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ABSTRACT Neuromorphic computing systems are an emerging field that takes its inspiration from
the biological neural architectures and computations inside the mammalian nervous system. The spiking
neural networks (SNNs) mimic real biological neural networks by conveying information through the
communication of short pulses between neurons. Since each neuron in these networks is connected to
thousands of others, high bandwidth is required. Moreover, since the spike times are used to encode
information in SNN, very low communication latency is also necessary. On the other hand, the combination
of Two-dimensional Networks-on-Chip (2D-NoC) and Three-dimensional Integrated Circuits (3D-ICs) can
provide a scalable interconnection fabric in large-scale parallel SNN systems. Although the SNNs have
some intrinsic fault-tolerance properties, they are still susceptible to a significant amount of faults; especially,
when we talk about integrating the large-scale SNNmodels in hardware. Consequently, the need for efficient
solutions capable of avoiding any malfunctions or inaccuracies, as well as early fault-tolerance assessment,
is becoming increasingly necessary for the design of future large-scale reliable neuromorphic systems. This
paper first presents an analytical model to assess the effect of faulty connections on the performance of
a 3D-NoC-based spiking neural network under different neural network topologies. Second, we present
a fault-tolerant shortest-path k-means-based multicast routing algorithm (FTSP-KMCR) and architecture
for spike routing in 3D-NoC of spiking neurons (3DFT-SNN). Evaluation results show that the proposed
SP-KMCR algorithm reduces the average latency by 12.2% when compared to the previously proposed
algorithm. In addition, the proposed fault-tolerant methodology enables the system to sustain correct traffic
communication with a fault rate up to 20%, while only suffering 16.23% longer latency and 5.49% extra
area cost when compared to the baseline architecture.

INDEX TERMS Spiking neural networks, performance assessment, fault-tolerant, k-means based multicast
routing, scalable architecture.

I. INTRODUCTION
Brain-inspired computing or neuromorphic computing, is a
biologically inspired approach, created from highly con-
nected neurons to not only model neuroscience theories
but also solve machine learning problems. The term neuro-
morphic was first introduced by Carver Mead in 1990 [1],
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where it referred to very large scale integration (VLSI)
with analog components to mimic biological neural systems.
Such systems can be categorized as non-spiking and spiking
approaches.

Spiking neural networks (SNNs) attempt to mimic the
information processing in the mammalian brain based on par-
allel arrays of neurons which communicate via spike events.
Unlike the typical multi-layer perceptron networks where
neurons fire at each propagation cycle, the neurons in the
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SNN model fire only when a membrane potential reaches a
specific value. In SNNs, information is encoded using various
encoding schemes, such as coincidence coding, rate coding or
temporal coding [2]. SNNs typically employ integrate-and-
fire neurons model [3], [4] in which a neuron generates volt-
age spikes (roughly 1ms in duration per spike) that can travel
down nerve fibers if it receives enough stimuli from other
neurons with the presence of external stimuli. These pulses
may vary in amplitude, shape, and duration; but, they are gen-
erally treated as identical events. The Hodgkin-Huxley [5]
conductance-based neuron is often used to efficiently model
the non-linear and stochastic dynamics of the ion channel in
a biological neuron. However, the Hodgkin-Huxley model is
too complicated to be used for a large-scale simulation or
hardware implementation.

Recently, a number of deep SNNs have been proposed [6].
These networks show success in different pattern recognition
tasks [7], [8]. However, although these models are known as
multi-layer, they do not have many trainable layers when
compared to traditional deep neural networks. This is due to
the lack of an efficient learning rule to directly train deep
spiking network. On the other hand, large-scale SNNs are
used to simulate the complex activity of the brain. For exam-
ple, a 2.5-million-neuron model, named Spaun, is presented
in [9] (see Fig. 1 (a, b)). Spaun captured many aspects of
neuroanatomy, neurophysiology, psychological behavior, and
also performed well at digit recognition task. In a deep SNN,
the communication between neurons plays an integral part in
their implementation. By mapping a number of neurons into
a planar structure and stacking the resulting planar die on top
of one another with Through-Silicon Vias (TSVs), as Fig. 1
(c), communication latency can be greatly reduced.

The software simulation of SNNs is a flexible method
for investigating the behavior of neuronal systems. However,
the simulation of a large (deep) SNN system in software is
slow. An alternative approach is a hardware implementation
which provides the possibility to generate independent spikes
accurately and simultaneously output spikes in real time.
Hardware implementations also have the advantage of com-
putational speed-up over software simulations and can take
full advantage of their inherent parallelism. Specialized hard-
ware architectures with multiple neuro-cores could exploit
the parallelism inherent within neural networks to provide
high processing speeds with low-power, which make SNNs
suitable for embedded neuromorphic devices and control
applications.

A. BACKGROUND AND MOTIVATION
In an efficient SNNwith a proper neuron and networkmodels,
the arrival time of a synaptic input, such as a Dirac delta
function or a shaped post-synaptic potential (EPSP/IPSP),
to a neuron has a significant effect on the time of the output
(i.e., a spike) of the given neuron (referred as the output
time). As a result, any timing violations affect the proper
functioning (firing) of the spiking neurons, as shown in Fig. 2,
and also the on-chip learning capability of the whole system.

FIGURE 1. Large-scale 3D neuromorphic architecture example. This
figure is inspired by the anatomical and functional architecture of
Spaun [9]. (a) The anatomical architecture of Spaun indicates major brain
structures and their connectivity. (b) The architecture of Spaun, where
thick black lines illustrate communication between elements of the
cortex while thin lines show connectivity between Basal Ganglia and the
cortex. (c) 3D neuromorphic architecture using through silicon vias (TSVs)
as vertical connections between layers that can deal with the high
connectivity challenge of Spaun architecture when it is partitioned (black
dot boxes) and mapped the 3D structure.

A shared bus as a communication medium is a poor choice
for implementing a large-scale complex SNN chip/system
with multicast routing because adding neurons decreases the
communication capacity of the chip and may affect the neu-
rons’ firing rate due to the increasing length of the shared
bus. Moreover, the non-linear increase in neural connectivity
is too significant to be directly implemented using a dedicated
point-to-point communication scheme.

Two-dimensional packet-switched Network-on-Chip
(2D-NoC) [10] has been considered as a potential solu-
tion to deal with the interconnection problems found in
previously proposed shared communication medium based
SNNs [11], [12]. However, such interconnect strategies make
it difficult to achieve high scalability with low power con-
sumption, especially in large-scale SNN chips. Apart from
the packet-switching scheme, which we considered in this
work, the circuit-switching approach which has, compared
to packet-switching, guaranteed throughput, lower hardware
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FIGURE 2. example of the connection-fault effect on the firing rate: (a) a postsynaptic neuron (N4) receiving incoming
spikes from three pre-synaptic neurons, (b) with no connection fault, the firing rate = 1, (c) with the N1-to-N4 connection
fault, the firing rate = 0, (d) long latency of a connection with an inefficient fault-tolerant routing algorithm resulting in the
firing rate = 0.

complexity, and higher energy efficiency may also be used
to explore the performance of different NoCs. However,
the circuit-switching approach has a longer setup time.

In the past few years, the benefits of 3D-ICs and
mesh-based NoCs have been fused into a promising archi-
tecture opening a new horizon for IC design, especially in
AI-powered chips. The parallelism of NoCs can be enhanced
in the third dimension thanks to the short wire length, and
low power consumption of the interconnects of 3D-ICs. As a
result, the 3D-NoC paradigm is considered to be one of the
most advanced and auspicious architectures for the future
of IC design. 3D-NoCs are capable of providing extremely
high bandwidth, and low power interconnects [13] to satisfy
the high requirements of emerging artificial intelligence (AI)
applications. When combining 3D-NoC and SNN, a spik-
ing neuron can be considered as a PE (neuro-core). The
inter-neuron connectivities are implemented in the form of
transmitting spike packets/flits via the scalable interconnec-
tion network. In this context, the PEs refer to the Spiking
Neuron Processing Cores (SNPCs) attached to the 3D-NoC
routers, theNoC channels are analogous to the synapses of the
neurons, and the NoC topology refers to the way the neurons
are interconnected within the network.

One of the main problems of hardware implementations
for SNNs is their reliability potential. Although it has been
claimed that SNNs have some intrinsic fault-tolerance prop-
erties thanks to their massive and parallel structures inspired
by the biological neural models, it is not always the case
when it comes to practical cases [14]. In fact, with the
challenges inherited from the continuing shrinkage of semi-
conductor components, the implementation of SNNs in hard-
ware exposes them to a variety of faults [14]. The fault
risk becomes even more important as we move towards
integrating large-scale SNNs for embedded systems when
the yield becomes a major problem [15]. When considering
the inter-neuron communication reliability, faults may affect

the system performance, especially when they occur in crit-
ical applications (e.g., aerospace, autonomous car, biomedi-
cal, etc.). Such failures can result in undesirable inaccuracies
or even irreversible severe consequences. In SNNs, when
faults occur in the inter-neuron connections, the postsynaptic
neurons become silent or near silent (low firing activity). As
shown in Fig. 2 (c), at the presence of a broken link in the
N1-to-N4 connection, the membrane potential of N4 fails to
reach the threshold that would allow it to fire an output spike,
as it is the case in Fig. 2 (b). This leads to a reduction in the
firing rate of the post-synaptic neuron. Consequently, it may
have impact on the overall performance of SNNmodels based
on the rate coding method [16]. Neurons with low firing rates
become more susceptible to noisy firing rates and temporal
jitter of spikes resulting in an increase of the variance [17].
As a result, it demands efficient fault-tolerant techniques.
In suchmechanisms, the recovery time is one of the important
requirements. The long latency of a fault-tolerant routing
method may influence the firing rate, as shown in Fig. 2
(d). It may impact especially, SNN models using a temporal
coding method that is based on the relative timing between
spikes. Therefore, the challenge to find efficient fault-tolerant
solutions is becoming more important with the integration of
large SNNs onto silicon.

Routing algorithms are considered as one of the most effi-
cient recovery mechanisms in SNNs as they play a vital role
in neuron communication performance. A routing algorithm
can influence the load balance across the network and the
overall latency of a system [10] in fault-free scenarios. Since
the traffic pattern in a given SNN is in a one-to-many fashion,
where a pre-synaptic neuron sends spikes to a subset of post-
synaptic ones, the use of conventional unicast-based routing
in large-scale SNNs is inefficient [18]. In addition, when
considering fault-tolerance requirements, the routing algo-
rithm should be carefully chosen tominimize the inter-neuron
communication latency; otherwise, the postsynaptic node
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accuracy can be compromised despite the fact that failure has
been worked around. Fig. 2 (d) illustrates a clear example of
such a case. In this figure, we can see that the long latency
due to an inappropriate routing can prevent the postsynaptic
neuron from timely firing output spike.

B. CONTRIBUTIONS
The main contributions of this work are summarized as
follows:
• A comprehensive study providing a mathematical model
to analyze the effects of link faults on the performance
of 3D-NoC of spiking neurons architecture with differ-
ent neural network topologies and communicationmeth-
ods. The goal is to provide a performance assessment
that helps designers easily understand and evaluate the
effect of faults on the system performance before the
actual hardware development of the SNN system.

• A low-latencymulticast routing algorithm for spike rout-
ing in 3D-NoC of spiking neurons architecture. The pro-
posed algorithm, named SP-KMCR, is an improvement
over our previously proposed KMCR algorithm [19].
It can eliminate a potential traffic congestion in the
network due to the spike concentration in the centroid.
Instead, SP-KMCR alleviates this congestion by allow-
ing source nodes to send their spike packets through the
shortest path.

• A fault-tolerant routing mechanism to deal with link
faults in the 3DFT-SNN system. It composes of
pre-defined primary and backup branches to route spike
packets in both cases of with and without link faults.
Furthermore, a fault management algorithm is also pro-
posed to deal with the presence of faults.

• Architecture, hardware design and evaluation of the
proposed 3DFT-SNN system. The proposed 3DFT-SNN
performance and reliability are validated based on an
RTL-level implementation, while the area/power anal-
ysis is performed using 45-nm CMOS technology.

The remainder of this paper is organized as follows. In
Section II, we present some of the prior works related to the
proposed research. Section III presents the analytic model
for the 3D-NoC of spiking neurons architecture. Section IV
describes the main hardware components of the proposed
architecture. We dedicate Section V for the proposed routing
algorithm. Experimental results are shown in Section VI.
We discuss the challenges that should be addressed in the
proposed architecture in Section VII before we end this paper
with concluding remarks in Section VIII.

II. PRIOR WORKS
This section surveys related works on SNN implementations,
focusing mainly on those that are based on packet-switched
neurons communication (synaptic connections) and those
related to fault tolerance in neural networks. These surveyed
works have shown a functional expression of scalability for
large-scale SNN hardware development. Research in this
field follows two approaches; software simulation approach

and full-custom hardware design approach. An example of
the software-based simulation approach is the Blue Brain
project [20]. The Blue Brain system can simulate up to
108 simple neurons or up to 104 very complex neurons aswell
as local and global synaptic plasticity rules defined for each
neuron. The simulation environment is supported on the IBM
Blue Gene/Q, a supercomputer with 65,536 cores. The power
consumption of this approach is in the order of hundreds of
kilowatts, which is costly. the system also is somewhat slow
(i.e., low level of parallelism), and this hinders it from achiev-
ing biologic real-time execution on large-scale networks. As
an alternative, full-custom hardware implementations were
proposed to best the challenges of the software simulation
stated above. The full-custom hardware implementations are
based on combined hierarchical buses, point-to-point, or NoC
interconnects, to support the routing of spikes in SNN sys-
tems. The rest of this section surveys the principal proposed
works. In Fig. 3, we present a summary of techniques of SNN
routing on different interconnect platforms.

A. SPIKE ROUTING HIERARCHICAL BUS
The approaches proposed in [22] and [23] are low-cost
shared-bus based SNN architectures that support multicast
and broadcast routing, but they have a drawback in scalability.
The architectures of the works proposed in [29] and [30],
boosted throughput; but, were constrained to small-size neu-
ral networks.

B. SPIKE ROUTING 2D NETWORK-ON-CHIP
Several 2D-NoC interconnect SNN research projects
are currently ongoing [11], [12], [18], [26], [31]. Hereafter,
we focus mainly on surveying some familiar projects.
The Neurogrid project [32] uses analog computation to
emulate ion-channel activity and a digital communica-
tion scheme to support synaptic connections. The Neu-
rogrid has 16 neuro-cores and each can hold a total
of 256×256 quadratic integrate-and-fire neuron models. For
communication between close neuro-cores, it uses an external
FPGA and bank of SRAMs. The Neurogrid has a constraint
on the number of neurons it can accommodate on a layer (up
to 2,175 neurons), and this prevents it from offering biological
real-time performance [32].

The H-NoC (Hierarchical NoC) [12] is based on the
EMBRACE neuro cell which provides the leaky integrate
& fire neuron model with dynamic synapses, a packet
decoder/encoder, and a network interface to communicate
with digital NoC routers. It is organized into three layers:
module, tile, and cluster. At the base, each module router can
connect ten neural cells, each as a main neural computation
element can support multiple neurons. In the same manner,
ten module routers are connected to a tile router. An attrac-
tive work in [33] proposed a combination of hierarchical
architecture and mesh routing strategies. The architecture
consists of multiple levels of routers. Besides, there are many
works [34], [35] that adopt the address event representa-
tion (AER) communication protocol. This protocol is suitable
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FIGURE 3. Summary of spiking neural network architectural routing methods on various interconnect platforms.

for implementing event-based SNNs. While [34] proposed a
hierarchical address event architecture, [35] presentedmodu-
larized AER architecture with source and destination routing
approaches.
FACETS [36] uses a mixed-signal and high-density hard-

ware neural network architecture based on a combination of
analog neurons and a digital multilayer bus communication
scheme To support the neurons interconnection, this archi-
tecture uses a combination of hierarchical buses for han-
dling neuron communication inside the wafer, and off-wafer
routers implemented on an FPGA based on a 2D-torus topol-
ogy. FACETS can offer hardware acceleration with up to 10
µs inter-spike interval per wafer. However, the architecture
consumes a large amount of power estimated to 1kW per
wafer [36].
SpiNNaker [21] is another project that proposes a fully

digital multiprocessor architecture for executing spiking neu-
ral network applications. The interconnection between each
node is handled by a NoC using six links, which is wrapped
into a triangular lattice; this lattice is then folded onto a sur-
face of a toroid. A node incorporates 18 ARM968 processor
cores (each of them emulating up to 1,000 neurons) and two
NoC routers, one for handling the communication between
the microprocessors and the peripherals, and the second
for controlling the communications between processors and
neighbor nodes. Each node can offer up to 16,000 Izhikevich
neuron models, having a power consumption budget of 1W.

Another work, named ClosNN, is presented in [11]. The
ClosNN system uses a customized NoC architecture based on
Clos topology for the neural network. It is designed to over-
come with a high diameter of mesh and low bisection band-
width of a hierarchical tree. The architecture suffers from
wire/router physical limitations. On the other hand, a ring
topology interconnect architecture was proposed in [37] to
achieve fixed latency.

C. SPIKE ROUTING 3D NETWORK-ON-CHIP
The work in [38] investigated the architecture and design
of a 3D stacked neuromorphic accelerator. The architecture
targeted processing applications on a CMOS vision sensor

next to the first neural network layer. The authors claimed
that only modest adaptations would be required to use the
system for other applications. The 3D stacking architecture
used face-to-face bonding of two 20cm wafers using micro-
bumps.

A recent work was presented in [27] about a real-time
digital neuromorphic system for the simulation of large-scale
conductance-based SNNs. The architecture was implemented
in six Altera Stratix III FPGA boards to simulate one mil-
lion neurons [27]. An AERmulticast routing mechanism was
used for inter-neuron communications. Although the NoC
architecture meets the requirements of the system, it is hardly
deployed in embedded neuromorphic systems [39].

Apart from the works mentioned above, routing methods
for NoC-based SNNs need to be taken into consideration.
This is because the spike routing method affects the load
balance across the network and also the spike latency, as pre-
viously stated in Section I. In general, these works can be
classified as unicast-based [40], path-based [41], and tree-
based [42]. A comparison between these methods is pre-
sented in [41].

D. FAULT-TOLERANCE FOR NEURAL NETWORK
ARCHITECTURES
There have been many works proposed to solve the faults
occurrence in hardware implementations of neural networks.
In [14], authors surveyed fault tolerance in neural networks.
Naeem et al. [43] presented a new learning rule mimicking
self-repair capability of the brain, in which the learning rule
could re-establish the firing rate of neurons when synaptic
faults occur. Another self-repairing hardware architecture
was proposed in [44]. This architecture features self-detect
and self-repair synaptic faults, and maintains the system per-
formance with a fault rate of 40%. However, the experiment
was taken with only two neurons, and the architecture may
suffer a scalability limitation due to its area overhead. In
SpiNNaker [28], an emergency routing was proposed to deal
with congested or broken links in a 2D-NoC torus topology.
The algorithm is based on redundancy in the NoC architecture
to automatically redirect a blocked packet through adjacent

90440 VOLUME 7, 2019



T. H. Vu et al.: Fault-Tolerant Spike Routing Algorithm and Architecture

links to its destination. This enables the system to avoid the
timing violations of SNNs when congestion or faults occur.

III. COMPREHENSIVE ANALYTIC PERFORMANCE
ASSESSMENT
This section analyzes the effect of connection faults on the
performance of 3D mesh interconnect architecture over dif-
ferent spiking neural network topologies and various spike
routing methods. Our assessment was inspired by [18], [45],
in which various interconnect architectures were analyzed
under different SNN traffics. Regarding SNN topologies,
our assessment is also taken under the Hopfield neural
network (HF) and Randomly Connected neural network
(RNDC). In HF [46], each neuron sends its spikes to all
the others, presenting upper bound of the neural network
connectivity. However, RNDC [47] simply presents neural
network models which its connection probability exponen-
tially decreases with the distance between neurons. We adopt
the property of exponentially decaying connection prob-
ability from the neuro-biological data behaviour reported
in [48], which suggests that the probability of the connec-
tion between two neurons decreases exponentially with the
distance between them. Furthermore, in each neural network
topology, our assessment is performed under different spike
routing methods including unicast (UC), multicast (MC),
and broadcast (BC). The goal of this analytical model is to
help designers early understand the effect of faulty links on
the performance of their architecture over neural network
topologies and spike routing schemes.

A. ASSUMPTION AND NETWORK MODEL
We analyze the performance of a 3

√
n × 3

√
n × 3

√
n 3D

mesh architecture composing of n spiking neural processing
cores (SNPCs) and n spike routers. We assume that each
SNPC has s spiking neurons, and the link fault rate α has a
uniform distribution. Furthermore, the ‘‘O’’ notation is used
to compare the analysis results between the different spike
routing methods. With the link fault rate α, the total number
of functional links in the architecture is given by:

TL = 3(1− α)
3
√
n2( 3
√
n− 1). (1)

As in [49], the mean distance between two nodes in 3D-mesh
can be determined by:

Dist =
3√n2 − 1

3
√
n

. (2)

B. PERFORMANCE ANALYSIS OF HOPFIELD NEURAL
NETWORK
1) UNICAST-BASED SPIKE ROUTING
In unicast-based spike routing, in order to send a spike to all
the others in HF, source neuron needs to send n-1 packets.
Hence, the total number of hops for a spike is given by (3):

TotalDistHFUC = (n− 1).Dist

=
(n− 1)( 3√n2 − 1)

3
√
n

≈ n 3
√
n. (3)

From (3), the effective bandwidth of the system is deter-
mined by (4):

BWHF
eff ,UC =

w.TL

TotalDistHFUC
.fNoC .UNoC

=
3w(1− α)( 3

√
n− 1)

3√n2
.fNoC .UNoC

= O
(

1
3
√
n

)
, (4)

where w is the wire number per connection, fNoC is the
connection frequency, UNoC is the connection utilization fac-
tor for a 3D-mesh architecture. With n SNPCs, the average
spiking rate of a single SNPC is presented as (5):

f HFp,out,UC =
BWHF

eff ,UC

n

=
3w(1− α)( 3

√
n− 1)

n 3√n2
.fNoC .UNoC (5)

Besides, the maximal firing frequency for the architecture
under unicast-based spike routing:

f HFspike,max,UC =
s

Trefractory
∼=

s
10n.Tcycle

=
s.fNoC
10n

, (6)

where s is the number of neurons in a SNPC, Trefractory is the
period the neuron cannot fire again. Tcycle is the link delay
(Tcycle = 1/fNoC ). As mentioned above, in order to send a
spike, the source node needs to send n − 1 packets; thus,
it takes n.Tcycle. Here, we are not including the router delay
as it is a constant, independent of the network size. In our
analysis, we assume Trefractory ∼= 10n.Tcycle, similarly to [45].
By dividing (5) by (6), we can determine whether s neurons

can fire at the maximal rate or not. This is represented by K ,
as given in (7):

KHF
UC =

f HFp,out,UC

f HFspike,max,UC

=
30w(1− α)( 3

√
n− 1)

s 3√n2
.UNoC

= O
(

1
3
√
n

)
. (7)

In equation (7), K > 1 means that the architecture can
deliver all spikes injected by s given neurons in each SNPC.

2) MULTICAST AND BROADCAST BASED ROUTING
SCHEMES
In both MC and BC, the source node needs to send only one
packet for each spike. Therefore, the hop count is determined
by (8):

TotalDistHFMC/BC ∼= n. (8)

From (8), the efficient bandwidth, the average spiking
rate, the maximal firing frequency, and the K metric for MC
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and BC are expressed by the equations (9), (10), (11), (12),
respectively:

BWHF
eff ,MC/BC =

3w(1− α)( 3
√
n− 1)

3
√
n

.fNoC .UNoC

= O(1) (9)

f HFp,out,MC/BC =
BWHFeff ,MC/BC

n

=
3w(1− α)( 3

√
n− 1)

n 3
√
n

.fNoC .UNoC (10)

f HFspike,max,MC/BC =
s

Trefractory
∼=

s

TcycleDist

=
s 3
√
n

3√n2 − 1
.fNoC (11)

KHF
MC/BC =

f HFp,out,MC/BC

f HFspike,max,MC/BC

= O
(

1
3√n2

)
. (12)

In summary, equations (4), (7), (9), and (12) demonstrate
the effect of fault rate on the architecture performance (i.e.,
in terms of efficient bandwidth and spike rate which a given
architecture can maintain) when run on Hopfield neural net-
work. Compared to UC, MC and BC offer higher bandwidth
and the number of neurons can fire at the maximum rate.

C. PERFORMANCE ANALYSIS OF RNDC NEURAL
NETWORK
As stated in [18], we also define the connection probability
(p(a, b)) of two neurons a and b in the 3D-mesh architecture,
as (13):

p(a, b) =
C

8πλ3
e−D(a,b)/λ, (13)

where C = Nlinks = ||p(.)|| is the mean connection count per
neuron, λ is a constant presenting spatial connectivity, and
D(a, b) is Euclidean distance between a and b.

From (13), the mean distance (Dist
RNDC

) between the
connected neurons is calculated as (14):

Dist
RNDC

=
1

8πλ3

∫∫∫
x,y,z

√
x2 + y2 + z2e−

√
x2+y2+z2/λdxdydz

=
24πλ4

8πλ3
= 3λ (14)

1) UNICAST BASED ROUTING
We first consider the case of the UC where a neuron needs
to send C packets to C post-synaptic neurons. Thus, the total
distance for a single spike is determined by (15):

TotalDistRNDCUC = Dist
RNDC

.Nlinks = 3λC . (15)

Since C does not depend on the NoC dimension, C is
kept the same as [45] (C ∼=

√
n) for fair comparison with

2D-mesh. λ presents locality measurement, a small λ means
that the neurons are connected more locally, and vice versa.

For a 2D-mesh NoC, λ ∼= 3
√
n leading to optimal perfor-

mance. Thus, for a 3D-mesh NoC we can determine λ by:

λ ∼=
4
√
n. (16)

As a result, the efficient bandwidth can be represented as:

BWRNDC
eff ,UC =

3w(1− α) 3√n2( 3
√
n− 1)

3 4
√
n
√
n

.fNoC .UNoC

=
w(1− α) 3√n2( 3

√
n− 1)

4√n3
.fNoC .UNoC

= O( 4
√
n). (17)

Furthermore, the average spiking rate of a single
SNPC(f UCp,out ), the maximal spiking rate (f UCspike,max), and the K
ratio for UC can be depicted as:

f UCp,out =
BWRNDC

eff ,UC

n

=
w(1− α) 3√n2( 3

√
n− 1)

n 4√n3
.fNoC .UNoC (18)

f UCspike,max =
s

10.C .Tcycle
=
s.fNoC
10
√
n
= O

(
1
√
n

)
(19)

KRNDC
UC =

10w(1− α)
√
n 3√n2( 3

√
n− 1).fNoC

s.n 4√n3.fNoC
.UNoC

= O
(

1
4
√
n

)
. (20)

2) MULTICAST AND BROADCAST BASED ROUTING
SCHEMES
For MC, a packet needs to travel along a 3λ path to reach
the first destination, and then add one hop for each of the
remaining. With a total of C destination nodes, the hop count
for each packet is therefore determined by:

TotalDistRNDC3DMesn,MC = C + Dist
RNDC

= C + 3λ (21)

Therefore, the efficient bandwidth can be formulated as:

BWRNDC
eff ,MC

∼=
3w(1− α) 3√n2( 3

√
n− 1)

√
n+ 3 4

√
n

.fNoC .UNoC

= O(
√
n). (22)

The average spike rate for each SNPC is given by:

f MCp,out =
BWRNDC

eff ,MC

n

=
3w(1− α)( 3

√
n− 1)

3
√
n(
√
n+ 3 4

√
n)

.fNoC .UNoC . (23)

With a link delay Tcycle and average distance Dist
RNDC

,
the maximal spiking frequency is determined as (24):

f MCspike,max =
s

Tcycle.Dist
RNDC =

s.fNoC
3λ

=
s.fNoC
3 4
√
n
= O

(
1
4
√
n

)
. (24)
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FIGURE 4. 3DFT-SNN system architecture high-level view.

From (23) and (24), the K ratio is given by the following
equation:

K =
f MCp,out

f MCspike,max

=
3w(1− α)( 3

√
n− 1)3 4

√
n

s. 3
√
n(
√
n+ 3 4

√
n)

.UNoC

= O
(

1
4
√
n

)
(25)

For the case of BC, the RNDC architecture is similar to
the case of Hopfield. The only difference is in the network
size (i.e., C for RNDC and n for Hopfield) As a result,
the performance metrics are kept similar to the HF neural
network.

In summary, for running RNDC on the architecture with
a link fault rate α, MC offers higher spiking frequency com-
pared to UC and BC. From the assessment analysis for both
Hopfield and RNDC neural network topologies, we can see
that the link failure causes performance degradation in the
communication architecture. This may lead to timing vio-
lations of spikes. Therefore, a low-latency fault-mechanism
routing method is imperative to deal with this issue.

IV. 3DFT-SNN ARCHITECTURE OVERVIEW
A. OVERALL SYSTEM ARCHITECTURE
This section presents the proposed 3DFT-SNN system,
as shown in Fig. 4. The system comprises several stacked 2D
layers (4×4 2D layers of spiking neural tiles stacked together
are shown as an example) of spiking neural tiles connected
by a 3D-mesh architecture. A spiking neural tile consists of
a spiking neural processing core (SNPC) and a fault-tolerant
multicast router (FTMC-3DR). SNPCs accommodate spik-
ing neurons as main computation units in the system.
FTMC-3DR routers are responsible for delivering spike pack-
ets generated by neurons in SNPCs to their post-synaptic
neurons.

B. SPIKING NEURAL TILE
1) SPIKING NEURON PROCESSING CORE (SNPC)
Fig. 5 shows the high-level architecture of the proposed
spiking neural processing core (SNPC) composing of sev-
eral main components. The decoder is responsible for

FIGURE 5. Spiking Neuron Processing Core (SNPC) architecture.

determining post-synaptic neurons for each incoming spike
(packet). After arriving the destination neural tile, the incom-
ing spike is forwarded to local SNPC by the local router.
Based on ‘‘neuron ID’’ extracted from the spike packet,
the decoder looks up in a LUT to determine the post-synaptic
neurons. This information is sent to the control unit for neural
computation. The SNPC is based on a crossbar approach sim-
ilar to other systems, such as TrueNorth [26] and ODIN [50].
Here, we use on-chip SRAMs to implement an N × N cross-
bar (N is the number of neurons). Each synapse is repre-
sented by 5 bits, 1 bit for synaptic types (i.e., excitatory and
inhibitory) and 4 bits for weight. The array of leaky-integrate
and fire (LIF) neurons is the main computation unit of the
neuron core where neural calculations are performed. Here,
we adopt the LIF model because of its trade-off between
biological computation ability and hardware complexity. The
proposed neuron core is inherited from our recent work [4].

We have to note here that there is a wide diversity of
spiking neuron models that have been proposed to mimic
spiking response, from the integrate-and-fire (IF) [3] model
and its quadratic and exponential variants tomultiple-variable
models such as the Hodgkin-Huxley (HH) [51] and Izhike-
vich (IZ) [52] models. The leaky integrate-and-fire model
adopted in this work is a simplified version and neglects many
aspects of neuronal dynamics. In particular, the input, which
may arise from pre-synaptic neurons or the current injection,
is integrated linearly. However, our proposed system can
still support other complex neuron models without major
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FIGURE 6. Fault-tolerant Multicast Spike 3D Router architecture (FTMC-3DR).

modification to the proposed algorithms and architecture.
Particularly, the memories (i.e., Syn_mem and Neu_mem)
need to be extended to accommodate more required param-
eters of the more complex neuron model. The spike packet
format also needs to be adjusted to convey other information
required for complex neuron models.

2) FAULT-TOLERANT MULTICAST 3D ROUTER
ARCHITECTURE (FTMC-3DR)
The fault-tolerant multicast 3D router (FTMC-3DR) architec-
ture is represented in Fig. 6, where the proposed routingmeth-
ods are integrated. The router is designed with four pipeline
stages: buffer writing (BW), routing calculation (RC), switch
arbitration (SA), and crossbar traversal (CT). At the first
stage, an incoming spike (packet) is stored in the Input Buffer
before being processed. Next, the source address of the packet
(Xs,Ys,Zs) is extracted and computed to determine which is
the output port. This routing calculation will be presented in
Section V. After routing computation, a request (sw_request
signal) is sent to Switch-Allocator in order to use the selected
output port. The Switch-Allocator consists of two main com-
ponents: Stall/Go flow control (the most common use in
systems [10]) andMatrix-arbiter scheduler. Here, theMatrix-
arbiter with least recently served priority is employed since
it provides fast computation, inexpensive implementation,
and strong fairness [10]. Finally, after granted (via sw_grant

signal), the packet is sent to desired output port through the
crossbar.

The proposed router relies on sophisticated recovery tech-
niques based on system reconfiguration with redundant struc-
tural resources to handle hard faults in the input-buffers,
crossbar, and links [13], [53], in addition to soft errors in
the routing pipeline stages [54]. These mechanisms aim to
alleviate faults occurring in the system.

V. K-MEANS CLUSTERING BASED FAULT-TOLERANT
MULTICAST SPIKE ROUTING ALGORITHM
A. OVERVIEW OF THE K-MEANS BASED MULTICAST
ROUTING ALGORITHM (KMCR)
Before presenting the proposed fault-tolerant multicast rout-
ing algorithm, we first survey our previous work, named
KMCR [19]. The KMCR is a multicast routing scheme for
SNN-based 3D-mesh NoCs. It is based on a tree-based rout-
ing mechanism combined with the k-means clustering algo-
rithm. The routing tree from a given source node to its desti-
nations is formed by: (1) adopting the k-means aim to divide
the destination set into balanced partitions. This mitigates
the high congestion usually found in wormhole tree-based
architectures. After applying the k-means, the centroid(s) and
its(their) labelled destinations are determined, (2) the first
part of the tree is formed from the source node to centroid(s),
and (3) the other part of the tree is a spanning sub-tree from
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FIGURE 7. Primary and backup branches.

the centroid(s) to its(their) destinations. In KMCR, k needs to
be determined before performing KMCR. Therefore, in [19],
we also proposed a method to choose the optimal value of k .

B. SHORTEST PATH K-MEANS BASED MULTICAST
ROUTING ALGORITHM (SP-KMCR)
In the KMCR, the source node sends spike packets to cen-
troids which then delivers the spikes to destinations. The use
of centroids is to guarantee that the overall distance from them
to the destinations is minimum. However, this may cause
traffic congestion on the link to the centroids since the traffic
from different sources is concentrated there.

To deal with this issue, we propose a new routing
method. After destination subsets are determined by adopting
k-means, from a given source, we first calculate the numbers
of hops from the source to all the nodes in the subsets. For
each subset, we then select a node which has the shortest path
to the source. Contrary to the KMCR, the source sends its
spike packets to the shortest path node of each subset instead
of the centroid node, and we named our new method SP-
KMCR. This may eliminate the potential problem of traffic
congestion and reduce the average latency as well. Further-
more, It is worth mentioning that our new method requires
more computations for finding the shortest path compared
to the KMCR. However, the computations in both our new
method and the previous KMCR are executed off-line, mak-
ing the runtime overhead the same for both algorithms.

C. FAULT-TOLERANT SHORTEST PATH K-MEANS BASED
MULTICAST ROUTING ALGORITHM (FTSP-KMCR)
The shortest path fault-tolerant multicast routing algorithm is
based on the SP-KMCR. The basic idea of the FTSP-KMCR
is as follows: (1) off-line computations of a primary routing
tree from a given source node to its destinations and backup
routing branches are performed. (2) After the off-line calcu-
lation, the routing tables are configured.

The illustration of the primary and backup routing
branches is shown in Fig. 7. When a faulty primary branch is
detected, some pre-planned backup branch(es) is (are) used to
bypass the faulty links. The SP-KMCRmechanism is used to

calculate the branches (red) in the primary tree. The backup
branches are alternative routes of the primary ones. For a con-
sidered router (i.e., ‘‘son’’), the backup branches (green) are
computed for the cases of faults occurring in primary connec-
tions. For example, when the father-to-son primary connec-
tion is faulty (i.e., pb1), bb1 and bb2 are the backup branches
used for maintaining the traffic between the ‘‘father’’ and
‘‘son’’. This is the same for the case where both pb2 and pb1
are faulty.

In our proposed algorithm, the computations of primary
and backup routes are critical computational tasks. These
calculations are performed off-line, and this reduces runtime
overhead of the proposed routing algorithm; hence avoid-
ing any possible timing violations in SNNs. As presented
in algorithm 1, the source and destination addresses (S,T )
and the number of subsets (clusters) (k) are pre-defined as
inputs, while output parts are a primary tree (Ppr ) from each
source to destinations and backup branches (Pbk ). After that,
the routing computation is done according to the following
steps:

• Step 1: from destination addresses, destination subsets
are determined by adopting k-means, as shown in lines
6-19.

• Step 2: finding the shortest path from each source to a
node (named spi ∈ SP) in each subset (with k subsets
T k , a given source node has k SP nodes), as depicted in
lines 20-25.

• Step 3: the first part of the primary tree is formed from
the source node to SP ones. This is done by adopting
dimension order routing (DOR) algorithm [55] from the
source to each SP node, then merge with the same route.
Alternative variations of the DOR are then adopted to
calculate backup branches in order to guarantee that
backup branches are separated from the primary routes.
For example, if the formation of the primary tree uses
DOR of ZYX, for backup branches, we use other varia-
tions of the DOR such as YZX or XZY.

• Step 4: following the same computation in step 2,
the second part of the primary tree from SP nodes to their
destinations in the same group and backup branches are
calculated.

It should be noted that only primary and backup routing
paths are off-line computations. These computation results
are then used to configure routing tables in routers. Since
the configuration process is performed during the applica-
tion mapping before running time, it does not affect the
category of online learning processes where only synaptic
strengthens (weights) are updated. This guarantees that the
computation overhead of backup branches does not affect the
recovery time of the proposed routing algorithm, and also
reduces the required hardware cost of the system.

D. FAULT MANAGEMENT ALGORITHM
After the routing information is configured, the fault-
management algorithm is implemented to handle incoming
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Algorithm 1 Off-Line Calculations of the Primary and
Backup Branches
/* Input and output */
Input: // Source node address (S), destination node addresses

(T ), and the number of subsets (k)
1 S = {s1(x1, y1, z1), s2(x2, y2, z2),. . . ,sn(xn, yn, zn)}
2 T = {t1(x1, y1, z1), t2(x2, y2, z2),. . . ,tm(xm, ym, zm)}
3 k

Output: //Primary (pr) and backup (bk) branches from S to T
4 Ppr = {ppr,1(s1 → T ), ppr,2(s2 →

T ), . . . ppr,n(sn → T )}
5 Pbk = {pbk,1(s1 → T ), pbk,2(s2 →

T ), . . . pbk,n(sn → T )}

/* Centroid node assignment */
// Initial centroid nodes by randomly

select from T
6 foreach ci ∈ C do
7 ci ← tj ∈ T
8 end

// Evaluate centroid nodes
9 do

// Calculate the distance between ti ∈ T
to cj ∈ C

10 foreach ti ∈ T do
11 d(ti, cj) = |xi − xj| + |yi − yj| + |zi − zj|
12 end

// Assign each destination to its
centroid by minimum distance

13 foreach ti ∈ T do
14 l(ti)← argmind(ci, tj)
15 end

// Update centroid
16 foreach ci ∈ C do
17 ci ← update(mean(tij))
18 end
19 while C != const;

/* Finding the shortest paths */
20 foreach si ∈ S do
21 foreach ti ∈ T k do
22 d(si, tj) = |xi − xj| + |yi − yj| + |zi − zj|
23 end
24 spi ← min(d(si, tj))
25 end

/* Creating primary and backup branches */
// from each source to SP node

26 foreach si ∈ S do
27 ppr (si, spj)← DORv.1_based_tree(si, spj)
28 pbk (si, spj)← DORv.6=1_based_tree(si, spj)
29 end

// from each SP node to its destinations
30 foreach spi ∈ SP do
31 ppr (spi, tj)← DORv.1_based_tree(spi, tj)
32 pbk (spi, tj)← DORv. 6=1_based_tree(spi, tj)
33 end

packets, as shown in Fig. 8. For a given incoming packet,
fault_flag_val is extracted to indicate whether the packet is in
the primary or backup branch. At the same time, the source
address is also used to compute its expected primary output

FIGURE 8. Fault-management algorithm applied for ‘‘son’’, on-backup,
‘‘father’’ and ‘‘grandfather’’ routers.

port. In the case where fault_flag_val = 0 (i.e., the router
plays the role of ‘‘father’’ or ‘‘grandfather’’), the calculated
output_port is then determined to be faulty or not. If it is not
faulty, the packet is forwarded to the calculated output port
in the primary branch. Otherwise, output_port is switched to
use a backup_branch, and the fault_flag_val is also initiated
to inform the next on-backup routers that this packet is on
the backup branch. In the case where fault_flag_val 6= 0
(i.e., the router role is as a on-backup or ‘‘son’’ router),
the output_port is routed through the backup route, and
fault_flag_val is also decreased by one.

VI. PERFORMANCE EVALUATION
A. EVALUATION METHODOLOGY
The proposed 3DFT-SNN is described in Verilog HDL and
evaluated in terms of average spike latency and through-
put. The system implementation is synthesized with Syn-
opsys Design Compiler and compiled using NANGATE
45nm CMOS technology. Also, experiments are conducted
with investigated applications, both with and without fault
injection.

In the experiments, we selected two well-known appli-
cations for hardware-based SNNs [56], [57], and they
are Inverted Pendulum and Wisconsin Data-set. Applica-
tion mapping method and experiment setup are similar
to [19], [58]. In this work, we mapped SNNs onto the pro-
posed system in a layer-to-layer fashion to take full advantage
of the proposed routing algorithm and the 3D mesh NoC
topology. It should be mentioned that the mapping strat-
egy of SNNs onto NoC based system plays an important
role in deploying SNN applications. It affects not only the
overall performance but also the power consumption of the
whole system. In [59], the authors proposed two mapping
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FIGURE 9. Layer-to-layer application mapping: (a) block diagram of a
node in each layer (b) Inverted pendulum (c) Wisconsin Data-set, as
presented in [58].

TABLE 1. Simulation configuration.

methods: (1) a relatively conventional approach that puts
highly communicating tasks together, and (2) an approach
based on active degrees of neurons. In our experiments,
the applications were mapped onto the 3DFT-SNN system
in a layer-to-layer manner as represented in Fig. 9. In this
mapping method, the neurons in the same network layer
are placed in the same 3DFT-SNN layer, and neurons only
send their spike to the ones in the next layer. This approach
offers multiple parallel connections between layers (vertical
connections), less congestion, and low spike latency when
compared to the 2D integration method [13]. As shown
in Fig. 9, it is easy to find that k = 1. By experiment, we found
that an increase of k results in raising average latency. This
is because each source node needs to send multiple copies of
spike packets to SP nodes, as found in [19]. In evaluations,
the selection of k is therefore equal to 1.
To make a performance comparison with the proposed

algorithm, we also implemented a unicast-based multicast
(Section III), named XYZ-UB. XYZ is one of the variations
of dimension order routing (DOR). It is a simple algorithm,
easy to implement, and free of deadlock and lifelock [55].
The evaluation configuration is shown in Table 1.

As mentioned before, the FTMC-3DR is based on our pre-
vious 3D router architectures (SHER-3DR) [13], [53], [54]
which relies on sophisticated recovery techniques to handle
hard faults in the input-buffers, crossbar, and links as well as
soft errors in the routing pipeline stages. However, during the
evaluation of the 3DFT-SNN system, all the fault-tolerance
techniques which are found in the previous SHER-3DR are
disabled for fair comparison.

B. PERFORMANCE EVALUATION WITHOUT FAULT
INJECTION
We first compare the SP-KMCR with the previous KMCR
and the XYZ-UB in terms of average latency and throughput
to explore its performance potential. The average communi-
cation latency as a function of Spike Injection Rate (SIR) is
shown in Fig. 10.

For the Inverted Pendulum application, the SP-KMCR and
KMCR show almost the same average latency as XYZ-UB
before this latter reaches its saturation point at SIR= 0.2. The
SP-KMCR and KMCR sustain almost the same latency while
providing 25% higher SIR, when compared to XYZ-UB. This
can be explained by the fact that XYZ-UB needs to send
multiple copies of a given spike, resulting in high traffic
contention. These results mean that the proposed system can
maintain high SNN traffic such as fast and bursting opera-
tion modes of spiking neurons [60]. Furthermore, this is also
consistent with the analysis in Section III-C, where multicast
has higher maximum frequency compared to unicast-based
multicast, as in (19), (24) with fault rate α = 0.

On the other hand, SP-KMCR reduces the latency by
12.2% when compared to KMCR before it reaches the sat-
uration point, even with a small network size such as the one
used for the Inverted Pendulum application. This is due to the
fact that source nodes in the SP-KMCR send spikes to their
shortest path node instead of centroid node in KMCR; result-
ing in alleviating the congestion in the intermediate node
like the centroid. The evaluation results also demonstrate
that the SP-KMCR enables systems running SNN applica-
tions with a smaller time-step, to improve their acceleration
potential.

For Wisconsin Data-set benchmark, the increase of the
network size causes a higher latency when compared to the
Inverted Pendulum application. The latency also increases
with the increase of SIR. The unicast-based system suffers
higher latency compared to the KMCR by about 14.43%,
at SIR= 11%. Furthermore, KMCR can support a higher SIR
reaching up to 22.22% when compared to the unicast-based.
Compared to the KMCR, the SP-KMCR reduces the average
latency by 9.5%, at the highest injection rate.

Fig. 11 shows the evaluation results of the average through-
put. As shown in the Fig. 11, SP-KMCR and KMCR
achieve 24.5% and 22% higher throughput compared to
XYZ-UB while executing the Inverted Pendulum and Wis-
consin Data-set benchmarks, respectively. This comes from
the fact that the SP-KMCR and KMCR help the system
servicing SNN traffic at higher injection rate.
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FIGURE 10. Average latency over various SIRs: (a) Inverted Pendulum (b) Wisconsin Data-set.

FIGURE 11. Average throughput over various SIRs: (a) Inverted Pendulum (b) Wisconsin Data-set.

The evaluation results also show the proposed multicast
routing benefits in terms of efficient bandwidth when run-
ning SNN applications. These results validate the analysis in
Section III-C, with fault rate α = 0.
In [19], we evaluated and compared the KMCR with

three other existing works: Dragonfly [61], H-NoC [12], and
Cmesh [62]. The evaluation results showed that KMCR can
maintain a higher SIR before saturation point, by about 8.7%
when compared to the best algorithm (i.e., Dragonfly) among
the three considered works. This allows us to further believe
that the proposed SP-KMCR in this research shows better per-
formance when compared to Dragonfly, H-NoC, and Cmesh.

To further explore the improvement of SP-KMCR,we eval-
uate both KMCR and SP-KMCR with larger network sizes
(3× 3× 2, 4× 4× 2, and 5× 5× 2). Here, all nodes in the
first layer send packets to all the other nodes in the second
layer. Fig. 12 compares the performance of KMCR and
SP-KMCR in terms of average latency. The evaluation result
shows that the SP-KMCR achieves lower average latency
compared to KMCR, at about 10.29%, 16.86%, and 23.57%
with 3DNoC sizes of 3 × 3 × 2, 4 × 4 × 2, and 5 ×
5 × 2, respectively. It means that the proposed SP-KMCR
improves the average latency, especially for large network
sizes.

FIGURE 12. Average latency comparison of KMCR and SP-KMCR over
different network sizes.

C. PERFORMANCE EVALUATION WITH FAULT INJECTION
In this evaluation, we explore the fault-tolerance potential
of the proposed algorithm. In this experiment, the fault-
tolerantmechanismwas added to bothKMCRand SP-KMCR
baselines, denoted as FT-KMCR and FTSP-KMCR, respec-
tively.
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FIGURE 13. Average latency over various fault rates: (a) Inverted Pendulum (b) Wisconsin Data-set.

FIGURE 14. Average throughput over various fault rates: (a) Inverted Pendulum (b) Wisconsin Data-set.

The average latency as a function of fault rate is shown
in Fig. 13. As represented in this figure, the FT-KMCR and
FTSP-KMCR keep the same latency compared to their base-
line systems when no fault is injected. This is because both
fault-tolerant systems and their baseline use the same routing
tree. On the other hand, there is a slight increase in the average
latency of the FT-KMCR and FTSP-KMCR when increasing
the fault rate. This comes from the fact that the fault-tolerant
architectures use backup branches resulting in high traf-
fic at the remaining healthy links. For Inverted Pendulum,
the average latency of the FT-KMCR increases by about
6.67%, 15.33% and 26.67% at 5%, 10%, and 20% fault rates,
respectively, compared to the KMCR. Here, the maximum
spike injection rate is 0.25 spike/node/cycle. The figures for
FTSP-KMCR are lower: about 5.61%, 15.10%, and 25.34%.
The increase of average latency results in the system running
in a longer timestep; however, the system can correctly run
SNN applications at a higher fault rate.

For Wisconsin Data-set, the average latency of
FTSP-KMCR increases by 1.27%, 5.77%, and 16.23%
when compared to its SP-KMCR baseline system. These
evaluation results show that the proposed FTSP-KMCR
has lower average latency compared to the FT-KMCR in

both applications. The latency reduction is due to two
main reasons: first, as explained above, the source nodes in
FTSP-KMCR send packets to their shortest path node instead
of centroid. Second, since backup routing computations are
performed off-line, the runtime overhead of the proposed
fault-tolerant technique is the same as its baseline. This helps
the system to better reduce the effect of timing violations in
SNNs caused by the long latency of recovery mechanisms.

Fig. 14 compares the throughput of the proposed and the
baseline systems. For the Inverted Pendulum, the architec-
tures show similar average throughput results when increas-
ing the fault rate, thanks to the redundancy of the architecture
used for backup routing paths. For example, as shown in
the right side of Fig. 9 (b), when the ZYX version of the
DOR is used for determining the primary tree, all intra-layer
links in the first layer (L1) are not used. These links can
be used as potential backup branches. This allows the pro-
posed fault-tolerant architecture to maintain the communi-
cation traffic at the highest spike injection rate (i.e., the rate
before the saturation point at 0% fault rate). This is the reason
why the throughput is unchanged, while the average latency
increases when raising the fault rate due to the larger hop
count of the backup branches. On the other hand, there is a
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TABLE 2. Power consumption of the KMCR and FTSP-KMCR under the
benchmarks.

decrease in the average throughput of the proposed system
under Wisconsin Data-set benchmark when increasing the
fault rate. This is caused by the larger number of neurons
used in this application resulting in higher contention in
primary and backup branches. Therefore, the proposed archi-
tecture is not able to keep the same spike injection rate when
increasing the fault rate, as it was the case for the Inverted
Pendulum application. At a fault rate of 20%, the throughput
of FT-KMCR and FTSP-KMCR decreases by 49.5% (i.e.,
the spike injection rate of 0.056 spike/node/cycle) compared
to the system without fault. Nevertheless, the proposed algo-
rithmwas capable of correctly delivering all the spikes to their
destinations despite this high fault rate. The evaluation results
also show that a higher fault rate leads to reduce the spiking
frequency, as analyzed in Section III-C.

D. HARDWARE COMPLEXITY EVALUATION
We also evaluated the hardware complexity in terms of
area cost and total power consumption of the KMCR
and FTSP-KMCR architectures (i.e., the entire network) to
observe the extra hardware resources necessary for the pro-
posed fault-tolerant method, as shown in Table 2. Regarding
the area cost, the FTSP-KMCR uses more area than the
KMCR system (about 5.88% and 5.49% for the Inverted
Pendulum and the Wisconsin dataset, respectively). This is
also consistent with the power consumption results, in which
the FTSP-KMCR consumes a higher amount of power (about
5.03% and 4.97% for the Inverted Pendulum and theWiscon-
sin dataset, respectively). This hardware overhead is mainly
due to the extra hardware needed for the backup branches.

VII. DISCUSSION
In the previous section, we demonstrated the capabilities of
the proposed SP-KMCR algorithm to improve the average
latency when compared to its KMCR predecessor. In addi-
tion, we validated the reliability of the proposed architecture
to sustain correct inter-neural communication even at a 20%
fault rate, while ensuring small hardware complexity and
graceful performance degradation. Nevertheless, a couple
of points need to be discussed in order to exploit the full
potential of the proposed architecture. Hereafter, we address
these challenges and highlight the possible solutions.

The first point to be addressed is the improvement of the
proposed fault-tolerant multicast routing algorithm to deal
with multiple faults. In particular, when successive multiple
faults occur in the primary branches. In the current implemen-
tation, the proposed algorithm should forward spike packets
through backup branches for every single faulty link. In
Fig. 7, for example, if both pb1 and pb2 are faulty, incoming

spikes from ‘‘grandfather’’ are firstly forwarded to ‘‘father’’
through backup branches, then from ‘‘father’’ to ‘‘son’’. How-
ever, the latency increases due to the additional unnecessary
hop travel. This issue can be tackled by using direct backup
paths from ‘‘grandfather’’ (or another ancestor) to ‘‘son’’, and
this requires that ‘‘grandfather’’ (or another ancestor) has to
know the status of the primary branches to ‘‘son’’. To do
so, ‘‘son’’ monitors the status of the upstream link. When a
fault is detected, the ‘‘son’’ should notify all the routers on its
backup path. In this fashion, whenever and wherever any fault
occurs, our algorithm will be able to reconfigure the network
to deliver multicast packets as long as the routing table size
allows it.

The second challenge is the implementation capability of
large neural networks. Although the number of neurons per
core (SNPC) is small in the current experiments, the proposed
SP-KMCR approach improves the average latency, especially
for large network sizes. In our final system, each SNPCs will
support up to 256 neurons. As a result, the system can accom-
modate about 7,000 neurons with a network size of 3×3×3,
as used in the current evaluation. This is a plausible scenario
because, setting the operation frequency of our 3DFT-SNN
to 100MHz, takes an average of 2.02ns to deliver a spike at
a fault rate of 20%. With 256 neurons in an SNPC, it takes
517.12ns. This means that the network architecture can still
perform 1, 933.8× faster than the real-time requirement of
SNNs; that is 1ms (spike rate up to 1KHz) [60]. It should
be mentioned that these calculations are taken under the
time-multiplexing manner handled by the input scheduler in
SNPC. This requires handling of the SNN state where time
constants should be maintained, especially in the bursting
operation modes of spiking neurons [60]. To deal with this
issue, we can adopt the idea of compression that was first
introduced in [12], in which spikes generated by neurons in
the same layer are compressed into a single packet before
injecting into the network. This technique allows our system
to handle large network traffic.

VIII. CONCLUSION
In this paper, we presented a comprehensive analytic
performance assessment and low-latency fault-tolerant
algorithm for spike traffic routing in 3D packet-switching
network of spiking neurons (3DFT-SNN). The detailed anal-
ysis is proposed to analyze the performance of different
neural network topologies. The goal of this analytical model
is to help designers early understand the effect of faulty
links on the performance of their architecture over neural
network topologies and spike routing schemes. The pro-
posed fault-tolerant multicast routing algorithm is based on
a so-called Tree-based-routing (TBR) combined with the
K-means clustering. The proposed 3DFT-SNN has been eval-
uated with real benchmarks in terms of latency and through-
put, as well as the hardware complexity (area cost and power
consumption). From the evaluation results, we conclude
that the proposed SP-KMCR algorithm reduces the average
latency by 12.2% when compared to its KMCR predecessor.
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Furthermore, the proposed fault-tolerant variation (i.e,
FTSP-KMCR) enables the system tomaintain a correct traffic
communication with a fault rate of 20% while suffering only
16.23% longer latency and 5.49% extra area cost compared
to the SP-KMCR without fault-tolerance capabilities.
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