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Abstract
Deep learning methods are being increasingly applied in transport studies, while the methods require modellers to go through 
a try-and-error model tuning process particularly on choosing neural network structure. Moreover, the accuracy level also 
depends on other factors such as the type of data, sample size, region of data collection, and time of prediction. To efficiently 
facilitate such a model tuning process, this study attempts to summarize the relationship between the prediction accuracy of 
deep learning models and the factors which influence it. We conducted a comprehensive review of the literature by adopting 
a detailed search strategy, followed by a meta-analysis on prediction accuracy. Four separate linear mixed effects models, 
taking into account unobserved heterogeneities in prediction accuracy across studies, were developed to statistically test the 
impacts of influential factors on prediction accuracy for (a) all observations (136 studies; 2314 cases), (b) studies with MAPE, 
MRE, and average accuracy indicators (86 studies; 1,878 cases), (c) classification-based studies with accuracy indicator (29 
studies; 220 cases), and (d) traffic forecasting studies with MAPE, MRE, and average accuracy indicators (36 studies, 991 
cases). The final model includes additional factors to test the influence of sample size and time horizon of prediction variables. 
The findings showed that, as expected, deep learning models, particularly ones that consider spatiotemporal dependencies 
of transport phenomena, show better prediction accuracies compared to conventional machine learning models. We also 
found that, on average, the prediction accuracy is improved by 5.90% with 100 million additional data, while the accuracy is 
reduced by 5.28% with 100 min increase in time horizon of prediction in traffic forecasting studies. We concluded this paper 
with a comprehensive summary of the existing findings on the applications of deep learning to transport studies.
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Introduction

Challenges in Applying Deep Learning Methods

Artificial intelligence (AI) systems are characterised by their 
capability to acquire their own knowledge, by understanding 
patterns from raw data (Goodfellow et al. 2016). The two 

key components of AI systems are (1) data from sensors, 
and (2) algorithms/models that translate the data into use-
ful information. If we consider the above-mentioned com-
ponents, we could say that transportation researchers and 
practitioners have long been working on AI applications. For 
example, to control traffic signals, a number of loop detec-
tors have been installed and signals have been automatically 
controlled following certain models and algorithms in many 
cities from developed countries (Zhao et al. 2011). Loop 
detector and global positioning system (GPS) data have also 
been utilised to provide route guidance information together 
with the algorithm translating raw data into travel-related 
information. Thus, AI applications are not new in trans-
portation field. However, the landscape is going to change 
drastically, mainly because of (1) dramatic increase in data 
streams from various sensors, and (2) rapid development of 
machine learning techniques including deep learning.
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Conventional machine learning techniques such as ran-
dom forest method, support vector machines (SVM), and 
shallow neural network methods have been commonly used 
in the field of transportation. They have been applied earlier 
in the fields of traffic state prediction such as traffic speed 
and flow (Do et al. 2019; Wang and Shi 2013), travel time 
prediction (Wu et al. 2004), bus arrival time prediction (Bin 
et al. 2006), transportation mode extraction (Shafique and 
Hato 2015) among other applications. The last decade has 
witnessed a rise in the availability of big data in the field 
of transportation. Data from various sources such as GPS, 
loop detectors, closed circuit television (CCTV) cameras are 
being increasingly used in transportation analysis. However, 
analysing data pertaining to transportation involves the dis-
entanglement of multiple factors of variation. For example, 
for the prediction of driving behaviour using CCTV or any 
camera footage, the factors of variation might include sev-
eral high-level, abstract features such as age and gender of 
the driver, the various sitting position they can drive in, and 
the different types of activities they can perform while driv-
ing. Achieving high accuracy in such complex situations is 
a major challenge and deep learning methods are becoming 
more popular in such scenarios.

Goodfellow et al. (2016) argued that in cases where a 
nearly human-level understanding of the data is required, 
representation becomes a major challenge. Deep learning 
models provide an excellent way to solve this problem by 
building complex representations based on a combination 
of simpler representations. Multiple layers can be added 
to represent complex and abstract features (LeCun et al. 
2015), thereby improving the overall accuracy levels. How-
ever, with respect deep learning’s use in transportation, 
there remains at least three challenges for researchers and 
policy-makers. First, the black box functionality of deep 
learning models is a major barrier in linking these mod-
els with the existing transport theories. Policy-makers from 
across the world have argued on the logic and the reasoning 
behind using deep learning models (European Parliamen-
tary Research Service 2019; Ministry of Internal Affairs 
and Communications 2019). Improving accuracy cannot be 
the lone goal of such models and in principle, these mod-
els should be rooted in existing theories. For example, Chi-
karaishi et al. (2020) argued that, in short-term traffic state 
prediction, a machine learning model which produces the 
best prediction accuracy is not always the best for practical 
use since it does not mimic the mechanisms of congestion 
occurrence. Second, these methods are cost and resource 
intensive, with a set of influences from external factors such 
as type of data and sample size. Traffic forecasting stud-
ies, for example, require a huge cost in collecting observed 
data, as a practical application often needs the collection of 
city-scale data. Unlike other practical applications of AI, 
where data could be obtained from a laboratory or a plant, 

transportation studies offer a unique challenge with respect 
to controlling external factors. Third, the decision of choos-
ing appropriate methods often require modellers to adopt 
a try-and-error approach. The choice of the type of neural 
network structure would influence the prediction accuracy, 
which would further depend on the variable being predicted. 
With multiple areas of applications in transportation, this 
could get very challenging.

This study intends to contribute to the second and third 
challenges through a review on the relationship between 
external factors and the prediction accuracy of deep learn-
ing models. A proper summary of existing findings would 
provide a good guide to reduce burdens in the try-and-error 
model tuning process, while accounting for other factors 
such as type of data and sample size.

A Brief Overview of Existing Studies

Currently, both computer scientists and transportation engi-
neering professionals have applied deep learning methods to 
predict complex transportation phenomena, and their use in 
transportation studies is rapidly increasing. Initial studies 
mostly focused on image detection pertaining to the detec-
tion of traffic signs (CireşAn et al. 2012), vehicles (Chen 
et al. 2014), and pedestrians (Ouyang and Wang 2013). 
However, lately deep learning methods have been applied 
in many studies analysing complex variables such as traffic 
state prediction (Bai and Chen 2019; Jo et al. 2019), travel 
demand estimation (Tang et al. 2019a, b), mode choice and 
activity choice prediction (Zhao et al. 2019a, b, c, d, e, f).

LeCun et al. (2015) categorised the deep learning meth-
ods into three major groups, (a) multilayer architecture using 
backpropagation (Bengio et al. 2007), (b) convolutional neu-
ral networks (CNN) (Simonyan and Zisserman 2014), and c) 
recurrent neural networks (RNN) (Graves et al. 2013). The 
use of a type of method depends on the field of application. 
For example, CNNs have been successful in the analysis of 
image data and the recognition of its features. Meanwhile, 
RNN methods have been useful in text and word recognition 
and in data which required processing of values in sequences 
(LeCun et al. 2015). Moreover, there exists significant lev-
els of variations within a type of method, for example, the 
classical RNN structures have evolved into gated RNNs 
such as the long short-term memory (LSTM) (Hochreiter 
and Schmidhuber 1997) and the gated recurrent unit (GRU) 
models (Chung et al. 2014). There are various travel-related 
variables that could be predicted using deep learning models 
and the choice of method would significantly influence the 
prediction accuracy.

Review studies on the application of deep learning in 
transportation have focused on identifying the areas of appli-
cation (Nguyen et al. 2018; Wang et al. 2019) and the dif-
ferent kinds of methods (Do et al. 2019). Wang et al. (2019) 
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identified that deep learning models in transportation have 
been applied mostly for either classification of discrete 
states or regression of continuous real values. They identi-
fied the areas of application, while describing the advantages 
and disadvantages of the methods. However, the decision 
on selecting the type of method and their accuracy would 
depend upon other external factors such as sample size, area 
of application, region of data collection (whether from urban 
area, rural area, or both), and time horizon of prediction 
(for example, short-term prediction or long-term prediction). 
Previous review studies did not study accuracy’s relation-
ship with respect to the area of application, the type of deep 
learning method and other external factors such as type and 
source of data, data coverage, sample size, and time horizon 
of prediction.

Objectives

To fill in the above-mentioned research gaps, this paper aims 
(a) to identify the set of deep-learning methods used with 
respect to the area of application, type of data collected, cov-
erage of the study, time horizon of prediction, and sample 
size; (b) to statistically determine the relationship of these 
external factors with prediction accuracy through a meta-
analysis. We believe that this review paper will contribute to 
the existing literature on the application of AI in transporta-
tion in two major ways. First, as deep learning is a relatively 
new field and the number of papers being published have 
been continuously increasing every year, an extensive survey 
will cover new studies which were not reviewed in earlier 
conducted similar works (Do et al. 2019; Nguyen et al. 2018; 
Wang et al. 2019). Second, it will add on to the understand-
ing of how various factors pertaining to the methodology, 
data type, coverage area, time of prediction, or sample size 
are associated with the accuracy. The knowledge about the 
same will be beneficial for researchers and transportation 
practitioners who will be able to control for these factors in 
future studies.

This article is organised as follows. Section 2 describes 
the research methodology. It has two sub-sections. The 
first sub-section details out the study selection and search 
strategy employed to select the papers that were reviewed. 
Meanwhile, the second sub-section discusses the approach 
adopted for the meta-analysis. Section  3 discusses the 
descriptive statistics of the review analysis, which is fol-
lowed by the discussions of the results of the meta-anal-
ysis in Sect. 4. Finally, we conclude our work in Sect. 5 
by discussing the key findings, contributions, limitations, 
and the directions for future research in the field of AI and 
transportation.

Research Methodology

This section describes the investigation methodology 
adopted for this study and is further divided into two sub-
sections. Section 2.1 illustrates the search strategy imple-
mented to select the papers which used deep learning in 
transportation analysis. Meanwhile, Sect. 2.2 describes 
the method and the set of variables considered in the 
meta-analysis.

Search Strategy

The literature for the review was selected in two steps. First, 
a generic search on the web of science (WoS) database 
helped in identifying three review papers already published, 
which reviewed deep learning studies in the field of trans-
portation. The reference section of these review papers was 
searched to identify the relevant literature. As a result, a total 
of 72 unique studies were identified (see Table 1). A con-
scious decision was made to limit our review to only those 
studies which analysed travel-related or travel behaviour 
variables. Therefore, studies which employed deep learning 
models for vehicle, traffic sign, pedestrian, and cracks in 
pavement detection were not included in this review. The 
mentioned areas of application mostly implemented widely 
available image-based datasets and typically employed 
different variants of the CNN model (Li et al. 2016; Luo 
et al. 2014; Qian et al. 2015). The three review studies, viz. 
Wang et al. (2019), Do et al. (2019) and Nguyen et al. (2018) 
succinctly summarised the work done so far based on the 
areas of application, which informed the second step of the 
search strategy (Wee and Banister 2016). Relevant keywords 
were identified and systematically searched using the WoS 
database. The list of keywords is provided in Table 1. Four 
separate indexes (1) Science Citation Index Expanded (SCI-
EXPANDED), (2) Social Sciences Citation Index (SSCI), 
(3) Arts & Humanities Citation Index (A&HCI), and the 
(4) Emerging Sources Citation Index (ESCI) were searched. 
In addition, only articles published in English were con-
sidered for analysis. Table 1 lists out the resulting number 
of papers from the searches after excluding the common 
papers identified in step 1. A total number of 106 additional 
papers were identified using the keyword searches, making 
the total number of papers that had to be reviewed to 198. 
However, as the major objective of this review is to conduct 
a meta-analysis, testing the effect of different variables on 
accuracy levels, studies which did not report any indicator 
measuring accuracy were not considered for the review. Dif-
ferent studies reported different indicators that showed the 
accuracy of the methods. Many studies directly mentioned 
the accuracy percentages (Gu et al 2019a, b), meanwhile, 
others reported the error percentage in the form of mean 
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absolute percentage error (MAPE) (Bao et al. 2019a), mean 
relative error (MRE) (Zhao et al. 2017), or root mean square 
error % (RMSE %) (Jo et al. 2019). The error values were 
used to then calculate the accuracy levels (100 − error%). 
In addition, some studies also mentioned recall rate (Zhu 
et al. 2019), R2 (Polson and Sokolov 2017), and area under 
curve (AUC) values (Singh and Mohan 2018), which indi-
cated the accuracy levels. Studies which did not report any 
of the above-mentioned indicators (see Table 1) were omit-
ted from the list of studies to be reviewed. In addition, there 
were studies which utilised simulated data for their analysis 
(Gang et al. 2015), they were also removed from the final 
list of studies to be reviewed. The final tally of papers which 
were then considered and reviewed for the meta-analysis was 
136. The next section describes the review process and the 
methodology adopted for the meta-analysis.

Meta‑analysis

To conduct the meta-analysis, information under nine sepa-
rate heads were extracted from the papers short-listed for the 

review (N = 136). Table 2 lists out the factors extracted. They 
included recording the (1) year of publication, (2) country 
where the study was performed or where the data belonged 
to. (3) The region, i.e. whether an urban area or rural area 
or both, from where the data were collected. (4) Source of 
data, (5) the type and format of data used for the analysis, 
(6) total number of samples considered for the study, (7) the 
time horizon of prediction, (8) the method used for analysis, 
and finally (9) the prediction accuracy of the method. The 
information was collated for all 136 studies which resulted 
in the collection of 2314 unique rows of information. Each 
row denoting a method analysed for a particular area of 
application.

The meta-analysis on the prediction accuracy was car-
ried out using linear mixed effects models (Laird and Ware 
1982), which accounted for the random effects representing 
unobserved heterogeneity in prediction accuracy across stud-
ies. Introducing the random effects is essential for the meta-
analysis since the accuracy level would depend not only on 
variables introduced, but also on other unobserved vari-
ables such as quality of sensors and data cleaning process. 

Table 1   Search strategy for literature review

Description of the search Numbers

Papers from previous review studies (N = 3) (Do et al. 2019; Nguyen et al. 2018; Wang et al. 2019) 72
Relevant keyword searches in WoS database and number of papers (after accounting for common papers)
(TS = (deep learning AND traffic flow prediction)) AND LANGUAGE: (English) Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI 

Timespan = All years
33

(TS = (deep learning AND traffic speed prediction)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

14

(TS = (deep learning AND traffic accidents)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

9

(TS = (deep learning AND travel demand)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

16

(TS = (deep learning AND transport mode)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

3

(TS = (deep learning AND travel behavio$r)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

1

(TS = (deep learning AND driver behavio$r)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

28

(TS = (deep learning AND distracted driving)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

3

(TS = (deep learning AND travel time prediction)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

6

(TS = (deep learning AND congestion)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years

12

(TS = (deep learning AND traffic state prediction)) AND LANGUAGE: (English)
Indexes = SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan = All years
TS = Topic Search

1

Total studies identified 198
Studies not included and the reasons for their omission
The study did not mention accuracy, MAPE, MRE, RMSE%, recall, R2, or AUC values; The studies only considered shallow neural 

network-based models; used simulated data or the study was not empirical
62

Total studies considered for analysis 136
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Percentage accuracy was considered to be the dependent 
variable. Meanwhile, fixed effects were estimated for dif-
ferent variables denoting the type of method used, area of 

application, source of data, region of data collection, sample 
size, and time horizon of prediction.

Four separate models were developed as the information 
on sample size and time of prediction were not available 

Table 2   Factors extracted from the literature review and the variables used for meta-analysis

Variable Description

Factors extracted from the literature
Year Year of publication
Coverage The coverage country of the study
Region The area or region from where the data was collected, i.e. urban or rural or both
Survey The source of the data
Data type The type and the format of the data
Sample size Total number of samples used in the study generally for training, testing, and validation of the 

models
Time of prediction The time of prediction in minutes
Method The type of method used
Accuracy The prediction accuracy of the method; calculated through one of accuracy or error indicator
Variables used in the meta-analysis models
Dependent variable
 Accuracy The percentage accuracy of a method
  Model A All observations (cases = 2314, studies = 136); all accuracy indicators
  Model B Cases with MAPE; MRE; average accuracy indicators (cases = 1878, studies = 86)
  Model C Cases with accuracy indicator (cases = 220 studies = 29)
  Model D Traffic forecasting studies with sample size and time horizon of prediction information; cases with 

MAPE; MRE; average accuracy indicators (cases = 991, studies = 36)
 Explanatory variables (fixed effects)
  TM Dummy variable denoting the use of traditional methods; 1 = if yes; else 0
  DNN Dummy variable denoting the use of deep feedforward or backpropagation based neural network; 

1 = if yes; else 0
  SAE Dummy variable denoting the use of stacked auto-encoders; 1 = if yes; else 0
  DBN Dummy variable denoting the use of deep belief network; 1 = if yes; else 0
  CNN Dummy variable denoting the use of deep convolutional neural network; 1 = if yes; else 0
  LSTM Dummy variable denoting the use of long short-term memory models; 1 = if yes; else 0
  CNNLSTM Dummy variable denoting the use of combined CNN-LSTM models; 1 = if yes; else 0
  Speed Dummy variable denoting the area of application; 1 = if speed prediction; else 0
  Flow Dummy variable denoting the area of application; 1 = if flow prediction; else 0
  Travel demand Dummy variable denoting the area of application; 1 = if travel demand prediction; else 0
  Driver behaviour Dummy variable denoting the area of application; 1 = if driver behaviour prediction; else 0
  TTP Dummy variable denoting the area of application; 1 = if travel time prediction; else 0
  Accident Dummy variable denoting the area of application; 1 = if accident prediction; else 0
  GPS Dummy variable denoting the type of data used; 1 = if GPS; else 0
  Loop detector Dummy variable denoting the type of data used; 1 = if loop detectors; else 0
  CCTV Dummy variable denoting the type of data used; 1 = if CCTV or camera; else 0
  Secondary source Dummy variable denoting the type of data used; 1 = if secondary sources such as weather informa-

tion; else 0
  Urban Dummy variable denoting the region of study; 1 = if urban area; else 0
  Sample size The sample size of the study
  Time of prediction The time horizon of prediction in minutes

Explanatory variables (random effects)
Study The random effects due to the study (N = 136, 86, 29, and 36 for models A, B, C, and D, respec-

tively
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for all studies and because different studies used different 
indicators to measure the prediction accuracy. Model A to 
C, which did not consider sample size and time of prediction 
as explanatory variables considered 136, 86, and 29 stud-
ies, respectively (N = 2314, 1878, and 220, respectively) and 
tested the effect of other variables listed in Table 2. Model D 
was developed exclusively for studies which analysed traf-
fic-related applications such as flow and speed and which 
used the MAPE, MRE, and average accuracy indicators to 
estimate prediction accuracy (N = 991, studies = 36). This 
model also tested the impact of sample size and time horizon 
of prediction on the prediction accuracy. The linear mixed 
effects models were developed in R using the lme4 pack-
age (Bates et al. 2014). The results of the meta-analysis are 
discussed in Sect. 4.

Findings from the Literature Review

As mentioned in the previous section, the information from 
the papers were extracted and then collated under different 
heads and this section is dedicated towards describing those 
factors. It is aimed at providing a detailed overview of the 
studies, the type of methods, their coverage, and the areas 
of application. In addition, this section would also discuss 
the average accuracy observed across different methods and 
areas of application.

Areas of Application

The review of the literature showed that deep learning meth-
ods were used in ten distinct transportation related fields. 
The most common areas of application belonged in the field 
of traffic forecasting. Traffic flow forecasting was analysed 
in 42 studies. Meanwhile, 26 studies used deep learning 
methods to predict traffic speed (see Table 3). In addition, 
one study predicted the road occupancy levels (Zang et al. 

2017a, b). Travel demand prediction was also observed to 
be popular with 19 studies estimating the travel demand in 
different travel modes such as bus (Baek and Sohn 2016), 
bus rapid transit systems (BRT) (Liu and Chen 2017a), car 
sharing (Zhu et al. 2017), mass rapid transit systems (MRT) 
(Liu and Chen 2017b), taxis (Xu et al. 2018a, b, c, d), trains 
(Tang et al. 2019a, b), for parking (Yang et al. 2019), and 
bike sharing (Xu et al. 2018a, b, c, d). Moreover, deep learn-
ing methods were also used to estimate the travel demand 
between origins and destinations (Cheng et al. 2017). Pre-
diction of congestion was analysed in 11 different studies. 
Meanwhile, traffic accidents were predicted in 12 studies, 
out of which only one study focused on railway accidents 
(Feng et al. 2018). Meanwhile, others analysed road traf-
fic accidents. Driver behaviour, which included the predic-
tion of distracted driving (Eraqi et al. 2019), subjective risk 
perception while driving (Ping et al. 2018), lane changing 
behaviour (Dou et al. 2018), and braking behaviour (Chris-
topoulos et al. 2018) was predicted in 17 studies. Mean-
while, travel behaviour such as mode choice and activity 
classification was predicted using deep learning methods in 
five (5) studies. Mode choice was predicted in three studies. 
Whereas, activity state classification was analysed in one 
study (Cui et al. 2018a, b, c). One study estimated both mode 
and activity classification together (Zhao et al. 2019a, b, c, 
d, e, f). Travel time was predicted in seven (7) studies, which 
also included one study which predicted both travel time and 
travel distance together (Jindal et al. 2017) (see Table 3).

Year‑Wise Distribution of Studies

The review of the literature clearly showed a steady increase 
in the use of deep learning methods in the field of transporta-
tion. Table 3 shows how the use has increased from merely 
two (2) studies in 2014 to 59 studies in 2019. Comparison of 
publications based on the area of application shows a rising 

Table 3   Area of application and 
year of publication

2014 2015 2016 2017 2018 2019 Total

Accidents 0 0 1 2 4 5 12
Congestion 0 1 1 3 4 2 11
Driver behaviour (DB) 0 0 1 0 4 12 17
Mode and activity choice (M–AC) 0 0 0 1 3 1 5
Travel demand (TD) 0 0 1 6 3 9 19
Travel time prediction (TTP) 0 0 2 0 1 4 7
TTP and distance (Dist.) 0 0 0 1 0 0 1
Traffic flow 2 2 5 6 7 17 39
Traffic speed 0 1 2 7 4 9 23
Speed; flow and occupancy (Occ) 0 0 0 1 0 0 1
Speed and flow 0 0 0 1 0 1 2
Total 2 4 13 28 30 59 136



205Journal of Big Data Analytics in Transportation (2020) 2:199–220	

1 3

trend in the fields of accident analysis, driver behaviour pre-
diction, travel time prediction, and traffic state prediction.

Types of Data Source

Loop detectors were observed to be the most commonly used 
data source, with 55 studies utilising the data obtained from 
them. Loop detectors are traffic sensors which are usually 
installed on roads or at toll-stations to detect vehicles. Using 
the data, one can estimate the flow, speed, and occupancy of 
the road segments. The frequency at which a typical detec-
tor records and relays information varies. Some studies use 
information recorded every 30 s, while others use 1-min 
or 5-min interval records. Researchers often aggregate the 
data to predict the traffic state in the short term. 15-min 
aggregation was observed to be common among different 
studies. Data extracted using GPS was observed to be second 
most common source, with 38 studies using it. Data from 
mobile phones and vehicle based intelligent transport sys-
tems (ITS) both provided GPS information. The information 
was often in terms of trips made and their trajectories (Bao 
et al. 2019a; Ma et al. 2015a, b). The same data source was 
also used to extract information related to speed (Zhao et al. 
2019a, b, c, d, e, f), travel time (Petersen et al. 2019), activ-
ity state information (Cui et al. 2018a, b, c), and congestion 
(Chen et al. 2016a, b). GPS is technically an external source 
of information, whereas mobile phone sensors such as accel-
erometer, magnetic, gyroscope, barometer (AMGB) can be 
classified as internal sources. Five studies could be identi-
fied which used data from AMGB. They have been utilised 
in the areas of mode choice prediction (Qin et al. 2018), 
braking behaviour (Christopoulos et al. 2018), and conges-
tion analysis (Tu et al. 2017). Image-based data collected 
from CCTV footage or other cameras (including LIDAR 
sensors) were also commonly used in 22 different studies. 
Meanwhile, data from mobile phone-based applications 

and platforms were used in 10 studies. The data from this 
source were mostly used to predict travel demand (Ke et al. 
2017a, b) and mode and activity states (Zhao et al. 2019a, 
b, c, d, e, f). Nine studies also used external accident data. 
Meanwhile, eight (8) studies used the information collected 
by automated fare collection (AFC) devices fitted in public 
transport systems (Liu et al. 2019) or parking stations (Yang 
et al. 2019) (see Table 4). The data collected from AFC 
devices was used for predicting travel demand in bus and 
MRT systems (Baek and Sohn 2016; Liu and Chen 2017b). 
In addition, it was observed that nine studies used certain 
other sources of data which involved household surveys (Cui 
et al. 2018a, b, c), toll-based tag data (He et al. 2019), and 
car based ITS (Jo et al. 2019). Finally, it was observed that in 
addition to a primary source of data, 40 studies also utilised 
secondary information such as road network attributes (Zhu 
et al. 2019), weather information (Xu et al. 2018a, b, c, d), 
population data (Bao et al. 2019a), and land use data (Baek 
and Sohn 2016) for the training of their models. It should be 
noted that many studies utilised more than one data source 

Table 4   Type of data sources used in the studies

Data source Number 
of stud-
ies

Global positioning system (GPS) 38
Loop detectors 55
Accelerometer, magnetic, gyroscope, barometer sensors 

(AMGB)
5

Closed circuit television (CCTV) cameras 22
Applications 10
Accident data 9
Automated fare collection (AFC) 8
Intelligent transport systems (ITS) 5
Others 4
Secondary sources 40

Table 5   Country and region coverage of the studies

Country Number of studies

No mention 10
Australia 1
Brazil 1
China 53
Canada 1
Denmark 1
Egypt 1
Germany 1
Greece 1
Hong Kong 1
India 2
Japan 2
Malaysia 1
Morocco 1
Netherlands 2
Norway 1
Palestine 1
Poland 1
South Korea 4
Taiwan 1
Uganda 1
United Kingdom (UK) 11
United States of America (USA) 45
Region Number of studies
No mention 13
Urban 75
Both 48
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for their analysis and therefore, Table 4 has multiple entries 
for a single study.

Coverage and Region of Studies

The distribution of the studies based on their country of cov-
erage showed that a very high number of studies came from 
primarily two countries (see Table 5), China (54) and United 
States of America (USA) (45). A possible reason behind 
this might be the readily available data in these countries. 
In addition, it was observed that there were 11 studies which 
were based in United Kingdom. Meanwhile, four (4) studies 
utilised data from South Korea for the analysis. Netherlands, 
Japan, and India showed two studies each, whereas Aus-
tralia, Canada, Denmark, Egypt, Germany, Greece, Hong 
Kong, Malaysia, Morocco, Norway, Palestine, Poland, Tai-
wan, and Uganda each showed one study based on their data. 
It should be noted that many studies utilised data from more 
than one country (Eraqi et al. 2019; Qin et al. 2018) and ten 
studies did not mention any country where the data were 
based in (Tran et al. 2018).

The information on the region from where the data were 
collected showed that 75 studies were based on data specifi-
cally collected from urban areas. Meanwhile, 48 studies col-
lected data from both urban or rural areas. In cases of loop 
detector data, unless it was specifically mentioned that the 
data were only collected from a city or an urban area, it was 

assumed that the data included information from both urban 
and rural areas. Moreover, in 13 studies there was no specific 
mention of the region from where the data were collected.

Accuracy Indicators

The analysis of the studies showed that 13 different type of 
indicators were used across 136 papers. A majority of them 
used either the mean absolute error percentage (MAPE) (58 
studies) or mean relative error (MRE) (25 studies) indicators. 
Both MAPE and MRE essentially have the same formulation 
but the difference is that MAPE is expressed in percentage, 
whereas MRE is expressed in proportions (see Table. 6). In 
2 out of the 58 studies which used MAPE, the studies did not 
utilise all observations to calculate MAPE. Ke et al. (2017a, 
b) in their study on estimating travel demand in taxi services, 
calculated MAPE for values which had a demand intensity 
of greater than 10, these samples represented the top 4.45% 
of all samples. In addition, Bao et al. (2019b) utilised the top 
5% of the samples with highest values to estimate MAPE. 
A total of two studies used a symmetric MAPE (sMAPE) 
indicator to calculate error values. For example, in Xu et al. 
(2018a, b, c, d), the denominator (see Table 6 for formula) 
contains additional parameters for predicted values and a 
constant ( c = 1 in their study) to avoid a zero denominator. 
In addition, five studies used an average accuracy indicator 

Table 6   Accuracy indicators used in the studies

ŷi : predicted values; yi : observed values; N : number of predictions; c : constant to avoid zero denominator; 
−

y : average of all observed values

Measure Number of 
studies

Formula (other descriptions)

Accuracy 29
=

Number of correct predictions

Total number of predictions

AUC​ 3 Area under curve between recall (true positive rate, y-axis) and false positive rate (x-axis)
Precision 2

=

True positive

True positive+false positive

Error rate 1
=

Number of incorrect predictions

Total number of predictions

MAPE 56
= 100 ×

1

N

∑N

i=1

�ŷi−yi�
yi

MAPE@10 1 MAPE in the samples with demand intensity greater or equal to 10 (top 4.45% of the largest samples)
MAPE@5% 1 MAPE with top 5% highest value samples
sMAPE 2

= 100 ×
1

N

∑N

i=1

�ŷi−yi�
yi+ŷi+c

MRE 25
=

1

N

∑N

i=1

�ŷi−yi�
yi

Average accuracy 5 = 100 −MAPE or 1 −MRE

R2 1 Proportion of the variance in the estimated values that is predictable from the observed values
Recall 5

=

True positive

True positive+False negative

RMSE% 3
= 100 ×

√
1

N

∑N

i=1 (
ŷi−yi)

2

−

y

RMSEP% 1 RMSE% with 70% critical road sections
Average error rate 1 Percentage error (no specific mention of formula or type)
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obtained from subtracting MAPE or MRE from 100 or 1, 
respectively.

Other commonly used indicator includes a straightfor-
ward accuracy measure (29 studies), which is ratio of num-
ber of correct predictions to the total number of predictions 
(often multiplied by 100 to convert into percentage). This 
indicator has been mostly used in discrete classification stud-
ies (such as driver behaviour) as opposed to predicting a 
continuous value (like traffic flow). Opposite to the accuracy 
indicator, one study used the error rate indicator, where they 
estimated the ratio between number of incorrect predictions 
to the total number of predictions. Duives et al. (2019) fore-
casted prediction movements using GPS trajectory data and 
predicted the movements in the adjoining cells. They esti-
mated the error rates for the 1st, 5th, and 20th prediction of 
the sequences. Other accuracy indicators in classification 
studies include recall rate (5 studies), precision (2 studies), 
and area under the receiver operating characteristics curve 
(AUC) (3 studies). Meanwhile, a few studies predicting con-
tinuous values used root mean square percentage (4 studies) 
and R2 (1 study). Since most indicators provide a ratio or 
proportion roughly denoting the accuracy or error, they were 
converted to represent an accuracy percentage for the meta-
analysis [e.g. accuracy = 100 × (1 −MRE)]. In addition, 
additional models were created with only (a) MAPE, MRE, 
and average accuracy indicators and (b) accuracy indicator. 
The findings of each model were then compared for further 
discussions.

Deep Learning Methodologies

The review of the literature showed that 136 studies used a 
total of 2314 methods to predict different transport related 
variables. The 2314 times these different methods have been 
tested are also henceforth referred to as cases in this study 
and they include the use of 11 different groups of deep learn-
ing methods along with traditional (TM) and shallow neural 
network (SNN) methods (see Table 6). Traditional methods in 
this study are classified as machine learning methods which 
do not use neural networks. An array of such methods was 
extensively tested in different studies (primarily to be com-
pared with deep learning models). These methods included 
autoregressive integrated moving average method (ARIMA), 
vector autoregression method (VAR), random forest method 
(RF), support vector machines (SVM), and XGBoost (XGB) 
among many other methods including variations of the meth-
ods mentioned above. As the focus of this study is primarily on 
understanding the use of deep learning methods, all different 
traditional methods have been clubbed into one group. Such 
an aggregation of non-deep learning methods provides a wider 
scope to evaluate all different deep learning models in the 
meta-analysis. However, we realise that aggregating all such 
methods with different characteristics is a major limitation of 

our study. Similarly, the SNNs also have been grouped together 
to generate a baseline for the inference. SNNs denote all those 
neural networks with a shallow architecture. Table 6 shows the 
different type of methods based on the area of application. A 
total of 113 cases were estimated using deep neural networks 
(DNN) based on feed-forward networks. Wang et al. (2019) 
classified these models as deep multilayer perceptron (MLP) 
and discussed in detail about their differences with stacked 
auto-encoders (SAE) and deep belief networks (DBN). SAE 
and DBN were used to predict 222 and 114 cases, respec-
tively. Recurrent neural networks have been the most popular 
deep learning method out of all. For the meta-analysis, we 
divided them into three separate groups: (a) classical recur-
rent neural networks (RNN), which were used for prediction 
in 60 cases, (b) long short-term memory (LSTM), which was 
used the most, in 289 cases, and finally (c) gated recurrent unit 
(GRU), which was used for prediction in 48 cases throughout 
the 136 studies. Additionally, in one case, a combination of 
LSTM- GRU methods was used for the prediction of traffic 
speed (Gu et al. 2019a, b). Convolutional neural networks 
(CNN) were the second most popular deep learning method, 
which was employed to analyse 278 cases. For the ease of 
analysis, different variants of CNN methods such as Googlenet 
(Xing et al. 2019), Resnet (Hu et al. 2019), CNN with atten-
tion mechanism (Ran et al. 2019a, b), CNN with generative 
adversarial networks (GAN) (Lee et al. 2019a, b), graph-based 
convolution (Zhang et al. 2019a, b, c, d) among other methods 
have been clubbed together. Combined deep learning models 
also showed prominence across the studies where mostly CNN 
model was coupled with a type of RNN model. Combination 
of CNN and LSTM was most common and was used for pre-
dicting 48 cases. Meanwhile, combination of CNN and GRU 
models were used for prediction in 29 cases. Moreover, CNN 
was also coupled with other classical RNN structures and was 
used for prediction 10 cases (see Table 7).

Similar trend was also visible in the distribution of 
the methods based on the area of application. For traffic 
flow forecasting, DBN (50) and LSTM (77) models were 
observed to be the most common. However, in case of traffic 
speed prediction, the use of CNN (101 out of 278) and GRU 
models were observed to be high (33 out 48 applied in speed 
prediction). Use of LSTM models were also observed to be 
common for traffic speed prediction (90 cases). In addition, 
for travel time prediction, it was observed that DBN models 
were the mostly used (44 cases). As the prediction of driver 
behaviour and congestion often used image-based data, the 
use of CNN was found to be common in these areas of appli-
cation (38 and 23 respectively). The use of combined deep 
learning models was most commonly used to predict speed 
(46), followed by traffic flow (20), travel demand (9), driver 
behaviour (4), travel time (3), accidents (3), and congestion 
prediction (2). Finally, Table 6 also lists out the cases esti-
mated using traditional and shallow neural network methods. 
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Out of 2314, in 820 cases, the variables were predicted using 
traditional methods. Meanwhile, in 282 cases, they were 
predicted using SNNs. The next sub-section describes the 
measures of central tendency in accuracy based on the type 
of method and the area of application.

Accuracy Distribution Across Different Areas 
of Application

Figure 1 shows the trends for distribution of accuracy levels 
for each method and area of application. The distribution is 
represented with the help of box and whisker diagrams. The 
boxes represent the mid quartiles, separated by the median 
value. Meanwhile, the whiskers represent the upper and 
lower quartiles, whereas the dots in diagrams represent the 
outliers. Two images are created using different accuracy 
indicators: the first image (top-image in Fig. 1) was cre-
ated using MAPE, MRE, and average accuracy indicators 
and represent the prediction of continuous values. A total of 
1878 of out 2314 cases are represented through this image. 
Meanwhile, the second image (bottom-image in Fig. 1) was 
created using accuracy indicator and it represents the pre-
diction of discrete states (i.e. classification-based studies). 
A total of 220 out 2314 cases are represented in that image.

From the plots, it seems that the distribution of the 
accuracy levels was dependent on the area of application. 
Accident prediction featured in both images, i.e. they were 
predicted both as continuous and discrete factors. When 
predicted as a continuous value, in general, most methods 
showed a high range of distribution (highest variation in 
accuracy levels among all areas of application), whereas 
the median values for accident prediction seemed to be 
lower than other areas of application. However, when 

accident was predicted as a discrete factor, then the median 
value of accuracy seemed to be relatively higher. Mean-
while, accuracy levels for congestion, driver behaviour, 
and travel demand prediction also showed a relatively 
higher range of distribution as compared to traffic state 
prediction variables (see Fig. 1). Traffic state prediction 
variables such as flow and speed showed a lower range 
of distribution and higher median values, with usually 
all methods mostly ranging above 75% accuracy level. In 
addition, some amount of differences in the distribution 
with respect to the method applied for prediction were 
also observed. In the next section, the results of the meta-
analysis, discussing the effect of both areas of application 
and type of method, along with other variables on predic-
tion accuracy are illustrated.

Results

For the meta-analysis, four separate models were devel-
oped. The first model (model A) analysed all 2314 sam-
ples, testing the effects of deep learning methods, tradi-
tional methods, areas of application, type of data source, 
and the region of study. In addition, the model tested the 
random effects due to the study (N = 136). For this model, 
all accuracy indicators were converted into a variable with 
a value out of 100, denoting the level of accuracy. How-
ever, as explained earlier, these indicators have different 
formulations, so two additional models were developed; 
model B, with only MAPE, MRE, and average accu-
racy indicators (as they have the same formulation) and 
model C, with only accuracy indicator. In addition, as the 

Table 7   Deep learning methods 
and the area of application

Abbreviations for area of application: DB, driver behaviour; M–AC, mode and activity choice; TD, travel 
demand; TTP, travel time prediction; Dist., travel distance; Occ, occupancy

Accidents Congestion DB M–AC TD TTP Dist Flow Speed Occ Total

CNN 36 23 38 4 20 10 0 43 101 3 278
CNN-GRU​ 0 0 2 0 0 0 0 9 18 0 29
CNN-LSTM 3 2 2 0 9 3 0 11 18 0 48
CNN-RNN 0 0 0 0 0 0 0 0 10 0 10
LSTM- GRU​ 0 0 0 0 0 0 0 0 1 0 1
DBN 2 2 5 0 0 44 0 50 10 1 114
DNN 16 1 5 2 10 2 2 38 37 0 113
GRU​ 0 8 0 0 3 2 0 2 33 0 48
LSTM 10 16 12 4 69 11 0 77 90 0 289
RNN 1 9 12 1 1 4 0 12 20 0 60
SAE 4 1 0 0 14 20 0 151 32 0 222
TM 59 27 46 19 90 35 1 324 218 1 820
SNN 7 14 7 1 42 6 0 142 62 1 282
Total 138 103 129 31 258 137 3 859 650 6 2314
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information on sample size and time horizon of prediction 
was not available for all the studies, another model (model 
D) was developed to test the impact of those variables. 
Model D only considered studies with MAPE, MRE, and 
average accuracy indicators, which forecasted speed and 
flow, and contained the information on the sample size and 
the time horizon of prediction variables. Time horizon of 

prediction variable indicates the time in future (generally 
in minutes) for which a variable is predicted, e.g. predict-
ing the traffic flow in the next 15 min or 30 min or 45 min. 
This section discusses the results of the models.

Fig. 1   Accuracy box plot based on area of application and type of method
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Meta‑analysis with All Observations and Accuracy 
Indicators

Random Effects

In this model, one variable representing the random 
effect due to the study was introduced and study specific 
intercepts were estimated. The random effect allowed 
us to account for the unobserved intrinsic heterogenei-
ties among the studies. Table 8 reports the variance of 
the intercept estimates. It was observed that the random 
effect of the studies had considerable variance and the 

heterogeneities among them have a major contribution 
towards influencing prediction accuracy. Moreover, the 
variance in the random effect parameter was observed 
to be higher than the residual variance. In addition, the 
comparison of marginal R2 value, which are associated 
with the fixed effects and the conditional R2 value, which 
are associated with both fixed and random effects showed 
that the contribution of the random effects was much 
higher (0.175 vs. 0.780). The result of the likelihood ratio 
test for the study-level random component also show its 
significant contribution (χ2 = 1847.60***).

Table 8   Results of the meta-
analysis model for all samples

Model A: with all observations and indicators; Model B: with only MRE, MAPE, and average accuracy 
indicators; Model C: with only accuracy indicator

Models A B C

Estimate t value Estimate t value Estimate t value

Fixed effects
(Intercept) 83.95 21.88 79.8 17.59 75.83 8.82
Methodologies
 TM − 1.72 − 3.11 − 1.81 − 3.64 − 7.99 − 3.73
 DNN 3.95 3.5 4.41 4.1 0.08 0.02
 SAE 3.09 3.93 3.04 4.56 −  − 
 DBN 4.06 3.18 3.42 3.06 6.97 1.38
 CNN 3.8 4.84 3.84 5.13 1.8 0.75
 LSTM 5.07 6.7 4.8 7.04 5.6 1.79
 CNN-LSTM 5.52 3.86 4.97 3.78 1.58 0.21

Area of application
 Speed 8.47 2.87 9.45 3.1 −  − 
 Flow 2.83 0.94 3.63 1.19 −  − 
 Travel demand − 8.46 − 1.84 1.72 0.34 −  − 
 Driver behaviour − 13.88 − 2.68 −  −  − 9.94 − 1.13
 TTP 2.1 0.45 1.05 0.26 −  − 
 Accident − 15.51 − 2.94 − 24.33 − 3.72 −  − 

Source of data
 GPS − 8.28 − 2.55 − 4.17 − 1.13 − 1.95 − 0.19
 Loop detector − 2.47 − 0.73 1.47 0.39 −  − 
 CCTV 3.34 0.82 5.73 1.2 5.12 0.47
 Secondary source 4.74 2.91 4.67 2.99 5.63 0.62

Target area
 Urban − 3.23 − 3.66 − 3.6 − 4.86 8.03 0.92

Random effects (variance)
 Study 189.53 115.83 366.05
 Residual 68.77 46.82 86.02

Model performance parameters
 Sample size (cases) 2314 1878 220
 Sample size (study) 136 86 29
 AIC 16,781.89 12,828.8 1649.86
 Log likelihood − 8369.94 − 6394.401 − 810.9298
 R2 (only with fixed effects) 0.175 0.212 0.123
 R2 (with fixed and random effects) 0.78 0.773 0.833
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Fixed Effects: Methodologies

For methodologies, seven dummy variables (6 for deep 
learning methods and 1 for traditional methods) were 
tested as predictor variables in the linear mixed effects 
model. It was observed that all deep learning methods 
showed a significant positive relationship with the predic-
tion accuracy. A comparison of parameter estimates across 
different methods showed that the combined CNN-LSTM 
had the largest significant positive effect on prediction 
accuracy, followed by LSTM and DBN models. In addi-
tion, DNN, CNN, and SAE models also showed signifi-
cant positive effects on the accuracy levels (see Table 8). 
Meanwhile, the effect of traditional methods was observed 
to be significantly negative. The findings clearly estab-
lished that deep learning methods produce estimates with 
better prediction accuracies when compared to traditional 
methods. In addition, the findings indicate that combined 
CNN-LSTM models might be better as compared to other 
models when it comes to prediction accuracies. However, 
it should be noted that not all models can be applied to pre-
dict all variables. The combined CNN-LSTM models have 
been most commonly applied in the prediction of flow and 
speed. However, the accuracy levels produced from their 
application in the field of accident and travel demand pre-
diction showed a high range of distribution (see Fig. 1). 
The intrinsic properties of a particular model make them 
suitable for certain applications. For example, it is known 
that traffic flow and speed have strong spatial and tem-
poral dependencies, i.e. the current traffic flow or speed 
depends largely on the previous and surrounding flow or 
speed conditions. In such a case, the combined CNN and 
RNN-type models would perform well due to its ability to 
handle both spatial and temporal dependencies. Another 
possible reason behind the high positive significance of 
the deep learning models might be linked with researchers 
using them for the right purpose and area of application. 
Having a sound knowledge about the nature of the data 
and applying the most appropriate model for prediction 
could be possible reasons for the positive relationships. 
In addition, it should be noted that the papers reviewed 
in this study were all deep learning-based papers, often 
proposing the application of new deep learning models. It 
is possible that when compared with other papers which 
incorporated and tested only traditional machine learning, 
the results of the meta-analysis might change. Neverthe-
less, this study provided an empirical basis to evaluate the 
significance and contribution of deep learning methods 
towards improving the prediction accuracy.

Fixed Effects: Area of Application

The effect of six dummy variables representing the areas 
of application was tested. It was observed that analysing 
and predicting traffic speed positively affected the predic-
tion accuracy. Meanwhile, predicting travel demand, driver 
behaviour, and accidents had a significant negative impact 
on accuracy levels. A comparison of the parameter esti-
mates showed that the dummy variable for accident predic-
tion had the strongest impact, followed by the variable for 
driver behaviour (see Table 8). Other two variables, traffic 
flow and travel time prediction, showed positive relation-
ships, but the estimates were not statistically significant.

Fixed Effects: Other Variables

Apart from the type of method and the area of application, 
dummy variables denoting the source of data and the region 
of study were also used as predictor variables in the model. 
The relationship of the dummy variable signifying the use 
of GPS data was observed to be negative. It should be noted 
that these results are for all methods and cases. A possible 
reason behind this might be the nature of errors in the GPS 
data. Unlike other data sources such as the loop-detectors, 
it is possible that the errors in GPS data are more random 
and difficult to model. Using a secondary source to train 
parameters such as weather data and road network attrib-
utes. showed a significant positive relationship with accu-
racy levels. Meanwhile, other variables denoting the use of 
loop detector data and image-based data from cameras were 
not found to be statistically significant (see Table 8). In addi-
tion, it was observed that studies which were conducted in 
an urban area had a significant negative relationship with 
prediction accuracy. This finding could be intuitively under-
stood as data from urban areas often have a lot of complexi-
ties and therefore, the entanglement of these complex factors 
of variation makes it more challenging to produce a higher 
prediction accuracy.

Meta‑analysis with Selected Indicators

Random effects

Similar to the model with all observations, for both model 
B and C, i.e. models with observations using MAPE, MRE, 
or average accuracy indicators (all converted to denote accu-
racy out of 100) and accuracy indicator, respectively showed 
that random effect of the studies had considerable variance 
and the heterogeneities among them have a major contribu-
tion towards influencing prediction accuracy. In addition, 
the comparison of marginal R2 value, which are associated 
with the fixed effects and the conditional R2 value, which 
are associated with both fixed and random effects showed 
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that the contribution of the random effects was much higher 
for both the models (0.212 vs. 0.773 in model B and 0.123 
vs. 0.833 in model C). The result of the likelihood ratio 
test for the study-level random component also show its 
significant contribution (χ2 = 1204.00*** for model B and 
χ2 = 166.57*** for model C).

Fixed Effects: Model B

In model B, the findings of the effect of deep learning meth-
odologies were observed to be exactly similar to the findings 
of model A. It was observed that deep learning methods had 
a significant positive effect on prediction accuracy, whereas 
traditional machine learning methods had a negative effect. 
In addition, similar to model A, the dummy variable for 
CNN-LSTM method showed the strongest positive effect 
among all variables for deep learning methods. In the case 
variables denoting areas of application, ‘speed’ showed a 
positive relationship with accuracy. Meanwhile, ‘accident’ 
showed a negative relationship (see Table 8). The effect of 
other variables was not observed to statistically significant. 
In addition, in the case of variables denoting data source, 
only the dummy variable indicating the use of second-
ary data source showed a statistically significant, positive 
relationship with prediction accuracy. The effect of other 
dummy variables denoting data source was not observed 
to be statistically significant. Finally, the effect of region 
of study, i.e. whether the study was conducted in an urban 
area or not, showed a significant negative relationship with 
prediction accuracy, this finding too was similar to model A.

Fixed Effects: Model C

Many variables tested in models A and B could not be tested 
in model C because of the low sample size, as model C 
only considered classification-based studies which used the 
accuracy indicator (29 studies). For the effect of methodolo-
gies, only the variables for LSTM and traditional methods 
showed statistically significant relationships (see Table 8). 
The findings were on expected lines, LSTM showed a posi-
tive relationship, whereas traditional methods showed a neg-
ative relationship. Among the variables denoting the areas 
of application, only the effect of driver behaviour was tested, 
and the result was not statistically significant. In addition, 
the effect of variables denoting data source and target area 
was also not statistically significant.

Meta‑analysis for Traffic Flow and Speed Studies

Random Effects

Similar to the other linear mixed effects models (A–C), the 
model with a sub-sample including studies which predicted 
traffic speed and flow and studies which used MAPE, MRE, 
and average accuracy indicators (model D) also showed high 
variance. The sub-sample, which contained the information 
on both the sample size and the time horizon of predic-
tion included a total of 991 observation across 36 studies. 
In addition, it was also observed that the variance in the 
random effect parameter was higher than the residual vari-
ance (see Table 9). In this model also, the R2 is drastically 
improved after adding random effects (improved from 0.485 
to 0.956), which is indicative towards the high contribution 
of the random effects in explaining the total variance. The 
result of the likelihood ratio test also supported the same 
(χ2 = 1098.80***).

Fixed Effects: Sample Size and Time of Prediction

Total sample size, i.e. the number of observations used for 
training, testing, and validation was used as an explana-
tory variable and its impact on the prediction accuracy was 

Table 9   Results of the meta-analysis model for traffic flow and speed 
studies

Estimate t value

Intercept 85.06 29.17
Methodologies
 TM − 1.58 − 3.54
 DNN 1.99 2.45
 SAE 1.72 2.49
 DBN 2.97 2.98
 CNN 3.38 5.21
 LSTM 2.98 4.89
 CNN-LSTM 4.5 3.59
 Loop detector 3.66 3.76
 Sample size (1E−8) 5.9 2.46
 Time horizon of prediction (min) (1E−2) − 5.28 − 8.03

Random effects (variance)
Study 244.25
Residual 22.76
Model performance parameters
Sample size (cases) 991
Sample size (study) 36
AIC 6105.631
Log-likelihood − 3039.816
R2 (only with fixed effects) 0.485
R2 (with fixed and random effects) 0.956



213Journal of Big Data Analytics in Transportation (2020) 2:199–220	

1 3

estimated. It was observed that sample size had a signifi-
cant positive relationship with the prediction accuracy (see 
Table 9). Although expected, but it is an important finding 
with respect to the future of deep learning and its applica-
tion in transport studies. This finding can be interpreted to 
mean that to better predict traffic speed or flow, the mod-
els would require a large sample size. This would mean the 
requirement of more resources in (1) financial aspects and 
(2) computational aspects, to acquire and handle the big data 
available from various sources.

Time horizon of prediction variable, as explained earlier 
is the time in future for which the variable is estimated and 
it was observed that it had a significant negative relation-
ship with the prediction accuracy. This means that as the 
time horizon of prediction increases, the prediction accu-
racy of traffic forecasting decreases. Predicting long-term 
(few hours to weeks) traffic estimates have always been 
identified as challenging and are prone to errors (Jiang and 
Adeli 2005). However, prediction accuracies in the period 
of 60–120 min also need to be improved. Accurate traffic 
prediction for longer terms can prove to be an important 
aspect of transportation planning and management. Better 
prediction accuracies across different time horizons would 
increase the possibility of introducing challenging but effi-
cient policies such as dynamic road pricing by providing 
users with the authority to make more flexible and sustain-
able transport choices.

Fixed Effects: Other Variables

The meta-analysis model using the sub-sample of traffic 
forecasting studies also tested the effects of methodolo-
gies and data source types. The findings were observed to 
be similar to that of the earlier models (A and B). It was 
observed that deep learning methods showed significant 
positive effects on prediction accuracy, with the combined 
CNN-LSTM model having the strongest relationship with 
traffic forecasting accuracy (see Table 9). Meanwhile, the 
relationship of traditional methods was observed to be sig-
nificantly negative. The effect of data source type by creating 
a dummy variable for loop detectors was also tested. It was 
observed that it had a significant positive relationship with 
accuracy.

Conclusions

This review paper conducted a comprehensive survey 
of the application of deep learning methods in transport 
studies. Following a detailed search strategy, a total 136 
studies were selected. These studies were reviewed, and 
information was extracted for several important vari-
ables to test their relationship with prediction accuracy. 

Before this study, three more review studies had concisely 
summarised the type of methodologies and the areas of 
application. This study extends these previous works and 
adds new knowledge in the following ways: First, as the 
application of deep learning in transportation is fast grow-
ing, many new studies were not reviewed in the previ-
ous review papers were added and reviewed. Second, we 
analysed the papers dealing with the application of deep 
learning with respect to various other variables which 
were not looked into earlier, including the coverage and 
region of the study, the type of data source, sample size, 
time horizon of prediction, and the prediction accuracies 
for different methods and areas of application. Finally, by 
conducting a meta-analysis we could empirically establish 
the relationships between influential factors and the pre-
diction accuracy. In this section, we would like to discuss 
and summarise our key findings with respect to the future 
of deep learning and AI in transportation. The summary is 
presented in relation to the most relevant factors analysed 
in the study. Figure 2 presents a graphical summary of the 
survey, representing the type of deep learning methods, 
data sources, and areas of applications used across the 
136 studies. In addition, it shows the connections between 
these variables vis-à-vis prediction accuracy.

Prediction accuracy The meta-analysis considered accu-
racy levels as the dependent variable and tested its relation-
ship with different variables. High prediction accuracy might 
be one of the most important reasons behind the growing 
popularity of the deep learning methods. Moreover, obtain-
ing a high rate of prediction accuracy would also ensure the 
formulation and implementation of successful transporta-
tion policies based on future forecasting. People’s use of and 
dependence on information and communication technolo-
gies (ICT) have been continuously increasing. The predictive 
powers of our algorithms should be high enough to correctly 
estimate the interactions between ICT systems, transporta-
tion market, and the higher order impacts on land use, con-
gestion levels, changes in emission levels, etc. AI would 
somehow be at the centre of all this. However, this analysis 
clearly established that not all methods are equal, though the 
required accuracy level for practical use would also depend 
on areas of application. In addition, it was observed that 
there existed high variance due to the heterogeneities intrin-
sic to a study and the accuracy significantly depended on 
many other predictor variables. The challenge in front of 
future researchers and policy-makers would be to identify 
and control these factors.

Methodologies The results of the analysis showed the dif-
ferences among the methodologies. Combined CNN-LSTM 
models showed the strongest positive influence. Meanwhile, 
other deep learning models also showed positive effects. 
CNN-LSTM models are an improvement over certain deep 
learning methods as the combination of both methods 
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enables to extract spatiotemporal features and correlations 
(Yu et al. 2017a, b, c). CNN is utilised to understand the 
spatial dependencies. Meanwhile, LSTM is employed on the 
time axis to understand temporal dependencies. Currently, a 
high percentage of this method’s application has been wit-
nessed in traffic speed and flow forecasting, but it has also 
been applied to other areas. Accidents, travel demand, and 
congestion can also be predicted using the same. However, 
the variation in the accuracy levels was observed to be high 
in other areas of application. Another possible drawback to 
this method can be related tp RNN-based networks being 
difficult to train and requiring high computational power. 
Studies such as by Yu et al. (2017a, b, c) have tried to over-
come these issues by employing a fully convolutional struc-
ture on the time axis and developing spatiotemporal CNNs. 
For this analysis, spatiotemporal CNNs have been clubbed 

with other CNN models and their effects were also observed 
to be positive. Ultimately, it would be upon policy-makers 
and researchers to make a trade-off between training time, 
computational requirement, and prediction accuracy. The 
decision of which type of model to select would also depend 
upon its area of application.

Areas of application and data sources Ten distinct areas 
of application could be identified from the survey. The major 
focus has been on the prediction of traffic speed and flow, 
with 1509 out of 2314 cases being from these two areas. 
A possible reason behind this might be the available loop 
detector and GPS data, which has been mostly used in traf-
fic state prediction (see Fig. 2). However, certain studies 
also utilised information obtained from car-ITS (Xiangxue 
et al. 2019) and camera-based sources (He et al. 2019) to 
predict traffic parameters. The meta-analysis model showed 
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the significance of four areas of application variables: traf-
fic speed, travel demand, driver behaviour, and accidents. 
Given the high amount of data available for traffic forecast-
ing (i.e. speed and flow) and the amount of work conducted 
in this field (Do et al. 2019; Wang et al. 2019), the posi-
tive effect was an expected finding. The challenge currently 
is to improve the performance in areas where the models 
have showed a poor performance, e.g. travel demand, driver 
behaviour, and accident prediction. Travel demand studies 
utilised data from GPS, mobile applications, and AFC data 
sources. Meanwhile, driver behaviour studies have utilised 
four types of data sources, GPS, camera based, AMGB, and 
ITS based. In addition, it was also observed that accident 
prediction utilised GPS, camera-based, and secondary acci-
dent data to develop deep learning architectures. These areas 
of application are important aspects of transportation with 
pertinent policy implications. For example, driver behaviour 
is an important area of application with respect to the discus-
sions around automated vehicles (AV). AVs can be classi-
fied into five levels of automation and accurately predicting 
driver behaviour would be very important in cases of partial 
and conditional automation. There has been immense focus 
on the image-based classification of vehicles, traffic signs, 
and pedestrians. However, improving the accuracy levels 
for driver behaviour prediction would be an important task 
for future.

The other areas of application (driver behaviour and 
accident prediction) also need further improvement as their 
relationships with accuracy level were observed to be nega-
tive. Data from ITS such as AFC systems (Tang et al. 2019a, 
b) have provided an opportunity to predict travel demand 
in public transport modes. Accurate predictions of demand 
would be beneficial in future policy-making such as informa-
tion provision on crowding inside public transport. Moreo-
ver, it might be useful in the application of mobility as a 
service (MaaS) schemes. However, a major challenge in the 
field of transportation that remains is the black-box nature 
of deep learning methods and the difficulty in their inter-
pretation (Wang et al. 2019; Zhang and Zhu 2018). Travel 
behaviour models for mode choice and activity participation 
and traffic flow models are grounded in theory and a major 
challenge for future would be to improve the interpretability 
of the deep learning models. In this regard, for example, a 
discrete choice model with neural network elements can be 
developed without the compromise of behavioural interpret-
ability by adding a certain constraint on the parameters that 
need to be behaviourally explained (Sifringer et al. 2018).

Sample size and time of prediction There was no unique 
way found in the literature to report sample sizes. Data 
collected from loop detectors often reported the number 
of days for which and the number of loop detectors from 
where the data were collected (Tian et al. 2018a, b). In addi-
tion, they also reported the frequency of aggregation (e.g. 

1 min, 5 min, or 15 min). Meanwhile, data from GPS sources 
reported trip trajectory information which was then utilised 
to extract speed, flow, travel demand data, or other infor-
mation based on the area of application (Bao et al. 2019a; 
Elhenawy and Rakha 2017; Zhu and Laptev 2017). Contrast-
ing to these sources, image-based sources such as CCTV 
and other cameras often had a lower sample size but was 
utilised to extract multiple features in a single image (Eraqi 
et al. 2019). Given the difference in scales of the data, it 
might be difficult to compare across studies. In addition, 
many studies did not report on the sample size. However, the 
meta-analysis showed a significant positive effect of sample 
size on prediction accuracy. Higher sample size would also 
mean the requirements of higher computational abilities and 
the challenge for future researches would be to find the cor-
rect balance between size of data and the required prediction 
accuracy. Finally, most studies that have been analysed have 
predicted the short-term traffic forecast but the time period 
of prediction for short term prediction also varies. The meta-
analysis established that as the time of prediction increases, 
the prediction accuracy tends to decrease. Accurate predic-
tions which are 30 min to 2 h in advance can prove to be 
beneficial for both policy-makers and individuals for their 
personal trip planning. Dynamic congestion pricing, MaaS, 
traffic state prediction during disruptions and big events are 
possible areas of application which might be benefitted from 
improving this aspect.

Along with the key findings, contributions, and discus-
sions for future research, it is important to discuss the limi-
tations of this study. This study did not consider the work 
done in image-based classification of vehicles, traffic signs, 
pedestrians, and pavement crack detection. These areas of 
applications have been comprehensively covered in Wang 
et al. (2019). Rather it focused on travel-related and travel 
behaviour factors. Moreover, studies which used deep learn-
ing in traffic signal control were not included as they did not 
usually involve the prediction of any factor. These are impor-
tant areas of application and not considering them remains 
a major limitation of this work. Moreover, the papers con-
sidered for this research are limited by the search strategy 
and there is a possibility that relevant work conducted in this 
field were not included. In addition, the meta-analysis com-
bines the work done in both discrete state prediction (driver 
behaviour, activity state, etc.) and continuous value’s predic-
tion (traffic flow and speed), while combining the different 
accuracy indicators across these studies. The combination 
across different scales was primarily done for the ease of 
analysis and comparison. Finally, hyper-parameters related 
to deep learning models such as the number of hidden lay-
ers and epochs were not considered as part of this analysis.
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