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Timing and its variability are crucial for behavior. Consequently, neural circuits that take part in
the control of timing and in the measurement of temporal intervals have been the subject of much
research. Here, we provide an analytical and computational account of the temporal variability in
what is perhaps the most basic model of a timing circuit, the synfire chain. First, we study the
statistical structure of trial-to-trial timing variability in a reduced but analytically tractable model:
a chain of single integrate-and-fire neurons. We show that this circuit’s variability is well-described
by a generative model consisting of local, global, and jitter components. We relate each of these
components to distinct neural mechanisms in the model. Next, we establish in simulations that
these results carry over to a noisy homogeneous synfire chain. Finally, motivated by the fact that
a synfire chain is thought to underlie the circuit that takes part in the control and timing of zebra
finch song, we present simulations of a biologically realistic synfire chain model of the zebra finch
timekeeping circuit. We find the structure of trial-to-trial timing variability to be consistent with
our previous findings, and to agree with experimental observations of the song’s temporal variability.
Our study therefore provides a possible neuronal account of behavioral variability in zebra finches.

I. INTRODUCTION

Timing is critical for many behaviors, such as speech
production, playing a musical instrument, or dancing.
However, even the most stereotyped animal behaviors are
significantly variable from one iteration to the next. This
so-called trial-to-trial variability is ubiquitous and may
serve important functions in motor learning and adapta-
tion [1–3]. Its sources have therefore been of great inter-
est to neuroscientists [2, 4].

As behavior is controlled by the nervous system, it is
natural to look for the source of some of this variabil-
ity in the variable activity of neural circuits involved in
the production of behavior [2, 4–7]. Indeed, the neural
mechanisms underlying behavioral timing have been ex-
tensively studied experimentally [2, 8–12], establishing
links between temporal variations of behavior and that
of neural activity [13–20]. This neural variability could
result from multiple sources such as stochastic events at
the level of ion channels [21], synapses [22], and neurons
[23]; chaotic activity of neural networks [24, 25]; and sen-
sory inference errors [5]. Therefore, understanding the
mechanisms and structure of timing variability in neu-
ral circuits is necessary for understanding variability in
behavior.

In this paper, we study temporal variability in one of
the most basic neural network models of timing, the syn-
fire chain [26–28]. The synfire chain is a feedforward net-
work composed of pools of neurons that produce traveling
waves of synchronized spiking activity, as illustrated in
Figure 1. The synchronization of spikes within a pool,
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and the sequential propagation of activity across pools
(Figure 1b) allow the synfire chain to serve multiple tim-
ing functions in a very natural way. First, it can be used
to keep time by simply counting the pool which the spik-
ing activity has reached. Second, it can be used to pro-
duce precisely timed intervals defined by the time elapsed
between when activity arrives at a given pool and when
it arrives at a subsequent pool (Figure 1b). The synfire
chain can sustain activity indefinitely given sufficiently
many pools [27, 29], or by arranging it in a circular topol-
ogy such that the final pool connects back to the first one
[29]. While the synfire chain is theoretically well-studied
[27, 29–31], and experiments support its existence in bio-
logical systems [32], a theoretical account of its temporal
variability is still lacking.

We are interested in the trial-to-trial variability in the
timing of neural activity of a synfire chain. Such vari-
ability arises from the millisecond-scale tempo differences
across multiple propagations of the spiking activity in the
chain. We will focus on trial-to-trial variability caused by
the inherent noise and fatigue in the neural system.

While it might seem small, millisecond-scale neural
variability has been experimentally shown to correlate
with behavioral variability at the same timescale in song-
birds [16, 18, 20]. This finding is especially relevant
since experiments support the existence of a synfire chain
architecture in the songbird premotor cortex [32] for
millisecond-scale precise time-keeping of the birdsong,
with total song durations of few hundreds of millisec-
onds [13, 33]. Therefore, our findings may have direct
implications for behavioral timing. Indeed, we will show
that the statistical structure of temporal variability in
a synfire chain can possibly explain some of the salient
features of temporal variability in birdsong [33–35].

We address these questions first in a simplified and an-
alytically solvable model of trial-to-trial variability in a
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FIG. 1. Timekeeping and trial-to-trial variability in synfire
chains. (a) The synfire chain is a feedforward network of pools
of neurons. In the figure, circles represent neurons and arrows
represent synapses. A simple scheme to measure time inter-
vals composed of K successive pools, is to mark the beginning
and end of the interval by the first spike of readout neurons
corresponding to first and last pools. (b) Spike trains pro-
duced by the synfire chain show a synchronized activity that
progresses pool-by-pool. Each point corresponds to the time
of a spike produced by a neuron in the chain. Color denotes
membership in a layer, each of which consists of a pool of 10
neurons. Various time intervals are shown. (c) Trial-to-trial
variability in the synfire chain. Spike times of six neurons
from different pools are plotted in different colors. Five dif-
ferent trials for each neuron are shown.

chain of individual neurons (Section II). We derive ana-
lytical expressions that describe the magnitude and sta-
tistical structure of temporal variability in terms of inher-
ent neural noise and fatigue and verify our results with
simulations. We use a generative model introduced by
Glaze and Troyer [35] to decompose the variability covari-
ance matrix into three components: independent, global
and jitter. Next, we address temporal variability in a
noisy homogeneous synfire chain, which includes multi-
ple identical neurons per pool, by numerical simulations
(Section III). We show that our results from the analyti-
cally tractable model qualitatively carry over to this more
complex model. We study the dependence of the various
components of variability on the number of neurons per
pool of the chain. Further, we relate the distinct neural
mechanisms in the model to the different components of
variability obtained from the generative model. Finally,
we provide an application of our results to birdsong. In
zebra finches, experimental studies support the existence
of a synfire chain structure in the premotor nucleus HVC
[32], which takes part in the production and timing of
the birdsong. We simulate a biologically realistic synfire

chain model [32] and show that the statistical structure
and magnitude of its variability is consistent with that
observed in the analytically tractable and homogeneous
synfire chain model, and the zebra finch song (Section
IV).

II. TRIAL-TO-TRIAL TIMING VARIABILITY
IN A CHAIN OF SINGLE NEURONS

In this section, we describe the statistical struc-
ture of trial-to-trial timing variability in an analytically
tractable model: a chain of N single leaky integrate-and-
fire (IF) neurons. In this simple model, each neuron
is driven by excitatory synaptic input from the previ-
ous neuron in the chain at time tps, which we model by
IsΘ(t − tps), where Θ(t) is the Heaviside step function.
Though it would be more biologically realistic to use a
input kernel of finite duration, we make this analytically
convenient choice as we are only concerned with first-
spike times. We model the drive to each neuron from
outside the chain by the sum of a constant current I0, and
the noise due to synaptic transmission and other cellular
processes by a zero-mean Gaussian process

√
τη(t) with

autocorrelation σ2τδ(t − t′), where τ is the membrane
time constant and σ controls the standard deviation of
the noise [36, 37].

The sub-threshold dynamics of the membrane poten-
tial V of a given neuron in the chain is then governed by
the Langevin equation [36, 37]

τ V̇ (t) = −V (t) + I0 + IsΘ(t− tps) +
√
τη(t). (1)

When the neuron’s membrane potential reaches a firing
threshold Vth, the neuron produces a spike and resets its
membrane potential to Vr.

A. Local variability in a chain of single neurons

We want to study the variability in the first-spike times
of successive neurons in the chain. This problem differs
from the standard treatment of noisy and leaky IF neu-
rons [36, 37] in that we are interested in trial-to-trial
variability of intervals between different neurons’ spikes
rather than long-time statistics of the intervals between
spikes generated by a single neuron. However, we can
map this problem to previous results in the literature
[36, 37] by dividing it into two threshold-crossing prob-
lems. First, we can determine the probability distribu-
tion of a given neuron’s membrane potential at time tps,
using the fact that it receives no synaptic input before
the previous neuron’s first spike. Then, given that its
membrane potential at time tps is V0 with probability
P (V0), we can think of the trial-to-trial variability in that
neuron’s time to first-spike after tps as the variability in
the inter-spike intervals of a single leaky IF neuron with
Vr = V0.
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To proceed we assume that tps is long enough such that
V (tps) has equilibrated. This assumption simplifies our
calculations and will be validated when our final results
are compared to simulations. Then, the solution to the
first problem is given by the stationary distribution of
the membrane potential, which was found in [36] to be

P (V ) = Θ(Vth − V )
2ντ

σ
exp

(
− (V − I0)

2

σ2

)

×
∫ (Vth−I0)/σ

(V−I0)/σ
duΘ

(
u− Vr − I0

σ

)
eu

2

, (2)

where the firing rate ν is given by

ν =
1

τ
√
π

[∫ (Vth−I0)/σ

(Vr−I0)/σ
du eu

2

(1 + erf(u))

]−1
. (3)

We will be interested in the limit of very low firing
rates. This limit is relevant to propagation of spiking
activity in synfire chains because a neuron in the chain
spikes only when the spiking activity reaches the pool
to which the neuron belongs and very rarely otherwise.
Because noise is the main driver of firing in the absence
of external input, the very low firing rate limit is given
by assuming Vth − I0 � σ [37, 38], which leads to the
standard approximations (see Appendix A 1 and [36]) of
the firing rate as

ν ≈ Vth − I0
στ
√
π

exp

(
− (Vth − I0)2

σ2

)
, (4)

and the membrane potential distribution as

P (V ) ≈ 1√
πσ

exp

(
− (V − I0)

2

σ2

)
, (5)

which is the stationary limit of an Ornstein-Uhlenbeck
process with boundaries set at infinity.

We can calculate the mean and variance of the first-
spike-interval, Tfs, defined as the time elapsed from tps
to the arrival of the first spike, using the mapping be-
tween our problem and that of determining the statistics
of the inter-spike intervals of a single leaky IF neuron.
Conditioned on V (tps) = V0, these statistics are given by
the standard expressions [36, 37]

〈Tfs〉V0 = τ
√
π

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
du eu

2

(1 + erf(u)) (6)

and

〈δT 2
fs〉V0 = 2πτ2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dx ex

2

×
∫ x

−∞
du eu

2

(1 + erf(u))2. (7)

We can then combine these results to compute the
mean and variance of the first-spike-interval across trials.
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FIG. 2. Scaling of local trial-to-trial timing variability in a
chain of single neurons. The results of numerical experiment
(Section II D) are shown as dots, and the solid lines show
the asymptotic approximations obtained in Section II A. The
ordinate shows the standard deviation 〈δT 2

fs〉1/2 of the first-
spike-interval, and the abscissa shows the standard deviation
σ of the noise. Increasing values of Is are indicated by darker
shades of gray.

If we approximate the distribution of initial membrane
potentials by the stationary Ornstein-Uhlenbeck process
limit (5) in the low firing rate regime Vth − I0 � σ, we
obtain the lowest-order asymptotic expansions

〈Tfs〉
τ
∼ log

(
Is

I0 + Is − Vth

)
− σ2

4(I0 + Is − Vth)2
(8)

and

〈δT 2
fs〉
τ2

∼ σ2

2(I0 + Is − Vth)2
(9)

in the limit of large synaptic input Is + I0 − Vth � σ (a
detailed derivation of these expressions is given in Ap-
pendix A 2). The scaling of this variability with Is and
σ for fixed I0 and Vth is illustrated in Figure 2 (see Sec-
tion II D). In Appendix A 3, we also derive asymptotics
for 〈Tfs〉 and 〈δT 2

fs〉 using the alternative approximation

P (V0) ≈ δ(V0 − I0).

B. Correlated variability in a chain of single
neurons

Thus far, we have only considered sources of variability
that are independent across neurons. However, in biolog-
ical neural networks, there are many possible mechanisms
that could introduce correlated variability, such as cor-
related external input [4, 7, 37, 38]. Here, we consider
a simple model for correlated variability due to neural
fatigue, i.e. a loss in a neuron’s excitability due to effects
like synaptic depression [39].

In our model, the spiking threshold in a given trial
is increased by some multiple m ∈ {0, 1, . . . ,mmax} of
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a small increment δVth relative to the baseline threshold
Vth. We assume that, across trials, m is drawn from some
distribution with mean 〈m〉 and variance 〈δm2〉. Working
in the regime in which mmax δVth � I0+Is−Vth, relevant
to neurons in a synfire chain which receive a barrage of
inputs from the synchronous firing of presynaptic pool of
neurons, we can use our previously-obtained asymptotic
expansions (8, 9) of the mean and variance of the first-
spike-interval conditioned on Vth to obtain

〈Tfs〉
τ
∼ log

(
Is

I0 + Is − Vth

)
+

δVth
I0 + Is − Vth

〈m〉, (10)

and

〈δT 2
fs〉
τ2

∼ σ2

2(I0 + Is − Vth)2

[
1 + 2

δVth
I0 + Is − Vth

〈m〉
]

+
δV 2

th

(I0 + Is − Vth)2
〈δm2〉, (11)

to lowest order in both δVth/(I0+Is−Vth) and σ/(I0+Is−
Vth) (see Appendix A 2 for details). If we now consider
two different neurons a and b, the trial-to-trial covariance
of their first-spike-intervals T afs and T bfs will be

〈δT afs δT bfs〉
τaτ b

∼ δV athδV
b
th

(Ia0 + Ias − V ath)(Ib0 + Ibs − V bth)
〈δm2〉,

(12)

to lowest order in δV ath/(I
a
0 + Ias − V ath) and δV bth/(I

b
0 +

Ibs − V bth).
Therefore, we obtain a model in which the trial-to-trial

covariance matrix of the first-spike-intervals of neurons in
the chain is the sum of a diagonal, local-to-a-neuron com-
ponent and a rank-one global component. Concretely, if
we assume for simplicity that all neurons in the chain are
identical, the covariance matrix of the first-spike-intervals
of the neurons in the chain is given as Σfs = σ2

II +

σ2
G11>, where σ2

I = τ2 σ2

2(I0+Is−Vth)2

[
1 + 2 δVth

I0+Is−Vth 〈m〉
]

is the local component of the first-spike-interval variance,

σ2
G = τ2

δV 2
th

(I0+Is−Vth)2 〈δm
2〉 is the global component of the

first-spike-interval variance, I is the identity matrix, and
1 is the ones vector. If the neurons were non-identical, σI
and σG would no longer be scalar constants, and the co-
variance matrix would have the form Σfs = ΣI +σGσ

>
G

for a diagonal matrix ΣI and a vector σG. This decom-
position is illustrated in Figure 3a.

In the above calculation, we assumed that one can per-
fectly read out the first-spike times from the neurons of
the chain. However, it is unlikely that noise-free read-
out is possible in biological timekeeping systems. In the
presence of readout noise, the first-spike interval covari-
ance matrix will have an additional component that in-
creases the variance of individual intervals and introduces
negative covariance between adjacent intervals, a phe-
nomenon known as timing jitter [35, 40]. Assuming for
simplicity that the readout noise is homogeneous, addi-
tive, and independent of other forms of variability and

has standard deviation σJ , the overall covariance matrix
is given as

Σfs = σ2
II + σ2

G11> + σ2
JDD>, (13)

where D is the N×(N−1) bidiagonal differencing matrix
with ones along the diagonal and negative ones along the
subdiagonal: Djk = δjk − δj(k−1).

C. From mechanism to statistical models of timing
variability

In the preceding sections, we have characterized the
timing variability inherent in a simple neural model.
This calculation showed that the covariance matrix of
the intervals between the first spikes of successive neu-
rons in the chain could be decomposed into a diagonal
local component, a rank-one global component, and a
structured component resulting from imperfect readout
of spike times. Strikingly, the same covariance structure
is present in statistical models of behavioral timing vari-
ability [35, 40]. In particular, it matches a Gaussian gen-
erative model for behavioral interval durations proposed
for zebra finch song by Glaze and Troyer [35]. For a set
of P intervals, this model is parameterized by a vector
w ∈ RP and diagonal latent variable covariance matrices
Ψ ∈ RP×P and Ω ∈ R(P−1)×(P−1). Then, the vector of
interval durations in the µth trial is generated as

tµ = t̄ +
√

Ψξµ + wzµ + D
√

Ωuµ, (14)

where t̄ is the average duration and zµ ∼ N (0, 1), ξµ ∼
N (0, IP ), and uµ ∼ N (0, IP−1) are independent latent
factors that are independent and identically distributed
across trials. The interval duration covariance matrix in
this model is thus

Σint = Ψ + ww> + DΩD>. (15)

For homogeneously variable intervals, we can therefore
associate each component of the covariance matrix in this
behavioral model to one of the components of the first-
spike interval covariance matrix (13) in our neural model.

The connection between the statistical structures of
neural and behavioral variability also leads to a predic-
tion for how variability should scale with behavioral in-
terval duration under a simple timekeeping model. We
assume that the basic unit of time is measured via noisy
readout of the first-spike times T afs of neurons with co-

variance (13), and that longer behavioral intervals TiK
are formed by summing the durations of sequences of K
first-spike intervals:

TiK =
iK∑

a=(i−1)K+1

T afs. (16)

Then, assuming for convenience that K evenly divides
N , the interval-interval covariances are given by sums of
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FIG. 3. Correlated trial-to-trial timing variability in a chain
of single neurons. (a) Schematic representation of the decom-
position of the interval-interval covariance matrix into local
and global components as described in Section II B (see ex-
pressions for σ2

I and σ2
G). (b) Scaling of the local and global

variability with interval duration. The results of numerical ex-
periment (see Section II D) are shown by circles and squares
for local and global variability, respectively, while the predic-
tions of asymptotic theory (see Sections II B and II C) are
shown by solid and dashed lines. Realizations of the random
sampling used to generate intervals are plotted as individual
markers.

the corresponding K×K submatrices of Σfs. This sum-
mation yields a N/K×N/K interval duration covariance
matrix

Σint = Kσ2
II +K2σ2

G11> + σ2
JDD>, (17)

where the scaling of the independent and global compo-
nents is trivial and that of the jitter component follows
from the observation that DD> is a tridiagonal matrix
with sub- and super-diagonal elements equal to −1, first
and last diagonal elements equal to +1, and other di-
agonal elements equal to +2. Therefore, in this simple
model for tracking longer intervals of time, the assump-
tion that the first-spike interval covariance matrix has
the given structure implies that the interval covariance
matrix will have the same structure. Furthermore, the
different components of variability have distinct scalings
with interval length: the independent component scales
linearly, the global component quadratically, and the jit-
ter component is constant. We note that this scaling
of local and global components of variability is indepen-
dent of the details of the single-neuron model, provided
that the covariance of the first-spike intervals produced
has the form of (13). This variance decomposition and
scaling with interval length are illustrated in Figure 3.

D. Numerical simulations

We compare the theoretical asymptotics we obtained
in Sections II A, II B, and II C to the results of numeri-

cal experiment. To study the scaling of local variability
with noise variance and synaptic strength as shown in
Figure 2, we perform 104 realizations of a single-neuron
simulation. In these experiments, we fix τ = 20 ms,
I0 = −70 mV, and Vth = −45 mV while varying σ and
Is. We integrate the Langevin equation (1) using the
Euler-Maruyama method [41] augmented by the reset
rule with a timestep of ∆t = 10−3 ms. The Euler-
Maruyama stochastic integration method is an explicit
first-order accurate method in the absence of noise, and
accurate to order 1/2 in the presence of noise. We find
empirically that increasing or decreasing the timestep
by factors of ten does not influence the qualitative re-
sults. For all parameter values tested, we observe good
agreement between our asymptotic approximation and
the experimental results for the mean first-spike-interval.
As shown in Figure 2, for the lowest synaptic strengths
and largest noise variances, we observe some discrepancy
between asymptotic theory and experiment for the first-
spike-interval variance. This is unsurprising, since in that
regime Is+I0−Vth is only around five times greater than
the standard deviation of the noise, hence higher-order
terms in the expansion are non-negligible (see Appendix
A 2).

To study the influence of introducing neural fatigue as
described in Section II B, we simulate a chain of 80 identi-
cal neurons using the methods described above. In these
experiments, we fix σ = 1 mV and Is = 45 mV. Over the
104 realizations performed, we draw the parameter m
from the discrete uniform distribution on {0, . . . , 249},
with the spiking threshold increment set in terms of the
baseline threshold Vth as δVth = 10−3Vth. We then de-
fine intervals of varying lengths by grouping together
uniformly randomly sampled sequences of neurons as de-
scribed in Section II C. We fit the generative factor model
described in Section II C to the intervals generated by our
network using the expectation-maximization algorithm
described in [35]. In Figure 3b, we plot the square root of
the local and global components of variability as a func-
tion of interval duration to more clearly illustrate their
scaling. We observe good qualitative agreement between
the theory and the results of the numerical experiments.

III. TRIAL-TO-TRIAL TIMING VARIABILITY
IN A NOISY HOMOGENEOUS SYNFIRE CHAIN

In Section II, we considered a chain of single neurons
with simplified dynamics and coupling for the sake of
analytical tractability. In this section, we study variabil-
ity in a more realistic neural network, a synfire chain
[26, 27, 42–44]. A synfire chain is a feed-forward network
of multiple pools of neurons, also termed nodes or lay-
ers, which are linked by excitatory synaptic connections.
We model the neurons in the synfire chain as bursting
neurons, and add a set of readout neurons. Bursts have
been known to stabilize synfire chains [30], however, we
note that the structure of variability does not change if
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we model neurons that emit a single spike rather than
bursts.

We construct a chain of N pools, each composed of
M identical neurons. Every neuron in a given pool i
is connected to all neurons in the next pool i + 1 with
equal weights. As before, we approximate the external
input to each neuron I(t) by the sum of an average part
g(t) and a zero-mean Gaussian process

√
τmη(t) with au-

tocorrelation 〈η(t)η(t′)〉 = σneuronδ(t − t′). Neurons in
the first pool receive an extra input J(t), which is mod-
eled as a rectangular pulse of height J0 and width Tp.
In addition to the per-neuron noise, we include another
noise term, which we refer to as “shared” noise. This
noise ξ(t) is generated by a white Gaussian process but
is shared across all neurons in a given pool, with mean
〈ξ(t)〉 = 0 and autocorrelation 〈ξ(t)ξ(t′)〉 = σpoolδ(t−t′).
Our motivation for including this additional noise term
will become clear later. Then, the sub-threshold dynam-
ics of the membrane potential of neuron j in pool i are
given by

τmV̇
(i)
j = El − V (i)

j + J
(i)
j (t) +

√
τmη

(i)
j (t)

+ g
(i)
j (t) +

√
τmξ

(i)(t), (18)

where J
(i)
j is zero for all i > 1. The synaptic input g

(i)
j (t)

is modeled by the low-pass-filtered spike train [37]

τsġ
(i)
j = −g(i)j +

τsIs
M

M∑
k=1

S−1∑
l=0

δ(t− t(i−1)ps,k − τbl), (19)

where t
(i−1)
ps,k denotes the first-spike time of the kth neuron

of the (i− 1)th pool and Is sets the strength of synaptic
coupling. The neurons are modeled to emit a burst of S
spikes separated by a fixed interval τb, rather than a sin-
gle spike. When a neuron’s membrane potential reaches
the firing threshold Vth, it is then fixed at that threshold
until the specified burst duration has elapsed, at which
point it is reset to Vr, and once again evolves accord-
ing to the sub-threshold dynamics (18). As in Section
II B, we model neural fatigue as a small increase in the
membrane potential threshold of all the neurons in the
chain after each trial. We also considered a different neu-
ral mechanism for fatigue, a simplified model of synaptic
depression. However, the structure of the resulting trial-
to-trial timing variability is independent of which neural
mechanism of fatigue we implement.

For each pool in the chain, we have a single readout
neuron, which receives synaptic input from all neurons of
that pool along with a white Gaussian noise input with
mean zero and autocorrelation σreadoutδ(t − t′) (Figure
1a). The dynamics of membrane potential and synaptic
inputs for the readout neurons are similar to that in (18)
and (19) with the appropriate inputs.

We study the statistical structure of timing variability
in this synfire chain model using numerical simulations.
As for the simple model (II D), we integrate the Langevin
dynamics (18), (19) using the Euler-Maruyama method,

with a timestep of 10−2 ms. The parameters values we
use are not unique, and are chosen to be in a biologically
plausible range. Unless otherwise noted, we simulate a
chain of N = 81 pools of M = 32 neurons each. We set
the reset and resting potentials to −70 mV, the baseline
spiking threshold to −45 mV, and the synaptic strength
to Is = 45 mV. We fix the membrane constant τm to 20
ms, the synaptic time constant τs to 5 ms, the number
of bursts S to 4, and the spacing of bursts τb to 2 ms.
Unless otherwise noted, we let the strengths of the per-
neuron, per-pool, and readout noise be 0.5 mV, 1 mV,
and 3 mV, respectively. As in Section II D, we fix the
spiking threshold increment δVth to 10−3Vth, and draw
the multiplicative increment factor from the discrete uni-
form distribution on {0, . . . , 249} for each trial. Propa-
gation in a synfire chain is not always successful [27, 44].
We consider a trial to be successful if the total number
of spikes in the chain is between 4N and 4N + 0.1 (4N),
and if all readout neurons fire once. In the experiments
on which Figures 4, 5, and 6 were based, two trials out of
1000 were excluded from our simulations that included
all sources of noise. In Figure 7c no trials were excluded
from the inset.

A. Relating neuronal mechanisms to different
components of trial-to-trial timing variability

In Section II B, we showed that introducing correlated
variability to a chain of IF neurons through a simple
model of neural fatigue yields a spike interval covariance
matrix that is the sum of a local component and a rank-
one global component. To test whether this structure
is present in the trial-to-trial timing variability of the
noisy homogeneous synfire chain model, we define inter-
vals by grouping together sequences of ten neurons, yield-
ing intervals with a mean duration of 59.5 ms and the
covariance structure shown in Figure 4 a. Then, we take
the full model covariance matrix and use the generative
model proposed in [35] (see Section II C) to decompose
it into three components, a local component, a global
component, and a jitter component, Figure 4. We found
that the resulting decomposition explained the covari-
ance matrix well, with a standardized root mean squared
residual of 0.0067 [35]. Thus, the statistical structure of
trial-to-trial timing variability in the noisy homogeneous
synfire chain model is consistent with that of the simple
model, with the addition of the component corresponding
to readout noise.

Next, we delineate the neural mechanisms behind the
components of variability by selectively including differ-
ent sources of noise. First, we include only the chain
noise, which comprises of the shared and the neuron-
specific noise terms in the input to a neuron shown in
(18). In this case, we recover a diagonal covariance ma-
trix, which we identify as local variability Figure 5b.
When we include only neural fatigue, we recover the
global component of variability producing a nearly rank-
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Full model covariance matrix. (b-d) The covariance matrices of the latent factors resulting from applying the analysis method
of [35] to the full model shown in (a).
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matrix for the full model. (b-d) Interval duration covariance matrices due to chain noise, neural fatigue, and readout noise
alone, respectively. In Figure 7 (a,b) we show the contribution of each of the noise sources in (18) to the interval duration
covariance matrix separately.

1 covariance matrix, Figure 5c. If we only include noise
in the readout neurons, the duration of neighboring in-
tervals are anti-correlated (Figure 5d), corresponding to
jitter. This exercise allows us to identify distinct cellular
and synaptic mechanisms that explain distinct compo-
nents of temporal variability: chain noise contributes to
the local component, fatigue to the global component,
and readout noise to the jitter component.

B. Scaling of the components of variability with
interval duration

In Section II C, we observed that, if one groups multi-
ple neurons together to form intervals, the local compo-
nent of variability should scale with the square root of the
interval length, while the global component should scale
linearly with interval length. This scaling is independent
of the details of the model, and simply follows from the
assumption that the total trial-to-trial variability of the
spike interval can be decomposed into a local component
and a global component, both of which are uniform in
magnitude across neurons. Applying the factor analysis
method introduced in [35] to the spike times produced by
the noisy homogeneous synfire chain model (Figure 4),
we find that the scaling of local and global components
of variability with interval length is consistent with this

0 100
interval duration (ms)

0

2

<δTa δ
Tb >1/

2  (
m

s)

local global jitter

0 100
interval duration (ms)

0 100
interval duration (ms)

FIG. 6. Scaling of local, global, and jitter components of
variability with interval duration in the noisy homogeneous
synfire chain model with 32 neurons per pool. Circular mark-
ers indicate the results of numerical simulations, and dashed
lines show power-law fits to the data, with exponents of 0.46
and 1.00 for the local and global components, respectively.
No fit is shown for the jitter component, as there does not
exist a statistically significant Spearman correlation between
it and the interval duration (ρ = −0.09, p = 0.25).

prediction (Figure 6).

C. Scaling of local variability with pool size

In Figure 7a,b, we show the contribution of each of
the noise sources in (18), the per-neuron noise and the
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FIG. 7. Noisy homogeneous synfire chain model: (a) and (b)
show the contribution of each of the noise sources in (18), the
per-neuron noise and the per-pool noise which is shared across
neurons in the same pool, to the covariance matrix of interval
duration.(c) Scaling of interval variability with the number of
neurons per pool due to the two noise sources, the per-neuron
noise (filled circles) and shared noise among neurons in the
same pool (open circles). The filled black, gray, and light
gray circles show the interval variability due to per-neuron
noise with σ = 1 mV, 2 mV, and 3 mV, respectively. Solid
lines are power-law fits to the data, with exponents of -0.95
(black line), -0.94 (gray line) and -1.04 (light gray line). Open
circles show the same thing but for noise that is shared among
neurons in the same pool with σ = 1 mV. Error bars show the
standard error of the mean. The data point for per neuron
noise of σ = 3 mV and M = 8 was excluded because the chain
propagation failed in more than 10% of trials

.

per-pool noise which is shared across neurons in the same
pool, to the covariance matrix of interval duration. If we
vary the number of neurons per pool M , we find that
the interval duration variance due to per-neuron compo-
nent of chain noise falls as 1

M (Figure 7c). Thus, despite
the fact that the system is nonlinear, such noise adds
quasi-linearly. Therefore, to have a non-negligible local
component of variability in the noisy homogeneous syn-
fire chain model, we must assume that neurons belonging
to the same pool receive shared noise. In Figure 7c, we
see that the interval variability due to this noise mech-
anism is roughly independent of the number of neurons
per pool. Varying the number of neurons per pool did
not have an effect on the readout noise or fatigue. This
is shown in the inset of Figure 7c.

IV. THE STRUCTURE OF VARIABILITY IN A
BIOLOGICALLY REALISTIC SYNFIRE CHAIN
MODEL OF HVC IS CONSISTENT WITH THAT

OBSERVED IN ZEBRA FINCH SONG

Zebra finch song is a behavior for which a synfire chain
is thought to be involved in the timing of [45]. Zebra
finch songs consist of several introductory notes, followed
by a few renditions of a motif, sung in a very repeti-
tive manner. Motifs contain 3 to 8 syllables. Syllables
range from 50-100 ms and are separated by gaps. The
timing of the song is controlled by clock-like bursting in
the premotor nucleus HVC, in particular in HVC neu-
rons projecting to Robust Nucleus of the Arcopallium
(RA). Many studies suggest that the underlying neural
circuit behavior is consistent with a synfire chain model
[13, 14, 32, 46, 47]. Further, experimental evidence sup-
ports millisecond scale correlations between HVC activity
and the song [16, 18, 20]. Thus, we want to test if the
trail-to-trail variability in a synfire chain is also consis-
tent with the trial-to-trial variability observed in the song
duration. Detailed studies of the trial-to-trial variability
in the highly stereotyped zebra finch song were done by
Glaze and Troyer [33–35].

We simulate a biologically realistic HVC synfire chain
model introduced in [32], which has been shown to agree
with measurements of neural variability in HVC. We pro-
vide a detailed description of this model in Appendix
B. This model consists of a sequentially connected chain
of 70 pools, each containing 30 HVCRA neurons, along
with a population of 300 HVCI inhibitory interneurons.
HVCRA neurons are modeled as two-compartment burst-
ing neurons incorporating dendritic calcium spikes, while
HVCI neurons are modeled as single-compartment non-
bursting neurons. Inhomogeneity is introduced by ran-
domizing the existence and strength of connections be-
tween neurons. Briefly, HVCRA neurons connect to
HVCI neurons with probability 0.05, and HVCI neu-
rons connect to HVCRA neurons with probability 0.1.
Each HVCRA connects to an HVCRA neuron in the
next pool with probability P = 0.5 and a connec-
tion strength drawn from the uniform distribution on
[0, gEEmax/(30P )]. Each neuron receives noisy synaptic
input in the form of Poisson spike trains which consti-
tutes the chain noise for this model. Synaptic fatigue
was modeled by modifying gEEmax as (1 −mδg)gEEmax,
where δg = 10−3, with gEEmax = 3 mS/cm2, and m
drawn i.i.d. across trials from the uniform distribution
on {0, . . . , 249} as before. All remaining model param-
eters values are set to those used in Long et al. [32].
We read out timing information from the chain using
the readout model introduced in Section III. The model
was integrated using the Euler-Maruyama method with
a timestep of 5× 10−3 ms.

We first observe that the full model covariance matrix
of interval duration of this model (Figure 8 a) is similar to
that of the homogeneous synfire chain model (Figure 5 a),
and has the same structure and magnitude as the song
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syllable interval duration covariance matrix reported by
Glaze and Troyer [35]. Glaze and Troyer [35] showed that
the generative model given in (14) is a good description
of the statistical structure of the zebra finch song inter-
val duration variability. We previously showed that the
structure of variability of the noisy homogeneous synfire
chain model is well-described by this generative model
(Section III); we find the same to be true for the HVC
synfire chain model (Figure 9). The magnitude of vari-
ability in the model for 50 ms interval is of order 1 ms (for
each component), which is consistent with experimental
findings (Figure 10; data from [35]). As in Section III A,
we use the results of Section II C to connect behavioral
variability to neural mechanisms. Consistent with our
results in Section III A, we find that the chain noise con-
tributes to the local component of the song variability,
fatigue contributes to the global component, and read-
out noise contributes to the jitter component (Figure 8).

We also examine how the different components of vari-
ability in syllable duration scale with syllable duration.
The scalings of the components of variability of syllable
duration (Figure 11) agree with the predictions of Sec-
tion II C, as do previous models ( Figures 3b and 6) and
the experimental data (Figure 10).

Finally, we note that unlike the noisy homogeneous
synfire chain model (Section III), there is no need to add
per-pool noise, which is shared across neurons in the same
pool. That per-pool noise was necessary in the noisy ho-
mogeneous synfire chain model to obtain a non-negligible
local component of variability because the variability in
input currents to different neurons in a pool would oth-
erwise be uncorrelated (Section III C). In the HVC syn-
fire chain model, sufficient local variability is created by
variable synaptic inputs due to uncorrelated presynap-
tic Poisson spike trains and correlated noisy inputs from
inhibitory neurons connecting to multiple neurons in a
pool.

V. DISCUSSION AND CONCLUSION

In this paper, we presented analytical and compu-
tational analyses of the trial-to-trial timing variability
in synfire chains. We first show how variability scales
with input strength and noise level in a simple, analyt-
ically tractable chain of single neurons in a low firing
rate regime. We also show how trial-to-trial variability
scales with interval duration in this simple model. Then,
we demonstrated with simulations that our main results
carry to noisy homogeneous synfire chains. We found
that the statistical structure of timing variability in the
chain is well-described by a generative model which con-
sists of local, global and jitter components. Furthermore,
we were able to relate each of these components to dis-
tinct neural mechanisms in the model. Finally, we show
that our main results hold in a biologically realistic syn-
fire chain model of the premotor nucleus HVC in song-
birds, and that the structure and magnitude of variability

in the model agree with that observed in songbirds song.

Our findings have important implications for the rela-
tionship between neural and behavioral variability. Even
the most stereotyped of animal behaviors, like the songs
of zebra finches, show significant trial-to-trial variability
[34]. This variability can be an unavoidable nuisance, or
it might be there for an advantageous reason, for exam-
ple to allow the system to explore more of the behav-
ioral space to help in trial-and-error motor learning [1–3]
or help in social contexts [48]. Therefore, understanding
the mechanisms which generate and regulate trial-to-trial
variability has gained considerable interest [2, 4, 7].

Particularly, it has been argued that some of this vari-
ability is rooted in neural activity that controls behavior
[2, 4, 7]. Measurements of neural activity show signif-
icant trial-to-trial variability [2, 4, 7, 49]. These vari-
ations are not independent of behavior; for example,
they are known to correlate with behavioral choice in
a trial-by-trial basis [50]. Given this background, it is
natural to ask whether temporal variability of behav-
ior should reflect the statistics and structure of tempo-
ral variability of neural circuits that represent or gov-
ern the behavior’s timing in a trial-to-trial basis [9, 12].
Indeed, interrelationships between the timings of neural
dynamics and behavior have been observed in various
experimental studies [13–20]. For example, Srivastava et
al. [18] show that in Bengalese finches millisecond-scale
changes in the timing of a single spike in a burst in res-
piratory muscle fibers predicts significant differences in
breathing dynamics and millisecond-scale variations in
precisely-timed electrical stimulation of respiratory mus-
cles strongly modulate breathing output. This millisec-
ond scale spike timing control of behavior extends to
other animals and behaviors [20].

As the temporal variability in zebra finch song and
in HVC neurons are both on the millisecond scale
[13, 15, 32–35], we speculated that they may be linked.
We showed that the temporal variability observed in a
biologically realistic model of the zebra finch HVC chain
[32] is consistent with the magnitude and structure of
the timing variability in the zebra finch song. Thus, our
findings provide an example of a detailed match between
neural and behavioral variability, and suggest a possible
neural account of behavioral variability. A direct experi-
mental test of this suggestion would be to look for corre-
lations in a trial-by-trial basis between millisecond scale
temporal variations in the song and spike times of RA
projecting HVC neurons.

Potential weaknesses of our neural explanation of the
zebra finch song variability are the following. First, while
the dominant hypothesis for the song-timing circuit is a
synfire chain [32], this question is not fully settled. Fur-
ther, recent work suggests that the song-timing circuit
may not even be fully localized within the HVC but is
distributed across multiple areas [51]. If the distributed
circuit is a synfire chain, which is consistent with the
results of Hamaguchi et al. [51], our results still remain
valid. Second, in zebra finches, variability of song can
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FIG. 8. Contributions of different sources of noise in the HVC synfire chain model to the interval duration covariance matrix
(model modified from Long et al. [32]). (a) Interval duration covariance matrix for the full model. (b) Interval duration
covariance matrix with chain noise only. (c) Difference between covariance matrix with chain noise and fatigue and that with
chain noise only. (d) Difference between covariance matrix with readout and chain noise and that with chain noise only.
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FIG. 9. Factor decomposition of the interval duration covariance matrix of the HVC synfire chain model (model modified from
Long et al. [32]). (a) Full model covariance matrix. (b-d) The covariance matrices of the latent factors resulting from applying
the analysis method of [35] to the full model shown in (a).
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FIG. 10. Scaling of the local, global, and jitter components of
syllable timing variability with interval duration in zebra finch
song (data from Glaze and Troyer [35]). Glaze and Troyer
[35] recorded songs of zebra finches, which are composed of
a stereotyped sequence of syllables and gaps, a different se-
quence for each bird. After identifying syllables and gaps,
and their durations in each song, they fitted the generative
model described in Section II C to this dataset, separately for
each bird. Reported data in the figure is extracted from their
Figure 3. Each data point represents a syllable-bird pair. As
in Figure 6, we fit the relationships between interval duration
and the local and global components of variability with power
laws, yielding exponents of 0.53 and 1.14, respectively. No fit
is shown for the jitter component, as it is not significantly
correlated with interval duration.

be actively regulated through involving lateral magno-
cellular nucleus of the anterior neopallium (LMAN) [52].
Indeed Ali et al. [15] observed that LMAN lesions lead to

0 60
interval duration (ms)

0

2

<δTa δ
Tb >1/

2  (
m

s)

local global jitter

0 60
interval duration (ms)

0 60
interval duration (ms)

FIG. 11. Scaling of the local, global, and jitter components of
interval duration variability in the HVC synfire chain model
(model modified from Long et al. [32]). As in Figure 6, we
fit the relationships between interval duration and the local
and global components of variability with power laws, yielding
exponents of 0.42 and 1.03, respectively. No fit is shown for
the jitter component, as it is not significantly correlated with
interval duration.

a reduction in the local component of song timing vari-
ability, which was speculated to be mediated by indirect
LMAN input to HVC [53]. Another possible source of
variability is sensory inference errors [5]. HVC receives
feedback auditory input through the nucleus interfacialis
of the nidopallium [54], and altered auditory feedback can
lead to temporal changes in the song [55]. In the HVC
synfire chain model [32], noise was introduced as exci-
tatory and inhibitory independent Poisson spike trains,
with no specific reference to where such trains may come
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from and how could they be regulated. Third, the song
production pathway goes from HVC to RA, and then
from RA to the tracheosyringeal part of the hypoglossal
nerve (nXIIts), which then controls muscular contrac-
tions of the syrinx. Neural variability in all these areas
as well as variability in muscular contractions contribute
to temporal variability of the song. In our model, all of
this pathway’s contributions to temporal variability are
incorporated into the noise injected to a readout neuron,
which in turn contributes mostly to temporal jitter. It
is very possible that other components of variability are
affected by the downstream activity. Finally, a notion
of tempo variation that we did not consider arises from
structural changes to the chain, such as homeostatic and
synaptic plasticity [15, 46, 47], or experimental pertur-
bations [14]. In birdsong, these mechanisms can lead
to tempo changes on the order of tens of milliseconds
[14, 15, 46, 47], and, when naturally occurring, require
thousands of song repetitions to take effect [15].
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Appendix A: Asymptotics for the chain of
integrate-and-fire neurons

1. Stationary membrane potential distribution in
the low-rate limit

Here, we review the approximate firing rate and sta-
tionary membrane potential distribution in the low-rate
limit Vth − I0 � σ [36]. Inspecting the equation

ν =
1

τ
√
π

[∫ Vth−I0
σ

Vr−I0
σ

du eu
2

(1 + erf(u))

]−1
, (A1)

we can see that the integral is dominated by the upper
limit due to the exponential. Making the change of vari-
ables u′ ≡ u/h, h ≡ (Vth−I0)/σ, v ≡ (V0−I0)/(Vth−I0),

we have

ν =
σ

τ
√
π (Vth − I0)

[∫ 1

v

du eh
2u2

(1 + erf(hu))

]−1
≈ σ

2τ
√
π (Vth − I0)

[∫ 1

v

du eh
2u2

]−1

≈ σ

2τ
√
π (Vth − I0)

 eh2u2

2uh2

∣∣∣∣∣
1

v

−1

≈ Vth − I0
στ
√
π

exp

(
− (Vth − I0)2

σ2

)
. (A2)

where we integrated by parts in the third line. By a sim-
ilar argument, we can approximate the stationary distri-
bution of the membrane potential as∫ Vth−I0

σ

V−I0
σ

duΘ

(
u− V0 − I0

σ

)
eu

2

≈ 1

2ντ
√
π
, (A3)

in this limit.

2. Moments of the first-spike-interval in the
low-rate stationary limit

To derive the moments of the first-spike-interval in
the low-rate stationary approximation, we start with the
standard results (given as (6) and (7) in the main text)
for the mean and variance conditioned on V0 [36, 37]:

〈Tfs〉V0 =
√
πτ

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dy ey

2

[1 + erf(y)] (A4)

and

〈δT 2
fs〉V0 = 2πτ2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dx ex

2

×
∫ 0

−∞
dy e(x+y)

2

[1 + erf(x+ y)]
2
. (A5)

Considering the mean first-spike-interval, we use the in-
tegral representation of the error function as

1 + erf(x) =
2√
π

∫ 0

−∞
du e−(u+x)

2

(A6)

to write

〈Tfs〉V0
τ

= 2

∫ (Vth−I0−Is)/σ

(V0−I0−Is)/σ
dy ey

2

∫ 0

−∞
du e−(u+y)

2

=

∫ 0

−∞

du

u
e−u

2

×
[
e2u(I0+Is−V0)/σ − e2u(I0+Is−Vth)/σ

]
,

(A7)
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where we note the cancellation in the bracketed integrand
that ensures that it does not diverge as u→ 0−. We can
then easily compute the expectation over the approxi-
mate distribution (5) of V0 to obtain

〈Tfs〉
τ

=

∫ 0

−∞

du

u
e−u

2
[
eu

2+2Isu/σ − e2u(I0+Is−Vth)/σ
]
,

(A8)

which, though it does not have a simple closed-form solu-
tion, is the integral of a bounded entire function that de-
cays exponentially fast at infinity (provided that Is > 0),
and is therefore well-behaved.

To obtain a similar integral expression for the variance
of the first-spike-interval, we recall the law of total vari-
ance

〈δT 2
fs〉 = 〈〈δT 2

fs〉V0 〉+ 〈δ〈Tfs〉2V0 〉, (A9)

where the outer angle brackets denote averaging over the
distribution of V0, and follow the same procedure that
we used to derive 〈Tfs〉 to obtain

〈〈δT 2
fs〉V0 〉
τ2

= 4

∫ 0

−∞
du

∫ 0

−∞
dv

∫ 0

−∞
dw

e−(u+v+w)2+2uv

u+ v + w

×
[
e(u+v+w)2+2(u+v+w)Is/σ − e2(u+v+w)(I0+Is−Vth)/σ

]
,

(A10)

and

〈δ〈Tfs〉2V0 〉
τ2

=

∫ 0

−∞

du

u

∫ 0

−∞

dv

v
e−u

2−v2

×
[
e(u+v)

2+2Is(u+v)/σ − eu
2+v2+2Is(u+v)/σ

]
.

(A11)

With these integral expressions in hand, we can now
derive asymptotic expansions for the moments. For
brevity, we define the dimensionless scalars α ≡ (I0 +
Is − Vth)/σ and β ≡ (Vth − I0)/σ; we will work in the
limit of low baseline firing rates β � 1 and large synaptic
inputs α � 1. Rescaling u by 2α in (A8), we can write
the mean first-spike-interval as

〈Tfs〉
τ

=

∫ 0

−∞

du

u
eu
[
e(β/α)u − e−u

2/4α2
]

= log

(
α+ β

α

)
−
∫ 0

−∞

du

u
eu
[
e−u

2/4α2

− 1
]
,

(A12)

where we have split the integral into two pieces by adding
and subtracting one from the integrand and evaluated the
first of the remaining integrals. Expanding the remaining
integrand other than the overall exponential weight eu

as a power series and integrating term-by-term using the
relationship of the integrand to the gamma function [56],

we obtain the divergent asymptotic series

〈Tfs〉
τ
∼ log

(
α+ β

α

)
+
∞∑
k=1

(−1)k(2k − 1)!

4kk!α2k

∼ log

(
α+ β

α

)
− 1

4α2
+O

(
α−4

)
, (A13)

which yields the lowest-order approximation given in the
main text.

We now consider 〈δT 2
fs〉. Converting the integral over

the negative octant in (A10) to an integral over the
positive octant, making the change of variables x ≡ u,
y ≡ v + w, z ≡ w, and parameterizing the domain of
integration such that we integrate first over z ∈ [0, y], we
have

〈〈δT 2
fs〉V0 〉
τ2

= 2

∫ ∞
0

dx

∫ ∞
0

dy
e−2α(x+y)

x(x+ y)

[
e2xy − 1

]
×
[
e−(x+y)

2

− e−2β(x+y)
]
.

(A14)

Then, adding the expression for 〈δ〈Tfs〉2V0 〉 given in (A11)

to the above expression for 〈〈δT 2
fs〉V0 〉 as prescribed by

the law of total variance (A9), we have

〈δT 2
fs〉
τ2

=

∫ ∞
0

dx

∫ ∞
0

dy e−2α(x+y)
[
e2xy − 1

]
×

[
2e−(x+y)

2

x(x+ y)
+

1

xy

(
x− y
x+ y

)
e−2β(x+y)

]
.

(A15)

As it is anti-symmetric about the line y = x, the sec-
ond term in the bracketed integrand will vanish under
integration over the positive quadrant, leaving

〈δT 2
fs〉
τ2

= 2

∫ ∞
0

dx

∫ ∞
0

dy
e−(x+y)

2−2α(x+y)

x(x+ y)

[
e2xy − 1

]
.

(A16)

Rescaling x and y by 2α and making the change of vari-
ables u ≡ x+ y, v ≡ x, we have

〈δT 2
fs〉
τ2

= 2

∫ ∞
0

du

u

∫ u

0

dv

v
e−u

2/4α2−u
[
ev(u−v)/2α

2

− 1
]
.

(A17)

Expanding the bracketed portion of the integrand as a
power series and observing that∫ u

0

dv vk(u− v)k+1 =
k!(k + 1)!

(2k + 2)!
u2k+2, (A18)

we have, integrating over u term-by-term,

〈δT 2
fs〉
τ2

=

∞∑
k=0

k!

2k(2k + 2)!α2k+2

∫ ∞
0

du e−u
2/4α2−uu2k+1.

(A19)
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To allow us to apply standard asymptotic results to the
remaining integral, we note that it is related to Tri-
comi’s confluent hypergeometric function U(a, b, z) as
α2k+2(2k + 1)!U(k + 1, 1/2, α2) [56], hence, shifting in-
dices for convenience, we can write

〈δT 2
fs〉
τ2

∼
∞∑
k=1

(k − 1)!

2kk
U

(
k,

1

2
, α2

)
. (A20)

Using the standard result that

U(a, b, z) ∼ z−a
[
1− a(a− b+ 1)

z

+
a(a+ 1)(a− b+ 2)(a− b+ 1)

2z2

+O(z−3)
]
, (A21)

for |z| � 1 [56], we have

〈δT 2
fs〉
τ2

∼ 1

2α2
− 1

8α4
+O(α−6), (A22)

which yields the lowest-order approximation given in the
main text.

To obtain the asymptotic approximations for the tim-
ing variability in the simple model for neural fatigue given
in the main text (10, 11, 12), we start from the asymp-
totic expansions without fatigue (8, 9), and apply the
laws of total expectation and total variance given the
assumed distribution of the parameter m. We then ex-
pand the resulting expressions about the baseline spiking
threshold Vth to lowest order in δVth/(Is + I0 − Vth), as-
suming that mmax δVth � Is + I0 − Vth, yielding the
asymptotic approximations (10) and (11).

3. Moments of the first-spike-interval in a
delta-function approximation

In the previous appendix and in the main text, we con-
sidered the approximation of the distribution of initial
membrane potentials by the stationary Gaussian limit
(5). In this appendix, we consider a delta-function ap-
proximation P (V0) ≈ δ(V0 − 〈V0〉). This approximation
maps directly to the standard treatment of leaky IF neu-
rons with the appropriate replacement of Vr by I0. Here,
we review the derivation of the corresponding asymptotic
results [37, 38]. In the limit Vth − I0 � σ of low firing
rates, we have 〈V0〉 = I0, hence we fix V0 = I0 in this ap-
proximation. Considering the mean first-spike-interval,
we again start from the standard expression (6) with V0
set to I0, and rescale σy 7→ y, yielding

〈Tfs〉
τ

=

√
π

σ

∫ Vth−I0−Is

−Is
dy ey

2/σ2
(

1 + erf
( y
σ

))
.

(A23)

In the limit Is + I0 − Vth � σ of large synaptic inputs,
the quantity y in the above integrand is always negative,

and we have y/σ � −1. Using the asymptotic expansion
of the error function for x� −1 [56],

erf(x) ∼ −1 +
e−x

2

√
π|x|

(
1− 1

2x2
+ . . .

)
, (A24)

we obtain

〈Tfs〉
τ
∼ log

(
Is

Is + I0 − Vth

)
− σ2

4

(
1

(Is + I0 − Vth)2
− 1

I2s

)
(A25)

to lowest order. Similarly, for the variance of the first-
spike-interval, we start with the standard expression (7)
with V0 = I0. Again rescaling the variables of integration
by σ and using the asymptotic form of the error function,
we obtain the lowest-order approximation

〈δT 2
fs〉
τ2

∼ σ2

2

(
1

(Vth − Is − I0)2
− 1

I2s

)
. (A26)

Comparing these expressions to the corresponding re-
sults (8, 9) in the approximation of the initial membrane
potential distribution by the stationary Gaussian dis-
tribution (5), we observe that they are identical up to
the presence of the −I−2s terms in the lowest-order ap-
proximations. The presence of these terms in the delta-
function approximation means that the variability de-
creases more rapidly with increasing synaptic strength
and increases less rapidly with increasing noise variance
σ2 than in the Gaussian approximation.

Appendix B: Details of the HVC synfire chain model

In this appendix, we provide a detailed description of
the HVC synfire chain model from Long et al. [32]. This
model consists of a chain of 70 sequentially-connected
pools of 30 HVCRA neurons, along with a popula-
tion of 300 HVCI inhibitory interneurons. A given
HVCRA neuron connects to an HVCRA neuron in the
next pool with probability P and an excitatory synap-
tic conductance drawn from the uniform distribution on
[0, gEEmax/(30P )] mS cm-2, where gEEmax is a dimension-
less parameter. An HVCRA neuron connects to an HVCI

neuron with probability 0.05 and excitatory synaptic con-
ductance drawn uniformly from [0, 0.5] mS cm-2. Finally,
an HVCI neuron connects to an HVCRA neuron with
probability 0.1 and an inhibitory synaptic conductance
drawn uniformly from [0, 0.2] mS cm-2. Long et al. [32]
chose these parameter values such that successful spike
propagation was possible for many values of gEEmax.

1. HVCRA dynamics

In the Long et al. [32] model, HVCRA neurons are mod-
eled as two-compartment bursting neurons. The somatic
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compartment contains leak, Na+, and delay-rectified K+
conductances, while the dendritic compartment contains
leak, high-threshold Ca++, and calcium-activated K+
conductances. This model can generate dendritic cal-
cium spikes, which evoke stereotyped bursts of sodium
spikes in the soma. The membrane potentials Vs and
Vd of the somatic and dendritic compartments obey the
dynamics

CmAsV̇s = As (Is,L + Is,Na + Is,Kdr + Is,exc + Is,inh)

+ Is,ext +
Vd − Vs
Rc

CmAdV̇d = Ad (Id,L + Id,Ca + Id,CaK + Id,exc + Id,inh)

+ Id,ext +
Vs − Vd
Rc

; (B1)

we enumerate the definitions and values of all parameters
in Table I. The dynamics of the injected currents Is,ext
and Id,ext are freely chosen, while the remaining currents
are given as

Is,L = −GL(Vs − EL)

Is,Na = −GNam
3
∞h(Vs − ENa)

Is,Kdr = −GKdrn
4(Vs − EK)

Is,exc = −gs,exc(t)Vs
Is,inh = −gs,inh(t)(Vs − EI)

Id,L = −GL(Vd − EL)

Id,Ca = −GCar
2(Vd − ECa)

Id,CaK = −GCaK
c

1 + 6[Ca]−1
(Vd − EK)

Id,exc = −gd,exc(t)Vd
Id,inh = −gd,inh(t)(Vd − EI), (B2)

where gs,exc, gs,inh, gd,exc, and gd,inh are the total synap-
tic conductances of the soma and dendrite. The gating
variable m(t) = m∞(Vs) is an instantaneous function of
Vs, while h, n, r, c all evolve according to the dynamics

τxẋ = x∞ − x (B3)

for x ∈ {h, n, r, c}, where the activation functions are
given as

m∞(Vs) = 1/ (1 + exp[−(Vs + 30)/9.5]) (B4)

h∞(Vs) = 1/ (1 + exp[(Vs + 45)/7]) (B5)

n∞(Vs) = 1/ (1 + exp[−(Vs + 35)/10]) (B6)

r∞(Vd) = 1/ (1 + exp[−(Vd + 5)/10]) (B7)

c∞(Vd) = 1/ (1 + exp[−(Vd − 10)/7]) , (B8)

and the time constants are given as

τh = 0.1 + 0.75/ (1 + exp[(Vs + 40.5)/6])

τn = 0.1 + 0.5/ (1 + exp[(Vs + 27)/15])

τr = 1

τc = 10; (B9)

Name Description Value
As area of somatic compartment 5000µm2

Ad area of dendritic compartment 10000µm2

Cm membrane capacitance 1µF/cm2

Rc compartment coupling resistance 55 MΩ
GL leak conductance 0.1 mS/cm2

GNa Na+ conductance 60 mS/cm2

GKdr delay-rectified K+ conductance 8 mS/cm2

GCa high-threshold Ca++ conductance 55 mS/cm2

GCaK Ca-dependent K+ conductance 150 mS/cm2

EL leak reversal potential −90 mV
ENa Na+ reversal potential 55 mV
EK K+ reversal potential −90 mV
ECa Ca++ reversal potential 120 mV
EI inhibitory reversal potential −80 mV

TABLE I. HVCRA model parameters

the units of all constants are implied. Finally, the calcium
concentration [Ca] evolves as

˙[Ca] = 0.1Id,Ca − 0.02[Ca]. (B10)

Synaptic conductances follow “kick-and-decay” kinetics:
g 7→ g + G when a spike arrives at a synapse with con-
ductance G; τ ġ = −g between spikes, for g ∈ {gexc, ginh}.
The synaptic time constants τexc and τinh are both fixed
to 5 ms.

2. HVCI dynamics

In the Long et al. [32] model, HVCI neurons are
modeled as single-compartment neurons containing leak,
Na+, delay-rectified K+, and high-threshold K+ conduc-
tances. The membrane potential V obeys the dynamics

CmV̇ = IL + INa + IKdr + IKHT + Iexc + Iinh; (B11)

the values of all parameters are given in Table II. The
currents are given as

IL = −GL(V − EL)

INa = −GNam
3h(V − ENa)

IKdr = −GKdrn
4(V − EK)

IKHT = −GKHTw(V − EK)

Iexc = −gexc(t)V
Iinh = −ginh(t)(V − EI) (B12)

for total excitatory and inhibitory synaptic conductances
gexc and ginh. The gating variables m, h, and n evolve
according to the dynamics

ẋ = αx(1− x)− βxx, (B13)
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Name Description Value
Cm membrane capacitance 1µF/cm2

GL leak conductance 0.1 mS/cm2

GNa Na+ conductance 100 mS/cm2

GKdr delay-rectified K+ conductance 20 mS/cm2

GKHT high-threshold K+ conductance 500 mS/cm2

EL leak reversal potential −65 mV
ENa Na+ reversal potential 55 mV
EK K+ reversal potential −80 mV
EI inhibitory reversal potential −75 mV

TABLE II. HVCI model parameters

for x ∈ {m,h, n}, where

αm = (V + 22)/(1− exp[−(V + 22)/10])

αh = 0.7 exp[−(V + 34)/20]

αn = 0.15(V + 15)/(1− exp[−(V + 15)/10])

βm = 40 exp[−(V + 47)/18]

βh = 10/(1 + exp[−(V + 4)/10])

βn = 0.2 exp[−(V + 25)/80], (B14)

with implied units throughout. The gating variable obeys

ẇ = w∞ − w, (B15)

where

w∞ = 1/(1 + exp[−V/5]). (B16)

The excitatory and inhibitory conductances obey the
same dynamics as for HVCRA neurons, except for the
fact that the excitatory time constant τexc is set to 2 ms.

3. Noise spike trains

The Long et al. [32] model introduces noise into the
neurons via independent Poisson spike trains. Each
HVCRA neuron receives excitatory and inhibitory spike
trains at both compartments, each generated from a ho-
mogeneous Poisson process with a rate of 100 Hz. The
conductances of each spike are drawn independently in
time from a uniform distribution on [0, 0.035] mS/cm2 for
the somatic compartment and [0, 0.045] mS/cm2 for the
dendritic compartment. Each HVCI neuron also receives
excitatory and inhibitory noise spike trains, generated
from 250 Hz Poisson processes with conductances drawn
uniformly from [0, 0.45] mS/cm2. With this noise model,
the RMS fluctuation in the membrane voltage of each
compartment of each HVCRA neuron is about 3 mV, and
the HVCI neurons spike spontaneously at about 10 Hz.
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