coarse-to-fine process. They all integrated hierarchical depth 

features by combining various-level information of depth 

feature maps with up-convolution to further realize the fine-

grained depth prediction. Some other works [23], [26], [27] 

aggregated multi-scale contexts to improve the prediction 

performance. For instance, Zhao et al. [23] exploited image 

super-resolution techniques to finish the multi-scale feature 
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fusion that can get an accurate depth map. Chen et al. [27] 

introduced an adaptive dense feature fusion module to 

adaptively fuse effective features from multi-scale for 

inferring structures of the scene. 

B. ATTENTION-BASED METHODS 

Attention mechanisms have been proved efficient in 

modeling long-range dependencies and have been widely 

applied in depth prediction tasks. For instance, Jiao et al. [32] 

proposed an attention-driven learning approach for 

monocular depth estimation, which also predicted 

corresponding semantic labels. Chen et al. [33] proposed an 

attention-based context aggregation network to aggregate 

both the image-level and pixel-level context information for 

depth estimation. Kong et al. [36] presented a pixel-wise 

attentional gating unit to learn the spatial allocation of 

computation in dense labeling tasks. Li et al. [34] used 

channel-wise attention mechanisms to extract discriminative 

features for depth prediction. Very recently, Wang et al. [54] 

applied a channel-spatial attention module in their encoder-

decoder framework to improve the representation ability of 

feature maps. 

Recently, some researchers have begun to develop 

lightweight joint attention modules that inferred attention 

maps along channel and spatial dimensions simultaneously. 

For instance, Woo et al. [45] applied an attention-based 

feature refinement with channel and spatial modules that 

achieved considerable performance improvement on image 

classification tasks while keeping the overhead small. Park et 

al. [30] proposed a simple and effective joint attention 

module at each bottleneck of models. Roy et al. [31] re-

calibrated the channel of feature maps by joint attention 

mechanisms, and proved its effectiveness for medical image 

segmentation. 

C. LOSS FUNCTION 

Loss function provides data for the gradient optimization 

algorithm to update the parameters of the DCNNs. It plays an 

important role in the learning process. As reported in the 

literature, different individual loss term or the combining of 

multiple loss terms were used to construct the loss function. 

Eigen et al. [28] proposed a scale invariant loss to optimize 

the model learning. Fabio et al. [40] defined their total loss as 

a sum of three main contributions including disparity 

smoothness loss, an image reconstruction loss, and a proxy-

supervised loss. Zhang et al. [24] considered the training loss 

as combination of the point-to-point, shape and distribution 

similarity between predictions and ground truth, which 

leveraged hierarchical structure information to guide the 

network optimization. Alhashim et al. [37] and Gur et al. [38] 

regarded the training loss as the sum of L1 loss and structural 

similarity (SSIM) loss, which sought the balance between the 

point-to-point difference and the distortions of high 

frequency details in the image domain. Hu et al. [25] and 

Chen et al. [27] made a simple analysis of orthogonal 

sensitivities to different types of errors and then proposed to 

use a combination of three loss function terms, which 

included the point-to-point loss, the gradients loss, and the 

normal loss. 

Recently, some researchers have used an adaptive way to 

set the weight of each loss term. For instance, Jiang et al. [39] 

introduced an adaptive optimized weight allocation algorithm 

based on a Gaussian model to maximize the effectiveness of 

weighting for their proposed hybrid loss function. Zhang et al. 

[24] used a simple sum rule to finish the adaptive adjustment 

strategy. 

While great improvements have been made, there is still 

room to gain a higher quality depth map. Our proposed 

method settles this problem to some extent from following 

three aspects. Firstly, we further improve the performance of 

multi-scale convolutions. Secondly, we enhance the 

discriminant ability of feature maps with attention-based 

method. Thirdly, we optimize the weight allocation of the 

loss function. 

III.  PROPOSED METHOD 

In this section, we firstly present the architecture of the 

proposed DCNNs, followed by the introductions of the 

DMUB and ARFB. Finally, we state our loss function and 

corresponding adaptive weight adjustment strategy. 

A. NETWORK ARCHITECTURE 

Fig. 1 is a pictorial description of our proposed network. It is 

built upon a convolutional auto-encoder architecture. The 

network comprises an encoder and a decoder pathway, with 

skip connections between the corresponding layers. 

The encoder extracts dense features from the input RGB 

images so we also name it feature extraction network. 

Following the previous depth estimation approaches, we 

choose standard DCNNs originally designed for image 

classification task as our feature extraction network. The 

repeated combination of max-pooling and striding in 

standard DCNNs extract feature maps at different resolution, 

as shown in Fig. 1. 

In our proposed decoder, we first attach a 1×1 

convolutional layer to reduce the dimension of the highest-

level feature maps. The DMUB is sequentially applied to up-

sample the feature maps in a multi-scale manner. Then, 

output of the DMUB and the feature maps with the same 

resolution in feature extraction network are aggregated by 

our ARFB.  The ARFB further aggregates the feature maps 

to realize better feature representation by explicitly modeling 

inter-dependencies of the feature maps in channel and spatial 

dimensions. Alternate use of the DMUB and ARFB 

gradually recovers the feature maps back to the resolution of 

expected depth map. Output of the final DMUB is fed to a 
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FIGURE 1. The architecture of our proposed network.  

 

 

FIGURE 2. The architecture of Dense Multi-scale Up-sample Block.  

 

refinement block (RB) to give the final fine-grained depth 

prediction. The RB has three 5×5 convolutional layers, the 

efficiency of which has been proved by [25]. 

B. DENSE MULTI-SCALE UP-SAMPLE BLOCK 

The DMUB is designed to enhance the multi-scale 

representation ability and decrease model size compared with 

the common multi-scale convolutions. Inspired by the 

success of DenseNet [42] and MultiRes [43] in image 

segmentation task, we add the dense connected way in 

sequential 3×3 multi-scale convolutions, as shown in Fig. 2. 

It enhances the multi-scale representation ability by fully 

making use of all hierarchical features of the convolutions. 

To be specific, our DMUB contains a 2×2 un-pooling 

layer to up-sample the feature maps, dense connected layers 

to generate hierarchical features, a local feature fusion 

operation to adaptively fuse the hierarchical feature, and a 

1×1 convolutional shortcut to comprehend some additional 

spatial information.  

In the d-th up-sampling, we firstly use 2×2 un-pooling to 

get the rough up-sample feature maps
1

M

dF −
. The output of c-

th convolutional layer in our DMUB 
,

M

d cF can be formulated 

as, 

, , 1 ,1 ,2 , 1( ([ , , , , ]))M M M M M M

d c d c d d d d cF W F F F F − −=           (1) 

where   is the ReLU activation function, 

1 ,1 ,2 , 1[ , , , , ]M M M M

d d d d cF F F F− − means the concatenation of the
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FIGURE 3.  The architecture of Attention-based Residual Fusion Block. Details of CAM and SAM are shown in Fig. 4. 

 

feature maps generated by the previous convolutional layer, 

and 
,

M

d cW  denotes the weights of the c-th convolutional layer.  

The local feature fusion operation is formulated as, 

, , 1 ,1 ,2 ,([ , , , , ])M M M M M M

d LF d LF d d d d cF W F F F F−=                (2) 

where 
,

M

d LFW   denotes the function of the 1×1 convolutional 

layer, which finishes the local feature fusion in the d-th up-

sampling. 

We introduce a 1×1 convolutional shortcut to further 

improve the feature maps. The final output of the d-th up-

sampling can be obtained by, 

, , 1( ( ))M M M M

d d LF d sc dF F W F −= +                      (3) 

where 
,

M

d scW  denotes the function of the 1×1 convolutional 

shortcut in the d-th up-sampling.  

C. ATTENTION-BASED RESIDUAL FUSION BLOCK 

Architecture of the ARFB is shown in Fig. 3. As shown, the 

operation of concatenation and 1×1 convolutional first play a 

local feature reduction and fusion role. After that is a residual 

module, which is inspired by [44]. It releases gradient 

vanishing of the network and further enhances the 

discriminative ability of the block by the channel attention 

module (CAM) and spatial attention module (SAM) 

integrated in it. The CAM and SAM are connected in a 

sequential manner, which is the same as [45]. The CAM 

focuses on the inter-channel relationship of feature maps with 

the same resolution. The SAM exploits informative region 

and highlights useful local spatial features for accurate pixel-

level prediction. In this way, the ARFB could generate the 

feature maps with full consideration of their structure-related 

regions and inter-channel relationship.  

In the d-th feature fusion, we firstly merge the output of 

the DMUB M

dF  and corresponding feature maps E

dF  

produced by the feature extraction network with a local 

feature fusion operation, to generate the input  

1

A C H W

dF R  

−   for the subsequent residual attention maps. It 

can be summarized as, 

       1 , ([ , ])A A M E

d d LF d dF W F F− =                            (4) 

where 
,

A

d LFW  denotes the function of the 1×1 convolutional 

layer, which finishes the local feature fusion in the d-th 

feature fusion. 

Then, the ARFB learns the residual sequentially to infer a 

1D channel attention map 
,d cM  and a 2D spatial attention  

map 1

,

H W

d sM R    from the residual component obtained 

by a convolutional group (we stacked two convolutional 

layers here) output
dR . And finally, the output feature maps 

A C H W

dF R   can be calculated from this residual. The 

overall calculation process can be summarized as, 

, 2 , 1 1( ( ( ( ( )))))A A A

d d c d c dR BN W BN W F − −=                 (5) 

, ( )c

d d c d dR M R R=                                  (6) 

, ( )s c c

d d s d dR M R R=                                  (7) 

1

A A s

d d dF F R−= +                                      (8) 

where   means element-wise multiplication. 
, 1

A

d cW and 

, 2

A

d cW  are two different standard 3×3 convolution operations. 

BN means batch-normalization operation, which is not 

contained in [44] but experimentally proved efficiency in our 

network. 

Our channel and spatial attention module both follow the 

classic structure proposed by [45]. As shown in Fig. 4, the 

CAM calculates channel-wise weights that contains 

squeezing and excitation step, the channel attention 

calculation is formed as, 

, ,2 ,1 max( ) ( ( ( ( ( ) ( )))))d c d s d d av d dM R F FC FC F R F R= +   (9) 

where
avF and

maxF are average-pooling and max-pooling 

operations respectively. 
sF  is a sigmoid function. 

1dFC ， and 

2dFC ，  are fully connected operations. 

The spatial attention is computed as, 

,s max( ) ( ([ ( ), ( )]))c A c c

d d s d av d dM R F W F R F R=            (10) 

where A

dW  is a standard 7×7 convolution operation. 

Wang et al. [54] also used the joint attention mechanisms 

to improve the presentation ability of the feature maps. 

Except for different module architecture, we put the joint 

attention mechanisms into whole hierarchical guidance 

progress with fully consideration of the rich information in 

each feature maps resolution, while Wang et al. [54] applies 

the joint attention mechanisms to improve presentation 

ability of the highest-level feature maps.  
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FIGURE 4. Details of our channel and spatial attention module. (a) 
channel attention module (CAM). (b) spatial attention module (SAM). 

 

D. LOSS FUNCTION WITH ADAPTIVE WEIGHT 
ADJUSTMENT STRATEGY 

We make a combination of different loss terms that also 

selected in the state-of-the-art methods [25], [28]. It includes 

a point-to-point loss, a gradients loss, and a normal loss. This 

combination balances the reconstructing depth by 

minimizing the difference between the ground-truth while 

also penalizing the loss of high frequency details typically 

correspond to the boundaries of objects. It is formulated as, 

1 2 3 .total depth grad normalL L L L  = + +                (11) 

We introduce each loss term as follows. 

1) Point-to-point Loss: The logarithm of depth errors is 

selected to obtain the pixel-level difference. It has a 

discriminative contribution to the loss between different 

distance in a scene and is formulated as, 

1

1

1
ln( )

n

depth i

i

L e
n


=

= +                          (12) 

where e  is the L1 Euclidean distance between a predicted 

depth map and the corresponding ground truth, i  is pixel 

index, n is the total number of pixels in each map, and 1   is 

a parameter that always set to be 0.5. 

2) Gradients Loss: The depth of complicated scene is often 

discrete and change acutely on the object boundaries, which 

shows abundant of local features. In order to better preserve 

these details, we use the gradient loss layers with kernels set 

as the Sobel detector on both horizontal and vertical 

directions to penalize such errors. It can be formulated as, 

2

1

1
ln( )

n
sobel sobel

grad x i y i

i

L e e
n


=

=  +  +                   (13) 

where sobel

x  and sobel

y  represent the horizontal and vertical 

convolutional Sobel operator, which calculate the gradient 

information and are sensitive to the shift of edges in x and y 

directions. 
2  is a parameter that always set to be 0.5.  

3) Normal Loss: we consider accuracy of the normal to the 

surface of the predicted depth map to handle small depth 

structures. It can be formulated as, 

1

,1
1

, ,

d g
n

i i

normal
d d g g

i
i i i i

n n
L

n n n n n=

= −           (14) 

where d

in   and d

in  are the surface normal of the predicted 

depth map and its ground truth, which are computed as, 

[ ( ), ( ),1]g

i x i y in g g= − −  and [ ( ), ( ),1]d

i x i y in d d= − − . 

From equation (12), (13) and (14), we find that the 

logarithmic operation causes values of the point-to-point loss 

and gradients loss to be negative all the time after training 

several epochs. Therefore, if each weight of the loss term is 

set to be invariable, total training loss will always be 

dominated by the normal loss that is positive, which flies in 

the face of the principled approach about weight distribution 

in multi-task learning task [51], that total loss should balance 

the contribution of each loss term and not be dominated by 

one loss term. Therefore, we propose the weight adjustment 

strategy to fix this problem. Specifically, we firstly use 

negative log-softmax function to shrink the value of each loss 

term. The softmax operator transfers the value setting as a 

probability distribution issue that significantly reduces the 

imbalance effect and the negative logarithm operation 

ensures the smaller loss terms get bigger weights as we 

expect. It is formed as, 
( )

( )

1

( ) ln
i

j

L t

i n
L t

j

e
t

e



=

= −


                           (15) 

where t  is the iteration step, ( )iL t  is the loss term we select 

above respectively, and n  is the number of different loss 

terms. Obviously, it provides adaptive influence during 

optimizing process to balance the three different loss terms as 

we expected.  

DCNNs use the total loss to complete gradient 

optimization during training process. So, we enlarge the 

output above linearly to ensure sum of the weights is n , 

which is the same as the common invariable setting. By this 

linear enlarge operation, we adaptively enlarge the weights to 

ensure that total loss has approximately equivalent influence 

for the optimization algorithm compared with common 

invariable setting. This linear enlarge operation is formed as, 
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1

( )
( )

( )

i

i n

j

j

n t
t

t





=


=


                               (16) 

Finally, from equation (15) and equation (16), we deduce 

the final weight adjustment strategy. It is formed as,  

1

1 1

( ln )

( )

ln

j

j

n
L

i

j

i n n
L

j

j j

n L e

t

L n e


=

= =

 −

=

− 



 
                     (17) 

Relative works have been done in [24] and [39]. [39] also 

considers this weight determination as probability 

distribution issue, but it needs additional two hyper-

parameters, which are hard to determine. The simple sum 

rule used in [24] is unsuited for the training loss with 

logarithmic combination because the negative value for 

logarithm operation may lead the denominator of their 

formula to be zero. 

IV. EXPERIMENTS 

To evaluate our proposed method, we have carried out 

comprehensive experiments on two public datasets: the NYU 

Depth v2 [46] and the KITTI [47]. In the following 

subsections, we firstly introduce the experimental setup and 

the implementation details, and then show the experimental 

results. We also analyze the effectiveness of our proposed 

blocks and the weight adjustment strategy in ablation study.  

A.  EXPERIMENTAL SETUP 

1) DATASETS 

The NYU Depth v2 dataset consists of 464 scenes from 

indoor scenes, captured by Microsoft Kinect devices. 

Followed by the official split, the training dataset includes 

249 scenes with the 795 pair-wise images, and the testing 

dataset consists of 215 scenes with 654 pair-wise images. 

The spatial resolution of the RGB and depth images is 

480×640. We firstly cropped each image to the size of 

228×314 and offline data augmentation the same as done in 

mainstream approach [24], [25], [27]. We performed data 

augmentation on the training samples by random rotated [-5, 

5] degrees, random scaled depths by s  [1, 1.5] times, color 

shift (multiplied by a random value  [0.8, 1.2]), horizontal 

flip, translation, and contrast (multiply with value    [0.5, 

2.0]) shift. 

KITTI dataset [9] is made up of several outdoor scenes 

captured by LIDAR sensor and car-mounted cameras at 

resolution of roughly 375×1242. The train and test splits we 

employ followed the method in [6]. We used about 22k 

images for training, and 697 test images from different 

scenes. Both the input images and corresponding depth-maps 

were resized to 160×512 to form the inputs. Because the 

depth maps projected by the LIDAR point cloud are sparse, 

we masked them out and evaluated the loss only on valid 

points with ground depth in testing process. We capped the 

maximum predictions of all networks to 80 meters, which is 

the maximum depth of KITTI dataset. We performed data 

augmentation on the training samples by following the 

method in [33]. 

2)  EVALUATION METRICS 

We quantitatively compared our method with the state-of-

the-art methods using the following metrics that are 

commonly employed in previous studies. 

Abs Relative Difference (Abs Rel):

*

*
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where *

iy  is the ground-truth depth, 
iy  is the estimated depth, 

and n is the total pixels in all evaluated images. Values of 

Abs REL, Sq Rel, log10, logRMS and RMS are smaller 

better and values of percentage (%) are bigger better. 

B.  IMPLEMENTATION DETAILS  

We implemented our proposed network using PyTorch 

framework, running on two Nvidia RTX 2080ti GPUs 

with11GB memory each. We adapted resnet-101, densenet-

161, and SENet-154 as our feature extraction network, which 

were pretrained on ImageNet dataset [49]. The parameters 

for the other parts were initialized randomly following [27]. 

We selected the Adam [48] optimizer in all experiments with 

the base learning rate 0.0001 and reduced it to 10% for every 

5 epochs. We set β1=0.9, β2=0.999, and used weight decay 

of 0.0001. The batch size was set to 16. We trained the 

network for 30 epochs. Our final DCNNs used the SENet-

154 as feature extraction network, and its decoder part has 

approximately 177.2M parameters. In our experiments, 

training was implemented with 3168 iterations for NYU 

Depth v2, needing about 24 hours to finish. For KITTI 

dataset, our module was implemented with 2895 iterations, 

which needed about 18 hours to finish. 

C.  EXPERIMENTAL RESULTS 

1) QUALITATIVE AND QUANTITATIVE COMPARISONS  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3030097, IEEE Access

 P. LIU et al.: Preparation of Papers for IEEE Access (July 2020) 

8 
VOLUME XX, 2017 

TABLE 1. Performance evaluation of state-of-the-art methods on NYU Depth v2. The best scores are highlighted in bold font. 

Method 
Error (lower is better) Accuracy (higher is better) 

Abs Rel RMS log10 1( 1.25)     
2

2 ( 1.25 )     
3

3( 1.25 )     

Eigen et al. [19] 0.212 0.873 - 0.611 0.887 0.969 
Laina et al. [28] 0.127 0.573 0.055 0.811 0.953 0.988 

Alhashim et al. [37]  0.123 0.465 0.053 0.846 0.974 0.994 
Jiao et al. [32] 0.126 0.416 0.050 0.868 0.973 0.993 

Xu et al. [26] 0.121 0.586 0.052 0.811 0.954 0.987 

Hu et al.  [25] 0.115 0.530 0.050 0.866 0.975 0.993 
Li et al. [35] 0.134 0.540 0.056 0.832 0.965 0.989 

Chen et al. [33] 0.138 0.496 - 0.826 0.964 0.990 

Zhao et al. [23] 0.128 0.523 0.059 0.813 0.964 0.992 
Liu et al. [53] 0.127 0.506 - 0.836 0.966 0.991 

Fu et al. [50] 0.115 0.509 0.051 0.828 0.965 0.992 

Wang et al. [54] 0.115 0.519 0.049 0.871 0.975 0.993 
Chen et al. [27] 0.111 0.514 0.048 0.878 0.977 0.994 

Lee et al. [20] 0.112 0.352 0.047 0.882 0.963 0.992 

Ours (ResNet-101) 0.128 0.549 0.054 0.850 0.969 0.992 

Ours (DenseNet-161) 0.125 0.546 0.053 0.850 0.971 0.993 
Ours (SENet-154) 0.113 0.523 0.049 0.872 0.975 0.993 

 

 

FIGURE 5. Qualitative evaluations on NYU Depth v2. Compared with the state-of-the-art methods. Color indicates depth (red is far, blue is close). The 
columns from left to right are RGB images, ground truth depth maps, results of Laina et al. [28], Fu et al. [50], Hu et al. [25], Chen et al. [27], and the 

proposed method. 

 
We compared our method with the state-of-the-art and results 

of other algorithms were given in the literature. To verify the 

generality of our method in decoder part, we used ResNet-

101, DenseNet-161, and SENet-154 as the feature extraction 

network. The comparative results of evaluation metrics on 

NYU Depth v2 dataset were reported in Table 1. 

As shown in Table 1, it is a sufficient evidence that 

together with different feature extraction networks our 

method can get good results all the time, and the feature 

extraction network with SENet-154 architecture could get the 

best performance. Our method is competitive with most 

state-of-the-art methods. 

Some qualitative comparisons were also presented in Fig. 

5 and more qualitative results were given in Fig. 13(a). All 

predicted depth maps were shown in the same pixel with the 

ground truth for better comparison. The results demonstrate 

that our method presents better object boundaries and 

geometric details than other state-of-the-art methods, for 

instance, the nearby sofa back cushion in the first two rows, 

and the distant table in the second and last rows. The depth 
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TABLE 2. Performance evaluations of state-of-the-art methods on KITTI. Depths are capped at 80 meters.  The best scores are highlighted in bold font. 

Method 
Error (lower is better) Accuracy (higher is better) 

Abs Rel RMS Sq Rel logRMS 1( 1.25)    2

2 ( 1.25 )     
3

3( 1.25 )     

Eigen et al. [19] 0.190 7.156 1.515 0.270 0.692 0.899 0.967 
Garg et al. [52] 0.152 5.894 1.226 0.264 0.784 0.921 0.967 

Godard et al. [21] 0.148 5.927 1.515 0.247 0.802 0.922 0.964 
Jiang et al. [39] 0.128 5.299 1.037 0.224 0.837 0.939 0.971 

Li et al. [35] 0.104 4.513 0.697 0.164 0.868 0.967 0.990 

Wang et al. [54] 0.096 0.655 4.327 0.171 0.893 0.963 0.983 
Alhashim et al. [37] 0.093 4.170 0.589 0.171 0.886 0.965 0.986 

Liu et al. [53] 0.120 4.977 - - 0.838 0.948 0.980 

Chen et al. [33] 0.083 3.599 0.437 0.127 0.919 0.982 0.995 
Fu et al. [50] 0.072 2.727 0.307 0.120 0.932 0.984 0.994 

Lee et al. [20] 0.064 2.815 0.254 0.100 0.950 0.993 0.999 

Our (SENet-154) 0.070 2.912 0.382 0.121 0.942 0.986 0.992 

 

 
FIGURE 6. Qualitative evaluations on KITTI. Compared with the state-of-the-art methods. Color indicates depth (red is far, blue is close). The columns 
from top to bottom are RGB images, ground truth depth maps, results of Godard et al. [21], Garg et al. [52], Liu et al. [53], and the proposed method. 

 

maps we predicted also have a gradually changing property 

in the distance which is consistent with the real scene 

distribution, as shown in the first, third and last rows. 

Although our method could provide better object boundaries 

and geometric details, but the evaluation metrics are not by 

large better than other state-of-the-art methods. It is because 

the object boundaries and geometric details in RGB images 

are not clearly demonstrated in the ground truth depth maps, 

such as the first and last rows in Fig. 5, so our fine-grained 

prediction lowered the scores instead. It demonstrates that 

quality of the depth map is the bottleneck to get better depth 

prediction. 

We also evaluated our module on KITTI dataset. We 

selected the SENet-154 as our feature extraction network. 

The comparative results of evaluation metrics were reported 

in Table 2. It can be observed that our method outperforms 

most competitors. Quantitative comparisons were shown in 

Fig. 6 and more qualitative results were given in Fig. 13(b). 

As shown, our method provides finer boundaries of objects 

even in complex environments. 

2) MODEL SIZE, RUNNING TIME, AND CONVERGENCY 

Model size and running time are both crucial factors in 

determining the potential of DCNNs. Because both previous 

approaches and ours use standard DCNNs as encoder, we 

gave a comparison of the decoder size and the accuracy in 

Fig. 7. For the running time, we compared frames per second 

(FPS) and accuracy in test phase, which was depicted in Fig. 

8. Figures of the mode size and running time for the 

compared methods were all obtained by running their open-

source code in our machine. 

As shown in Fig. 7 and Fig. 8, our proposed method makes 

a good balance between performance, model size, and 

running time. The accuracy of our proposed model is only 

less than [20] and [27]. But [20] has 2.5 times and [27] has 

3.1 times more parameters compared with ours. Our running 

time is also less as compared with [27].  
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FIGURE 7. Model size and performance comparison. Comparison with 

previous methods. Model size (lower is better) vs. 1  (higher is better). 

 

 

FIGURE 8. Running time and performance comparison. Comparison 

with previous methods. FPS (higher is better) vs. 1  (higher is better).  

 

We gave the training loss curve and accuracy curve of our 

proposed method in training phase in Fig. 9. The training loss 

and accuracy were recorded once after every epoch.  As 

shown, after several epoch, the training loss and accuracy are 

both stable within a small range. These curves support the 

convergency of our proposed method.  

The experiments above were all made on NYU Depth v2 

dataset.  

D. ABLATION STUDIES 

In this Section, we conducted ablation studies about our 

DMUB, ARFB and weight adjustment strategy. These 

ablation studies were all made on NYU Depth v2 dataset. We 

selected the SENet-154 as our feature extraction network. In 

order to clearly justify the effectiveness of each part, we set 

four baselines in the ablation studies that are illustrated as 

follows. 

 

(a)  Accuracy convergence during the first 30 epochs. Accuracy is 

represented by 1 . 

 

 

(b)  Training loss convergence during the first 30 epochs. 

FIGURE 9.  Convergence of our proposed network.  

 

 SENet- UAV (SENet-154 with Up-projection, ARFB, 

and weight of each loss term is Variable by the 

weight adjustment strategy): The proposed method 

without DMUB, but replaced with Up-projection 

block [28], which is a commonly used multi-scale 

convolutions. 

 SENet-DRV (SENet-154 with DMUB, Residual 

fusion block, and weight of each loss term is Variable 

by the weight adjustment strategy): The proposed 

method without ARFB, but replaced with commonly 

used residual block. 

 SENet-DAC (SENet-154 with DMUB, ARFB, and 

weight of each loss term is Constant): The proposed 

method without weight adjustment strategy. 

 SENet-DAV (SENet-154 with DMUB, ARFB, and 

weight of each loss term is Variable by the weight 

adjustment strategy): The proposed method. 

We explain the study of each baseline in detail as follows. 

1) ABLATION STUDY FOR DMUB  
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TABLE 3. Baseline comparison on NYU Depth v2. SENet-UAV and SENet-DAV verify the effectiveness of the DMUB. SENet-DRV and SENet-
DAV verify the effectiveness of the ARFB. SENet-DAC and SENet-DAV verify our weight adjustment strategy. 

Method 
Error (lower is better) Accuracy (higher is better) 

Abs Rel RMS log10 1( 1.25)    2

2 ( 1.25 )     
3

3( 1.25 )     

SENet-UAV 0.117 0.541 0.051 0.862 0.971 0.992 
SENet-DRV 0.114 0.527 0.049 0.870 0.974 0.992 

SENet-DAC 0.117 0.525 0.050 0.862 0.973 0.993 

SENet-DAV 0.113 0.523 0.049 0.872 0.975 0.993 

 

 
FIGURE 10. Qualitative evaluations of different baseline. Color indicates 
depth (red is far, blue is close). The columns from left to right are RGB 

images, ground truth depth maps, results of SENet-UAV and SENet-DAV, 
respectively. 

 

 

FIGURE 11. Qualitative evaluations of different baseline Color indicates 
depth (red is far, blue is close).  The columns from left to right are RGB 

images, ground truth depth maps, results of SENet-DRV and SENet-DAV, 
respectively. 

 

In order to justify the effectiveness of our DMUB, SENet-

UAV and SENet-DAV were selected. The comparative 

results of evaluation metrics were reported in Table 3. 

Quantitative comparison was presented in Fig. 10. 

As shown in Table 3, after replacing Up-projection block 

with our proposed DMUB, all metrics are improved. For 

instance, compared with Up-projection block, DMUB causes 

REL decrease by 2.5%, RMS decrease by 4.3%, log 10 error 

decrease by 3.9%. Our DMUB also has little model size than 

Up-projection block. Total model size of DMUB is 29.2M 

less than that of Up-projection block in our module. 

As shown in Fig. 10, our DMUB provides better details 

and object boundaries, such as sofa cushion in the first row, 

small table lamp and wooden bed furniture in the second row. 

We could make a conclusion in this ablation study that our 

proposed DMUB is smarter and more accuracy than Up-

projection block in monocular depth prediction.  

2) ABLATION STUDY FOR ARFB 

For the ablation study of our ARFB, SENet-DRV and 

SENet-DAV were selected. We implemented the residual 

fusion block in SENet-DRV by deducting the CAM and 

SAM in Fig. 3. The comparative results of evaluation metrics 

were reported in Table 3. Quantitative comparison was 

presented in Fig. 11. 

As shown in Table 3, our ARFB is better than residual 

fusion block with little performance improvement. But 

discrimination of details is enhanced by our ARFB, as shown 

in Fig. 11. Meanwhile, with our ARFB, some unclear 

boundaries and categories are now clear, clean-cut, contrast 

good, such as the item hanging on the wall in the first picture 

and bags on the ground in the second picture. The feature 

integration among channel maps based on the joint attention 

mechanisms helps to capture context information that is 

useful to maintain semantic consistency, which is useful to 

the fine-grained prediction. 

3) ABALATION STUDY FOR ADAPTIVE WEIGHT 
ADJUSTMENT STRATEGY 

To evaluate the influence of our adaptive weight adjustment 

strategy, SENet-DAC, and SENet-DAV were selected.  The 

weight of each loss term in SENet-DAC was set to be 

invariable (one as the normally selected), to compare the 

performance with our weight adjustment strategy. The results 

were presented in Table 3. Effects of the adjustment strategy 

was visualized in Fig. 12. 

As shown in Table 3, compared with the model with fixed 

weights, our model with optimized weights obtains better 

results in nearly all evaluation metrics. 

As shown in Fig. 12, it obviously demonstrates that our 

weight adjustment strategy could present clearer object 

boundaries compared with weight invariable method. These 

results reveal that the weight adjustment strategy gives a 

suitable consideration of these loss functions and optimize 

the weights respectively according to the value of each loss 

term. In this way, our loss function optimizes the learning 

process of the network better than the weight invariable loss 

function. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3030097, IEEE Access

 P. LIU et al.: Preparation of Papers for IEEE Access (July 2020) 

12 
VOLUME XX, 2017 

 

(a)  More results on NYU Depth v2. Color indicates depth (red is far, blue is close). The columns from left to right are RGB images, ground truth depth 
maps and predicted depth maps by our model.  

 
(b)  More results on KITTI. Color indicates depth (red is far, blue is close). The columns from top to bottom are RGB images, ground truth depth maps 

and predicted depth maps by our model.  

FIGURE 13.  More qualitative results on NYU Depth v2 dataset and KITTI dataset. 
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FIGURE 12. Qualitative evaluations of different baseline. Color indicates 
depth (red is far, blue is close).  The columns from left to right are RGB 

images, ground truth depth maps, results of SENet-DAC and SENet-DAV, 
respectively. 

V. CONCLUSION 

In this paper, we have designed a deep end-to-end learning 

framework for monocular depth estimation. Our proposed 

framework improves the quality of predicted depth map from 

the following three aspects. Firstly, we design a lightweight 

and accuracy up-convolution to generate multi-scale feature 

maps. Secondly, we introduce joint attention mechanisms in 

our framework to enhance the discriminant ability of feature 

fusion at finer details. Thirdly, the weight adjustment strategy 

adaptively and dynamically balances the contribution of 

different loss terms. The experimental results have proved 

the effectiveness of our proposed framework. Our network 

achieves outstanding performance consistently on NYU 

Depth v2 and KITTI datasets and makes a good trade-off 

between accuracy, running time, and model size. 

Experiments are also conducted to verify the contribution of 

each individual aspect. Future work will focus on the 

improvement of the quality of ground-truth depth map which 

is critical for better depth prediction. 
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