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Electron-phonon coupling induced intrinsic Floquet
electronic structure
Zhigang Song1 and Lin-Wang Wang1✉

Floquet states are a topic of intense contemporary interest, which is often induced by coherent external oscillating perturbation
(e.g., laser, or microwave) which breaks the continuous time translational symmetry of the systems. Usually, electron–phonon
coupling modifies the electronic structure of a crystal as a non-coherent perturbation and seems difficult to form Floquet states.
Surprisingly, we found that the thermal equilibrium electron–phonon coupling in M(MoS)3 and M(MoSe)3 (where M is a metallic
element) exhibits a coherent behavior, and the electronic structure can be described by the Floquet theorem. Such a coherent
Floquet state is caused by a selective giant electron–phonon coupling, with thermodynamic phonon oscillation serving as a driving
force on the electronic part of the system. The quasi-1D Dirac cone at the Fermi energy has its band gap open and close regularly.
Similarly, the electric current will oscillate even under a constant voltage.
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INTRODUCTION
Floquet systems have a periodic Hamiltonian in time: H(t+ T)= H
(t). Recently, together with the possibility for many-body time
crystals1,2, Floquet systems attracted wide interest in the field of
condensed matter physics, photonic crystals, and ultra-cold
atomic physics. Especially, Floquet-Bloch band structures have
been widely investigated3,4 due to potential topological proper-
ties5,6. Floquet systems are usually realized by a strong coherent
external driving force (e.g., an optical electric field, or microwave
oscillation)7,8. Here, the word “coherent” means a regular
monotonic perturbation with long dephasing time, rather than a
random noisy perturbation. Electron-phonon coupling has also
been discussed as a path for Floquet states, especially if a given
phonon mode can be selectively excited by other external
perturbations. The Floquet electron sidebands can also appear
in photoelectron spectroscopy as a phonon dressed electronic
structure9. It will be interesting if the Floquet states can be realized
automatically by a strong intrinsic electron–phonon coupling
under thermodynamic equilibrium condition. Traditionally, the
electron–phonon coupling effects at thermodynamics equilibrium
are often described by random phase perturbation theory, for
example, to normalize the electron quasi-particle band gap10, to
introduce a finite quasi-particle lifetime11, or to produce side
peaks in electron transition spectra12. In order to form the Floquet
states, however, the phonon perturbation must be coherent,
which is often considered not possible under the thermodynamic
equilibrium condition. In this work, we report a surprising finding:
a Floquet state induced by a natural electron–phonon coupling in
a wire-like crystal under the thermodynamic equilibrium condi-
tion. It is found that, in a quasi 1D wire crystal, there is a selective
giant electron–phonon interaction, where one particular phonon
mode can be responsible for influencing the band gap of the
electronic structure, causing the Dirac cone band gap to close and
open at the frequency of that phonon mode. Such oscillation has a
coherent time equal to the life time of that particular phonon
mode (which typically could be tens of picoseconds or longer).
During this time period, it is adequate to describe the electronic
structure of the system by the Floquet band structure. We have

carefully investigated the cause of this Floquet oscillation and the
related phonon dynamics, and found the system is indeed in
the thermodynamic equilibrium state. This natural formation of
the Floquet states in thermal equilibrium without artificial external
drive/perturbation can provide a different view to understand the
electron–phonon coupling in some authentic materials, beyond
the traditional perturbation theory. It might also provide ways for
future electronic devices (e.g., a natural cyclic switch). The
sensitivity of the band gap to the phonon mode can provide a
way to probe the phonon dynamics through the THz electric
measurement directly. We note that, without external perturba-
tion, the whole system’s Hamiltonian will still have a continuous
time translational symmetry. When the electronic Hamiltonian is
coupled to a phonon mode, the electronic structure part of the
Hamiltonian will lose its continuous time translation symmetry,
resulting in the Floquet oscillation.

RESULTS AND DISCUSSION
Electronic structure and dynamics simulated by TDDFT
The classes of the system we studied are M(MoS)3 and M(MoSe)3,
where M= Li, Na, K, Rb, Tl, In, I13, although in the following, we will
use Rb(MoS)3 as our main example. All materials have a symmetry
group of P63/m and a similar structure to Rb(MoS)3 as shown in
Fig. 1a. Mo and S atoms form an atomic wire. Within one unit cell,
the six Mo atoms in the wires reside in two cross sections (A and
B), and each cross section holds a C3 symmetry, and the two cross
sections are connected by screw-rotation symmetry, which is a
product of π-rotation around the z-axis and a shift by a half-unit
cell in the z-direction (see the illustration in Fig. 1b). Rb atoms are
located at the interstitial points between the wires, donating its
electrons to the wires without forming strong bonds with the
wires. The calculated band structure is shown in Fig. 1c. The
energy disperses only in the kz direction near the Fermi level, and
bands are flat in the kx-ky plane due to small couplings between
the wires. In deeper occupied bands and higher unoccupied
bands, the energy disperses in all directions. The valence band
and conduction band cross each other in the plane of kz= π/c
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(with c being the z-direction lattice constant), resulting in a two-
fold degeneracy at kz= π/c with half occupation for each band.
The linearly dispersed bands predominately consist of Mo-dyz and
Mo-dxz orbitals. The calculated eigenstates are shown in Fig. 1d.
Eigenstates have C3 symmetry. The two degenerated eigenstates
near the Fermi level can be approximated as

uAj i ¼ d1xz � 1
2 d

2
xz þ

ffiffi
3

p
2 d2yz � 1

2 d
3
xz �

ffiffi
3

p
2 d3yz and

uBj i ¼ 1
2 d

4
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ffiffi
3

p
2 d4yz � d5xz þ 1

2 d
6
xz �

ffiffi
3

p
2 d6yz

(1)

where the superscript denotes the Mo atom index 1–3 belong to
cross section A, while 4–6 belong to cross section B). The full band
structure is shown in Fig. 2a, and the corresponding high
symmetric k-point path is shown in Fig. 2g. The comparison
between the band structures of bulk and a single wire reveals that
the main energy dispersion is caused by coupling within the wires
of MoS. If screw-rotation symmetry is broken, a band gap would
be opened14,15. For example, if we artificially shift different atoms
in different directions by 0.1 Å, the band gap will be opened with
different magnitude (see Fig. 2b). The shift of Mo atom in z-
direction leads to the largest band gap. For example, the band
splitting near the Fermi level is 8 (7) meV, if one of the S atoms
shift by 0.1 Å in the z (x) direction. On the other hand, the band
splitting is 102 (3) meV if one Mo atom shifts by 0.1 Å in the z (x)

direction. Similarly, the other modes of atomic displacements have
small effects on the band gap.
It is useful to characterize the electronic behavior of the system

by its z-direction quantum transport conductance. For such a wire-
like system, the calculated conductance is a constant in the unit of
2e2h−1 in the energy window of [−1.0, 0.4] eV (see Fig. 2c), where
e and h are the electron charge and Planck constant, respectively.
On the other hand, if the screw-rotation symmetry is broken by a
phonon mode, a gap will be opened and the conductance is 0
near the Fermi level. Quantum ballistic conductivity is common in
one-dimensional materials, e.g., in carbon nanotubes. However,
synthesized quantum wires are difficult to be stacked parallel in
the same direction without interference. The wires here are
embedded inside a bulk, but with relatively independent behavior
like a nanowire, providing potential usages as ballistic conduction
materials in future device applications (e.g., used as interconnect
without x–y direction scattering).
To study the effect of phonon on the gap opening of the

system, we have performed real-time time-dependent density
functional theory (rt-TDDFT) simulation. The reason to use rt-
TDDFT, instead of Born-Oppenheimer ab initio molecular
dynamics (AIMD) will be explained later. Figure 3a shows the
simulated results of the instantaneous band energy dynamics at
the temperature of about 100 K. The NVE ensemble, where the
atomic number, volume, and energy in the system are constant, is

Fig. 1 Structure and symmetry of Rb(MoS)3. a Atomic structure of Rb(MoS)3 in the top (upper) and side (lower) views. b Illustration of screw-
rotation symmetry. The half circle represents a rotation of π, and vertical arrow represents the translation of a half cell in the z-direction.
Numbers index the Mo atoms in a unit cell. Dash arrows indicate how atoms are mapped under screw-rotation symmetry operation R. Dash
horizontal lines indicate the unit cell. c Valence and conduction bands. d Calculated charge density near the Fermi level.
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used. Here the instantaneous band structure (also called adiabatic
band structure) is defined as the band structure obtained from
diagonalizing electronic Hamiltonian H(t) at time t. The instanta-
neous band edges as functions of time can be approximated by

sine/cosine curves. A surprise is that such oscillation can be
represented predominately by a single sine oscillation with a small
mixture with other frequencies. By Fourier transformation of the
energy difference of the two bands near the chemical potential,

Fig. 2 Electronic structure and phonon information. a Band structures of bulk Rb(MoS)3 (left) and single quantum wire of MoS (right).
b Bandgap as a function of atomic perturbation in different directions. c Transmission eigenvalue as a function of energy in gapless (blue) and
gapped (red) states. d Partial phonon density of states projected on different atoms. Dash line implies the particular phonon mode. e Relative-
motion phonon mode of Mo atoms in the z-direction. f Phonon spectrum. Highlight color represents the weight of relative-motion (Wm(q)).
g Brillouin Zone in the blue frame and high-symmetric k-path in red.

Fig. 3 Oscillation of electronic structure. a Energy at A point as a function of time. Bottom of the conduction band and top of valence band
are colored by pink and blue, respectively. b Occupation as a function of time (upper) and its corresponding energy. c Energy evolution at A
point simulated by AIMD. d Energy evolution obtained in the analytical method. e Velocity coherence as a function of time. f Current as a
function of time J(t) under a constant biased voltage.
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the period is determined to be ~124 fs (see Supplementary Fig. 1),
and the corresponding phonon energy is at 33.4 meV. Such
oscillation drives the band gap to close and open periodically, and
the largest opening can reach about 0.14 eV. This regular
oscillation caused by the thermodynamic fluctuation of the
phonon modes is rather surprising. Usually, random white noise
fluctuations are expected by the thermal equilibrium movement.
Such regular oscillation also constitutes a natural occurrence of
Floquet states with its electronic structure, and Hamiltonian
exhibiting periodicity16. Dynamics of electron and atoms is
simulated for 1200 fs by rt-TDDFT. We expect the regular
oscillation will continue for a much longer time. In other words,
the decoherence time can be much longer than 1200 fs. Indeed,
such a Floquet state will not likely last for an infinitely long time,
but just like in the pulse laser induced Floquet states in the
experiment17,18. We believe the oscillation is long enough to
justify the use of the Floquet band structure to analyze its
electronic property. This presents a way to analyze the
electron–phonon coupling phenomena in this special case
beyond the traditional perturbation theory.
The band gap oscillation magnitude increases with the

increasing temperature. (see Supplementary Fig. 2) However the
frequency itself is rigid and keeps the same even at different
temperatures below a critical value of ~600 K. Thus, the oscillation
is robust against environmental perturbation if the temperature is
below 600 K. However, above 600 K, the particular band structures
of the system, namely the crossing of the valence band and the
conduction band, will be mixed with the other part of the
electronic structure, and the phenomena of oscillation will
disappear.

Selective electron–phonon coupling
To test whether such regular oscillation is coincidental, we have
carried out the rt-TDDFT with different initial atomic positions and
movements, similar phenomena are observed. To analyze this
further, we have calculated the whole phonon spectrum of the
system, and generated the initial atomic displacements and
velocities from the thermal equilibrium average energies for each
phonon mode. The same regular oscillation of the band gap is also
observed under these initial conditions. Thus, this behavior is a
thermal equilibrium behavior, not caused by any nonequilibrium
phonon condition. Note that, due to the use of rt-TDDFT
simulation, the electron can be pumped to the state above the
band gap, as shown in Fig. 3b, creating an oscillating electron-hole
excited state, which can potentially be probed by optical
experiments. This is a behavior beyond the Born-Oppenheimer
equilibrium ground state approximation. Such behavior cannot be
described by AIMD, where only the states below the band gap will
be occupied. To test the effect of this occupation on the nuclear
movement, we have recalculated the system with AIMD under the
same initial condition. The band gap oscillation is shown in Fig. 3c.
As one can see, the oscillation is less regular, indicating that the
redistribution of the electron charge to different states during
AIMD might damp the regular oscillations (Supplementary Fig. 3).
This might not be surprising, because in AIMD, the lower energy
state will be occupied. But in a band gap close-open oscillating
dynamics, where two states crossing each other in time, always
occupying the lower energy state means redistribution of the
electron to different electron states during the dynamics, which
usually corresponds to dissipative dumping behavior.
To check whether this is a common phenomenon besides Rb

(MoS)3, other materials M(MoS)3 and M(MoSe)3 are also simulated
in the same way. Similar results are obtained, even if Rb atoms are
replaced by Tl or are removed (see Supplementary Figs. 3b, c and
4). These results are in good accordance with the phonon density
of state calculated using the dynamic matrix method19. Figure 2d
shows that the band gap oscillation frequency corresponds to a

phonon mode with large Mo, S amplitude, which corresponds to a
peak in phonon density of states. The contribution of Rb is almost
zero at this energy. Density of states projected on Rb is mainly in
the range from 6 to 12meV in Supplementary Fig. 5b.
One peculiar possibility is that the whole dynamics is controlled

by some nonlinear effect, which can guide the kinetic energy into
some special nonlinear modes, which leads to long time
correlation in this mode. To test this possibility, we have calculated
the velocity-velocity time correlation function as follows:

f ðτÞ ¼
Z

dt1

P
n
vnðt1Þ � vnðt1 þ τÞ

ðP
n
vnðt1Þ � vnðt1ÞÞ

1
2ðP

n
vnðt1 þ τÞ � vnðt1 þ τÞÞ12 (2)

In above, the n-index denotes the atoms. Velocity vn ¼ ∂Rn
∂t is

obtained by TDDFT or AIMD calculation. If the dynamics is
correlated, the f(τ) can oscillate regularly without decay. If f(τ)
decays quickly, the dynamics as a whole is not correlated. The
result is shown in Fig. 3e. We see that the curve f(τ) decays quickly
to a value close to zero in about 150 fs. This time length is much
shorter than the time duration of regular oscillation of the band
gap. This means the overall dynamics is indeed random as
expected from a thermal equilibrium system. Indeed, the potential
function fitting as shown in Supplementary Fig. 6 also indicates
the anharmonic effect is extremely small, and thus can be
neglected (see Supplementary Note 1).
To fully understand the dynamics, we have used the

independent movements of phonon modes to reproduce the
molecular dynamics results. In a pure harmonic phonon mode
picture, the atomic displacement ΔR from its equibrium position
can be calculated as:

ΔR ¼ 1ffiffiffiffiffiffiffiffiffi
MRN

p
X

q2BZ;m
umðqÞQ0

mðq; tÞeiR�q (3)

where MR is the mass of atom located at R, and N is the number of
primary cell in a supercell, considered, q is the phonon
momentum, and m is the phonon mode index, Q0

mðq; tÞ ¼
Qm;qe�iωm;qt is the amplitude, ωm,q is the phonon frequency,
um(q) is the phonon eigen state. Both um(q) and ωm,q are obtained
from the dynamic matrix phonon calculations19. Qm,q is estimated
based on equilibrium condition:12Q

2
m;qω

2
m;q ¼ 1

2 kBT . The initial
phase of Q0

mðq; tÞ is randomly sampled at t= 0, and it has been
proved unimportant to the main dynamics. The calculated atomic
movement using Eq. (3) is in good accordance to the rt-TDDFT
simulation, especially the vibronic frequency of different atoms
(see Supplementary Fig. 7). This proves again that the molecular
dynamics can be well described by the independent phonon
modes without special nonlinear effects, and the phonon degree
of freedom is indeed in its thermal equilibrium. Since all phonon
modes have nonzero Qm,q according to the kBT

2 energy, the puzzle
is: why the band gap oscillation exhibits a single phonon mode
behavior, instead of an incoherent random noise?
To understand this, we have estimated the contribution to band

gap opening of different phonon modes. Since the band gap
opening is related to the breaking of the screw-rotation symmetry,
we like to measure such symmetry breaking by different phonon
modes. Under a screw-rotation operation, an atom “a” in cross-
section A (e.g., atom 2 in Fig. 1b) will be transformed to atom “b”
in cross-section B (e.g., atom 5 in Fig. 1b). If we use R to denote
this screw-rotation operation, we can write R(a)= b for indexing.
Furthermore, a phonon mode displacement vector um

a(q) on
atom a will be transformed into a different displacement vector R
[um

a(q)]. Thus, we can measure the symmetry violation (especially
for the z-component displacement) as:

WmðqÞ ¼
X
a/A

jR½ua
mðqÞ� � uRðaÞ

m ðqÞjz (4)

where a runs over all atoms in cross section A, and Wm(q)
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measures the symmetry breaking by the (m,q) phonon mode. One
of the most important modes is a short-wave optical mode
illustrated in Fig. 2e. We can see that only a few phonon bands
have a strong Wm(q) in the phonon bands shown in Fig. 2f, and
these bands have similar frequencies. A particularly important
band is the one around the energy of 33.4 meV, which has band
width as small as 0.058meV in qx-qy plane, while the dispersion is
in the qz direction is about 4 meV (zoom in of Fig. 2f is shown in
Supplementary Fig. 5a). Based on Fig. 2b, the contribution of a
phonon mode to the band gap opening is roughly proportional to
Wm(q). Among the phonon modes with large Wm(q), the strongest
mode frequency corresponds well with the phonon energy of
33.4 meV. Thus, the regular oscillation of the band gap is caused
by a selective giant coupling of one phonon mode (shown in Fig.
2e) to the band edge states, thus the band gap oscillation reflects
the oscillation of this single phonon mode. This is rather unusual.
As far as we know, there are no other systems exhibiting such
behavior. The duration of such Floquet oscillation thus corre-
sponds to the coherence life time of that particular phonon mode.

Hamiltonian and oscillating current
To study such oscillations analytically, we have constructed a
tight-binding Hamiltonian using the atomic basis set from Eq. (1):

H ¼ P
j
εjAc

y
jAcjA þ

P
j
ðξ j þ gðΔRjA � ΔRjBÞÞcyjBcjA

þðξ j þ gðΔRjþ1A � ΔRjBÞÞcyjBcjþ1A þ ðA $ BÞ
(5)

where εj is the onsite potential on each atom, ξj is nearest-
neighbor hopping integration. g is the electron–phonon coupling
constant of the hopping term. cyjA=B (cjA=B) is creation (annihilation)

operator of ujA
�� �

or ujB
�� �

at the jth primary cell. Note, due to
symmetry, the first order onsite potential oscillation is zero, thus
its change with time has been neglected. Figure 2b also shown
that the intra-site electron–phonon coupling can be ten times
smaller than inter-site electron–phonon coupling. To get the
instantaneous band structure, the Fourier transformation of
cyjA=B ¼ 1ffiffiffi

N
p

P
=k

cyA=Bke
ik�RjA=B is used with electron k-point k. ΔRjA/B in

Eq. (4) including the phonon modes from 26.4 to 36.9 meV with a
large weigh in Fig. 2f are substituted into Eq. (5). A 1 × 1 ×
80 supercell is used to include the long-wave phonons. The
analytical result of instantaneous bandgap oscillation is shown in
Fig. 4a, which is in good agreement with the direct rt-TDDFT
results.

To further simplify the analysis, we include only the single
strongest coupling optical phonon mode in Eq. (3), substitute that
in Eq. (5), and obtained a k-resolved Hamiltonian Hk for the Bloch
state wave function is:

Hk ¼ 2ξ cosð1
2
ckzÞσxþ2δξ cosðωtÞσy sinð12 ckzÞ (6)

here δξ= gΔR is electron–phonon interaction and is determined
by fitting band gap opening. The parameters ξ= 1.2 eV is
obtained from fitting the DFT calculation. While the instantaneous
band structure can be obtained from diagonalizing Eq. (6) at a
given time t (e.g., Fig. 4a), a more interesting property is the
Floquet band structure of Eq. (6). For Hamiltonian H(r,t) periodic in
both space and time, Floquet theorem implies a state in the form
of um;kðr; tÞeðik�r�i~εtÞ satisfying the time-dependent Schrodinger
Equation, leading to the following equation (details seen in
Supplementary Note 2)20,21

ðHkðtÞ � i�h
∂

∂t
Þum;kðr; tÞ ¼ ~εm;kum;kðr; tÞ (7)

where um;kðrþ c; tÞ ¼ um;kðr; tÞ, um;kðr; t þ TÞ ¼ um;kðr; tÞ (T is the
period in time). m is band index. Equation (7) is diagonalized using
Eq. (6) with ujA

�� �
, ujB
�� �

as the basis set in spatial space, and e(−inωt)

in time space. The resulting Floquet band structure is shown in
Fig. 4. The original bands are duplicated into a series of subbands
separated by ω. Essentially, there are two parameters controlling
this Floquet band structure, one is ω, determining the band
duplication, another is the electron–phonon coupling constant,
determining the inter-band coupling strength. In Rb(MoS)3, the
inter-band coupling constant is much larger than the energy of
the phonon (Fig. 4b).
Floquet band structure is itself a quantity that can be compared

with ARPES experiment9. The role of Floquet band structure in
Floquet systems is similar to the role of Bloch band structure in
normal crystals. Each Floquet band state satisfies the time-
dependent Schrodinger’s equation, thus can be used as the basis
to analyze time-dependent properties of the system4. The
occupation of the Floquet band state can be approximated by a
“sudden approximation” as proposed by Oka and Aoki22. This is to
project (overlapping) each Floquet state with the original time
independent Bloch state (without the phonon mode) and time
averaged over the oscillating time period. Multiplying each
projection with the occupation of the original Bloch states, and
sum over all the Bloch state, we get the occupation of the Floquet
state. The amplitude of such Floquet occupation is indicated by
the white color in Fig. 4b. Most electrons still reside on the original

Fig. 4 Time-dependent band structure and Fouquet band structure. a Instantaneous energy surfaces in the space of momentum and time.
b Floquet band structure under a drive of ħω= 33.4 meV. The color and line width represent the weight of projection on the original valence
states without including phonons.
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bands, whose wave function is time independent, while a small
part of electrons are excited to high-energy bands. To amplify the
effect, in Supplementary Fig. 8, we increase the phonon frequency
to 334 meV, just to demonstrate the effect of high-frequency
oscillations. We see a very different band structure in that case
compared to Fig. 4b.
It is interesting to investigate the time-resolved electron

transport in a Floquet system. One approach is to occupy the
Eigen states in an instantaneous band structure at time t= 0, then
following the time-dependent Schrodinger’s equation to study
their dynamics. The time-dependent wave function can be solved

using ψkðtÞj i ¼ e�
i
�h

R
Hkdt ψ0j i � Q

e�
i
�hHkΔt ψ0j i23. Under the atomic

basis φAkj i ¼ uAðrÞeik�RAand φBkj i ¼ uBkðrÞeik�RB , we have

ψkðtÞj i ¼ c11ðk; tÞ c12ðk; tÞ
c21ðk; tÞ c22ðk; tÞ

� �
φAkj i
φBkj i

� �
(8)

Then the coefficients cij(t) can be solved using Hamiltonian of
Eq. (6). We have used the instantaneous eigenstates at t= 0 as the
initial states of Eq. (8). When solving Eqs. (6)–(8), only z-direction is
important, and k is reduced to kz due to anisotropy. The current is
calculated as:

Jkz ðtÞ ¼
2e
me

realð ψkz ðtÞ
� ��� i�h∇ ψkz ðtÞ

�� �Þ (9)

The total current J(t) is calculated by integrating over all the
occupied states at different k-points (in Supplementary Note 3). In
the absence of an electric field, occupied states are balanced in
−k and k, resulting in a pair of Fermi wave vector kF and −kF with
same amplitude but opposite signs. Thus, the electric current is
zero in normal materials. When a constant electric field is applied,
the Fermi wave vector will shift by δk (δk ~ electric field), leading
to a pair of Fermi wave vector by kF+ δk and by −kF+ δk. The
integration of Jkz is nonzero, resulting in a constant current in
normal crystals. In the Floquet system, if the two initial states are
not equally occupied, there will be a an oscillating current24. The
current is divided into two parts, J(t)= J0+ Jdc(t). The first part is a
constant similar to that in common crystals, and the second term
is an oscillating current. Note, the oscillating current depends on
the initial state occupation or excitation. If the initial states at t= 0
are the states where low-energy states below Fermi level are
occupied and high-energy states above Fermi level are unoccu-
pied, an oscillating current is shown in Fig. 3f. The ultrafast
oscillation of momentum and energy has been observed
experimentally in other driven systems using femtosecond
techniques25,26. Here we show that it can also appear auto-
matically in such an intrinsic Floquet state due to internal
electron–phonon coupling. Similar technology can be used to
observe the proposed phenomenon.
Another approach to study the current oscillation under the

Bloch state occupation of Supplementary Fig. 9a is to use the
Floquet state (see Supplementary Note 5). Using the sudden
approximation, we can calculate the corresponding occupations
of the Floquet state, the results are shown in Supplementary Fig. 8.
Note, the Floquet band states are time dependent. Thus, each of
them has a time-dependent current. Sum over the time-
dependent current of those occupied Floquet states, we yield a
time-dependent current of the whole system, as shown in
Supplementary Fig. 9b which is similar to that of Fig. 3f using
direct time integration. To understand the current oscillation in
another angle, we have also estimated from another angle, using a
Landau-Zener tunneling, as shown in Supplementary Eqs. (23)–
(25) in Supplementary Note 4. This rough estimation yields an
oscillation amplitude in the same order of amplitudes as the
methods discussed above, but is less accurate than the above
methods.
In summary, we have studied the electronic structure and

dynamics of M(MoS)3 and M(MoSe)3 with different metals M using

rt-TDDFT. Such crystals have an embedded quasi-1D chain
consisted of Mo atoms. The static band structure of the ground
state shows a Dirac cone at Fermi energy in the wire z-direction at
kz= π/c. We found that there is a giant electron–phonon coupling
with one particular optical phonon mode, which causes a regular
oscillation of closing and opening of the band gap, as well as an
oscillating electron-hole excitation state. This constitutes a rare
case of natural Floquet states due to intrinsic electron–phonon
coupling in thermodynamic equilibrium. Such coupling induces a
coherent electronic structure behavior, is beyond the traditional
electron–phonon perturbation theory. This demonstrates a
coherent phenomenon for electron-hole coupling, and the
Floquet band structure provides a view to analyze such
electron–phonon coupling effect. Such a phenomenon can also
be used to detect the phonon dynamics through optical or electric
conductivity measurements. It might also provide an opportunity
for future device design. We believed our theoretical prediction
could be tested in the future by experimental measurements for
such systems. The Floquet band structures with duplication and
splitting can be observed by ARPES, and oscillating current can be
detected by ultrafast technology.

METHODS
Calculation details
The numerical calculation is performed using the code package of
PWmat27 in the projector augmented wave basis set. Perdew-Burke-
Ernzerhof exchange-correlation functional and SG15 norm-conserving
pseudopotentials are applied. The energy cutoff is 50 and 200 Ry for plane-
wave basis set and charge density, respectively. The rt-TDDFT uses an
algorithm developed previously, which expands the time-dependent wave
function using the instantaneous state as the basis set28,29. This effectively
reduces the dimension of the system into a small matrix, allowing fast time
integration using very small time steps (10−4 fs). A larger time step (0.1 fs)
is used to calculate the instantaneous states, with a linear interpolation
scheme to yield the reduced dimension Hamiltonian for the time between
the 0.1 fs interval. A leapfrog algorithm is used to reach self-consistency for
the instantaneous state calculations at the 0.1 fs time steps. In the rt-TDDFT
calculation, no external field is applied, but the phonons dynamics is
described via the Ehrenfest dynamics. The equilibrium state of the
molecular dynamic simulation at 100 K is used as the initial structure. A k-
mesh of 1 × 1 × 3 is used based on the convergence tests. Since the rt-
TDDFT calculation is expensive, we cannot use a very large supercell in rt-
TDDF. Different supercells are tested (see Supplementary Fig. 10), and a
supercell of 1 × 1 × 3 (with 42 atoms) is found to be enough and thus used
in all rt-TDDFT simulation.
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7. De Giovannini, U., Hübener, H. & Rubio, A. Monitoring electron-photon dressing
in WSe2. Nano Lett. 16, 7993–7998 (2016).

8. Hübener, H. et al. Creating stable Floquet–Weyl semimetals by laser-driving of 3D
Dirac materials. Nat. Commun. 8, 13940 (2017).

9. Hübener, H., De Giovannini, U. & Rubio, A. Phonon driven Floquet matter. Nano
Lett. 18, 1535–1542 (2018).

10. Antonius, G. et al. Dynamical and anharmonic effects on the electron-phonon
coupling and the zero-point renormalization of the electronic structure. Phys. Rev.
B 92, 085137 (2015).

11. Park, C.-H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and
carrier lifetime in graphene from the electron-phonon interaction. Phys. Rev. Lett.
99, 086804 (2007).

12. Zhang, Y. Applications of Huang–Rhys theory in semiconductor optical spectro-
scopy. J. Semicond. 40, 091102 (2019).

13. Chevrel, R., Gougeon, P., Potel, M. & Sergent, M. Ternary molybdenum chal-
cogenides: a route to new extended clusters. J. Solid State Chem. 57, 25–33
(1985).

14. Liang, Q.-F. et al. Node-surface and node-line fermions from nonsymmorphic
lattice symmetries. Phys. Rev. B 93, 085427 (2016).

15. Xiao, M. et al. Experimental demonstration of acoustic semimetal with topolo-
gically charged nodal surface. Sci. Adv. 6, eaav2360 (2020).

16. Kozin, V. K. & Kyriienko, O. Quantum time crystals from Hamiltonians with long-
range interactions. Phys. Rev. Lett. 123, 210602 (2019).

17. Shank, C. V. Investigation of ultrafast phenomena in the femtosecond time
domain. Science 233, 1276–1280 (1986).

18. Batignani, G. et al. Probing femtosecond lattice displacement upon photo-carrier
generation in lead halide perovskite. Nat. Commun. 9, 1971 (2018).

19. Wei, S. & Chou, M. Ab initio calculation of force constants and full phonon
dispersions. Phys. Rev. Lett. 69, 2799 (1992).

20. Cheung, W. & Chan, K. S. Creation of quasi-Dirac points in the Floquet band
structure of bilayer graphene. J. Phys. Condens. Matter 29, 215503 (2017).

21. De Giovannini, U. & Hübener, H. Floquet analysis of excitations in materials. J.
Phys. Mater. 3, 012001 (2019).

22. Oka, T. & Aoki, H. All optical measurement proposed for the photovoltaic Hall
effect. J. Phys. Conf. Ser. 334, 012060 (2011).

23. Goings, J. J., Lestrange, P. J. & Li, X. Real-time time-dependent electronic structure
theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1341 (2018).

24. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective
vibrational excitation. Narure 449, 72–74 (2007).

25. Yang, S.-L. et al. Mode-selective coupling of coherent phonons to the Bi2212
electronic band structure. Phys. Rev. Lett. 122, 176403 (2019).

26. Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and x-
ray free-electron laser. Science 357, 71–75 (2017).

27. Jia, W. et al. The analysis of a plane wave pseudopotential density func-
tional theory code on a GPU machine. Comput. Phys. Commun. 184, 9–18
(2013).

28. Ma, J., Wang, Z. & Wang, L.-W. Interplay between plasmon and single-particle
excitations in a metal nanocluster. Nat. Commun. 6, 10107 (2015).

29. Wang, Z., Li, S.-S. & Wang, L.-W. Efficient real-time time-dependent density
functional theory method and its application to a collision of an ion with a 2D
material. Phys. Rev. Lett. 114, 063004 (2015).

ACKNOWLEDGEMENTS
This work was supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-
AC02-05-CH11231 within the beyond-Moore’s law LDRD project. This work used the
resources of the National Energy Research Scientific Computing Center (NERSC).

AUTHOR CONTRIBUTIONS
Z.S. performed the calculation and L.W. finished the code. Both Z.S. and L.W.
proposed the basic idea and wrote the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41535-020-00284-4.

Correspondence and requests for materials should be addressed to L.-W.W.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Z. Song and L.-W. Wang

7

Published in partnership with Nanjing University npj Quantum Materials (2020)    77 

https://doi.org/10.1038/s41535-020-00284-4
https://doi.org/10.1038/s41535-020-00284-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Electron-phonon coupling induced intrinsic Floquet electronic�structure
	Introduction
	Results and discussion
	Electronic structure and dynamics simulated by TDDFT
	Selective electron&#x02013;nobreakphonon coupling
	Hamiltonian and oscillating current

	Methods
	Calculation details

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




