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ABSTRACT This paper focuses on bearing fault diagnosis with limited training data. A major challenge
in fault diagnosis is the infeasibility of obtaining sufficient training samples for every fault type under all
working conditions. Recently deep learning based fault diagnosis methods have achieved promising results.
However, most of these methods require large amount of training data. In this study, we propose a deep neural
network based few-shot learning approach for rolling bearing fault diagnosis with limited data. Our model
is based on the siamese neural network, which learns by exploiting sample pairs of the same or different
categories. Experimental results over the standard Case Western Reserve University (CWRU) bearing fault
diagnosis benchmark dataset showed that our few-shot learning approach is more effective in fault diagnosis
with limited data availability.When tested over different noise environments withminimal amount of training
data, the performance of our few-shot learning model surpasses the one of the baseline with reasonable noise
level. When evaluated over test sets with new fault types or new working conditions, few-shot models work
better than the baseline trained with all fault types. All our models and datasets in this study are open sourced
and can be downloaded from https://mekhub.cn/as/fault_diagnosis_with_few-shot_learning/.

INDEX TERMS Deep learning, few-shot learning, bearing fault diagnosis, limited data.

I. INTRODUCTION
Fault diagnosis is widely applied in diverse areas such as
manufacturing, aerospace, automotive, power generation, and
transportation [1]–[4]. Recently, intelligent fault diagnosis
techniques with deep learning have attracted a lot of attention
due to their avoidance of dependency on the time-consuming
and unreliable human analysis and increased efficiency in
fault diagnosis [5], [6]. However, most of these techniques
require a large amount of training data. In real-world fault
diagnosis, the signals of the same faults often bear large
difference between different working conditions, leading to
a major challenge in fault diagnosis: it is often impossible
to obtain sufficient samples to make the classifier robust for
every fault types. This situation can arise for several reasons:
(1) industry systems are not allowed to run into faulty states
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due to the consequences, especially for critical systems and
failures; (2) most electro-mechanical failures occur slowly
and follow a degradation path such that failure degradation
of a system might take months or even years, which makes it
difficult to collect related datasets [7]. (3) working conditions
of mechanical systems are very complicated and frequently
change from time to time according to production require-
ments. It is unrealistic to collect and label enough training
samples [8]. (4) especially in real-world applications, fault
categories and working conditions are usually unbalanced.
It is thus difficult to collect enough samples for every fault
type under different working conditions.

There are some studies about limited data fault diagnosis.
Hang et al. [9] proposed the principal component analy-
sis (PCA) and applied it in the field of high-dimensional
unbalanced fault diagnosis data. Duan et al. [10] applied a
new support vector data description method for machinery
fault diagnosis with unbalanced datasets. In recent years,
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deep learning has achieved impressive results in application
areas such as computer vision, image and video pro-
cessing, speech recognition, and natural language process-
ing [11]. Deep learning methods have also been applied
to fault diagnosis and obtained state-of-the-art results [6]
using techniques such as auto-encoders (AE) [12]–[15],
restricted boltzmann machine (RBM) [16]–[19], convolu-
tional neural networks (CNNs) [20]–[24], recurrent neural
networks (RNNs) [25]–[27], transfer learning based neu-
ral networks [28]–[31]. and generative adversary networks
GANs e.g. Sun et al. [12] applied sparse auto-encoder (SAE)
neural network and achieve superior performance for fea-
ture learning and classification in the field of induction
motor fault diagnosis. Li et al. [16] applied two-layer deep
Boltzmann machines (DBMs) to learn deep representations
of the statistical parameters for gearbox fault diagnosis.
Zhang et al. [22] proposed CNN with Training Interfer-
ence (TICNN) for bearing fault diagnosis whose input is raw
time-series signal. Zhao et al. [27] designed a deep learn-
ing model named Convolutional Bi-directional Long Short-
TermMemory Networks (CBLSTM) by combining CNN and
LSTM. To address the varying working conditions issues in
fault diagnosis, Shao et al. [14] proposed a transfer learning
based approach for fault diagnosis. Lu et al. [30] applied a
novel deep neural network model with domain adaptation
for fault diagnosis. Yang et al. [32] proposed a feature-based
transfer neural network (FTNN). To address the unbalanced
data in fault diagnosis, Cabrera et al. [33] use GANs model
to assess the data distribution for every minority faulty mode
to synthetically increase its size.

The ability of deep neural networks to learn low-level
and high-level features from abundant datasets has been well
known and has been widely exploited in fault diagnosis
[5], [6]. However, except transfer learning based methods
which can address the time-changing working conditions
issue and GANs methods which can address the unbalanced
data issue, most of these intelligent fault diagnosis methods
based on deep neural networks have not addressed one of the
major challenges: limited fault samples for one or more fault
types under all working conditions.

Recently, few-shot learning based deep neural networks
have made great progress in addressing the data scarcity
issue [34]–[37] and has become an exciting field of machine
learning. Few-shot learning was first addressed in the
1980s [38]. Fei-Fei et al. [34] developed a variational
Bayesian framework for one-shot image classification using
the premise that previously learned classes could be leveraged
to help forecast future ones when very few examples are
available from a given category. Wolf et al. [35] chose to
focus on a metric learning approach using a standard bag of
features representation to learn a similarity kernel for image
classification of insects. Wu et al. [36] address one-shot
learning in the context of path planning algorithms for robotic
actuation. Koch et al. [37] proposed siamese neural networks
for one-shot image recognition. Vinyals et al. [39] applied
matching networks for one-shot learning by employing the

FIGURE 1. Few-shot learning general strategy.

ideas from metric learning based on deep neural features
and from recent advances that augment neural networks with
external memories. Altae-Tran et al. [40] applied one-Shot
learning for limited data drug discovery. Snell et al. [41] pro-
posed prototypical networks for few-shot learning by learning
a metric space in which classification can be performed by
computing distances to prototype representations of each
class. Qiao et al. [42] proposed few-shot image recognition
by Predicting Parameters from activations. Zhang et al. [43]
proposed a conceptually simple and general framework called
MetaGAN for few-shot learning problems. Different from
semi-supervised few-shot learning, their algorithms can deal
with semi-supervision at both sample-level and task-level.
However, despite the success of one-shot and few-shoting
learning in other applications, to our knowledge, these meth-
ods have not been applied to solving the critical sample
scarcity issue in rolling bearing fault diagnosis.

In this paper, we proposed a few-shot learning neural net-
work approach for rolling bearing fault diagnosis with limited
data. Our contribution in this paper includes:

(1) We proposed a few-shot learning approach for bearing
fault diagnosis with limited data, which is achieved
by developing a siamese neural network model based
on deep convolutional neural networks with wide first-
layer kernels (WDCNN) [8].

(2) We demonstrated for the first time that few-shot learn-
ing based diagnosis models can boost the performance
of fault diagnosis by making full use of the same or dif-
ferent class sample pairs and recognize the test sample
from the classes that have only a single or few samples.
For example, in small training set with 90 training sam-
ples, our method can achieve an accuracy of 92.56%
compared to 80.36% without using few-shot learning
strategy.

(3) As the number of training samples increases, the test
performance does not monotonically increase when the
test data set has a significant difference from training
data set.

This rest of the paper is organized as follows: Section II
describes the few-shot learning based fault diagnosis
algorithm. Section III presents the experiments, results and
discussion. Section IV concludes the paper.
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FIGURE 2. Flowchart of the few-shot learning based fault diagnosis.

II. METHODS
A. FEW-SHOT LEARNING GENERAL STRATEGY
The few-shot learning general strategy is shown in Figure 1.
It is based onmultiple applications of one-shot learning. First,
it trains a model with a collection of sample pairs with the
same or different categories. Input is a sample pair with the
same or different classes (x i1, x

i
2). Output is the probability

p(x i1, x
i
2) that two input samples are the same. Unlike tra-

ditional classification, the performance of few-shot learning
is typically measured by N -shot K -way testing as shown
in Figure 1(c).
In one-shot K -way testing, it is given a test sample x̂ to

classify and a support set S as shown in Equation 1, which
contains K samples and each sample has a distinct label y.

S = {(x1, y1), . . . , (xK , yK )} (1)

And then it classifies the test sample according to the most
similar sample in the support set as shown in Equation 2.

C(x̂, S) = argmax
c

(P(x̂, xc)), xc ∈ S (2)

In N -shot K -way testing, the model is given a support
set consisting of K different classes each having N samples
(S1, . . . , SN ). And then the model has to determine which of
the support set classes the test sample should belong to as
shown in Equation 3.

C(x̂, (S1, . . . , SN )) = argmax
c

(
N∑
n=1

P(x̂, xcn)), xcn ∈ Sn (3)

B. FEW-SHOT LEARNING FRAMEWORK FOR
BEARING FAULT DIAGNOSIS
The few-shot learning for bearing fault diagnosis is based
on multiple applications of one-shot learning. As shown
in Figure 2, there are three steps in few-shot learning: data
preparation (top), model training (left), and model testing
(right). The details of data preparation will be introduced

FIGURE 3. Few-shot learning model based on CNNs (WDCNN).

in Section III. The input of model training is the collection of
samples pair with the same or different category labels. The
output of model training is a probability distance to judge if
the pair are of the same or different category. The details of
model testing will be explained in below subsection.

Figure 3 shows our few-shot learning model for bearing
fault diagnosis, which is a siamese neural network [37] based
on deep convolutional neural networks with wide first-layer
kernels (WDCNN) [8]. In this network model, two identical
WDCNNnetworks are set up with the same network architec-
ture and shared weights. The WDCNN network architecture
as detailed in Table 1 is setup the same as [8]. It first uses
wide kernels to extract features, and then uses small kernels
to acquire better feature representation. This design strategy
is due to the fact that designing a model with all small kernels
is unrealistic and small kernels at the first layer can be eas-
ily disturbed by high frequency noise common in industrial
environments.

1) INPUT
The input data is a sample pair of the same or different
classes. We directly use the deep convolutional neural net-
work (WDCNN) to extract features from the raw vibration
signals. This is called end-to-end deep learning approach.
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TABLE 1. Detail of few-shot learning model based on CNNs (WDCNN).

2) DISTANCE METRIC
LetM indicate theminibatch size and i, the ith minibatch. The
twins sub-networks are optimised based on the distance met-
ric between their outputs, which is calculated by Equation (4)
where f is the WDCNN neural network.

d2f (x
i
1, x

i
2) =

∥∥∥f (x i1)− f (x i2)∥∥∥ (4)

3) OUTPUT
The output is the ‘‘distance’’ of the feature vector outputs
from the WDCNN twins in terms of whether their outputs
are considered quite similar versus being quite dissimilar. It is
obtained by Equation (5) which represents the probability that
two input samples are the same, where sigm is the sigmoid
function and FC is a dense fully connected layer.

P(x i1, x
i
2) = sigm(FC(d2f (x

i
1, x

i
2))) (5)

4) LOSS FUNCTION
Let t j = y(x i1j, x

i
2j) be a length-M vector which contains the

labels for the minibatch. We let t ij = 1 whenever x i1j and x
i
2j

are from the same fault class and t ij = 0 otherwise, where j is
the jth sample pair from ith minibatch. The loss function is a
regularized cross-entropy as:

L(x i1, x
i
2, t

i) = t ilog(P(x i1, x
i
2))+ (1− t i)log(1− P(x i1, x

i
2))

+λT |W |2 (6)

5) OPTIMIZATION
The network is optimized by Adam optimizer, which com-
putes individual adaptive learning rates for each parameter.
The parameters are updated by:

m(T+1)
w = β1m(T )

w + (1− β1)∇wL(T )

v(T+1)w = β2v(T )w + (1− β2)(∇wL(T ))2

m̂w =
m(T+1)
w

1− (β1)T+1

v̂w =
v(T+1)w

1− (β2)T+1

w(T+1)
= w(T )

− η
m̂w√
v̂w + ε

(7)

where w(T ) means the parameters at epoch T, L(t) is the loss
function, β1 and β2 are the forgetting factors for the first

TABLE 2. Description of rolling bearing datasets.

and second moments of gradients respectively, and m and v
are moving averages.

6) TRAINING
The few-shot learning training for fault diagnosis are shown
on the left in Figure 2. The input is a sample pair with the
same or different clasess (x i1, x

i
2), where i indexes the ith mini-

batch. Output is the probability distance p(x i1, x
i
2) as detailed

in Equation 5, then the loss is calculated by Equation 6 and
the model is optimised by Equation 7.

7) N-SHOT K -WAY TESTING
We use multiple one-shot K -way testings to simulate N -shot
K -way Testing. As for five-shot N-way testing task, it is
the same as N -shot K -way testing task. We repeat one-shot
K -way testing five times as the five-shot data support set
while each time the data support set S is randomly selected
from the training data. After five times of one-shot N-way
testing, we get five probability vector (P1,P2,P3,P4,P5) and
calculate the maximum sum of probability of the same label
by Equation 3.

III. EXPERIMENTS AND RESULTS
To verify the performance of our few-shot learning algo-
rithm for limited data fault diagnosis, we selected 12k drive
end bearing fault data in the Case Western Reserve Uni-
versity (CWRU) Bearing Datasets [44], [45] as the original
experiments data. As shown in Table 2, there are four types of
the bearing fault location: normal, ball fault, inner race fault,
and outer race fault. Each fault type contains three types:
0.007 inches, 0.014 inches, and 0.021 inches respectively,
so we have ten types fault labels in total. Each fault label
contains three type loads of 1, 2 and 3 hp (motor speeds
of 1772, 1750 and 1730 RPM respectively).

In experiments, each sample is extracted from two vibra-
tion signals as shown in Figure 2. We use half of the vibration
signal to generate training samples and the rest to generate
test samples. The train samples are generated by the sliding
window of size 2048 points sliding with 80 points shift step.
The test samples are generated by the same size sliding
window sliding without overlap. Datasets A, B and C are
under different work conditions with loads of 1, 2 and 3 hp
respectively, and each contains 660 training samples and
25 test samples. Datasets D is under the three loads of work
conditions and contains 1980 training samples and 75 testing
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TABLE 3. Details of three methods in our benchmark study.

samples in total. In the following experiments, comparing
with the baselineWDCNNmethod, we will discuss the effect
of the proposed few-shot learning method to address the
limited data fault diagnosis challenge. For following exper-
iments, the detail compares baseline WDCNN and few-shot
(One-shot and Five-shot) methods are shown in Table 3.
It should be noted that the A, B, C, and D datasets are used to
generate the data set in different experiments.

A. EFFECT OF THE NUMBER OF TRAINING
SAMPLES ON PERFORMANCE
In this experiment, we will evaluate the effect of proposed
few-shot learning method to address the first two challenges
in limited data fault diagnosis: 1) industry systems are not
allowed to run into faulty states due to the consequences,
especially for critical systems and failures; 2) most electro-
mechanical failures occur slowly and follow a degradation
path such that failure degradation of a system might take
months or even years [7]. We conducted a series of com-
parison experiments by setting the test dataset in Dataset D
(Table 2) as the test set and randomly selecting 60, 90, 120,
200, 300, 600, 900, 1500, 6000, 19800 samples respectively
from the training samples of the whole dataset D. For every
training set, the support vector machines (SVM) method uses
whole training sets to fit models. We searched the proper
parameters for the SVM algorithm. Other methods use 60%
samples as the training set and the rest samples as the valida-
tion set. Then we evaluated the effect of the sample number
on the performance of each training model. For each training
set size, we repeated the sample selection process five times
to generate five different training sets to deal with the bias of
randomly selected small training sets. For each such random
training sample set, we repeated the algorithm training and
testing experiment four times to deal with the randomness
of the algorithms. Together, for every series of experiments,
we repeated twenty times in total.

First we compared the performances of deep learning
algorithms and conventional machine learning algoithm,
the SVM. As shown in Figure 4, it is clear that the accuracies
of deep learningmethods aremuch higher than those of SVM.
For training sets with 60 samples, the WDCNN, One-shot,
and Five-shot algorithms achieved accuracies of 73.97%,
79.33%, and 82.80% respectively, which are all sharply
higher than 18.93%, the accuracy of SVM. For training
sets with 90 samples, the WDCNN, One-shot, and Five-
shot algorithms achieved accuracies of 77.39%, 88.41%,
and 91.37% respectively, which are all sharply higher than

FIGURE 4. Diagnosis results of the proposed few-shot (one-shot and
five-shot) learning using different numbers of training samples,
compared with WDCNN.

26.56%, the accuracy of SVM. We also found that the accu-
racies of SVM, WDCNN and few-shot learning all increase
while their standard deviations decline with increasing num-
ber of training samples. Next, we check whether few-shot
learning algorithm performs better than standard WDCNN
in experiments with small number of training samples (e.g.
with 60, 90 and 120 samples). For all three training sample
sizes, our few-shot model performs better with an average
of 9%higher in accuracy than theWDCNNmodel. Especially
when the training set size is set to 90, the few-shot model
gets 13% higher in accuracy than the WDCNN model. When
the number of training samples is further increased to 200,
300, and 600, results in Figure 4 shows that the performance
of few-shot is slightly worse than that of WDCNN. The
accuracies of both algorithms are actually very close and are
both higher than 94%. When the number of training samples
is even increased to 900 or more, the performances of these
two algorithms become almost the same and the accuracies
of both algorithms are higher than 98%. These performance
comparisons show that our proposed few-shot learning algo-
rithm enjoys the much better performance when trained with
limited datasets without losing too much when there are
aboundant training samples. Furthermore, it is also observed
that the accuracies of five-shot learning are consistently better
than the accuracies of one-shot learning, as shown in the third
and fourth row in Figure 4 table.

To better understand the effect of few-shot learning in lim-
ited data diagnosis, Figure 5(a),(b) show feature visualization
via t-SNE: the last hidden fully-connected layer visualization
which trained by the limited data with 90 training samples.
Figure 5(c),(d) show confusion matrix results for 90 training
samples. From Figure 5(a),(b), it is clear that the features in
the one-shot model are much more divisible than inWDCNN
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FIGURE 5. (a),(b) are feature visualization via t-SNE: the last hidden
fully-connected layer trained by 90 training samples. (c),(d) are confusion
matrix for 90 training samples results.

model, especially the 2,3,8 categories features. So in
Figure 5(c),(d) we can find that the 2,3,8 categories in the one-
shot model are easier to diagnose than in WDCNN model.

B. PERFORMANCE UNDER NOISE ENVIRONMENT
In this experiment, we will evaluate effect of the proposed
few-shot learning method to address the third challenge in
limited data fault diagnosis: working conditions of mechan-
ical systems are very complicated and change many times
from time to time according to production requirement. It is
unrealistic to collect and label enough training samples [8].
We discuss the performance under noise environment to sim-
ulate the change of working conditions in datasets D. Signal-
to-noise ratio (SNR) is defined as the ratio of signal power
to the noise power, often expressed in decibels detailed as
follows:

SNRdB = 10 log10(Psignal/Pnoise) (8)

where Psignal and Pnoise are the power of the signal and the
noise, respectively. In this case, the same as [8], the models
are trained with the original data provided by CWRU, then
tested with added different SNRwhite Gaussian test samples.
The different SNR ranges from −4 dB to 10 dB. The smaller
SNR value is, the stronger power of noise is.

Table 4 shows the results of diagnosing noise signal by the
proposed few-shot (one-shot and five-shot) learning models
and the compared WDCNN model. The greener the back-
ground color, the better the result is. It is clear that the
accuracy increases and is greener as the noise gets weak,
e.g., the average accuracy is only near 40% when the SNR
is −4 dB in 19800 training data samples, while the accuracy

TABLE 4. Performance under noise environment.

FIGURE 6. Comparing results of the different number of training data
under the noise environment.

surges to above 99% when SNR is 6 dB. And the accuracy
increase as the data number for training gets more significant
when the noise is not very strong.

As shown in Figure 6, to check the effect of the data number
for training under the noise environment, we compare results
with different training data number. From results, we easily
found that five-shot is better than one-shot. For a small num-
ber of training data, when the features between training and
test set are similar, the few-shot performance is better than
the WDCNN. e.g., as shown in Figure 6(a), when the SNR
equals to −4 dB as the features between training and test set
have a big difference, the few-shot is inferior to theWDCNN.
And when the SNR equals to 0 dB as the features between
training and test set have some difference, few-shot and
WDCNN performance are same. However, when SNR equals
to 10 dB as the features between training and test set are
similar, the few-shot is much better than theWDCNN, higher
over 10%. Besides, when there has sufficient training data,
the few-shot is better than the WDCNN. e.g., as shown in
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FIGURE 7. Comparing results of different noise environments under a
series of number of training samples.

Figure 6(b), the WDCNN is better than few-shot as the train-
ing data size increases. However, as shown in Figure 6(c),
when the training data size increases to a certain amount,
the gap between few-shot andWDCNN is decreasing. And as
shown in Figure 6(d), when there is sufficient training data,
the few-shot is better than the WDCNN.

In Figure 7, we compare the test results of three models
under different noise environments. In Figure 7(a),(b) with
8 dB and 4 dB SNR respectively, there is less difference
between the training set and the test set. The test results
become better as the number of training samples increases.
However, in Figure 7(c),(d) with 0 dB and −4 dB SNR
respectively, there is large difference between the training set
and the test set. The test performance does not monotonically
increase as the number of training samples increases. Because
the model trained by a small number of training samples is
mainly considered to be under-fitting and the test accuracy
increases as the number of training samples increases. Then
when the number of training samples increases with the larger
difference between training and test sets, the trained model
performs well in the training set, but it may easily show over-
fitting on significantly different test sets which will cause test
accuracy decrease.

As mentioned above, as the number of training sam-
ples increases, the test performance does not monotonically
increase when the test data set has a significant difference
from the training data set. Therefore, the appropriate number
of training samples could get the best results on significant
different test sets.

C. PERFORMANCE UNDER NEW CATEGORIES
In this experiment, we will evaluate effect of the proposed
few-shot learning method to address the fourth challenge
in limited data fault diagnosis: especially in real-world
applications, fault categories and working conditions are usu-
ally unbalanced. It is thus difficult to collect enough sam-
ples for every fault type under different working conditions.
Wemainly pay attention to unbalanced fault categories.When
new categories appear, traditional deep learning methods

FIGURE 8. Comparing performance under unseen categories.

TABLE 5. Scenario setting for domain adaptation.

need to retrain to deal with the new categories diagnosis.
However, different from the traditional deep learning meth-
ods, the few-shot learning model can be directly used in the
new category diagnosis by just giving a few new category
samples. We train the WDCNN model from all categories
and the few-shot model from 30% randomly new categories
to all see categories in datasets D. We repeated each such
experiment ten times to deal with the randomness of the
algorithms.

The results are shown in Figure 8. The accuracy of the few-
shot raises with the decrease of number of new categories.
The accuracy of five-shot is better than the accuracy of one-
shot. For the limited data with 90 training samples, the accu-
racy of few-shot is higher than the WDCNN model when
number of new categories are equal or under 20%. Besides,
for enough training samples, the accuracy of few-shot can
get over 90% performance when number of new categories
are equal or under 20%. Therefore, few-shot learning could
enhance performance well under a few new categories. Thus,
when new categories appear, the few-shot learning model
could be directly used in the new category diagnosis and get
better performance.

D. PERFORMANCE UNDER NEW WORK CONDITIONS
In this experiment, we will evaluate effect of the proposed
few-shot learning method to address the fourth challenge
in limited data fault diagnosis. We mainly pay attention in
unbalanced working condition. When new categories appear,
wewould like to evaluate howwell the few-shot performance.
We use domain adaptation to simulate new work conditions.
The description of scenario setting for domain adaptation is
illustrated in Table 5, which the training or test set A, B, and
C same as Dataset A, B, and C in Table 2.
As shown in Figure 9, for the limited data with 90 training

samples, the average accuracy of few-shot learning method in
the six scenarios performs better than the WDCNN method.

VOLUME 7, 2019 110901



A. Zhang et al.: Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning

FIGURE 9. The six new working condition domain shifts results on the
Datasets A, B and C.

TABLE 6. Complexity of tree datasets.

FIGURE 10. Comparing results of the different noise environment under
a series of training data number.

However, with enough training samples, the average accu-
racy of the WDCNN method in the six scenarios is more
better than the few-shot learning method. Besides, both these
methods perform poorly when training with set C and testing
in set A. As shown in Table 6, as set A’s speed is higher
than set B, we think that set A is more complicated than
set B, same as set B and set C. Therefore, when training with
lower speed set C and testing in higher speed set A, there has
lots features change. Thus it causes the poor performance.
It can also be confirmed in Figure 10 results. As shown
in Figure 10(a), when training with the complicated set A
and testing in set C, the features change a little. Thus the
test performance increases as the number of training samples
increase. However, as shown in Figure 10(b), when training
with the set C and test in the complicated set A, the features
change a lot. Thus the test performance does not monotoni-
cally increase as the number of training samples increase.

The few-shot learning method could not be better when
training with limited data to enough data and the WDCNN
method could. However, the average accuracy of WDCNN
method not better than the WDCNN trained with 200 labeled
data (Figure 4). We think that it is unreasonable to use the
model trained only from one load condition and directly used
in a new load, and the effect is not satisfactory. Because the
model is trained only for one load situation, it is difficult
for the model to learn the knowledge of the changes in the
category features caused by load changes. Thus that may
cause poor performance under new loads. So we designed
the new scenario setting for domain adaptation illustrated

TABLE 7. New scenario setting for domain adaptation.

FIGURE 11. The new three new working condition domain shifts results
on the Datasets A, B and C.

in Table 7, by training with the labeled signals under two load
and testing in unlabeled signals under new load.

As shown in Figure 11, for the limited data with 90 training
samples, the average accuracy of these methods in the new
scenario setting is better but not significate than in the old
scenario setting. But when there are enough samples which
allow to effectively learn the knowledge of the changes in
the category features caused by load changes, the average
accuracy of both methods perform much better than in the
old scenario setting. For the few-shot method, it is higher
over than 15%. For WDCNN method, it is higher over than
7%. Besides, in the new scenario setting, we find the few-shot
performs better than the WDCNN.

IV. CONCLUSION
This paper presents a few-shot learning approach for rolling
bearing fault diagnosis with limited data. Our algorithm
addresses one of the major challenges in limited data fault
diagnosis: the difficulty of obtaining sufficient numbers of
samples in data-driven fault diagnosis. Our few-shot fault
diagnosis model is based on the siamese neural network for
one-shot learning. It works by exploiting sample pair of the
same or different categories, measuring the ‘‘distance’’ of two
WDCNN twins feature vector outputs in terms of whether
their outputs are considered quite similar versus dissimilar.

Our method was validated on the CWRU Datasets with
extensive experiments by comparing its performance with
baseline (the popular WDCNN fault diagnosis model).
The experimental results showed that few-shot learning
is effective for fault diagnosis with both limited data or
sufficient data. By comparing testing results under dif-
ferent noise environments, we found that large difference
between the training and test sets may cause the test per-
formance to not monotonically increase as the number of
training samples increases. When evaluated over test sets
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with new fault types or new working conditions, few-shot
models work better than the baseline trained with all fault
types. Furthermore, to facilitate open research in the field
of bearing fault diagnosis, all our models in this work
and datasets are open sourced and can be downloaded at
the URL (https://mekhub.cn/as/fault_diagnosis_with_few-
shot_learning/).
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