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Abstract
Dietary interventions have a significant impact on body metabolism. The sensitivity of cancer cells to nutrient and energy
deficiency is an evolving characteristic of cancer biology. Preclinical studies provided robust evidence that energy and caloric
restrictions could hinder both cancer growth and progression, besides enhancing the efficacy of chemotherapy and radiation
therapy. Moreover, several, albeit low-powered, clinical trials have demonstrated clinical benefits in cancer patients. Future
research will inform and firmly establish the potential efficacy and safety of these dietary interventions. Here, we review the
current evidence and ongoing research investigating the relationship between various dietary restriction approaches and cancer
outcomes.
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Introduction

Diet-related obesity is a known risk factor for numerous
aging-related diseases and several types of cancers, including
breast cancer, pancreatic cancer, colorectal cancer, hepatic
cancer, and prostate cancer [1]. In cancer patients, obesity is
associated with an increased risk for disease recurrence and
higher disease-specific or overall mortality [2].

Preclinical studies have shown that caloric restriction (CR)
can protect animals against the toxic effects of chemotherapy,
while also enhancing the efficacy of various chemotherapeutic
agents [3].

Thus, this review will examine the current knowledge
concerning the mechanisms that explain normal and cancer
cells’ responses to CR. Moreover, it summarizes the available
preclinical and clinical data that addressed the impact of CR
on cancer incidence, and its potential effects on enhancing
efficacy and reducing the toxicity of chemotherapy and
radiotherapy.

Review

Autophagy

To understand the relationship between energy restriction
(ER) and cancer biology, a thorough insight of the autophagy
is required. Autophagy is a catabolic process essential to sup-
port cellular homeostasis and survival in response to both
physiologic and pathologic stimuli by involving degradation
and recycling of cells’ intracellular endogenous and exoge-
nous components through the lysosomal machinery [4, 5].
This mechanism aids cell survival by providing primary ma-
terials including amino acids, fatty acids, nucleosides/nucleo-
tides, sugars, and nucleosides/nucleotides during the state of
cellular deprivation [6].

Autophagy operates at basal levels, and it can be induced in
response to chemotherapeutic treatment and various cellular
conditions including hypoxia, DNA damage, and nutrient
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depletion [7]. In the past years, the dynamic role of autophagy
has gained increasing attention as it could be a therapeutic
target for several diseases, including cancer [8].

The preponderance of evidence indicated that autophagy
suppresses tumorigenesis and inhibits cancer cell adaptation,
proliferation, survival, and invasion or metastasis [9].

Several studies using animal models suggested that the
tumor-suppressive mechanism by autophagy was associated
with cellular responses from different types of stress, such as
oxidative stress, DNA damage, inflammation, and dysfunc-
tional elements. While there is no evidence that autophagy
contributes to cancer development, it may have a vital role
in tumor survival and progression [10].

Mutations in the tumor suppressor gene p53 have been
frequently observed in a wide range of human cancers, which
also supports autophagy initiation to recycle intracellular com-
ponents that subsequently promote tumor growth [11]. Further
studies have shown that the upregulation of autophagy is an
important protection against chemotherapeutic agents, which
is associated with treatment resistance [12, 13].

Autophagy modulation may be considered a new therapeu-
tic strategy in treating patients with cancer [12–15]. The com-
bination of autophagy inhibitors such as bafilomycin A1,
chloroquine, or 3-methyladenine with standard agents has
shown increased efficacy in treating tumor cells [16–18].
Notably, inhibition of autophagy demonstrated an increase
response to radiotherapy in ovarian [19] and esophageal [20]
cancer, likely due to enhanced oxidative stress and DNA dam-
age during short-term fasting on cancer cells. Although results
from clinical trials have not found an association between
autophagy inhibition and anticancer therapy, there are several
approved agents known to modulate autophagy [21].

Cancer cells

Cancer cells demonstrate an increase in anabolic reactions that
give rise to the so-called Warburg effect. Tumor cells con-
sume large amounts of glucose even in conditions in which
oxidative phosphorylation can proceed unrestrictedly, they are
also able to take up large amounts of amino acids [22], and
they are avid consumers of lipids [23]. Studies with the human
subjects found that long-term caloric restriction (CR) have
significant reductions in metabolic and hormonal factors that
are likely to be associated with the risk of developing cancer
[24, 25].

Energy restriction (ER), caloric restriction (CR),
intermittent energy restriction (IER), and fasting and
cancer

There are two most common types of energy restriction (ER),
the caloric restriction (CR) or continuous energy restriction
(CER) and the intermittent energy restriction (IER). The IER

encompasses a variety of fasting patterns, including intermit-
tent fasting, periodic fasting, alternate-day fasting, fasting-
mimicking diet (FMD), or time-restricted feeding [26].
Fasting is defined as complete food deprivation except to
drink water, with intervals of regular food intake. CR is dis-
tinct from fasting in which average daily caloric intake re-
duces by 20–40% without malnutrition or deprivation of es-
sential nutrients [27].

In response to ER, metabolic changes induce health-
promoting effects, including increased insulin sensitivity and
decreased blood glucose, growth factor signaling, inflamma-
tion, angiogenesis, and protection against oxidative stress
[28–30]. Exposure to an ER diet results in reduced systemic
glucose and growth factors such as insulin-like growth factor
[31], and the latter is known to play a significant role in the
development and progression of tumors through the activation
of two major signaling cascades, namely Ras/MAPK and
PI3K/AKT [32]. CR also induces activation of AMP-
activated protein that results in increased apoptosis [33].
Fasting has also been shown to cause an anti-Warburg effect
and promote apoptosis in vitro cancer models [34].

The National Institute of Ageing Studies showed that the
incidence of cancers in rhesus monkeys fed a CR diet is re-
duced compared to that in animals fed a control diet [35].
Recent in vitro and in vivo studies have shown that ER sig-
nificantly enhanced the efficacy of several chemotherapeutic
agents [34, 36–38]. It has been postulated that fasting may
improve anticancer therapies’ effectiveness in part by control-
ling the circadian rhythm [39]. In several animal models, in-
termittent fasting combined with chemotherapy show en-
hanced suppression of tumor growth and improved overall
survival [3]. In xenograft malignancies in mice, tumor growth
was slower in response to chemotherapy combined with a 24–
60 h fast compared to chemotherapy alone [34, 40]. Fasting
also has significant benefits in terms of reducing the toxicity
of chemotherapy treatment [41].

Differential stress resistance

During shot-term fasting (STF), normal healthy cells and can-
cer cells respond differently to chemotherapeutic agents. This
phenomenon is termed differential stress resistance (DSR). In
normal healthy cells, nutrient deprivation inactivated growth-
promoting pathways to prioritize maintenance and repair path-
ways, leading to increase cellular protection and resistance to
multiple stresses. In cancer cells, however, growth-promoting
pathways remain over activated and unable to activate the
protective response, contributing to less resistance to stress
and more vulnerability to chemotherapeutic agents. Because
of these differential responses of healthy versus cancer cells to
STF, chemotherapy causes more DNA damage and apoptosis
in tumor cells, leaving healthy cells unharmed when com-
bined with STF [42, 43].
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Fasting-mimicking diet (FMD)

Considering the potential adverse effects of CR and fasting in
some cancer patients, pharmacological agents that mimic CR,
such as rapamycin, metformin, and resveratrol, could serve as
effective alternatives to achieve the protective effects of CR.
In animal models, a fasting-mimicking diet showed a similar
reduction in tumor progression as short-term starvation [44].
The administration of the CR mimetic rapamycin (sirolimus),
achieved mTOR inhibition, extended lifespan, and delayed
cancer in mice [45]. Another CR mimetic, metformin, was
shown to suppress tumor development and growth in multiple
experimental models, including colon, mammary, and hema-
topoietic cancer models [46].

Recently, Caffa et al. showed that in mouse models of
hormone-receptor-positive breast cancer, periodic fasting or
an FMD enhanced the endocrine therapeutics activity of ta-
moxifen and fulvestrant by lowering circulating IGF1, insulin,
and leptin and by inhibiting AKT-mTOR signaling [47]. The
authors also showed that in patients with hormone-receptor-
positive breast cancer receiving estrogen therapy, cycles of an
FMD cause metabolic changes like those observed in mice.

Alternative dietary approaches

Dietary regimens, such as a low carbohydrate/ketogenic diet,
promote ketones derived from fatty acids as energy sources
rather than glucose. Such dietary interventions were also
shown to reduce tumor growth in several tumor cell models
[48–50]. Moreover, there is preclinical and clinical evidence
supporting the assumption that ketogenic therapy through
fasting and ketogenic diets can enhance radiotherapy [51].

Clinical data

Clinical data on CR is limited. Nevertheless, data from human
trials demonstrate that CR in non-obese individuals results in
favorable changes similar to those observed in rodent models
[52]. The potential advantage of CR as an adjunct therapy for
a range of cancers has recently received significant attention
[53].

A small pilot study comprising ten patients diagnosed with
breast, prostate, esophageal, or lung cancer in advanced stages
suggested that intermittent fasting periods before and after
chemotherapy reduce the self-reported side effects, including
fatigue and weakness, vomiting, and diarrhea [54]. Another
study included 11 patients that examined the feasibility of
combining chemotherapy and intermittent fasting during
Ramadan’s Muslim fasting month, and it showed that com-
bining fasting and chemotherapy was safe, and the side effects
of chemotherapy tended to be less [55].

Dorff et al. reported results from a phase I study (20 pa-
tients) with various malignancies treated with platinum-based

chemotherapy combined with 24, 48, or 72 h STF to identify
the optimal fasting duration [42, 56]. The authors reported that
72 h of short-term fasting was associated with normal lym-
phocyte counts and maintenance of a normal lymphoid/
myeloid ratio, while 24 h STF was not.

In a randomized, cross-over trial compromising 34 patients
with breast and ovarian cancer, the study confirmed that com-
pared with the Mediterranean diet, STF for 60 h (from 36 h
before chemotherapy to 24 h post-chemotherapy) improved
tolerance to chemotherapy, enhanced quality of life, and led to
lesser fatigue [57].

In 13 breast cancer patients treated with (neo)-adjuvant
chemotherapy, a 48-h starvation period (from 24 h before to
24 h after chemotherapy) was associated with reduced hema-
tological toxicity [58]. A further study that included 17 pa-
tients, a special ketogenic diet, the so-called “modified Atkins
diet,” reportedly reduces the progression of some advanced
cancer patients, especially in individuals who experienced at
least 10% loss of their body weight [59]. Likewise, in patients
with recurrent glioblastoma, a ketogenic regimen was admin-
istered simultaneously with the antiangiogenic drug
bevacizumab, induced objective responses in 6 out of 7 pa-
tients with a median progression-free survival 20.1 weeks
[60].

The concerns associated with CR

There are several concerns associated with the adoption of CR
in cancer patients as cancer patients are at a greater risk of
weight loss due to the toxic effect of cancer therapies and
cachexia, and sarcopenia from tumor-derived signals to de-
grade adipose and muscle tissues, to which chronic CR may
contribute. However, the impact of a few days of fasting on
the bodyweight of humans appears far more modest, and it is
largely due to water loss [61]. Another concern is related to the
anti-inflammatory effect of CR that could be detrimental to
cancer patients who may be immunodeficient due to the dis-
ease or its therapy. Moreover, fasting may cause mild side
effects, including headaches, dizziness, nausea, dyspepsia,
and fatigue.

Conclusion

As nutrition and metabolism are essential for human physiol-
ogy, it is not surprising that dietary interventions attract atten-
tion as a safe means to limit tumor progression or reinstate
disease control by the host immune system. While preclinical
studies support the concept that reducing total calorie intake
may stimulate anticancer immunity, evidence-driven from
earlier clinical studies lack enough power to draw definite
conclusions. Multiple trials evaluating these possibilities in
patients with distinct types of cancer are ongoing. De Groot
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et al. [62] and Castejón et al. [63], reported on comprehensive
lists of ongoing studies of dietary interventions. Such inter-
ventions include CR, intermediate fasting, ketogenic and low
carbohydrate diets, and restrictive protein diets for patients
with several advanced cancer types. Several trials are designed
to investigate the combination of dietary restriction in combi-
nation with chemotherapy, radiotherapy, checkpoint inhibi-
tors, or metformin to ameliorate side effects, improve quality
of life, or improve outcome. Other trials aimed at assessing the
preventive role of CR on age-related chronic diseases, includ-
ing cancer such as the CALERIE trial.

Dietary intervention trials have inherent challenges to over-
come. First, dietary interventions are quite heterogeneous.
Second, the studies’ control arms usually receive advice in
relation to healthy nutritional habits. Third, compliance with
the tested dietary intervention is hard to be enforced and dif-
ficult to bemonitored. Nevertheless, future researchwill hope-
fully inform and firmly establish the potential efficacy and
safety of these dietary interventions.
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