
Received February 4, 2019, accepted March 16, 2019, date of publication March 22, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906910

Cloud-Based FPGA Custom Computing Machines
for Streaming Applications
AMRAN A. AL-AGHBARI AND MUHAMMAD E. S. ELRABAA
Computer Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Corresponding author: Muhammad E. S. Elrabaa (erabaa@kfupm.edu.sa)

This work was supported by King Fahd University of Petroleum and Minerals.

ABSTRACT A novel platform for launching and using field-programmable gate arrays (FPFA) custom com-
puting machines (CCMs) in clouds and data centers is proposed. Based on a developed FPGA virtualization
scheme, it allows users to create independent computing services on network-attached standalone FPGAs.
The interface of the virtual FPGA (vFPGA)-based CCM is automatically generated by a virtualization layer
and based on the user’s specifications. An FPGA hypervisor has been developed that can be easily integrated
with any cloudmanagement tool. It allows the users to launch/use/tear down vFPGA-basedCCMs in a similar
manner to conventional virtual machines (VMs). A complete prototype of the proposed platform has been
realized and tested with a streamed image processing application. Its performance was 3–4x and ∼1.4–2.4x
times better than an SW implementation on a VM and a powerful server, respectively. Compared with other
platforms for FPGA attachment to a cloud or datacenter, the proposed platform has relatively low overhead
in terms of FPGA resources while providing the highest level of abstraction and virtualization.

INDEX TERMS Reconfigurable computing, FPGAs, custom computing machines, cloud computing,
streamed applications.

I. INTRODUCTION

On-cloud data processing is an important aspect of to-day’s
computations that serve other ecosystems such as IoTs and
smart grid. Clouds offer efficient storage, sharing, and big
data processing for these ecosystems. At the beginning of
the cloud computing era, CPUs were used for all computing
purposes.With the increasing demand on performance, accel-
erators such as GPUs and recently FPGAs have been exten-
sively utilized in computations. CPU-based servers off-load
compute-intensive tasks to GPUs and FPGAs to improve
performance. Heterogeneous computing with FPGAs offers
lower power consumption per operation compared to CPUs
and GPUs. In comparison to traditional CPUs, the power con-
sumption of FPGAs is 90% lower [1]. Additionally, FPGAs
are well suited for packet processing systems. They have been
reported to improve the bandwidth between virtual ma-chines
(VMs) in a public cloud from 4Gbps to 25Gbps, with five
to ten times less latency [2]. Excellent performance for AI,
image processing, data compression as well as many other
applications have been reported for FPGAs. Such improve-
ments exceeded 300x for pattern matching, 200x for com-
pression, and 100x for machine learning [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Gian Domenico Licciardo.

Though FPGA vendors have developed compilers and
libraries that allow creating and executing kernels on FPGAs
similar to GPU kernels, FPGA virtualization remains neces-
sary for FPGA usage in clouds. There is a need to integrate
FPGAs into clouds and allow them to be managed in a similar
way to other cloud resources (CPUs, storage and networking).
Users should be able to instantiate them as independent com-
puting machines and deploy applications on these FPGAs in
a similar manner to virtualized CPUs. They should not have
to instantiate a physical machine with an attached FPGA to
accelerate their applications as it is the case with most current
FPGA offerings in public clouds.

In this work, we introduce a cloud computing frame-work
to provision virtual FPGAs as standalone custom comput-
ing machines (CCMs). A CCM is a network-attached vir-
tual FPGA programmed with specific hard-ware application,
receives data in its standard format without special format-
ting, performs computations, and sends back the results just
like standard software functions on network servers. For
instance, a CCM for image edge detection application accepts
JPEG images and produces another JPEG image which the
detected edges. The user sends and receives images in their
original format through a direct connection with the CCM.
CCMs are self-contained and self-controlled and do not
require external servers or controllers.

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

38009

https://orcid.org/0000-0002-4643-0853


A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

The proposed FPGA-based CCM frame work for public
clouds has the following novelties:

- It hides hardware details from the user. The developed
CCMs receive data in its original raw format. A specially
developed on-FPGA controller reformats the da-ta according
to user specifications and follows the hardware I/O protocol.

- Unlike other works, computation in CCM is notman-aged
or controlled by another CPU-based server. It is a standalone
computing machine that starts computations once it receives
new data. This makes it well suited for real-time computation
and IoT computations.

- We introduce a cloud platform that manages CCMs and
provision them as cloud computing services. Our cloud plat-
form can be smoothly merged with existing cloud systems.
We discuss the FPGA hypervisor and the software library
used to manage and use CCM re-sources. The FPGA hyper-
visor is independent like any hypervisor in the cloud.

Next, related work on FPGA virtualization and attachment
to clouds and datacenters is reviewed. Overview of the pro-
posed framework is introduced in section 3 fol-lowed by
a detailed explanation of the implementation in section 4.
Experimental results and comparisons to other platforms are
presented in section 5 followed by conclusions in section 6.

II. RELATED WORK
Most cloud-based FPGA virtualization efforts share the con-
cept of dividing the physical FPGA into a fixed or static logic
part (called the shell) and a configurable part (the role). The
shell (1% up to 25%of the physical FPGA) abstracts the inter-
face and performs management and the role constitute the
virtual FPGA and holds the user’s application. The shell con-
tains the common components required by all applications
such as communication controllers (PCI end point, network
controller, off-chip memory controller), clock management,
routing (if multiple vFPGAs are allowed) and reconfigura-
tion management (if dynamic reconfiguration is supported).
Researches refer to the static region using different names
such as static logic [6], [8], RC2F [5], service layer [9],
vendor logic [13], [14], Network Service Layer [28], FPGA
hypervisor [7], [12] and shell [10], [11]. The role region is
usually a dynamically reconfigurable region [8], [9], [13], [5].
Some researchers proposed a static role that would be com-
bined with the static logic and synthesized to get the full
FPGA bit stream [10], [22]. Compilers for this approach,
compile an application (written in High-level language) into
a SW part and FPGA part that executes the user-specified
compute-intensive functions (kernels). The compiler gener-
ates the SW drivers and HW interfaces that enable the two
parts to communicate using the node’s PCIe bus. Several
role regions can be merged to form one large region [23].
Migrating a design from one role to another was discussed
in [21] though the measured migration time was around 1 S.

Physical FPGAs can be physically attached to a datacen-
ter (DC) node’s CPU via the PCIe, as a stand-alone net-
worked resource, or both [2], [5], [6], [9], [10], [25]. Tight

coupling between FPGAs and CPUs in compute nodes leads
to several limitations:

1) The number of FPGAs in a DC is limited to the number
of CPU nodes and PCIe slots per node,

2) FPGAs cannot be used independently from the CPU
node they are attached to; i.e. CPUs must explicitly
send/receive data and instructions to the FPGAs wasting both
CPU’s and FPGA’s cycles,

3) In a cloud setting, customers actually instantiate two
compute instances (one on a CPU and another on an FPGA),

4) Aggregation of several FPGAs to implement a large
application becomes difficult and inefficient, as the data traf-
fic between these FPGAs must go through the nodes (i.e.
no direct communication between FPGAs). This is why some
platforms utilize both interfaces [11] with a secondary net-
work between FPGAs to enable running large applications on
multiple FPGAs even though they are PCIe-attached. In [14]
FPGAs are used as standalone network-attached computing
resources, thus decoupling the number of FPGAs from the
number of CPU nodes and PCIe slots per node.

Thus far, little has been done to abstract the I/O interfaces
of cloud-attached FPGAs. Applications on virtual FPGAs
have different data bus widths and several I/Os for control.
The proposed shells in the literature are static and provide
fixed shell/role interfaces to be used by different applications.
AXI interface [29] is commonly used as a shell/role interface
as it provides efficient handshaking and allows high data
exchange rates. Amazon EC2 F1 instance [10] provides sev-
eral AXI interfaces for the application. FIFO-based interfaces
are also used in [5], [7], [13], [28], [37]. The empty and full
signals of the FIFO allow both sides to know when the other
side is busy. Asynchronous FIFOs can be used when the role
and shell clocks are different.

The nature of hardware applications however, is to use
reset and other control signals in addition to data buses.
Each application has its own I/O specifications. This reveals
the need for a controller that manages the traffic with the
application and the need for abstracting the shell/role inter-
face itself. In several virtualization plat-forms, the shell/role
interface act as a DMA controller [13], [37]. This method is
also used in GPU-like virtualization platforms that defines
hardware kernels and restricts their interfaces to the off-chip
memory [26]. In [33], [34], adding on-board processor or
soft processor to the shell is proposed for orchestrating the
hardware accelerator’s execution. A manager executing on
the processor man-ages the FPGA resources and the commu-
nication with the host over the PCIe. Still, all these methods
require the application developer to redesign the hardware
and adapt its interface to match the shell/role interface. In our
previous work, we have completely abstracted the virtual
FPGA I/Os [27] by integrating an auto-generated wrapper as
an abstraction layer between the shell and the role.

FPGA virtualization (i.e. I/O abstraction) is the first step
towards integrating them into public clouds. The second step
is to integrate them into the cloud management framework.
For PCIe-attached FPGAs, the host compute node would host

38010 VOLUME 7, 2019



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

a virtual machine (VM) with the PCI-attached FPGA. The
VM hypervisor is slightly modified to launch VM requests
within machines that have PCI-attached FPGA [12]. Wang
et. al. [30] demonstrated a different method in which,
PCI-attached FPGA can be shared among several servers. The
Xen virtual machine monitor (VMM) was used to provide
FPGA access to all servers on the network and manage the
PCIe traffic be-tween servers and hardware on the FPGA.

Several researchers proposed modifications to the popular
OpenStack [4] cloud management system to enable integrat-
ing FPGAs as computing resources [8], [9], [12], [13]. Ama-
zon has introduced Amazon FPGA Image (AFI) management
tools [24], [25]. It comprised of eight command line tools
for listing available FPGA slots, getting an instant image
status, loading an image, clearing an image, starting virtual
JTAG to debug the design, and get/set LEDs and switches
of the board. Knodel [5] introduced the RC3E FPGA hyper-
visor which provides functions for device control, vFPGA
control, data flow control that interacts with the off-chip
(board) memory, bitstream loading, getting the status and
setting configurations. Many other works defined similar
functions [7], [33], [34], [37].

Other researchers proposed a different approach for HW-
based acceleration in the cloud; the ASIC Cloud [15]. Several
instances of the same accelerator are designed and fabricated
as ASICs (Application-Specific Integrated Circuits) with all
the necessary interfacing on the ASIC chip. Different accel-
erator ASICs are integrated on each board, and the boards
are integrated into the CPU racks. Though these ASIC accel-
erators provide higher performance than their FPGA-based
counterparts, they cannot be modified/updated. This is a
waste of resources since all the accelerators that are not
needed are not utilized.

In summary, current methods for FPGA attachment to the
cloud attach the FPGA to a specific CPU via the PCIe bus
or as stand-alone networked resources, or a combination of
the two. PCIe attachment imposes a specific use case similar
to GPUs and couple the number and usage of FPGAs to the
number/usage of their host CPUs. This could be wasteful in
a cloud setting. Existing compilers can compile an applica-
tion into two parts; main kernel on the CPU (or a VM on
the CPU) and compute intensive kernels on the FPGA. The
compiler generates the necessary SW drivers on the CPU
side and the HW interfaces on the FPGA side. The latter is
usually a DDRx-based interface (i.e. assuming the HWkernel
reads/write data to the off-chip DDRx memory) similar to
a GPU interface. Stand-alone FPGA attachment decouples
the number/usage of FPGAs from the CPU nodes, however,
most of the existing solutions still impose a fixed inter-face to
the application on the FPGA (mostly queues to/from off-chip
DDRx memory). Hence, unlike the PCIe-attached FPGAs,
the HW designer now must de-sign/implement the interface
on his/her circuit’s side. In addition, most existing solutions
(for both types of attachments) do not provide intrinsic secu-
rity measures, something that is essential in a public cloud
environment.

In this work, we introduce an API-based (Application
Programming Interface) framework for FPGAs attached as
stand-alone resources in a public cloud setting. The proposed
framework builds on and utilizes our FPGA virtualization
scheme [27], and can be easily integrated with any cloud
management system. Additional circuitry has been added to
the vFPGA platform to secure all traffic between the HW
application and the user. Users can design their own circuit
blocks or select ready-made circuit IPs (intellectual prop-
erties), assemble their HW custom application from these
circuit blocks, and then use the developed to automatically
generate the interface (with built-in security) to the vFPGA’s
static logic (i.e. shell). The developed APIs are then used
to manage, launch, use, and release vFPGA-based custom
computing machines (CCMs) on the cloud.

III. OVERVIEW OF THE PROPOSED PLATFORM
In our proposed framework, Fig. 1, the cloud offers vir-
tual FPGAs (vFPGAs) as CCMs that can be accessed
within the cloud via a regular socket interface. The CCM
is highly abstracted such that it can take streamed data
directly without any pre-processing. Input/Output data for-
matting/reformatting and interfacing is carried out by the
on-FPGA shell. The framework includes the following
components:

1) The cloud infrastructure: which consists of FPGA
hypervisor, image creator and other components.
The FPGA hypervisor is used to manage vFP-
GAs resources, CCM images (bitstreams) launching
and termination. It acquires CCM images from the
cloud storage. The re-sources database stores infor-
mation about CCMs and vFPGA for the management
process.

2) FPGAs: which are connected to the internal cloud net-
work. Each FPGA contains a static logic shell and one
or more virtual FPGAs (vFPGAs) that act as compute
nodes on the cloudwhen configuredwith CCM images.
The static logic on an FPGA represents the hypervisor’s
back-end for the vFPGAs on that FPGA.

3) Software library: that defines the necessary APIs to
manage and use vFPGAs. Two types of APIs are pro-
vided; socket APIs and message passing APIs. APIs
such as launch and release CCMs are provided by
the FPGA hypervisor, while other APIs such as con-
figuring vFPGAs, reading status registers, setting the
client’s IP address, etc. are provided by the FPGA
hypervisor’s back-end (i.e. the on-FPGA shell).

4) The image creator: which receives the user’s request,
creates the new CCM image, updates the resources’
database and stores the image in the cloud storage.
The platform introduces CCM as a service in which
CCMs can be implemented and sold by the cloud oper-
ator (CO) or a 3rd party to the client.

5) CCM Image management is part of the cloud stor-
age management which stores and read CCM images
to/from cloud storage.

VOLUME 7, 2019 38011



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

FIGURE 1. Proposed framework for on-cloud FPGA-based custom computing machines.

6) The user could be internal or external user. Internal
users are applications running on the cloud or other
CCMs. External users are applications running outside
the cloud. They can interact with the on-cloud CCMs
using the cloud’s dashboard’s provided IP address. The
cloud management SW (its gateway) then translates
this IP address to the CCM internal IP address.

IV. DETAILED IMPLEMENTATION
A. FPGA VIRTUALIZATION
The FPGA virtualization platform for deploying FPGA
CCM-as-a-service on clouds, is shown in Fig.2. The FPGA
is divided into static logic and several dynamically reconfig-
urable regions called virtual FPGAs (vFPGAs). The static
logic (shell) contains the following permanent (i.e. static)
hardware required to serve vFPGAs:

1) A network controller (NC): that implements all the
low-level networking protocols (i.e. DHCP, ARP and
ICMP protocols) for all vFPGAs and the shell.
It responds to ping and ARP requests to announce
existence and implements the DHCP protocol to obtain
dynamic IP addresses. The network controller estab-
lishes TCP sessions with vFPGAs or the on-FPGA
reconfiguration manager (RM). It also acts as a local
switch; extracts payloads of incoming packets and for-
ward them to the targeted vFPGA or RM, and receives
computation results from vFPGAs, packetize them and
send them the TCP session’s destination IP address.

FIGURE 2. FPGA virtualization platform. FPGA is divided into static
logic (shell) and several virtual FPGAs. Each vFPGA has IP/MAC addresses
and TCP sessions are used to access them.

2) Registers: such as user IP addresses and Encryption
keys. Only one user at a time can connect to each CCM.
IP addresses and keys of those users are configured by
the FPGA hypervisor.

3) Off-chip flash: is used to boot the whole FPGA. It stores
the initial bitstream of the whole physical FPGA which
contains the static logic with empty vFPGA regions.

4) A reconfiguration manager (RM): that to safely con-
figures vFPGAs with their respective CCM images.

38012 VOLUME 7, 2019



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

5) A clock management (CM) unit: that supplies all the
required clock signals to the static region, the network
controller and the vFPGAs.

6) A Decrypt/Encrypt engine: that is placed between the
network controller and the CCMs to enable secure
computations. It manages all the user-provided keys
that are used by each CCM for each session, decrypts
the received users’ data before forwarding them to the
CCMs and encrypts the CCM results before forwarding
them to the network controller. The interfaces between
the network controller, the Decrypt/Encrypt engine and
the CCMs are all AXI lite interfaces.

7) CCM wrapper: That is generated by a special virtual-
ization layer (script) based on the user’s specifications.
The wrapper contains a serializer which pre-format
the data and apply it according to the user-specified
interfacing protocol. It also contains a deserializer
that re-format the CCM’s output data. The wrapper
abstracts the CCM as a compute machine that have its
own MAC and IP addresses, receives data, and pro-
duces results over socket interface. The data itself does
not contain timing or clocking information, thewrapper
provides all that.

B. FPGA HYPERVISOR
The FPGA hypervisor manages vFPGA resources and CCM
images. It implements APIs for launching, using and releas-
ing vFPGAs and keeps track of available vFPGAs and CCM
images by updating the resources DB. The resources DB is
a database that stores vFPGA and CCM images manage-
ment information such as occupied/free vFPGA resources,
user-CCM assignment, vFPGA-CCM assignment, etc. The
static logic in each FPGA manages vFPGAs and represents
the hypervisor’s back-end. Table 1 lists the main functions
provided by the software library in the FPGA hypervisor
which are described below.

TABLE 1. Main functions (provided as APIs) of the FPGA hypervisor.

FIGURE 3. Python implementations for the functions ‘‘Send (data
stream)’’ and ‘‘Listen_to_results (data stream)’’. Both functions use TCP
stream socket and require the CCM IP address and port number.

1) CCM functions: Accessing a CCM is done through
only two functions for transmitting and receiving data.
An implementation example of two functions using
python is shown in Fig.3. The function ‘‘Send (data
stream)’’ establishes a TCP stream session and send
the data stream over the session. The function ‘‘Listen
(results stream)’’ establishes a listening TCP stream
session and collect the results. The user should call
the listener first then sends his/her data. The CCM
hardware receives a reset signal with the creation of
each TCP session.

2) FPGA hypervisor functions: Users use the hyper-
visor through message-passing APIs. The function,’’
Launch (CCM_ID)’’ sends a message to the hypervisor
to launch a CCM. The hypervisor would then obtain
the CCM_ID from the database and assign a suitable
free vFPGA. Then, it fetches the appropriate bitstream
image from the storage and uses the function ‘‘Config-
ure (CCM bitstream)’’ to download the CCM image.
Finally, the hypervisor sends a message to the user with
the IP address of the launched CCM. The function,’’
Release (CCM_ID)’’ sends a message to the hypervisor
to release the vFPGA resources of a CCM. When the
function’’ Get CCM List ()’’ is called, the hypervisor
using the resources DB, builds a CCM list their unique
CCM_IDs and description.

3) Hypervisor back-end functions: These are socket
functions between the hypervisor front-end and back-
end. The function, ‘‘Configure (CCM bitstream)’’
downloads a partial bitstream that represents a CCM
image on the FPGA. The function ‘‘Read CCM bit-
stream ()’’ reads back the CCM bitstream which is use-
ful for supporting CCMmigration. The function ‘‘Read
status registers ()’’ reads information about the run-
ning CCM status. The function ‘‘Send key (CCM_ID)’’
changes the encryption/decryption key of the CCM.
The function ‘‘Set client info (Sender IP Address,
Receiver IP Address)’’ changes the sender and the

VOLUME 7, 2019 38013



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

receiver IP addresses of the CCM. The function ‘‘Set
Parameters ()’’ is used to configure some registers with
specific values. One example is the frequency register
that determine the CCM operating frequency.

1) A TYPICAL CCM USE-CASE SCENARIO
The following is a typical scenario for launching, using,
and terminating a vFPGA-based CCM. It illustrates how the
platform’s APIs work. The user, who wants to launch and use
a specific CCM, issues the four commands listed in Fig.4.

FIGURE 4. Scenario of using a vFPGA-based CCM in a public cloud using
the proposed platform. The user issues four commands to launch, send
data, receives results, and terminate CCM platform.

FIGURE 5. Timing diagram showing the message sequence for using a
vFPGA-based CCM in the cloud using the proposed platform.

The corresponding actions performed by the platform are
shown in the timing diagram of Fig.5 and are explained below
(please refer to Fig.1 for the platform’s components):

1. IP Address = Launch CCM (CCM_ID)
- The CCM information and available free vFP-
GAs are obtained from the Resources DB, a suit-
able vFPGA is selected, and the CCM image is
obtained from ‘‘CCM image management’’.

- The hypervisor gets the IP address and port num-
ber of the specific FPGA, and other network
parameters from theDynamicHost Configuration
Protocol (DHCP) server and then executes the
internal function ‘‘Send ((IP Address, Port_no),
bitstream)’’.

- The hypervisor back-end configures the vFPGA
with the CCM image

- The hypervisor internally issues the function
‘‘Set Client IP Addresses (Sender IP Address,
Receiver IP Address)’’ to configure the sender
and receiver client IP addresses in the hypervisor
back-end.

- The hypervisor back-end opens a listener to
receive CCM inputs and starts another TCP ses-
sion for sending the results.

- The hypervisor returns the CCM IP address to the
user. The hypervisor-back end is never revealed to
the user.

2. results = Listen ((IP Address, Receiving PORT
NO))

- The function is executed in the user machine to
start the listening session. It is usually executed as
a new thread so the program can overlaps sending
data and receiving results.

3. Send ((IP Address, Sending PORT NO), data
stream)

- The user sends the data to the CCM. The function
is executed in the user machine. It establishes a
TCP stream session, sends the data to the CCM
and terminates the session.

4. Terminate CCM (CCM_ID)
- The hypervisor executes internal function ‘‘Send
((IP Address, Port_no), empty bitstream)’’

- The hypervisor back-end configures the vFPGA
with the blank CCM image

- The hypervisor back-end clear the registers of the
sending and the receiving IP addresses.

- The hypervisor updates the ‘‘Resources DB’’ and
marks the vFPGA resource free.

2) CCM SHARING
A CCM can be shared among several users by interleaving
computation sessions. The computation session is an atomic
operation that cannot be interrupted. When a user uses a
CCM, the hypervisor prevents other users from using it.
When the current user’s TCP session(s) to the CCM ter-
minate, another user can request the same CCM and the
hypervisor restricts its use to the new user for one session and
so on. With each session the whole CCM is reset. The CCM’s
serializer and deserializer take care of flushing all results out
before terminating the session.

3) USER DATA SECURITY
If the user requires a secure channel to the CCM, (s)he
exchanges a symmetrical encryption key with the FPGA
hypervisor using Diffie–Hellman key exchange. Then,
the hypervisor uses the function ‘‘Send key (CCM_ID)’’ to
send the key to the hypervisor’s back-end. The encryption
and decryption engine uses that key to decrypt incoming data
and encrypt outgoing results. The hypervisor front- and back-
ends take care of removing the key with each change in the
sender’s and receiver’s IP.

4) CCM CLUSTERS ON MULTI-vFPGA
A cluster of network connected CCMs can be created and
saved as a new CCM. CCM network can be built by carefully
setting the sending and receiving IP addresses of each CCM

38014 VOLUME 7, 2019



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

in the cluster. For example, an FPGA chain can be created by
setting the receiving IP address of each FPGA in the chain as
a sending IP address for its previous vFPGA. The receiving
address of the first vFPGA and the sending addresses of the
last vFPGA in the chain becomes addresses for the resulted
CCM. The new CCM information is stored in the Resources
DBwith pointers to the information of other CCMs construct-
ing it.

C. THE IMAGE CREATOR
The platform introduces CCM as a service in which CCMs
can be implemented and sold by the cloud operator (CO) or
other third parties to the cloud’s tenants. The image creator,
Fig.6, contains the required software tools to create CCM
images. A CCM image is a partial bitstream FPGA configura-
tion file. The user sends a hardware design using a hardware
description language (HDL) such as Verilog or VHDL along
with two text-based files; an XML file for the design’s IOs,
and a file that describes how data is going to be applied to
the hardware. The latter is specified using the standard HW
verification language Vera [32]. The Image creator uses these
two input files to generate an additional HDL file containing
a wrapper for the design using the methodology in [27].
The wrapper’s interface matches the shell/role interface of
the virtualization platform. The wrapper also contains the
serializer that applies input data to the hardware according
to the Vera description provided by the user. The wrapper is
synthesized with the user’s hardware instantiated within it,
and several partial bitstreams are generated to match several
types of vFPGA. The Image creator updates the Resources
DB by adding the newCCMdata which includes vFPGA type
and file names and then it sends CCM image files to the cloud
storage. Fig.6. illustrates how the Image creator works.

FIGURE 6. Illustration of the CCM image creator’s components and how
they generate the design’s partial bitstream files.

V. EXPERIMENTAL RESULTS
A secure image edge detection (ED) CCM is used as test case
to show how a CCM can be accessed as a cloud service using
the proposed framework in a similar manner to accessing
a software as a service. The CCM receives a JPEG image
and produces another JPEG image with the detected edges
as illustrated in Fig.7. To this end, we built a CCM for
the application as well as the FPGA virtualization platform.
We have also developed a pure SW implementation of the
same application using standard Python libraries with TCP
stream sockets for the SW application interface. Two versions
of the software implementation were run; one on a server
and another on a virtual machine. We also designed another
software to act as a user that requests the application’s service.
The user uses TCP stream socket interface to request the
service from CCM or the SW implementations. The experi-
mental setup is shown in Fig. 8. The FPGA is a Xilinx Virtex
6 XC6vlx550t FPGA. The server machines have dual socket
Intel 8-core Xeon CPUs running at 3.00GHz, 16GB of RAM,
and 64bit-linux Ubuntu 16.04LTS. The VMmachine is a Vir-
tualbox virtual machine with 4 GB RAM, bridged Ethernet
and 64bit-linuxUbuntu 16.04LTS. The user’s workstation has
a core-i7 CPU running at 3.00GHz, 16GBof RAM, and 64bit-
windows 10.

FIGURE 7. The implemented image edge detection application
encryption/decryption on input/output data is performed by the static
logic.

FIGURE 8. Timing the experimental setup with several versions of the
secure edge detection (ED) application.

A. THE FPGA-CCM IMPLEMENTATION
The Static Logic (Fig. 2) utilizes the TinyAES [16] to
build counter modeAES encryption/decryption blocks (AES-
CTR). The test case hardware is designed by integrating
several open-source cores [16] (JPEG decompressor, Canny
edge detector and JPEG encoder) to make the edge detector
CCM. The JPEG encoder has a fixed delay per pixel while
the decompressor’s delay varies according to the input image
and dominates the total image processing time. FIFOs were
used in between different blocks to overlap their operation as
they had different bandwidths. The wrapper was generated,
co-synthesized with the CCM, and both were placed on a

VOLUME 7, 2019 38015



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

FIGURE 9. Snapshot of the software version of the secure image edge
detection application written in python using standard SW libraries.

FIGURE 10. Different boot time components of an vFPGA-CCM.

vFPGA. The resource utilization report for the ED CCMwith
a 10GE network interface is shown in Table 2.

TABLE 2. Resource utilization of the cloud-based FPGA ED CCM.

B. THE SOFTWARE IMPLEMENTATION
The software implementation of the secured image edge
detection is written in Python and launched on two separate
platforms, a server and a virtual machine. To ensure the best
throughput, the application was built using standard libraries
to build the application; the standard Python Cryptography
Toolkit (PyCrypto) [17] for encryption/decryption, and the
computer vision (OpenCV) library [18] for the Canny edge
detection. A snapshot of the code is shown in Fig.9. The
service first decrypt the received JPEG image, stores it in
an array to pass it to the image decoder. Then, Canny edge
detect function from OpenCV library detects the edges and
the resulted image is encoded again to produce a JPEG image.
Finally, the resulted JPEG image is encrypted to be sent to the
user.

TABLE 3. Image processing times and throughputs of the three
implementations of the secure image edge detection application.

TABLE 4. Boot time delay components for vFPGA-CCMs with various
image (bitstream) sizes. Internal configuration access port’s speed is
∼400MB/s.

TABLE 5. Boot time (in seconds) for various virtual machine
configurations implemented on Openstack.

C. PERFORMANCE COMPARISONS
For all implementations of the test case application, the client
sends encrypted images and receives encrypted edge-detected
images over TCP stream sessions using two parallel threads
(one for sending images and another for receiving the result-
ing images). Python Stream Socket library was used for that
purpose as it provides throughputs close to the theoretical line
bandwidth. Ten JPEG images (the 1st nine are 640x480 pixels
while the 10th image is 1920x1080 pixels) were used in the
evaluation. The variation in size reflects the compression
ratio which varies according to the image contents. Each

38016 VOLUME 7, 2019



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

TABLE 6. Comparison with notable platforms for FPGA-based processing in clouds or datacenters.

image is encrypted using AES128-CTR and sent to the edge-
detection service under test over the socket interface. The
edge-detection service decrypts the image, decodes it, does
edge detection, encodes the detected-edge image, encrypts
the resulted image and returns it to the sender. Each image
was sent (i.e. streamed) 100 times for each service implemen-
tation and the total time for each image processing was mea-
sured as the time between receiving the 1st packet of the input
image and the time the last packet of the processed image
is sent. Then the 100 time measurements were averaged to
get the average processing time for each image. The average

throughput was measured in a similar manner. Table 3 shows
the detailed performance of the three service implementations
for the 8 test images. As expected, the physical server had
∼2x the VM’s performance due to the virtualization over-
head. The vFPGA-based CCM however, achieved 3∼4x and
∼1.4–2.4x speed up over the VM and the physical server
implementations, respectively.

D. BOOT TIME COMPARISONS
A vFPGA-CCM boot time is measured from the time the
user sends a ‘‘Launch a CCM’’ request to the time (s)he

VOLUME 7, 2019 38017



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

receives a response with the launched CCM IP Address as
illustrated in Fig. 10. The component of this delay are mes-
sage passing delays (e.g. the launch request, the response
with the IP address, etc.), fetch the CCM image from the
cloud storage and sending it to the FPGA hypervisor’s back-
end, and the FPGA configuration time by the hypervisor’s
back-end. Large FPGAs have an average bitstream file size
of ∼10 megabytes, resulting in ∼25 milliseconds average
configuration time through the internal configuration access
port (ICAP) [20]. Table 4 shows the different delay com-
ponents and the total vFPGA-CCM boot times for several
sizes of CCM image (i.e. bitstream files) sizes. Compared
to VM booting times, Table 5, the vFPGA boot times are in
hundreds of milliseconds while the VMs’ are in tens of sec-
onds (i.e. 100X). The VMs in Table 5 were booted with only
a CirrOS image (a very lightweight 12-MB version of Linux)
on OpenStack cloud. Booting requests were issued from a
client on the same LAN. Amajor difference between conven-
tional VMs and vFPGA-CCMs is that for the vFPGA-CCMs,
the only difference in boot time between different CCMs’
images is the configuration time. VMs’ boot time is highly
dependent on VM specifications as illustrated in Table 5.

E. COMPARISONS WITH OTHER PLATFORMS
Table 6 below shows a comparison of the proposed
FPGA-based cloud CCM platform with other notable plat-
forms with similar purpose. The configuration/attachment
refers to how the FPGA is attached to the cloud (or datacenter)
and how it is used. FPGA-based accelerators are attached to a
host CPU via the PCIe bus and cannot be used independently
from the host (i.e. in a cloud environment, the user has to
instantiate two compute instances). Depending on their shells,
FPGAs attached to the data center’s network can be used on
their own (i.e. standalone) or still need to work in tandemwith
a host CPU that runs the main application and calls FPGA
acceleration functions over the Ethernet. The latter option
also requires two compute instances. Network-attached stan-
dalone FPGAs act as servers (i.e. can be used by multiple
users/applications). Microsoft’s Catapult provides all types of
attachments and configuration at a staggering logic cost [11].

The clustering column indicates whether several FPGAs
can be connected directly to run large applications without
having the data going through CPU nodes. JetStream is
the only PCI-attached FPGA that allows vFPGA to vFPGA
connection. The IF (Interface) abstraction column reflects
the level of abstraction for the application interface. Our
proposed platform can receive data in their original format so
it provides full abstraction. Medium abstraction is provided
by FIFO interfaces. A platform with a low abstraction is one
that requires users to adapt their design to its fixed interface.
Platforms that require the users to develop custom interfaces
have no IF abstraction at all. The DDRx column specifies if
a platform’s shell has a DDRx interface. We have not opted
for this option as it increases the static logic area significantly
and it is not crucial for streamed applications. The through-
put column lists the effective communication throughput of

the different platforms’ interfaces. For many works it just
represent the raw communication throughput. Users may not
be able to adapt their design to take advantage of the high
commination throughput. E.g. a PCIe interface that delivers∼
4 GB/s will do so as 128-bit wide data at 250 MHz or 256-bit
wide data at 125 MHz If the user’s core cannot process this
data, it will have to throttle back the communication link by
applying back pressure. Our platform completely abstracts
the interface and apply data to the user’s design at the required
width and frequency.

The ASIC cloud was included in the comparison because
it provides ASIC custom computing machines for the cloud.
IBM’s network-attached FPGAs [28] is the closest work to
our work. Its IF abstraction is medium because it introduces
fixed FIFO-based interfaces and the data formatting and the
computation control is completely left for the application’s
designer to design. The table shows that standalone CCMs
with abstracted data interface are not introduced by other
FPGA virtualization platforms. It also shows that our pro-
posed platform provides ultimate flexibility with a relatively
low overhead.

VI. CONCLUSIONS
A platform for launching and using CCMs on virtualized
FPGAs in clouds and data centers has been developed. Phys-
ical FPGAs are attached to the cloud’s network and can host
several vFPGAs. A complete FPGA hypervisor with was
developed. Using a very simple API interface, the front-end
runs on the cloud and allows users to generate, maintain,
and retrieve CCMs images (i.e. CCMs FPGA configuration
files). The hypervisor’s backend is implemented as static
logic (i.e. HW) on the FPGAs and it is responsible for con-
figuring the vFPGAs with CCM images and setting up the
required routing tables on the FPGA to enable multiple traffic
to/from vFPGAs co-hosted on the same FPGA. The devel-
oped FPGA virtualization layer automatically generates the
physical HW interface to the user’s circuitry residing on the
vFPGA based on the user’s specifications. A complete pro-
totype of the proposed platform has been realized and tested
with a streamed secure image processing application. Com-
pared to conventional VM-based and physical server-based
implementations, the performance was 3∼4x and ∼1.4–2.4x
times better, respectively. Comparison with other platforms
for FPGA attachment to a cloud or datacenter has been carried
out. It shows that our platform has a relatively low overhead
in terms of FPGA resources while providing highest level of
abstraction and virtualization.

REFERENCES
[1] C. Kachris and D. Soudris, ‘‘A survey on reconfigurable accelerators for

cloud computing,’’ in Proc. 26th Int. Conf. Field Program. Logic Appl.
(FPL), Lausanne, Switzerland, Aug./Sep. 2016, pp. 1–10.

[2] M. Russinovich and M. Branscombe. (Jun. 8, 2018). FPGAs and the
New Era of Cloud-Based ‘Hardware Microservices’. [Online]. Available:
https://thenewstack.io/developers-fpgas-cloud/

[3] IBMResearch China. (Nov. 19, 2014). SuperVessel Cloud. [Online]. Avail-
able: http://research.ibm.com/labs/china/supervessel.html

38018 VOLUME 7, 2019



A. A. Al-Aghbari, M. E. S. Elrabaa: Cloud-Based FPGA CCMs for Streaming Applications

[4] Opensource. OpenStack Cloud Management Suite. Accessed: 2015.
[Online]. Available: https://www.openstack.org/

[5] O. Knodel and R. G. Spallek, ‘‘Computing framework for dynamic inte-
gration of reconfigurable resources in a cloud,’’ in Proc. Euromicro Conf.
Digit. Syst. Design, Funchal, Portugal, Aug. 2015, pp. 337–344.

[6] S. A. Fahmy, K. Vipin, and S. Shreejith, ‘‘Virtualized FPGA accelera-
tors for efficient cloud computing,’’ in Proc. IEEE 7th Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Vancouver, BC, Canada, Nov. 2015,
pp. 430–435.

[7] H. L. Kidane, E. B. Bourennane, and G. Ochoa-Ruiz, ‘‘NoC based virtu-
alized accelerators for cloud computing,’’ in Proc. IEEE 10th Int. Symp.
Embedded Multicore/Many-Core Syst.-Chip (MCSOC), Lyon, France,
Sep. 2016, pp. 133–137.

[8] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow,
‘‘FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack,’’ in Proc. IEEE 22nd Int. Symp. Field-Program. Custom Com-
put. Mach. (FCCM), May 2014, pp. 109–116.

[9] F. Chen et al., ‘‘Enabling FPGAs in the cloud,’’ in Proc. 11th ACM Conf.
Comput. Frontiers (CF), 2014, pp. 1–10.

[10] Amazon. (2017). Amazon EC2 F1 Instances. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[11] A. Putnam et al., ‘‘A reconfigurable fabric for accelerating large-scale dat-
acenter services,’’ IEEE Micro, vol. 35, no. 3, pp. 10–22, May/Jun. 2015.

[12] N. Tarafdar, N. Eskandari, T. Lin, and P. Chow, ‘‘Designing for FPGAs in
the cloud,’’ IEEE Design Test, vol. 35, no. 1, pp. 23–29, Feb. 2018.

[13] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, ‘‘Enabling
FPGAs in hyperscale data centers,’’ in Proc. IEEE 12th Int. Conf. Ubiq-
uitous Intell. Comput. IEEE 12th Int. Conf. Auton. Trusted Comput. IEEE
15th Int. Conf. Scalable Comput. Commun. Associated Workshops (UIC-
ATC-ScalCom), Beijing, China, Aug. 2015, pp. 1078–1086.

[14] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, ‘‘Disag-
gregated FPGAs: Network performance comparison against bare-metal
servers, virtual machines and Linux containers,’’ in Proc. Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Dec. 2017, pp. 9–17.

[15] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, ‘‘ASIC clouds:
Specializing the datacenter,’’ in Proc. 43rd Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 178–190.

[16] D. Lundgren. (2010). JPEG Encoder Verilog. [Online]. Available:
https://opencores.org/

[17] STREAM Socket Programming on Python. Accessed: 2017. [Online].
Available: https://docs.python.org/2/howto/sockets.html

[18] Open Source Computer Vision (OpenCV) for Python. Accessed: 2017.
[Online]. Available: https://docs.opencv.org

[19] M. Leonhard. (2017). CloudPing.info for Amazon Web Services
Available in Several Regions/Cloudping. [Online]. Available:
http://www.cloudping.info/

[20] Xilinx. (May 3, 2010). Partial Reconfiguration User Guide. [Online].
Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx12_1/ug702.pdf

[21] O. Knodel, P. R. Genssler, and R. G. Spallek, ‘‘Migration of long-
running tasks between reconfigurable resources using virtualization,’’
ACMSIGARCHComput. Archit. News, vol. 44, no. 4, pp. 56–61, Jan. 2017.
doi: 10.1145/3039902.3039913.

[22] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, ‘‘Enabling
FPGA-as-a-service in the cloud with hCODE platform,’’ IEICE Trans. Inf.
Syst., vol. E101-D, no. 2, pp. 335–343, 2018.

[23] O. Knodel, P. R. Genssler, and R. G. Spallek, ‘‘Virtualizing reconfigurable
hardware to provide scalability in cloud architectures,’’ in Proc. Reconfig-
urable Archit., Tools Appl., 2017, pp. 1–7.

[24] Amazon FPGA Image (AFI) Management Tools. [Online]. Available:
https://github.com/aws/aw-fpga/blob/master/sdk/userspace/fpga_mgmt_
tools

[25] E. Izenberg, ‘‘FPGA-enabled compute instances,’’ U.S. Patent 14/986 330,
Dec. 31, 2015.

[26] Intel FPGA SDK for OpenCL. Kernel Design Concepts. Accessed:
2018. [Online]. Available: https://www.intel.com/content/www/us/en/
programmable/documentation/mwh1391807516407.html

[27] A. Al-Aghbari and M. E. S. Elrabaa, ‘‘A platform for FPGA virtualization
in clouds and data centers,’’ Microprocess. Microsyst., vol. 62, pp. 61–71,
Oct. 2018.

[28] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, ‘‘Network-attached
FPGAs for data center applications,’’ in Proc. Int. Conf. Field-Program.
Technol. (FPT), Xi’an, China, 2016, pp. 36–43.

[29] (2010). ARM AMBA AXI4-Stream Protocol Specifications. [Online].
Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ihi0051a/index.html

[30] W. Wang, M. Bolic, and J. Parri, ‘‘pvFPGA: Accessing an FPGA-based
hardware accelerator in a paravirtualized environment,’’ in Proc. Int.
Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Montreal, QC,
Canada, Sep. 2013, pp. 1–9.

[31] The SDAccel Development Environment. Accessed: 2018. [Online].
Available: https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html

[32] F. Haque, J. Michelson, and K. Khan, The Art of Verification
With VERA, 1st ed. Verification Central, 2001. [Online]. Available:
http://www.verificationcentral.com/product/the-art-of-verification-with-
vera/

[33] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, ‘‘Designing a
virtual runtime for FPGA accelerators in the cloud,’’ inProc. 26th Int. Conf.
Field Program. Logic Appl. (FPL), Lausanne, Switzerland, Aug. 2016,
pp. 1–2.

[34] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, ‘‘Virtualized
execution runtime for FPGA accelerators in the cloud,’’ IEEE Access,
vol. 5, pp. 1900–1910, 2017.

[35] J. Zhang et al., ‘‘The Feniks FPGA operating system for cloud computing,’’
in Proc. 8th Asia–Pacific Workshop Syst. (APSys), 2017, pp. 1–7. doi:
10.1145/3124680.3124743.

[36] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, ‘‘RIFFA
2.1: A reusable integration framework for FPGA accelerators,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 8, no. 4, pp. 1–23, Sep. 2015.
doi: 10.1145/2815631.

[37] K. Vipin and S. A. Fahmy, ‘‘DyRACT: A partial reconfiguration enabled
accelerator and test platform,’’ in Proc. 24th Int. Conf. Field Program.
Logic Appl. (FPL), Munich, Germany, Sep. 2014, pp. 1–7.

[38] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, ‘‘JetStream: An open-
source high-performance PCI Express 3 streaming library for FPGA-to-
Host and FPGA-to-FPGA communication,’’ in Proc. 26th Int. Conf. Field
Program. Logic Appl. (FPL), Lausanne, Switzerland, Aug. 2016, pp. 1–9.

AMRAN A. AL-AGHBARI received the B.Sc.
degree in computer science from Sana’a Univer-
sity, Sana’a, Yemen, in 2004, and theM.Sc. degree
in computer engineering from the King Fahd
University of Petroleum and Minerals, in 2012,
where he is currently pursuing the Ph.D. degree
in computer science and engineering. He was a
Lecturer with the Computer Science Department,
Taiz University, Taiz, Yemen, from 2005 to 2009.
His research interests include hardware/software

co-design, hardware design languages, and virtualized reconfigurable
computing.

MUHAMMAD E. S. ELRABAA received the
M.A.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the University ofWaterloo,
Waterloo, ON, Canada, in 1991 and 1995, respec-
tively. From 1995 to 1998, he was a Senior Com-
ponent Designer with Intel Corporation, Portland,
OR, USA. He is currently an Associate Profes-
sor with the Computer Engineering Department,
King Fahd University of Petroleum and Minerals
(KFUPM). He has authored or co-authored numer-

ous papers and a book. He holds seven U.S. patents. His current research
interests include reconfigurable computing, cloud-based custom computing
machines, and systems-on-chip.

VOLUME 7, 2019 38019

http://dx.doi.org/10.1145/3039902.3039913
http://dx.doi.org/10.1145/3124680.3124743
http://dx.doi.org/10.1145/2815631

	INTRODUCTION
	RELATED WORK
	OVERVIEW OF THE PROPOSED PLATFORM
	DETAILED IMPLEMENTATION
	FPGA VIRTUALIZATION
	FPGA HYPERVISOR
	A TYPICAL CCM USE-CASE SCENARIO
	CCM SHARING
	USER DATA SECURITY
	CCM CLUSTERS ON MULTI-vFPGA

	THE IMAGE CREATOR

	EXPERIMENTAL RESULTS
	THE FPGA-CCM IMPLEMENTATION
	THE SOFTWARE IMPLEMENTATION
	PERFORMANCE COMPARISONS
	BOOT TIME COMPARISONS
	COMPARISONS WITH OTHER PLATFORMS

	CONCLUSIONS
	REFERENCES
	Biographies
	AMRAN A. AL-AGHBARI
	MUHAMMAD E. S. ELRABAA


