
Received March 25, 2020, accepted May 6, 2020, date of publication May 19, 2020, date of current version June 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2995558

QROUTE: An Efficient Quality of Service (QoS)
Routing Scheme for Software-Defined
Overlay Networks
NITIN VARYANI 1, ZHI-LI ZHANG 1, (Fellow, IEEE), AND DAVID DAI 2
1Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
2Huawei Futurewei Technologies Inc., Santa Clara, CA 95050, USA

Corresponding author: Nitin Varyani (varya001@umn.edu)

This work was supported in part by Huawei Futurewei Technologies Inc.

ABSTRACT Many computer network applications impose constraints for multiple quality of service (QoS)
metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the
Internet due to its best-effort service model. Overlay networks have been an effective technique at the
application layer to support multiple QoS constraints of networking applications. In software-defined overlay
networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable
centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the
main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics.
However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay
networks involve high route computation time and thus these routing algorithms cannot adapt to the
fast-changing overlay link QoS characteristics.Moreover, as we scale the size of overlay networks, the size of
forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple
QoS constraints use both the source and the destination address for data-plane forwarding. This leads to
pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the
size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS
constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm
which has significantly low route computation time because of employing a novel directed-acyclic-graph
(DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-
metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay
service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS
controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing
schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of
various applications.

INDEX TERMS QoS, routing, DAG, route computation time, forwarding table size, QoS-metrics-based
forwarding, Lagrange relaxation, integer programming, P4, ONOS, BMv2.

I. INTRODUCTION
Many computer network applications such as video con-
ferencing, interactive gaming, VoIP, virtual reality, telep-
resence, video-on-demand and live video streaming impose
constraints for multiple quality of service (QoS) metrics,
e.g., delay, packet loss, bandwidth, and jitter. This is usually

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran .

expressed by a list of minimum/maximum bounds for each
QoS metric and is commonly referred to as a QoS policy. For
example, in [2] the QoS policy used for a 384-kbps video
conferencing session is (150ms, 30ms, 460 kbps, 1%). The
tuple is in the format (maximum delay bound, maximum jitter
bound, minimum bandwidth requirement, maximum packet
loss). These QoS constraints cannot be guaranteed by the
Internet due to its best-effort servicemodel. Overlay networks
have been an effective technique at the application layer to

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 104109

https://orcid.org/0000-0003-4549-561X
https://orcid.org/0000-0001-8584-2319
https://orcid.org/0000-0001-5959-0090
https://orcid.org/0000-0002-6946-2591

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

TABLE 1. Contributions of the paper.

support multiple QoS constraints of networking applications
[3]–[7]. An overlay network is a virtual network over an exist-
ing physical network and is composed of software routers
running on commodity servers connected using tunneling
protocols likeVirtual Extensible LAN (VXLAN) andGeneric
Routing Encapsulation (GRE). In software-defined overlay
networks, software-defined networking (SDN) paradigm is
introduced in the overlay networks to separate the control
from the forwarding. This enables centralized and efficient
routing of traffic in the overlay networks and thus helps
achieve better QoS [8]–[20].

One of the main challenges in software-defined overlay
networks is the fast-changing overlay link QoS character-
istics because of various reasons like the change in the
corresponding path in the physical network or the change
in non-overlay back-ground Internet traffic [14]. However,
the existing routing algorithms for satisfying multiple QoS
constraints in software-defined overlay networks involve
high route computation time and thus these routing algo-
rithms cannot adapt to the fast-changing overlay link QoS
characteristics [8]–[20]. Moreover, as we scale the size of
overlay networks, the size of forwarding tables increases
exponentially. This is because the existing routing schemes
for ensuring multiple QoS constraints use both the source and
the destination address for data-plane forwarding [8]–[20].
This leads to pushing a huge amount of forwarding table
entries by the controller through the network and thus limiting
the size of the overlay network [15].

The problem of finding the optimal routes that meet mul-
tiple QoS constraints is known to be NP-hard. Therefore,
several polynomial time heuristics algorithms [8]–[30] have
been proposed in the literature to find approximate solu-
tions. However, none of them can efficiently reduce both
the route computation time and number of routing entries
while ensuring additive, multiplicative and concave QoS
constraints.

To address the above limitations, we propose an efficient
routing scheme, QROUTE, for satisfying multiple QoS con-
straints in software-defined overlay networks. We make the
following contributions in the paper.
• DAG-based primary routing algorithm: QROUTE
consists of a control plane routing algorithm which has
significantly low route computation time because of
employing a novel directed-acyclic-graph (DAG) based
approach.

• QoS-metric-based forwarding: QROUTE reduces the
forwarding entries in the data plane by using a QoS-
metric-based forwarding scheme.

• Backup DAG generating algorithm: To improve
resiliency, we generate a backup DAG using a topolog-
ical sorting based algorithm in our QROUTE routing
scheme. During failures, we use the backup DAG along
with the original DAG to achieve a considerable fraction
of QoS while ensuring loop-free routing.

• Framework to evaluate path’s conformance to QoS
policy: QROUTE also includes a framework to eval-
uate a path’s conformance to a multi-constrained QoS
policy. In the absence of paths that completely satisfy a
given QoS policy, this framework enables the network
operator to find paths that slightly deviate from the QoS
policy.

• Trace-based evaluation: We extensively evaluate
QROUTE using traces from a global overlay service
provider.

• Evaluation on P4 switches:We also examineQROUTE
on a testbed of P4-BMv2 switches controlled by the
ONOS controller using the P4Runtime protocol.

We summarize our contributions in table 1 along with their
respective benefits. We find that QROUTE outperforms other
state-of-the-art QoS routing schemes in route computation
time, size of the forwarding tables and meeting the QoS
requirements of various applications.

In [1], we introduce our DAG-based primary routing
algorithm and QoS metric-based forwarding and present its
trace-based evaluation. In this paper, we also include a backup
DAG generating algorithm and a framework to evaluate a
path’s conformance to QoS policy. We also include rigorous
mathematical proofs to support our theory in this paper. This
paper also includes the evaluation of QROUTE on a testbed of
P4-BMv2 switches controlled by the ONOS controller using
the P4Runtime protocol. We also present our evaluation of
QROUTE on the topologies from the Internet Topology Zoo
dataset [31] in this paper.

We organize the paper as follows. In section II, we give
an overview of our system framework and our QROUTE
routing scheme and mathematically formulate our QoS rout-
ing problem. Section III describes the control-plane of
our QROUTE routing scheme. We explain our QROUTE
data-plane in section IV. Section V provides the details of our
framework for evaluating a path’s performance. We present

104110 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

the results from a trace-based and a real test-bed evalua-
tion of QROUTE in Section VI. Section VII summarizes
the related work. The paper ends with a conclusion in
section VIII.

II. PROBLEM FORMULATION
This section explains our system framework, an overview
of QROUTE and the mathematical formulation of our QoS
routing problem.

A. SYSTEM FRAMEWORK
Our system framework consists of an overlay network con-
necting end-users to content servers and other end users as
shown in figure 1. The overlay network is created using soft-
ware routers deployed acrossmultiple data centers all over the
world. The routers are connected using an overlay tunneling
protocol. A DNS system chooses the best ingress software
router for an end-user. A hierarchical design multi-controller
architecture [32] is used to handle more flows and reduce
control plane latency in large networks. The entire overlay
network is divided into domains where routing within each
domain is managed completely by a domain controller. The
root controller is required to synchronize between the domain
controllers for setting routes for flows that originate and
terminate at different domains. Various applications demand
different kinds of QoS from the overlay network. A QoS
requirement of an application is represented by a QoS policy,
which is defined by a list of permissible ranges for the end to
end delay, jitter, packet loss, and bandwidth. The bandwidth
requirement for a QoS policy is determined based on the
application and also the number of users using that applica-
tion averaged over time. The link-wise delay, jitter, packet
loss, and available bandwidth are monitored and reported
to the domain controller using traffic measurement tools.
With this information, the routing algorithm at each domain
controller generates routing Directed Acyclic Graphs (DAGs)
for all the QoS policies and destination routers in its domain.
A DAG stitching algorithm stitches together the routing
DAGs in different domains to create a global routing DAG.
For simplicity, we omit the DAG stitching algorithm from
this paper and consider only a single controller for the entire
network.

FIGURE 1. Our software-defined overlay network.

B. OVERVIEW OF QROUTE
In this section, we illustrate the control-plane and data-pane
of the QROUTE routing scheme using an example.

We first provide an example of a primary routing DAG
generated using our QROUTE control-plane routing algo-
rithm. Consider the network graph in figure 2 where each
edge between the nodes is bi-directed and the pair of value
on each link represents the delay (ms) and jitter (ms) of the
overlay link. For simplicity, we are considering here only two
metrics but this can be extended to other metrics as explained
in later sections. We do not depict the cost of the links in the
figure. Given a QoS policy, we generate a routing DAG for
every destination router instead of generating routes for every
source-destination pair. In this example, we consider a QoS
policy (40ms, 10ms) where the pair of values are maximum
bounds for the delay (ms) and the jitter (ms) respectively. The
dashed arrows in figure 2 depict the routing DAG generated
using our QROUTE algorithm for the QoS policy (40ms,
10ms) and destination R8. From any node in the graph,
the DAG contains at-least one path to the destination R8 that
satisfies the QoS policy (40ms, 10 ms). Using breadth-first-
search, we reduce the total number of route computations for
a given destination router and QoS policy from O(n) to O(l)

FIGURE 2. (a) The primary routing DAG generated by QROUTE for
destination R8 and policy (40ms, 10ms) (represented by dashed arrows).
All the links between network nodes are bi-directed. Each pair of values
represents the delay (ms) and jitter (ms) of the corresponding link. The
cost of the link is not indicated. (b) The paths generated from every
source to destination R8 using the A*Prune algorithm. The number of
route computations in path-based routing is 7 while QROUTE only
performs 3 route computations.

VOLUME 8, 2020 104111

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

where n is the number of nodes in the network and l is the
number of leaves in a breadth-first-search traversal from the
destination router. For m QoS policies and all destinations,
the number of route computations reduces from O(m×n2) to
O(m×n× l). In figure 2b, we depict the minimum cost paths
generated by the A*Prune algorithm from every source to
destination R8 that satisfy the QoS policy (40ms, 10ms). We
can observe that for the given policy (40ms, 10ms) and des-
tination router R8, the number of route computations using
A*Prune is 7 while the number of route computations using
QROUTE is only 3. Any path-based QoS routing algorithm
like H_MCOP and MH_MCOP will also lead to the same
number of route computations as that of A*Prune. QROUTE
is thus useful for quickly computing routes in an overlay
network with fast-changing traffic conditions.

To reduce the number of forwarding entries and to ensure
that the packets for an application are forwarded along a
route on the DAG that preserves the QoS policy of the
application, we introduce a QoS-metrics-based forwarding
scheme instead of forwarding based on source and destination
IP address. We illustrate our QoS-metrics-based forwarding
through the same example in figure 2. Table 2 shows the for-
warding entries in router R4 for QoS policy (40ms, 10ms) and
destination router R8. The policy (40ms, 10ms) is assigned
an ID 1. We replace the source IP in the forwarding entries
with the maximum amount of delay and jitter a packet can
go through to be eligible to be forwarded to the correspond-
ing outgoing link. These routing entries capture the QoS
information of paths down the outgoing links. The packets
carry the elapsed value of delay and jitter in their packet
headers which are updated by each router by adding the
delay and jitter of the outgoing link to the respective header
field. These values are matched against the corresponding
keys to determine where the packets should be forwarded
to. For example, we can observe in the first entry in table 2
that a packet with QoS policy (40ms, 10ms) and destined to
R8 can be forwarded to node R5 if the elapsed delay and
the elapsed jitter of the packet is less than 4 ms and 8 ms
respectively. We significantly reduce the forwarding entries
by grouping them if they have the same next hop. Thus,
we reduce the number of forwarding entries from O(m× n2)
to O(m × n × deg) where deg is the maximum degree of the
network graph. In the given example, we reduce the number
of forwarding entries from 16 to 9 for the QoS policy (40ms,
10ms) and destination router R8. Thus, QROUTE alleviates
the problem of the proliferation of routing entries in large
overlay networks.

TABLE 2. Forwarding table for Router R4 using QROUTE.

C. MATHEMATICAL FORMULATION
In this section, we provide a mathematical formulation of
our QoS routing problem. Our QoS routing problem entails
finding a directed acyclic graph (DAG) for every QoS policy
and destination router such that from any node in the graph,
the DAG contains at-least one path to the destination router
that satisfies the QoS policy.

Network representation: A network graph G = (V ,E),
where V is a set of overlay routers and E is the set of overlay
tunnels.

Cost of edges: The column-vector of ‘‘costs’’ of the edges
is denoted by c, c ∈ R|E|+ . The ‘‘cost’’ denotes the price for
using a link to deliver traffic and is determined by business
relationships.

QoS policy: Let d , j, b and l, {d, j, b, l} ∈ R+, denote the
bounds for delay, jitter, bandwidth, and packet loss probabil-
ity respectively.

QoSmetric values of links: LetD, J , B and L, {D, J ,B,L}
∈ R|E|+ , denote the column-vectors of delay, jitter, bandwidth
and packet loss of individual edges respectively.

QoS routing ‘‘main problem’’: Our QoS routing ‘‘main
problem’’ involves finding a least-cost DAG for a destina-
tion node r and a QoS policy Q = (d, j, b, l) such that
the DAG has a path from every node s in the graph to
the node r which satisfies all the constraints given in the
QoS policy Q. We generate this routing DAG by composing
the routes returned from the ‘‘sub-problem’’ as explained in
section III-A2. We generate such routing DAGs for all desti-
nation nodes and QoS policies.

‘‘Sub-problem’’: We define the ‘‘sub-problem’’ as finding
a path of minimum cost from a source vertex s ∈ V to
a destination vertex r ∈ V which satisfies all the QoS
constraints.

Vertex-edge incidence matrix: LetH denote the |V |×|E|
vertex-edge incidence matrix such that for all e = (u, v) ∈
E where u, v ∈ V , Hue = 1 and Hve = −1. Additionally,
Hwe = 0 for any w 6= u, v. Let K , K ∈ R|V |+ , be a vector such
that Ks = 1, Kr = −1 and Kv = 0 for all v ∈ V\{s, r}.
Decision variables: Let y be a column-vector

(y1, y2 . . . y|E|), yi ∈ {0, 1} of decision variables where
yi = 1 if the edge i belongs to the final routing path and
0 otherwise. The column vector y represents a path returned
by the QROUTE routing algorithm.

We describe the ‘‘sub-problem’’ using the following opti-
mization formulation.

p = min
y∈{0,1}|E|

cT y (1)

s.t. H y = K (1a)

DT y ≤ d (1b)
|E|∏
i=1

((1− Li)T yi) ≥ 1− l (1c)

JT y ≤ j (1d)
|E|
min
i=1

(BTi yi) ≥ b (1e)

104112 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

The constraint (1a) restricts the value of y to a particular
directed path from s to r . Constraints (1b) and (1d) ensure
the additive metrics (delay and jitter) of the paths to be below
their respective maximum bounds. Constraint (1c) checks if
the product of success probability of the links of the paths is
greater than the minimum bound on the success probability.
Finally, the constraint (1e) limits the bottleneck bandwidth
of the path to be greater than the minimum bound on the
bandwidth. The ‘‘sub-problem’’ in equation 1 represents the
formulation for an online QoS routing problem which adds
the route for a single flow to a network such that the QoS
requirements of the new and the existing flows are main-
tained. We use the solution from this ‘‘sub-problem’’ to find
the solution for our QoS routing ‘‘main problem’’ of generat-
ing routing DAGs for all destination routers and QoS policies.
To reduce the route computation time by availing the fast
algorithms available for solving online QoS routing prob-
lems, we do not model the problem as a large and complex
optimization problem that considers all the traffic flows to
comprehensively determine the routes.

III. QROUTE CONTROL PLANE
In this section, we explain our QROUTE control-plane rout-
ing algorithm that generates the primary routing DAG for
every destination router and QoS policy. We also explain our
control-plane algorithm which is used to generate a backup
DAG for each primary DAG.

A. PRIMARY ROUTING DAG
Our QoS routing problem entails finding a primary routing
DAG for every QoS policy and destination router such that
from any node in the graph, the DAG contains at-least one
path to the destination router that satisfies the QoS policy.
To compute a primary routing DAG per destination that
satisfies all the constraints in a QoS policy, we decompose
this problem to finding routes from a subset of nodes in
the graph to the destination that satisfies all the QoS con-
straints. The task of finding every such route is referred
to in this paper as the ‘‘sub-problem’’. We optimize this
‘‘sub-problem’’ to a polynomial-time algorithm using
a Lagrange-relaxation-based technique as described in
section III-A1. In section III-A2, we explain how we gen-
erate a routing DAG by composing the routes returned from
the ‘‘sub-problem’’. In section III-A3, we describe how the
bandwidth requirements of different QoS policies are ensured
in our routing algorithm.

1) OPTIMIZING THE ‘‘SUB-PROBLEM’’
To find a near-to-optimal solution for a multi-constrained
shortest path (MCSP) problem with only additive constraints,
the Lagrange relaxation-based aggregated cost (LARAC)
algorithm [33] is found to achieve one of the best perfor-
mances [24]. To take advantage of the LARAC algorithm,
we reduce our ‘‘sub-problem’’ described in equation 1 into
a linear integer programming problem by converting the

additive, multiplicative and concave constraints to only
additive constraints.

The concave constraint bandwidth was eliminated from
the network graph by removing links that do not meet
the bandwidth constraint of the QoS policy. For more
details about how we meet bandwidth requirements, refer to
section III-A3. We accomplish this pruning by setting delay
and jitter on those links to infinity and packet loss probability
to 1. Themultiplicative constraint, packet success probability,
is simplified into an additive constraint through the negative
logarithm of packet success probability of each link. The
routing ‘‘sub-problem’’ then reduces to the following:

p = min
y∈{0,1}|E|

cT y (2)

s.t. H y = K (2a)

DT y ≤ d (2b)

(LT)′ y ≤ l ′ (2c)

JT y ≤ j (2d)

The column-vector L ′ is defined as L ′e = − log(1−Le) for
all e ∈ E . The bound l ′ is set to − log(1− l).
We relax the inequality constraints 2b-2d, by inserting

the degree of violation of these constraints and their corre-
sponding Lagrange variables into the objective function. Let
λ1, λ2, λ3 ∈ R+ be the Lagrange multipliers for constraints
2b,2c, and 2d, respectively. Thus, the following Lagrange
dual problem reduces from the above integer programming
problem.

pL = max
λ1,λ2,λ3

LR(λ1, λ2, λ3) (3)

s.t.λ1, λ2, λ3 ∈ R+ (3a)

where LR(λ1, λ2, λ3) is the Lagrangian dual functionwhich is
optimized subject to the non-dualized constraint.(Equation 4)

LR(λ1, λ2, λ3) = min
y∈{0,1}|E|

(cT y+ λ1(Dy− d)

+ λ2(L ′y− l ′)+ λ3(Jy− j)) (4)

s.t. H y = K (4a)

The Lagrangian dual function 4 is reordered into the form:

LR(λ1, λ2, λ3) = min
y∈{0,1}|E|

((c+ λ1D+ λ2L ′ + λ3J)y

− (λ1d + λ2l ′ + λ3j)) (5)

s.t. H y = K (5a)

Since λ1 d + λ2 l ′ + λ3 j is a constant, the value of y
corresponding to the optimal solution of the Lagrangian dual
function 5 is equal to that of Lagrangian dual function 6,
which is equivalent to the shortest path between s and r with
the cost of the links given by the vector c+λ1 D+λ2 L ′+λ3 J .

LR(λ1, λ2, λ3) = min
y∈{0,1}|E|

((c+ λ1D+ λ2L ′ + λ3J)y) (6)

s.t. H y = K (6a)

VOLUME 8, 2020 104113

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

To find the shortest path for given node pairs, we can use
single-source shortest path algorithms such as the Fibonacci
based Dijkstra (with time complexity of O(E + VlogV)) or
the faster A* algorithm.

Using a sub-gradient descent algorithm [34], we explore
the dual problem’s solution space. To start, we compute
a solution path for the Lagrange dual problem (Line 9,
Algorithm 1). If this solution is feasible, the cost of this path is
set as the upper bound for the sub-gradient descent algorithm
(Line 15, Algorithm 1). If this solution is non-feasible, we set
the upper bound to the value stated in Theorem 1. During
iteration, if a feasible path is discovered, the upper bound
is updated using the cost of the found feasible path. The
feasibility of a path is determined in Line 11, Algorithm 1.
Theorem 2 is used to test if the solution to the Lagrangian
dual function problem is optimal for the original problem or
not (Lines 12, Algorithm 1).

Algorithm 1 Primary DAG Generating Algorithm
procedurePRIMARY_DAG(V ,E, r, c,D,B,L, J , d, b, l, j)
1: E ′ = ReverseLink(E)
2: S = BFS(V ,E ′, r)
3: M = φ
4: P_DAG = {}
5: while M ! = V do
6: Let λ1 = 3, λ2 = 3, λ3 = 3
7: s = S.pop()
8: for k ← 1 to iterations do
9: YLR = Dijkstra(s, c+ λ1 D+ λ2 L ′ + λ3 J)
10: get shortest path from s to r, ysr , from YLR
11: if Dysr ≤ d and L ′ysr ≤ l ′ and Jysr ≤ j then
12: if (λ1 = 0 or Dysr − d = 0) and (λ2 = 0 or

L ′ysr − l ′ = 0) and (λ3 = 0 or Jysr − j = 0)
then

13: break
14: else
15: UB = cysr
16: end if
17: end if
18: if UB == null then
19: UB = ||c||2

√
MH

20: end if
21: LB = cysr + λ1(Dysr − d) + λ2(L ′ysr − l ′) +

λ3(Jysr − j)
22: θ = UB−LB

(Dysr−d)2+(L ′ysr−l′)2+(Jysr−j)2
23: λ1 = max(0, λ1 + θ × (Dysr − d))
24: λ2 = max(0, λ2 + θ × (L ′ysr − l ′))
25: λ3 = max(0, λ3 + θ × (Jysr − j))
26: end for
27: M = M ∪ nodes(ysr)
28: P_DAG.add(ysr)
29: end while
30: reset D,L, J
end procedure

We initialize all the Lagrange multipliers to 3. The subgra-
dients for the relaxed constraints 2b, 2c and 2d are (Dysr−d),
(L ′ysr − l ′) and (Jysr − j) respectively.

Our scalar step size θ is given by

θ =
UB− LB

(Dysr − d)2 + (L ′ysr − l ′)2 + (Jysr − j)2
. (7)

The difference of the current upper bound (UB) and the
current lower bound (LB) and the scaling factor (Dysr−d)2+
(L ′ysr− l ′)2+ (Jysr− j)2 informs the step size. Lines 23-25 of
Algorithm 1 update the Lagrange multipliers and the dual
function is then re-solved using the new set of multipliers. If a
predefined number of iterations or the optimality condition
(Theorem 2) is met, the algorithm will terminate.
Theorem 1: The square root of the solution to theminimum

hop routing problem multiplied with 2-norm of cost vector is
an upper bound to the solution of the shortest path routing
problem.

Proof: A minimum hop routing problem involves find-
ing a path of least hops between a source and destina-
tion node. We represent the problem in the following way:

MH = min
y∈Ps,r

∑|E|
i=1yi where y represents a path as described

in Section II-C and the objective function sums the number of
links in the path y. The shortest path problem is represented
by: SP = min

y∈Ps,r
cT y where c represents cost and y represents

a path. We need to find an upper bound for shortest path
problem (SP).

−→ SP = min
y∈Ps,r

cT y = min
y∈Ps,r

< c, y >

(By property of inner product, < a, b >= aT b)

−→ SP = min
y∈Ps,r

cT y = min
y∈Ps,r
| < c, y > |

(Since c and y are positive vectors)

−→ SP = min
y∈Ps,r
| < c, y > | ≤ min

y∈Ps,r
||c||2||y||2

(By Cauchy-Schwarz inequality, | < a, b > | ≤

||a||2||b||2)

−→ SP ≤ ||c||2 min
y∈Ps,r
||y||2

−→ SP ≤ ||c||2

√
min
y∈Ps,r

∑|E|

i=1
yi2

−→ SP ≤ ||c||2

√
min
y∈Ps,r

∑|E|

i=1
yi

(Since yi takes a value of 1 or 0)

−→ SP ≤ ||c||2
√
MH

�
Theorem 2: A solution ysr to a Lagrangian minimization

problem is optimal for the original problem only if:

104114 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 3. (a) The primary routing DAG for destination R8 and policy (40ms, 10ms). All the links between network nodes are bi-directed. Each
pair of values represents the delay (ms) and jitter (ms) of the corresponding link. (b) Backup DAG for destination R8. (c) Path followed by packet
from R1 to R8 in case of failures. If there is no matching entry in the primary DAG, the packet is forwarded along the backup DAG.

(a) ysr is feasible for the original problem
(b) cysr = [cysr+λ1(Dysr−d)+λ2(L ′ysr−l ′)+λ3(Jysr−j)]
i.e. λ1(Dysr − d)+ λ2(L ′ysr − l ′)+ λ3(Jysr − j) = 0
Proof: This follows trivially from the Lagrangian suffi-

ciency Theorem for inequality constraints. �

2) GENERATING A ROUTING DAG USING THE
‘‘SUB-PROBLEMS’’
In this section, we elaborate on our approach for generat-
ing a directed-acyclic-graph (DAG) for a specific destina-
tion router and QoS policy by combining the solutions of
‘‘sub-problems’’.

For additive QoS metrics, we found that the feasible routes
between an ingress router and an egress router also contain
feasible routes between intermediary routers and the same
egress router. Thus, if we compute feasible routes for only
a subset of nodes, we can achieve full graph coverage.

In our approach we are trying to reduce the subset of
nodes for which we need to compute a feasible path. We start
by reversing the links in the original graph and then per-
form a breadth-first search (BFS) from the destination router
(Lines 1-2 of Algorithm 1) while storing the nodes in decreas-
ing order of distance (in hops) from the destination router.
Then using this order, we find a feasible path between each
router to the destination router. The further a router is from
the destination, the more intermediary routers it will contain.
We terminate the algorithm once all the nodes in the graph
are covered (line 5&27, Algorithm 1). This approach signif-
icantly reduces the route computation time for the QROUTE
algorithm. The BFS for all the destination routers can be
done offline since it does not change with the changing traffic
conditions. Only when the topology changes, we will need to
re-perform BFS.

We illustrate routing DAG generation of QROUTE using
the same example mentioned in section II-B with more detail.
As explained in section II-B, the dashed arrows in figure 3a
depicts the routing DAG generated using algorithm 1 for
the QoS policy (40ms, 10ms) and destination R8. In this
example, we perform breadth-first-search (BFS) traversal
from the destination router R8 and arrange the nodes in the

decreasing order of their distance from router R8. We then
use algorithm 1 to compute feasible routes between routers
R3-R8, R1-R8 and R2-R8 in the given order. By combining
these routes, we create a routing DAG for the entire graph.
Note that route generated for one pair of routers can be
used for other pairs of routers if the QoS constraints are
not violated. To ensure proper forwarding in data plane that
ensures QoS constraints, we introduce QoS-metrics-based
forwarding as explained in section IV-A.

Using breadth-first-search, we reduce the total number of
route computations for a given destination router and QoS
policy fromO(n) toO(l) where n is the number of nodes in the
network and l is the number of leaves in a breadth-first-search
traversal from the destination router. For m QoS policies and
all destinations, the number of route computations reduces
from O(m × n2) to O(m × n × l). QROUTE is thus useful
for quickly computing routes in an overlay network with
fast-changing traffic conditions.

3) MEETING THE BANDWIDTH REQUIREMENTS
In this section, we explain how we meet the bandwidth
requirements for different applications. For example, the QoS
requirement for a single video streaming application used
in our experimentation is (2000ms, 80ms, 0.5Mbps, 5%).
We multiply the bandwidth requirement of an application by
the number of flow requests corresponding to that application
in a 30 second time interval. This time interval corresponds to
the time between the last two route updates in the data plane.
For example, if the number of flow requests corresponding
to a video streaming application during that time interval
is 500, we prune the links which have bandwidth less than
0.5 × 500 = 250 Mbps before computing DAGs for the
video-streaming applications. The number of flows of a par-
ticular application in a given time interval is calculated by the
controller using overlay header information of the flows sent
by the ingress router to the controller when the first packet of
a flow arrives in the network.

Once the routing DAG for a particular application and
all destinations is calculated using algorithm 1, we subtract
the bandwidth requirements of this application from the

VOLUME 8, 2020 104115

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

available bandwidth of the network. For example, we subtract
250 Mbps from the available bandwidth of the links used in
the DAGs for the video-streaming applications.We, then, find
the routing DAGs for other applications. This ensures that the
bandwidth requirements of all the applications are met.

B. BACKUP ROUTING DAG
In this section, we describe the algorithm for generating a
backup DAG which we use along with the primary DAG
to achieve a considerable fraction of QoS while ensuring
loop-free routing.

Whenever an outgoing link is down or having congestion,
the router should be able to forward packets to a backup link
instead of incurring the delay of contacting the controller
and waiting for the controller to install new rules. Installing
backup paths for all pairs of source, destination and policy
will again lead to the proliferation of routing entries and thus
we need to generate a backup DAG for every destination
router and policy that can be used during failures. The pri-
mary DAG should be as disjoint as possible to the backup
DAG so that the congested or failed links of primary DAG do
not affect the backup DAG. Moreover, using backup DAG,
we should be able to provide sufficient QoS even during
failures.

We use algorithm 2 to generate back-up DAG for the
primary DAG generated by Algorithm 1. Algorithm 2 takes
as input the primary DAG (P_DAG) and the adjacency
list of the network graph (Adj_G) and generates a backup
DAG (B_DAG) using the topologically sorted list of the
P_DAG (t_sort) and the mechanism described below. We use
an example to illustrate Algorithm 2. For the primary
DAG in Fig. 3a, the backup DAG is shown in Fig. 3b.
Algorithm 2 first sorts the nodes of the primary DAG using
topological sort (line 2 of algorithm 2). A topological sort for
a primary DAG in Fig. 3a is shown in Fig. 4.

FIGURE 4. Topological sort of primary DAG in Fig. 3a along with
adjacency list of the nodes in that order.

For a node, we do not use those neighboring nodes which
lie before in the topologically sorted order (marked with a
minus sign in Figure 4) as the next hop in the backup DAG.
This was done so that the packets do not enter a forwarding
loop while traversing links of both the primary and backup
DAGs.For example, node R1 and R4 cannot serve as the

Algorithm 2 Back-up DAG Generating Algorithm
procedure BACKUP-DAG(Adj_G,P_DAG)

1: B_DAG = {}
2: t_sort = topological_sort(P_DAG)
3: for i ∈ {1, . . . , |V | − 1} do
4: for j ∈ {i, i+ 1, . . . , |V |} do
5: if t_sort[j] ∈ Adj_G[t_sort[i]] then
6: last_neighbor_visited = t_sort[j]
7: if t_sort[j] /∈ P_DAG then
8: B_DAG[t_sort[i]] = t_sort[j]
9: break
10: else
11: if t_sort[i] /∈ P_DAG[t_sort[j]] then
12: B_DAG[t_sort[i]] = t_sort[j]
13: end if
14: end if
15: end if
16: end for
17: if t_sort[i] /∈ B_DAG then
18: B_DAG[t_sort[i]] = last_neighbor_visited
19: end if
20: end for
end procedure

next hop for node R5 in the backup DAG. We also avoid
those nodes as next hops in backup DAG which are chosen
as the next hops in the primary DAG (marked with a tilde
sign in Figure 4). This was done to make the backup DAG
as disjoint as possible to the primary DAG. This constraint is
relaxed if there is no candidate for the next hop. For example,
node R8 is avoided as the next hop for node R5 in the backup
DAG. We then choose one of the remaining neighbors as the
next hop in the backup DAG (marked with an asterisk sign
in Figure 4). In the example, nodes R6 is used as the next
hop for node R5 in the backup DAG. The backup DAG for
destination router R8 is shown in Fig. 3b.

IV. QROUTE DATA PLANE
In section IV-A, we explain our QoS-metrics-based forward-
ing which reduces the forwarding entries in the data plane
while ensuring multiple QoS constraints. In section IV-B,
we describe our data plane forwarding algorithm which uses
the primary DAG entries along with the backup DAG entries
to ensure QoS.

A. REDUCING FORWARDING ENTRIES IN THE DATAPLANE
We reduce the forwarding entries in the data-plane by using
QoS-metric-based forwarding. We replace the source address
in the forwarding entries of the switches with the maximum
amount of QoS metrics a packet can spend in the network
to be eligible to be forwarded to the corresponding outgoing
link. We illustrate the QoS-metric-based forwarding using an
example.

104116 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 5. Framework for evaluating performance of path generated by QROUTE.

Consider the network graph provided in Fig. 3. For simplic-
ity each pair of values on the network links only represents
delay and jitter for that bi-directed link measured in millisec-
onds. The following approach will hold for any number of
additive and multiplicative constraints.

Figure 4 shows the DAG for a destination router R8, with
a QoS policy of (40ms, 10ms) where 40ms is the maximum
bound for delay and 10ms is the maximum bound for jitter.
The only feasible path from R1 to R8 is R1 −→ R4
−→ R5 −→ R8, from R2 it is R2 −→ R4 −→ R6 −→ R8, and from
R3 it is R3 −→ R4 −→ R7 −→ R8. Packets from nodes R1, R2,
and R3, arriving at R4 should be forwarded to R5, R6, and
R7 respectively to maintain QoS requirements for each flow.
For router R4 to route properly, one would need to utilize a
source IP address, destination IP address, and policy ID as the
key in forwarding tables or use a different key that satisfies
the above requirement. However, using the source IP address
leads to a proliferation of routing entries in the forwarding
tables.

We replace the source IP in the routing entries of the
forwarding table with the maximum amount of delay and
jitter a packet can go through to be eligible to be forwarded
to the corresponding outgoing link. The packets carry the
elapsed value of delay and jitter in their packet headers which
are updated by each router by adding the delay and jitter of the
outgoing link to the respective header field. These values are
matched against the corresponding keys to determine where
the packets should be forwarded to.

For example, Table 3 depicts the forwarding table of router
R4 with the forwarding entries corresponding to destination

TABLE 3. Forwarding table for Router R4.

router R8 and QoS policy (40ms, 10ms). The delay and
jitter along the path R4 −→ R5 −→ R8 is 36ms and 2ms
respectively. Thus, if the maximum permissible delay and
jitter that a packet has gone through before reaching R4 are
4ms (40-36) and 8ms(10-2) respectively then the packet can
be forwarded to the router R5. This corresponds to the first
entry in the forwarding table (Table 3). For the packets going
from ingress router R1 to R4 directly, the elapsed delay and
jitter will be 2ms and 7ms respectively. We can see that only
the packet which is coming form R1 to R4 directly is eligible
for forwarding to R5. Similarly we generate other forwarding
entries for other feasible routes generated by algorithm 1 and
passing through router R4. If any incoming packets headed
for R8 do not match any routing entry or there is a failure,
they will be routed through the default entry for policy 1
(represented by the 4th entry in Table 3). These default
entries are created using the backup DAGs as described in
Section III-A-D.

We significantly reduce the forwarding entries by grouping
them if they have the same next hop. Given a QoS policy
and destination, we have only one entry corresponding to an
outgoing link which is used in a feasible route generated by
Algorithm 1 and passing through that router. Thus, the max-
imum number of forwarding entries a router can have for a
given QoS policy and destination is its degree in the network
graph. In contrast, a source-destination based forwarding can
have a forwarding entry for every source router. Thus, for a
network of n nodes andmQoS policies, we reduce the number
of forwarding entries from O(m × n2) to O(m × n × deg)
where deg is the maximum degree of the network graph.
Thus, QROUTE alleviates the problem of the proliferation
of routing entries in large overlay networks.

B. DATA-PLANE FORWARDING ALGORITHM
Our data plane forwarding algorithm uses the primary DAG
entries along with the backup DAG entries to ensure QoS
and provide resiliency. Algorithm 3 presents the forwarding
algorithm of the switches. The switches first try to find a
rule in the forwarding table corresponding to the primary
DAG which matches all the QoS constraints. If it finds such

VOLUME 8, 2020 104117

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

Algorithm 3 Data Plane Forwarding Algorithm
procedure FORWARDING(Adj_G,Q_DAG)
1: for rule in Primary_DAG do
2: if elapsed_delay ≤ rulemax_elapsed_delay &&

elapsed_jitter ≤ rulemax_elapsed_jitter &&
elapsed_pkt_loss ≤ rulemax_elapsed_pkt_loss then

3: if ruleoutput_port is up then
4: add_delay(ruleoutput_link_delay)
5: add_jitter(ruleoutput_link_jitter)
6: add_pkt_loss(ruleoutput_link_pkt_loss)
7: send_packet(ruleoutput_port)
8: end if
9: end if
10: end for
11: send_packet(Backup_DAG_output_port)

{If no rule matches in Primary_DAG or the output ports
for the matched rules are down}

end procedure

entry and the corresponding output port is up, the switch adds
the QoS values of the forwarding link to the respective QoS
values in the packet header and forwards the packet on the
corresponding output port. If the switch does not find any
entry or the output ports for the matched rules are down,
it forwards the packet on the outgoing link along the backup
DAG if it is up. If the outgoing link along the backup DAG is
down, the switch drops the packet.

Fig. 3c shows the path followed by a packet in case of fail-
ures of two links. We can see from the figure that the packet
traverses links of both the primary and the backup DAGs. The
QoS is maximized by trying to re-route the packets to the
primary DAG even if the packet has arrived using the backup
DAG link.

V. FRAMEWORK FOR EVALUATING PATH PERFORMANCE
Some applications are not stringent about meeting their QoS
requirements and thus the paths which satisfy their QoS
policies to a reasonable fraction can be accepted. Moreover,
in scenarios of network congestion or failures, the routing
algorithm might not be able to find a path that satisfies the
QoS policy for a particular application and thus the routing
algorithm has to return a path that partially satisfies the QoS
constraints. In such cases, the network manager needs to
decide the degree to which the QoS should be satisfied for
a path. We propose a framework to evaluate a path’s perfor-
mance in terms of meeting a multi-constrained QoS policy.
Under the absence of paths that completely satisfy a given
QoS policy, this framework enables the network operator to
use the paths which slightly deviate from the QoS policy.

We represent each QoS constraint by a function which
takes a value between 0 and 1. If the value of a particular QoS
metric for a path returned by the routing algorithm is within
its bound, then the function takes a value of 1. If it is outside
its bound, then it takes a value less than 1. Beyond a certain

threshold, the function takes a value of 0 which denotes that
the QoS metric deviates a lot from its bound.

As an example, the QoS requirement used for video
streaming in our experiments is (2000ms, 80ms, 0.5Mbps,
5%). The tuple is in the format (maximum delay bound,
maximum jitter bound, minimum bandwidth requirement,
maximum packet loss). Their respective functions are defined
in Fig. 5. We can observe from Fig. 5a that the function for
delay takes the value of 1 when the delay of a path is less
than 2000ms. After that the function gradually drops to a
value of 0. This function indicates the degree to which the
delay metric is satisfied. Figure 5b to 5d can be interpreted
along similar lines. A steeper slope for a QoS metric function
indicates that the application is more stringent about meeting
that QoS requirement. This slope is decided by the network
operator and requires domain knowledge.

The vertical lines in the graphs denote the value of the
corresponding QoS metrics for a path returned by the routing
algorithm. The degree to which a path satisfies the QoS policy
is equal to the smallest function value amongst all the QoS
constraints. For example, in Fig. 5 the minimum function
value ismin(.78, 0.58, 0.38, 1) = .38. Thus this path satisfies
the QoS policy by 38%. If the threshold for accepting a path
for routing is 60%, this path will be rejected.

VI. EVALUATION
In this section, we describe the evaluation of the QROUTE
routing scheme using traces from a global communica-
tions technology solutions provider’s real overlay networks.
We also explain the evaluation of QROUTE carried out
in a test-bed of P4-BMv2 [35], [36] switches controlled
with ONOS SDN controller [37] using P4Runtime [38]. All
experiments were carried out in servers with Intel Xeon E5-
1630 v4 @3.7GHz processors.

A. TRACE-DRIVEN EVALUATION
We determine the scalability and optimality of the QROUTE
routing algorithm using trace-driven evaluation. We had
access to 24-hour traces with measurements after every
30 seconds from a global communications technology solu-
tions provider’s real overlay networks. These traces consist of
delay, jitter, packet loss, and bandwidth measurements of the
links between the routers. The network topology the traces
measured was comprised of routers spread across multiple
data centers worldwide. The traces provided covered different
sizes of overlay networks with different topologies (partial
mesh, star, ring, and tree). We also perform an evaluation of
QROUTE on the real topologies from the Internet Topology
Zoo dataset [31] using synthetically generated traces. The
delay between the network nodes in the topologies from the
Internet Topology Zoo dataset was estimated based on their
geographical locations. The bandwidth, jitter and packet loss
values of the links in the synthetic generated traces were
derived from the above traces. We wrote the QROUTE algo-
rithm in Python using fast libraries like Dijikstar and used a
CSV file of the traces for input.

104118 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 6. Trace-driven evaluation.

TABLE 4. QoS requirements used for the experimentation.

For our evaluations, we select 10 different kinds of user-
applications’ QoS requirements as mentioned in Table 4.

The resulting plots are informed by the average value
of 28,800 (24×60×2×10) instances of data points. Figure 6
shows the distribution of QoS metric values of the links in the
traces using a box plot.

Using these traces we compared the scalability and
optimality of the QROUTE algorithm to the current

state-of-the-art multi-constrained shortest path (MCSP)
algorithms, like A* Prune [21], H_MCOP [22], and
MH_MCOP [23].

We measured four performance characteristics:

• Percentage Reduction in Forwarding Entries: The
percentage reduction in forwarding entries compared
to those generated by source-destination-based rout-
ing algorithms such as A*Prune, H_MCOP, and
MH_MCOP.

• Percentage Cost Deviation: Indicates the percentage
deviation of the cost of the approximate solution with
that of the solution from A*Prune which is the optimal
case.

• Route Computation Time: This includes generating
the routes for all the destination routers and policies and
the forwarding tables for the routers. Route computation
time is measured in seconds.

• Relative percentage difference:The relative differ-
ence between the maximum QoS bound and the QoS
of the paths found. The formula is: (QoS_bound −
path_QoS)/QoS_bound × 100.

We obtain Fig. 6b, 6c, 6d and 6e with partial mesh
topologies and Fig. 6f with networks of size 1000. From
Fig. 6b we can observe that as the network size grows,

VOLUME 8, 2020 104119

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 7. Trace-driven evaluation of QROUTE on the topologies from the Internet Topology Zoo dataset.

QROUTE achieves significant reduction in forwarding table
sizes compared to other source-destination based routing
algorithms. As depicted in Fig. 7b, we can observe the similar
reduction in forwarding entries by QROUTE on the topolo-
gies from the Internet Topology Zoo dataset. This demon-
strates the impact of replacing the source IP address with
maximum elapsed QoS constraint values.

From Fig. 6c and Fig. 7a, we observe that QROUTE
achieves a much lower route computation time than the other
algorithms, like A*Prune, H_MCOP, andMH_MCOP. This is
because of generating DAGs as described in Section III-A2.

This reduction in time complexity comes at a cost of
solution optimality, and as a consequence, H_MCOP and
MH_MCOP havemuchmore optimal solution outcomes than
QROUTE as depicted in Fig. 6d and Fig. 7c. However, unlike
H_MCOP and MH_MCOP, QROUTE will always return a
feasible route if one exists. If overlay providers do not con-
sider a small increase in the cost of overlay links as a sig-
nificant issue and desire a quick adaptive route computation
algorithm for dynamic traffic, QROUTE is the ideal choice.

Fig. 6e shows the comparison of QROUTE and A*Prune
in terms of relative percentage difference of delay QoS met-
ric. For this comparison we did not include H_MCOP and
MH_MCOP as they do not always generate a feasible path.
We see that the relative percentage difference of delay of
QROUTE increases quicker than that of A*Prune as the net-
work size increases. This is because the feasible paths from
some nodes to a destination node are contained in already
computed routes.

QROUTE is well suited to ring, tree and mesh topologies
and has fast route computations compared to that in the star
topology (Fig. 6f). This is because the star topology does
not benefit from our heuristic of a feasible route between
two routers covering the feasible routes of many intermediary
routers.

B. EVALUATION ON P4 SWITCHES
In this section, we describe our evaluation using a test-bed
of P4-BMv2 [35], [36] switches controlled with ONOS SDN

controller [37] using P4Runtime [38]. We evaluate the over-
head incurred due to the addition and the range operation
in the switches on the end-to-end delay. We also evaluate
the degree to which the QoS requirements of the flows were
satisfied as we increase the traffic in the network. We also
measure the impact of failures on the QoS.

1) TEST-BED DESCRIPTION
P4 language [35] allows us to define custom forwarding
behavior of a switch. Any forwarding behavior is composed
of matches on header fields and based on that taking an
action like changing header fields, forwarding on an output
port, packet drop, etc. P4 allows us to define custom header
fields and custom actions that are not supported on legacy
or Openflow switches. The P4 codes can be compiled to
many targets like FPGAs, ASICS, software switches, etc.
We use the behavioral model (BMv2) [36], a software switch
simulation which supports P4 language, in our experiments.
We use P4 Runtime [38] API to install routing entries in the
forwarding tables generated using the P4 code. We use the
ONOSSDNcontroller [37] to control the network comprising
of P4 BMv2 switches using P4 Runtime. To implement the
QROUTE algorithm in a real overlay network, the routers
should support the range and the addition operations on
packet header fields along with the capabilities of OpenFlow
switches [39], [40]. These operations are supported in P4,
BMv2 switches and ONOS controller.

2) P4 PSEUDO-CODE FOR THE QROUTE OVERLAY HEADER
AND ROUTERS
Algorithm 4 shows the P4 pseudo-code for our overlay
header QROUTE which is inserted between the Ethernet
header and the IPv4 header. The QROUTE header con-
tains the unique identifier for the QoS policy called
QoS_policy_ID, the unique identifier for the egress router
called egress_router_id, and the elapsed value of the
QoS constraints called elapsed_delay, elapsed_jitter and
elapsed_pkt_loss.

104120 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

Algorithm 4 P4 Pseudo-Code for QROUTE Overlay Header
1: header QROUTE
2: field QoS_policy_ID
3: field egress_router_ID
4: field elapsed_delay
5: field elapsed_jitter
6: field elapsed_pkt_loss
7:

8: headers
9: header Ethernet
10: header QROUTE
11: header IPv4

We describe the P4 pseudo-code for the forwarding table
used in the ingress routers in algorithm 5. The ingress router
matches the IPv4 address of the destination host of the incom-
ing packets and encapsulates it with the QROUTE tunnel
header. The encapsulation is performed using the encapsu-
late_QROUTE_header action.

Algorithm 5 P4 Pseudo-Code for Forwarding Table of
Ingress Router
1: forwarding_table ingress_router
2: match_fields
3: (match_field_1, match_type)

= (destination_host_IP, longest_prefix_match)
4: actions
5: action_1 = encapsulate_QROUTE_header
6: action_2 = drop_packet

Algorithm 6 mentions the P4 pseudo-code for the for-
warding table of intermediary and egress routers. To imple-
ment comparison operation on the elapsed value of delay,
jitter and packet loss, we use the range_match supported

Algorithm 6 P4 Pseudo-Code for Forwarding Table of
Intermediary and Egress Router
1: forwarding_table intermediary_and_egress_router
2: match_fields
3: (match_field_1, match_type)

= (QoS_policy_ID, exact_match)
4: (match_field_2, match_type)

= (egress_router_ID, exact_match)
5: (match_field_3, match_type)

= (elapsed_delay, range_match)
6: (match_field_4, match_type)

= (elapsed_jitter, range_match)
7: (match_field_5, match_type)

= (elapsed_pkt_loss, range_match)
8: actions
9: action_1 = forward_QROUTE_packet
10: action_2 = decapsulate_QROUTE_header
11: action_3 = drop_packet

by P4, P4Runtime, ONOS controller and BMv2 switches.
A range_match match checks if a match field is between
a lower and upper bound. For example, for the first entry
in table 3, we use the range match to check if 0 ≤

elpased_delay ≤ 4 and 0 ≤ elpased_jitter ≤ 8. The inter-
mediary routers match on all the 5 match fields mentioned
in Algorithm 6 and accordingly forward the packet to an
output port using forward_QROUTE_packet action described
in Algorithm 7. The forward_QROUTE_packet action also
adds to the respective headers of the packets the delay, jitter
and packet loss of the link to which it is supposed to forward
the packet. The delay, jitter and packet loss of the outgoing
links are populated in the P4 switches by the ONOS con-
troller. The action decapsulate_QROUTE_headermentioned
in algorithm 6 is used by the egress router to remove the
QROUTE tunnel header from the packet and forward the
packet to its original destination host. A detailed description
of our experimentation is given in Appendix A. We also pro-
vide an approach to measure available bandwidth in overlay
networks having background traffic in Appendix B.

Algorithm 7 P4 Pseudo-Code for Forwarding a Packet With
a QROUTE Header
1: action forward_QROUTE_packet(out_port, link_delay,
link_jitter, link_pkt_loss)

2: add link_delay to header_elapsed_delay
3: add link_jitter to header_elapsed_jitter
4: add link_pkt_loss to header_elapsed_pkt_loss
5: forward pkt on out_port

3) RESULTS
All the figures in this section are generated on amesh network
of 1000 P4-BMv2 switches.

We compare the average end-to-end delay observed by
end-users with and without the overhead of range and addi-
tion operation on overlay headers (Fig. 8a). The paths taken
by a packet between a pair of source and destination for
both cases is the same. We observe that overhead imposed
by QROUTE addition and range operation is not significant
and as we increase the number of switches between end hosts,
the overhead increases negligibly.

In Fig. 8b, we depict the percentage of flows that satisfy
their QoS requirements using QROUTE in the absence of
failures. We use the QoS policies for 10 different applications
mentioned in Table 4 in this experiment.We can observe from
Fig. 8b that QROUTE supports the QoS requirements for
90-99% of flows across different applications.

We also measure the percentage of flows that satisfy their
QoS requirements using QROUTE after failures. This mea-
surement is done until the SDN control responds to the
change in the topology and installs new routes in the data
plane. The QoS policies mentioned in Table 4 are used for
this experiment also. As the number of failed links increases
(Fig. 8c), we observe that the majority of the flows are
still able to meet their QoS requirements. This resiliency is

VOLUME 8, 2020 104121

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 8. Evaluation on P4 switches.

because we use the backup DAG along with the primary DAG
and the forwarding scheme which maximizes QoS.

VII. RELATED WORK
A. LAGRANGE-RELAXATION BASED ROUTING SCHEMES
There are several works [12], [13], [21]–[24] which
solve the multi-constrained shortest path problem using
Lagrange relaxation but they generate routes for every
source-destination pair and QoS policy instead of generat-
ing a routing directed-acyclic graph. Thus, their approaches
lead to an exponential increase in route computation time
and the proliferation of routing entries. A*Prune [21] is an
optimal approach to solve the MCSP problem by assuming
that there is a guess function available for the constraints
and costs and the algorithm is made faster by pruning certain
paths based on their projected constrained values. However,
its run-time increases much faster with network size com-
pared to heuristics based algorithms [21]–[23]. A heuris-
tic and multi-constrained version of the LARAC algorithm,
H_MCOP, proposed in [22], searches in the direction of
all constraints and cost simultaneously, but this approach
does not always return a feasible solution if it exists [23].
MH_MCOP [23] finds a closer solution to the optimal as
compared to H_MCOP but also does not always find a fea-
sible solution if it exists [24]. In [12], the authors model
the QoS routing problem as a multi-commodity flow prob-
lem which is decomposed to simpler constrained shortest
path problems. They use the GEN-LARAC algorithm [41]
to solve the constrained shortest path problem that satisfies
all QoS constraints. The authors in [13] model the over-
lay routing problem as a maximization of the Quality of
Experience (QoE) instead of QoS and performed Lagrange
decomposition of their original problem. The subproblems
are solved using Lagrange relaxation and sub-gradient opti-
mization. They used a k-shortest path algorithm to find the
shortest paths in their sub-problems. All these approaches
generate routes for every source-destination pair and QoS
policy and thus leads to a significant route computation time
and size of forwarding tables.

B. DIRECTED-ACYCLIC-GRAPH (DAG) BASED ROUTING
SCHEMES
Directed-acyclic-graphs (DAGs) has been used in multi-
constrained QoS routing [42]–[44]. However, none of them
can efficiently reduce both the route computation time and
the number of routing entries while ensuring additive, mul-
tiplicative and concave constraints. In [42], the authors use
DAGs for routing in low-power and lossy networks. They
consider the delay, jitter and packet loss while creating
a destination-oriented DAG but they omit the bandwidth
requirement (concave constraint) which is a very crucial
network resource. They are using a distributed approach of
exchanging messages between the nodes to construct a DAG
rather than using a centralized routing algorithm. Moreover,
they do not address the problem of the proliferation of routing
entries in large networks. The authors in [43] consider all
types of QoS constraints, that is, multiplicative, additive and
concave. They prune the original network to a DAG that
contains paths between a source and destination which satisfy
all the constraints. They find the optimal path using this
DAG. However, they do not use DAG for routing but only
as an intermediary step to generate feasible paths. Thus, their
approach leads to high route computation time and a large
number of routing entries since they are generating paths
for every source-destination pair. In [44], the authors use
a DAG-based approach to provide resiliency against single
arbitrary link failure. They also introduce delay and band-
width constraints while generating DAGs. However, they do
not consider jitter and packet loss constraints. Moreover,
their approach leads to high route computation time and the
proliferation of routing entries because of generating a DAG
for every source-destination pair.

C. OTHER APPROACHES FOR ROUTING IN
SOFTWARE-DEFINED OVERLAY NETWORKS
In [8], the authors propose a time-slot-based routing algo-
rithm for finding multiple paths for a particular flow for
ensuring QoS of multimedia applications in software-defined
overlay networks. They model the cost of the overlay links

104122 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

in terms of its availability and consider only bandwidth con-
straints. In [11], the authors use a routing engine based on
random neural networks with reinforcement learning for their
software-defined overlay networks. They only incorporate
the latency of the paths while making their routing decisions.
In [14], the authors propose amultipath routing algorithm that
finds a path of least cost that satisfies the delay and band-
width constraint. However, these approaches have high route
computation time and a large number of forwarding entries
because of generating routes for every source-destination pair
and QoS policy.

VIII. CONCLUSION AND FUTURE WORK
We propose an efficient routing scheme, QROUTE, for sat-
isfying multiple QoS constraints in software-defined over-
lay networks. QROUTE consists of a control plane routing
algorithm which has significantly low route computation
time because of employing a novel directed-acyclic-graph
(DAG) based approach. QROUTE also reduces the forward-
ing entries in the data plane by using a QoS-metric-based
forwarding scheme. QROUTE uses backup DAG combined
with the primary DAG to provide sufficient QoS even dur-
ing failures. We also provide a framework to evaluate a
path’s conformance to a multi-constrained QoS policy which
enables the network operator to find paths slightly deviating
from the QoS policy. Our experimental results demonstrate
that the proposed QROUTE routing scheme not only signifi-
cantly reduces the route computation time, but also decreases
the forwarding table size considerably. Evaluations also show
that the addition and range operations performed in the data
plane do not incur significant overhead. Results demonstrate
that QROUTE achieves QoS to a considerable degree with
and without failures. QROUTE can be either implemented
in software routers (e.g., BMv2 P4 switches) deployed
in the cloud, or in hardware switches which support P4
(e.g., NetFPGA [45] and Barefoot Tofino [46]).

We are working on extending QROUTE to the hierarchical
design multi-controller architecture. This involves designing
a DAG stitching algorithmwhich stitches together the routing
DAGs generated byQROUTE to create a global routingDAG.

According to the Cisco Annual Internet Report [47],
the number of devices connected to Internet will be
29.3 billion by 2023. The majority of devices and the traffic
that will dominate the Internet will be machine-to-machine
communications, Internet of Things and enhanced 5Gmobile
broadband. These applications have significantly diverseQoS
requirements [48]. To meet such diverse QoS requirements
of huge network traffic requires more efficient QoS routing
schemes.

APPENDIX A
DETAILED DISCUSSION OF OUR P4 SWITCHES TEST-BED
In this section, we provide a detailed description of
our experimentation on test-bed of P4-BMv2 [35], [36]
switches controlled with ONOS SDN controller [37] using
P4Runtime [38].

A. INGRESS ROUTER OPERATION
Listings 1, 2, 3 and 4 show some important portions of our
P4 code that implement the QROUTE algorithm. Listing 1
shows the overlay header qroute_tunnel_t which is inserted
between the ethernet header and the ipv4 header and is used
to carry the protocol ID of the next layer of header called
proto_id , the QoS policy ID called policyID, the unique
identifier of the egress router called egress_router_id, and the
elapsed value of the QoS constraints called elapsed_delay,
elapsed_jitter and elapsed_pkt_loss. Listing 2 describes
the table used in the ingress router which matches the
IPv4 address of the destination host for a packet using
the longest prefix match (lpm) and then encapsulates the
packet with the qroute_tunnel_t tunnel header using the
qroute_tunnel_ingress action.

LISTING 1. The overlay header added to support QROUTE.

LISTING 2. The P4 table for the ingress router.

LISTING 3. The P4 table for the intermediary and egress router.

LISTING 4. The P4 action for the intermediary routers.

VOLUME 8, 2020 104123

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

B. INTERMEDIARY ROUTER OPERATION
To implement comparison on the elapsed value of delay,
jitter and packet loss, we use the match type range supported
by P4, P4Runtime and BMv2 switches. A range match
checks if a specified header is between a low and a high
value inclusively. ONOS supports a function matchRange
(PiMatchFieldId fieldId, byte[] low, byte[] high) of
type PiCriterion.Builder which adds a range field match
for the given P4 header field ID fieldId , low value and
high value of range match. In our scenario, we define
three range matches for delay, jitter and packet loss
(Listing 3) in our P4 code. We set the low limit
to 0 and the high limit to the maximum permissible
amount of delay, jitter or packet loss respectively in our
matchRange() function call. Table t_qroute_tunnel_fwd
(Listing 3) uses action qroute_tunnel_transit in the interme-
diate nodes and qroute_tunnel_egress in the egress nodes.
The qroute_tunnel_transit action(Listing 4) is used in the
intermediary nodes to forward the encapsulated packet on a
output port based on the egress_router_id , policyID and the
elapsed values of the QoS metrics. The BMv2 switch adds
to the respective headers of the packets the delay, jitter and
packet loss of the link to which it is supposed to forward the
packet and then sets the output port of the packet. The delay,
jitter and packet loss of the outgoing links are populated in
the P4 switches by the ONOS controller.

C. EGRESS ROUTER OPERATION
The qroute_tunnel_egress action is used in the egress nodes
to remove the qroute_tunnel_t header before forwarding the
packet to the output port.

D. MEASURING QoS METRICS FOR THE LINKS
We use P4-BMv2 switches in integration with Mininet.
Mininet provides us the options to specify the performance
parameters of the links like delay, jitter, packet loss and
maximum bandwidth. We need to start the mininet topology
using –link tc command to set these performance parameters.
This uses the TCLink class which is a wrapper around the
Link class of mininet and allows us to specify the perfor-
mance parameters like delay, jitter, etc. To create such a
link in the custom topology python file, we need to use the
command self .addLink(switch1, switch2, bw = 10, delay =
10ms, jitter = 8ms, loss = 1). This creates a link with
the maximum bandwidth of 10 Mbps, a delay of 10 ms,
a jitter of 8 ms and a packet loss percentage of 1%. We have
hard-coded the delay, jitter and packet loss percentage of
the links in our test-bed. To measure the available band-
width of the links, we create counters at every switch using
the counter() function supported by P4. The switch coun-
ters count the bytes sent by the ports which is polled by
an ONOS application at regular intervals and is stored in
a CSV file. We compute the available bandwidth in the
links using the bytes sent by the ports and the elapsed time
using the approach mentioned in [49]. Using this telemetry

information, the central controller computes new routes after
every 30 seconds and installs the new rules in the forwarding
tables of P4-BMv2 switches. A detailed discussion on mea-
suring the QoS metrics in a real-overlay network is given in
appendix B.

E. SIMULATING LINK FAILURES
Mininet provides a command link s1 s2 up and link s1 s2 down
which activates and deactivates respectively the link between
switch s1 and s2 of the network on the fly. We use this
command to fail a link for testing our routing scheme during
failures. Since there is no support in P4 switches to determine
the link status, we store the status of the links in another
table in the switches which are updated using the P4 switch’s
API used for accessing tables. When the outgoing link in the
primaryDAG is down, the packet is forwarded to the outgoing
link in the backup DAG if it is up. If the outgoing link in
the backup DAG is down, we drop the packet. Meanwhile,
the ONOS controller detects that a link is down and the
routing application calculates the new paths based on the new
topology and installs new rules in the forwarding tables.

APPENDIX B
MEASURING AVAILABLE BANDWIDTH IN OVERLAY
NETWORKS HAVING BACKGROUND TRAFFIC
We also provide an approach to measure available band-
width in overlay networks having background traffic in this
section. In a network with background traffic and unknown
link capacity, available bandwidth can be computed using the
values of delay and packet loss as described below. Since
the throughput-intensive applications use either TCP or TCP
like congestion control, the authors in [7] use the following
equation for modeling throughput:

T =
1
rtt

√
1.5
p

(8)

where p is the packet loss probability and rtt is the round trip
time.

However, they have only considered last re-transmit and
not timeout as the indicator for packet loss. Moreover, they
have assumed that a received ACK is acknowledging at most
1 packet. They have also not considered that the congestion
window size can be restricted. Thus, the below equation for
throughput [50] will give a much accurate measurement of
TCP throughput.

T

=min

Wmax

rtt
,

1

rtt

√
2bp
3
+T0min

(
1, 3

√
3bp
8

)
p(1+32p2)

(9)

In equation (9),Wmax is the maximum congestion window
size, b is the number of packets that are acknowledged by a

104124 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

receivedACK, and T0 is the initial time out. CurrentWindows
and Linux operating systems often set T0 = 3 sec, Wmax =

64 kb and b = 2 and putting them into Equation 9 will
give a better estimate of TCP throughput in current networks.
The delay, jitter and packet loss can be calculated by sending
packet probes between the routers with timestamps.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers for
their valuable comments. This paper is revised and extended
from our previous paper published in IFIP/IEEE IM 2019 [1].

REFERENCES
[1] N. Varyani, Z.-L. Zhang, M. Rangachari, and D. Dai, ‘‘LADEQ: A fast

Lagrangian relaxation based algorithm for destination-basedQoS routing,’’
in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), Apr. 2019,
pp. 462–468.

[2] S. P. C. Lewis, ‘‘Implementing quality of service over CiscoMPLSVPNs,’’
in Selecting MPLS VPN Services. San Jose, CA, USA: Cisco Systems,
May 2006, ch. 5.

[3] Z. Li and P.Mohapatra, ‘‘QRON: QoS-aware routing in overlay networks,’’
IEEE J. Sel. Areas Commun., vol. 22, no. 1, pp. 29–40, Jan. 2004.

[4] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, Overlay
Networks: An Akamai Perspective, vol. 51. Hoboken, NJ, USA: Wiley,
2014, ch. 16, pp. 305–328.

[5] Z. Duan, Z.-L. Zhang, and Y. T. Hou, ‘‘Service overlay networks: Slas,
QoS, and bandwidth provisioning,’’ IEEE/ACMTrans. Netw., vol. 11, no. 6,
pp. 870–883, Dec. 2003.

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, ‘‘Resilient
overlay networks,’’ in Proc. 18th ACM Symp. Oper. Syst. Princ., 2001,
vol. 35, no. 5, pp. 131–145.

[7] J. Kurian andK. Sarac, ‘‘A survey on the design, applications, and enhance-
ments of application-layer overlay networks,’’ACMComput. Surv., vol. 43,
no. 1, pp. 1–34, Nov. 2010.

[8] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, ‘‘Adaptive and
reliable multipath provisioning for media transfer in SDN-based
overlay networks,’’ Comput. Commun., vol. 106, pp. 107–116,
Jul. 2017.

[9] Y. Guan, W. Lei, W. Zhang, S. Liu, and H. Li, ‘‘Scalable orchestration
of software defined service overlay network for multipath transmission,’’
Comput. Netw., vol. 137, pp. 132–146, Jun. 2018.

[10] P. Belzarena, G. G. Sena, I. Amigo, and S. Vaton, ‘‘SDN-based overlay
networks for QoS-aware routing,’’ in Proc. Workshop Fostering Latin-
Amer. Res. Data Commun. Netw. (LANCOMM), 2016, pp. 19–21.

[11] F. Francois and E. Gelenbe, ‘‘Optimizing secure SDN-enabled inter-
data centre overlay networks through cognitive routing,’’ in Proc. IEEE
24th Int. Symp. Modeling, Anal. Simulation Comput. Telecommun. Syst.
(MASCOTS), Sep. 2016, pp. 283–288.

[12] P. Medagliani, S. Paris, J. Leguay, L. Maggi, C. Xue, and H. Zhou,
‘‘Overlay routing for fast video transfers in CDN,’’ in Proc. IFIP/IEEE
Symp. Integr. Netw. Service Manage. (IM), May 2017, pp. 531–536.

[13] G. Calvigioni, R. Aparicio-Pardo, L. Sassatelli, J. Leguay, P. Medagliani,
and S. Paris, ‘‘Quality of experience-based routing of video traffic for
overlay and ISP networks,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2018, pp. 935–943.

[14] W. Jiawei, Q. Xiuquan, and N. Guoshun, ‘‘Dynamic and adaptive multi-
path routing algorithm based on software-defined network,’’ Int. J. Distrib.
Sensor Netw., vol. 14, no. 10, pp. 1–10, 2018.

[15] N. Yadav and S. Merchant, ‘‘Forwarding tables for virtual networking
devices,’’ U.S. Patent 9 755 965, Sep. 5, 2017.

[16] T. Lin, T. Wen, W. Ren, Y. Zhang, and X. Zhang, ‘‘Table entry in software
defined network,’’ U.S. Patent 10 541 913, Jan. 21, 2020.

[17] Y. Guan, W. Lei, W. Zhang, H. Li, and S. Zhang, ‘‘SGMR: A spatial
geometry-based multipath routing method on overlay networks,’’ Int. J.
Commun. Syst., vol. 32, no. 5, p. e3894, Mar. 2019.

[18] S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. J. Prabhu, and
T. Chonavel, ‘‘Joint minimization of monitoring cost and delay in overlay
networks: Optimal policies with a Markovian approach,’’ J. Netw. Syst.
Manage., vol. 27, no. 1, pp. 188–232, Jan. 2019.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,
‘‘B4: Experience with a globally-deployed software defined wan,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Sep. 2013.

[20] A. Rai, R. Singh, and E. Modiano, ‘‘A distributed algorithm for through-
put optimal routing in overlay networks,’’ in Proc. IFIP Netw. Conf.
(IFIP Netw.), May 2019, pp. 1–9.

[21] G. Liu and K. G. Ramakrishnan, ‘‘A∗Prune: An algorithm for finding
K shortest paths subject to multiple constraints,’’ in Proc. IEEE Conf.
Comput. Commun., 20th Annu. Joint Conf. IEEE Comput. Commun. Soc.
(INFOCOM), vol. 2, Apr. 2001, pp. 743–749.

[22] T. Korkmaz and M. Krunz, ‘‘Multi-constrained optimal path selection,’’
in Proc. IEEE Conf. Comput. Commun., 20th Annu. Joint Conf. IEEE
Comput. Commun. Soc. (INFOCOM), vol. 2, Apr. 2001, pp. 834–843.

[23] G. Feng, K. Makki, N. Pissinou, and C. Douligeris, ‘‘Heuristic and exact
algorithms for QoS routing with multiple constraints,’’ IEICE Trans. Com-
mun., vol. E85-B, no. 12, pp. 2838–2850, Dec. 2002.

[24] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, ‘‘Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 388–415,
1st Quart., 2018.

[25] P. Khadivi, S. Samavi, and T. D. Todd, ‘‘Multi-constraint QoS routing
using a new single mixed metrics,’’ J. Netw. Comput. Appl., vol. 31, no. 4,
pp. 656–676, Nov. 2008.

[26] P. T. A. Quang, J.-M. Sanner, C. Morin, and Y. Hadjadj-Aoul, ‘‘Multi-
objective multi-constrained QoS routing in large-scale networks: A genetic
algorithm approach,’’ in Proc. Int. Conf. Smart Commun. Netw. Technol.
(SaCoNeT), Oct. 2018, pp. 55–60.

[27] S. Torkzadeh, H. Soltanizadeh, and A. A. Orouji, ‘‘Multi-constraint QoS
routing using a customized lightweight evolutionary strategy,’’ Soft Com-
put., vol. 23, no. 2, pp. 693–706, 2019.

[28] D. Kalaiselvi and R. Radhakrishnan, ‘‘Multiconstrained QoS routing using
a differentially guided krill herd algorithm in mobile ad hoc networks,’’
Math. Problems Eng., vol. 2015, pp. 1–10, Sep. 2015.

[29] X. Liu, A. Liu, T. Wang, K. Ota, M. Dong, Y. Liu, and Z. Cai, ‘‘Adaptive
data and verified message disjoint security routing for gathering big data
in energy harvesting networks,’’ J. Parallel Distrib. Comput., vol. 135,
pp. 140–155, Jan. 2020.

[30] X. Zhang, W. Hou, L. Guo, Q. Zhang, P. Guo, and R. Li, ‘‘Joint opti-
mization of latency monitoring and traffic scheduling in software defined
heterogeneous networks,’’Mobile Netw. Appl., vol. 25, no. 1, pp. 102–113,
Feb. 2020.

[31] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
‘‘The Internet topology zoo,’’ IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[32] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, ‘‘Multi-controller based software-
defined networking: A survey,’’ IEEE Access, vol. 6, pp. 15980–15996,
2018.

[33] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, ‘‘Lagrange relaxation
based method for the QoS routing problem,’’ in Proc. IEEE Conf. Com-
put. Commun., 20th Annu. Joint Conf. IEEE Comput. Commun. Soc.
(INFOCOM), vol. 2, Apr. 2001, pp. 859–868.

[34] S. Boyd, L. Xiao, and A. Mutapcic, ‘‘Subgradient methods,’’ Stanford
Univ., Stanford, CA, USA, Lecture Notes EE392o, Autumn Quart., 2003,
vol. 2004, pp. 2004–2005.

[35] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
‘‘P4: Programming protocol-independent packet processors,’’ SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[36] P4 Language Consortium. (2020). Behavioral Model Repository. [Online].
Available: https://github.com/p4lang/behavioral-model

[37] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, and W. Snow, ‘‘ONOS: Towards an open,
distributed SDN OS,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined
Netw., 2014, pp. 1–6.

[38] P4 Language Consortium. (2020). P4 Runtime. [Online]. Available:
https://p4.org/p4-runtime/

[39] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[40] (Jun. 25, 2012). OpenFlow Switch Specification, Version 1.3.0 (Wire
Protocol 0x04). [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf

VOLUME 8, 2020 104125

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

[41] Y. Xiao, K. Thulasiraman, and G. Xue, ‘‘GEN-LARAC: A generalized
approach to the constrained shortest path problem under multiple additive
constraints,’’ in Algorithms and Computation, X. Deng and D.-Z. Du, Ed.
Berlin, Germany: Springer, 2005, pp. 92–105.

[42] W. Khallef, M. Molnar, A. Benslimane, and S. Durand, ‘‘Multiple con-
strained QoS routing with RPL,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2017, pp. 1–6.

[43] X. Hu, K. Wang, J. Wang, K. Wang, Y. Hu, and S. Wang, ‘‘Multi-
constrained routing optimization algorithm based on DAG,’’ in Proc. 44th
Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2018, pp. 5906–5910.

[44] A. Pasic and P. Babarczi, ‘‘Delay aware survivable routing with network
coding in software defined networks,’’ in Proc. 7th Int. Workshop Reliable
Netw. Design Modeling (RNDM), Oct. 2015, pp. 41–47.

[45] N. Zilberman, Y. Audzevich, G. Kalogeridou, N. Manihatty-Bojan,
J. Zhang, and A. Moore, ‘‘NetFPGA: Rapid prototyping of networking
devices in open source,’’ACMSIGCOMMComput. Commun. Rev., vol. 45,
no. 4, pp. 363–364, Sep. 2015.

[46] Barefoot Networks. (2020). Barefoot Tofino Switch ASIC. [Online]. Avail-
able: https://www.barefootnetworks.com/products/brief-tofino/

[47] Cisco. (2020). Cisco Annual Internet Report (2018–2023) White Paper.
[Online]. Available: [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/executive-perspectives/annual-internet-report/white-
paper-c11-741490.html

[48] Service Requirements for Next Generation New Services and Markets,
document TS 22.261, Release 15, 3GPP, Aug. 2016. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3107

[49] M. Singh, N. Varyani, J. Singh, and K. Haribabu, ‘‘Estimation of end-
to-end available bandwidth and link capacity in SDN,’’ in Ubiquitous
Communications and Network Computing, N. Kumar and A. Thakre, Ed.
Cham, Switzerland: Springer, 2018, pp. 130–141.

[50] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, ‘‘Modeling TCP through-
put: A simple model and its empirical validation,’’ ACM SIGCOMM Com-
put. Commun. Rev., vol. 28, no. 4, pp. 303–314, Oct. 1998.

NITIN VARYANI received the B.E. and M.E.
degree in computer science from the Birla Institute
of Technology and Science, India, in 2014 and
2016, respectively. He pursued a research intern-
ship in the area of software defined networking at
the National Cybersecurity Research andDevelop-
ment Lab, NUS School of Computing, Singapore.
He is currently pursuing the Ph.D. degree in com-
puter science with the University of Minnesota,
USA, under Prof. Zhi-li-Zhang.

His research interests include software defined networking, network func-
tion virtualization, mobile edge computing, and enabling quality of service
in networking. He has published articles in top computer science conferences
such as IFIP/IEEE IM, IEEE AINA, and EAI UBICNET. He is serving as a
Reviewer for various journals such as Future Generation Computer Systems,
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and the IEEE Network
Magazine.

ZHI-LI ZHANG (Fellow, IEEE) received the B.S.
degree in computer science from Nanjing Uni-
versity, China, and the M.S. and Ph.D. degrees
in computer science from the University of
Massachusetts.

He joined the faculty of the Department of
Computer Science and Engineering, University of
Minnesota, in 1997, where he is currently the
McKnight Distinguished University Professor and
a Qwest Chair Professor in Telecommunications.

He also serves as the Associate Director for Research at the Digital Technol-
ogy Center, University ofMinnesota. He has publishedmore than 100 journal
and conference/workshop papers, many of them in top venues in networking
and related fields. His research interests include broadly in computer and
communication networks, Internet technology,multimedia systems, and con-
tent distribution networks, cyber-physical systems and Internet-of-Things,
and (applied) machine learning and data mining.

Dr. Zhang was a co-recipient of several Best Papers awards including
IEEE INFOCOM, ICNP, and ACM SIGMETRI.CS. He has Chaired the
program committees of several major conferences in networking including
IEEE INFOCOM, ACM SIGMETRICS, IEEE ICNP, and ACM Internet
Measurement Conference (IMC), and served on the Editorial Board of
several journals such as the IEEE/ACM TRANSACTIONS ON NETWORKING, ACM
TOMPECS, and PACM MACS.

DAVID DAI received the B.S. degree in
mechanical engineering from Shanghai Jiao Tong
University, in 1989, and the M.S. degree in civil
engineering and computer engineering from the
University of Missouri-Columbia, in 1995.

He is currently the Sr. Director of Engineering
with Futurewei Technologies, Inc., Santa Clara,
CA, USA. He leads a high-performance Research
and Development team with expertise in the areas
of cloud computing, edge computing, network vir-

tualization, SDN, SD-WAN, overlay networking, and service chaining. His
team prototypes and develops the infrastructure and technology needed for
mobile broadband solutions. He provides expertise and direction instrumen-
tal to the definition and design of new architecture and technologies needed
to drive adoption of NFV, SDN, cloud, and other related IT technologies
into 5G and MEC architecture. He proposes technology research initiatives,
from concept, analysis, detailed architecture definition, and specifications,
to project planning, budgeting, execution, prototype development, and vali-
dation and transform technologies to products.

104126 VOLUME 8, 2020

	INTRODUCTION
	PROBLEM FORMULATION
	SYSTEM FRAMEWORK
	OVERVIEW OF QROUTE
	MATHEMATICAL FORMULATION

	QROUTE CONTROL PLANE
	PRIMARY ROUTING DAG
	OPTIMIZING THE ``SUB-PROBLEM''
	GENERATING A ROUTING DAG USING THE ``SUB-PROBLEMS''
	MEETING THE BANDWIDTH REQUIREMENTS

	BACKUP ROUTING DAG

	QROUTE DATA PLANE
	REDUCING FORWARDING ENTRIES IN THE DATAPLANE
	DATA-PLANE FORWARDING ALGORITHM

	FRAMEWORK FOR EVALUATING PATH PERFORMANCE
	EVALUATION
	TRACE-DRIVEN EVALUATION
	EVALUATION ON P4 SWITCHES
	TEST-BED DESCRIPTION
	P4 PSEUDO-CODE FOR THE QROUTE OVERLAY HEADER AND ROUTERS
	RESULTS

	RELATED WORK
	LAGRANGE-RELAXATION BASED ROUTING SCHEMES
	DIRECTED-ACYCLIC-GRAPH (DAG) BASED ROUTING SCHEMES
	OTHER APPROACHES FOR ROUTING IN SOFTWARE-DEFINED OVERLAY NETWORKS

	CONCLUSION AND FUTURE WORK
	DETAILED DISCUSSION OF OUR P4 SWITCHES TEST-BED
	INGRESS ROUTER OPERATION
	INTERMEDIARY ROUTER OPERATION
	EGRESS ROUTER OPERATION
	MEASURING QoS METRICS FOR THE LINKS
	SIMULATING LINK FAILURES

	MEASURING AVAILABLE BANDWIDTH IN OVERLAY NETWORKS HAVING BACKGROUND TRAFFIC
	REFERENCES
	Biographies
	NITIN VARYANI
	ZHI-LI ZHANG
	DAVID DAI

