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ABSTRACT Big data refers to numerous forms of complex and large datasets which need distinctive
computational platforms in order to be analyzed. Hadoop is one of the popular frameworks for analytics
of big data. In Hadoop, a big job is split into multiple small tasks and then they are distributed to worker
nodes in a parallel way using MapReduce to speed up computational processes. In this aspect, it is important
how to improve throughput performance. MapReduce jobs require quick responses from the worker nodes
to complete them under their deadlines. The existing scheduling schemes for Hadoop such as FIFO, fair,
and capacity schedulers cannot guarantee the quick response requirement satisfying a prior deadline. Thus,
Hadoop system needs to improve response time and completion time for the heterogeneous MapReduce
jobs. In this paper, we propose an efficient preemptive deadline constraint scheduler based on least slack
time and data locality. In order for better allocation of tasks and load balancing, we first analyze the task
scheduling behaviors of the Hadoop platform. Based on that, we propose a novel preemptive approach which
considers the remaining execution time of the job being executed in deciding preemption. The experimental
results show that the proposed scheme significantly reduces the job execution time and queue waiting time,
compared to existing schemes.

INDEX TERMS Hadoop, MapReduce, distributed system, parallel computing, preemptive job scheduling,
queuing theory.

I. INTRODUCTION
In recent years, cloud computing and big data have attracted
the researchers’ attention. It comprises distributed computing
over a network where the applications are run in parallel
and distributed manners [1]. Cloud service providers such as
Amazon, Google, and Yahoo. developed their data centers in
a distributed manner so that users can access anyplace. The
main goal of distributed computing is to develop a distributed
network of heterogeneous devices that work together and
share their workload. Big data processing is one of the promi-
nent research topics for future internet [2]. Google introduced
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an efficient programming model, called MapReduce, for the
processing of large datasets [3]. It is regarded as the first
massive model, in distributed computing and cloud comput-
ing where the data is processed in a parallel way. Nowa-
days, Hadoop MapReduce is an open-source platform, which
widely employed for the development of a distributed and
cloud computing system.

Hadoop is a distributed computing framework based on
the MapReduce model that runs applications on a cluster of
a large number of commodities and inexpensive computing
nodes. It is developed by Google in 2004 to handle big data
applications by parallel processing. In Hadoop system, all the
jobs share the heterogeneous resources of clusters [4]–[6].
Hadoop requires proper scheduling policy and algorithm
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FIGURE 1. The structure of MapReduce [10].

to diverse workloads in terms of requirements efficiently.
Hadoop utilizes a special and reliable shared storage system,
called Hadoop Distributed File System (HDFS), to manage
data access in a distributed approach. The HDFS makes ease
to access to a data block for a MapReduce job to run the
corresponding big data application in parallel [7]–[9]. It can
provide a stable and reliable interface to the application, and
build a distributed system with high reliability and scalabil-
ity. As a result, HDFS implements a reliable shared storage
system and MapReduce allows parallel processing based on
the two core parts of Hadoop as shown in Fig. 1. [10].

Furthermore, a job scheduling policy gives a dominant
impact on the performance of distributed computing sys-
tems [11]. Several scheduling policies were introduced to
balance workload efficiently and minimize the waiting time
of jobs in distributed systems [12]–[14]. However, few
researchers, have managed efficient job scheduling algo-
rithms under deadline constraints in cloud-based environ-
ments. Varga et al. [15] and Perret et al. [16] proposed
a scheduling algorithm to manage the resource of a cloud
computing system. The proposed algorithm is based on linear
programming to maximize resource utilization and maximize
the waiting time of the job. Buyya et al. [17] proposed a
scheduling algorithm to reduce the response time of the cloud
resource with minimum cost. Several scheduling schemes
were proposed to balance the workload based on the amount
of available resources [9], [18]–[21]. All these schemes are
non-preemptive and do not consider priority based on the

deadlines of the submitted jobs. On the contras, several con-
straints can be considered for job scheduling to improve the
system performance, such as least slack time, deadline size
of jobs, and so on.

Considering the preemption is an effective approach for
avoiding the delay of high priority jobs while allowing the
system to be shared among the other regular jobs. In most
existing schemes, a high priority job preempts only based on
deadline without any other considerations. This may increase
the frequency of the preemption which yields to increase pre-
emption and computation overheads. The proposed scheme
in this paper attempts to solve these issues by focusing on
meeting the deadlines of the jobs in a shared computing
environment. This requires accurate estimation of the map
and reduce task computation time. While minimization of
the job completion time is an NP-hard problem, a least slack
time-based scheduling approach allows good performance by
utilizing the current status of the system and employing a job
execution cost model.

In this paper, the problem of least slack time-base schedul-
ing on a MapReduce model is addressed first. We present a
preemptive approach for effectively scheduling the jobs so
that the total completion time of the jobs is reduced under
given deadlines and least slack time. Then, we propose a
least slack time-based preemptive deadline constrain sched-
uler (LSTPD) which attempts to improve the performance
of Hadoop scheduling system. The proposed LSTPD scheme
maximizes resource utilization with minimum waiting time
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of the jobs in the queue under the preemption of low priority
jobs if needed. To this end, a novel job scheduling policy
is developed using a preemptive queueing model based on
M/M/1 and M/M/C models [22]. The proposed model effec-
tually deals with distributed resources to reduce the response
time of the system with heterogeneous workloads. The main
contributions of this paper are summarized as follows:
• Dynamic workloads scheduling with queue-wise pre-
emption based on the priority of jobs to maximize the
resource utilization of a Hadoop cluster

• Assigning a task to TaskTracker based on the deadline,
data locality, and least slack time to minimize the aver-
age completion and waiting time for the task

• Heterogenous resource allocation for different types of
workloads to achieve high efficiency in term of queueing
delay and response time

• Developing a multi-server queuing model applicable to
the proposed scheme to improve the schedulability pro-
cess of MapReduce jobs under different constraints and
requirements

The rest of the paper is organized as follows: in Section II,
the previous work related to the scheduling of distributed
systems is discussed. The proposed scheduling scheme for
Hadoop is presented in Section III. In Section IV, the exper-
imental results are shown, and the conclusion is drawn in
Section V.

II. RELATED WORK
The primary goal of job scheduling is tomaximize throughput
and minimize the execution time of the jobs under vari-
ous requirements and limited resources. Many researchers
have contributed to the performance improvement of Hadoop
schedulers by optimizing the amount of resources and job
execution time. We have observed several research contri-
butions on the scheduling policies for a distributed system.
In the following, we discuss real-time task scheduling and
Hadoop scheduler.

FIGURE 2. The timing diagram of a real-time task.

A. REAL-TIME TASK SCHEDULING
In this section, we describe the basics of real-time
task scheduling. Real-time tasks have some constraints
such as priority, deadline, and execution time as shown
in Fig. 2 [23]–[25].

ai : arrival time of the task
Di : deadline for the task
ei : execution time of the task
si : slack time of the task
eri : remaining execution time of the running task

Earliest deadline first (EDF) is a dynamic scheduling
algorithm used in real-time task environments to place pro-
cesses in a priority queue. Whenever a scheduling event
occurs, the closest process to its deadline is searched in
the queue. The EDF is an optimal preemptive schedul-
ing algorithm, which schedules the collection of jobs so
that they are completed until their deadlines [25]. It is
expressed as

U =
∑n

i=1

Ci
Ti
≤ 1, (1)

where Ci represents the worst-case computation time for
i-th process and Ti denotes the sojourn time period of the i-th
process

The least slack time (LST) [26] is the scheduling algo-
rithm policy that considers the selected slack time of the
task for its priority. The slack times is the remaining time to
the deadline (di − eri − t) at the current time epoch t . It is
expressed as

U =
∑n

i=1

ei
Di
≤ 1. (2)

B. HADOOP SCHEDULERS
In this section, we present the existing schedulers for Hadoop
to schedule the submitted MapReduce jobs based on their
requirements and available resource in a computing cluster.
fair scheduler [27] was proposed to assign average amount
of resources to the jobs to be on equally shared all the jobs
over time. If there is single job in the system then the job can
use all the resources of the entire cluster till another job is
arrived and submitted. When a new job arrives, the system
will share the resources with a new job so that each job
acquires the same amount of CPU time. The JobTracker
fairly manages and shares the resources among the tasks in
the system. It gives a higher priority to the tasks of which
delay is long. Unlike the default Hadoop scheduler, the fair
scheduler lets short jobs finishwithin a reasonable time, while
long jobs are not starving. It can also take into account job
priorities. The priorities are used as weights to determine the
fraction of the total computation time that each job gets. The
Fair scheduler organizes jobs into several pools and fairly
divides resources fairly among these pools. Within each pool,
jobs can be scheduled using either Fair scheduler or first-
in-first-out (FIFO) scheduler. In addition to providing fair
resource allocation, the fair scheduler allows assigning guar-
anteed minimum amount of resources to each pool, which is
useful for ensuring that certain users, groups or production
applications always obtain sufficient resources. In addition,
a pool can also be allowed to preempt tasks if it is below
half of its fair share under the given timeout. Finally, the Fair
Scheduler can limit the number of concurrently running tasks
per pool. This can be useful when multiple jobs have a
dependency on an external service like database or web that
can be overloaded if too manyMap or Reduce tasks are run at
once.
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The Hadoop capacity scheduler (HCS) [28] is another
popular scheduler. The main idea behind the HCS is equal
resource allocation based on the queue length. It is imple-
mentable as multi-queue system and all the resources are
equally allocated to each queue. Each job in the queues can
obtain the resources that have been already allocated to the
corresponding queue. If there exist unallocated resources,
they can be used in any queue if its capacity is guaran-
teed. Inside the queue, all jobs follow the FIFO policy to
obtain the required resource and optionally job priority. This
algorithm does not support the preemption once the job is
running. Therefore, some jobs with high priorities may suffer
from a longer delay than its deadline. Hadoop on Demand
(HOD) [29] is a scheduler for independently provisioning and
managing the resources of the Hadoop system. It automat-
ically de-allocates nodes or resources from a virtual cluster
when there are no more running jobs in the cluster. HOD
also provides great security with less sharing of the nodes
and improves the performance thanks to a lack of contentions
among the nodes for multiple users’ jobs. However, it has
some drawbacks such as in term of poor locality and resource
utilization. Dynamic proportional scheduler [30] provides
job sharing and prioritization capability in scheduling, with
results in increasing share of cluster resources and degrees
of differentiation in service levels of different jobs. Recently,
many resources have been developing more effective and
environment-specific schedulers. Time estimation and opti-
mization for Hadoop jobs have also been investigated. Most
of the efforts in scheduling are handling various priorities
and the time estimation which is based on runtime running
jobs. In [31], a data scheduling locality-based algorithm was
proposed. It allocates the input data blocks to the proper
nodes based on their processing capacity in order to enhance
the performance of MapReduce in heterogeneous Hadoop
clusters.

In [32], Liu et al. proposed preemptive deadline constraint
scheduler (PDCS) for minimizing the completion time of jobs
under their deadlines. It preempts the running jobs to fulfill
the minimum requirement of new jobs, if it is necessary.
The PDCS scheme employs the kill primitive process to
allocate slots for the tasks that belong to the nearest dead-
line. Moreover, a new policy related to map and reduce
slot allocations is proposed in the PDCS scheme, it trans-
fers the free slot and data to the ‘‘reduce task’’ when a
‘‘map task’’ finishes minimizing the waiting time for reduc-
ing the slot. As compared to the previous algorithm where
the minimum number of slots are allocated to a job to
allow other jobs to be scheduled, this preemptive algorithm
effectively uses the available resources to avoid job starva-
tion. Qiu et al. [33] proposed a scheduling model for het-
erogeneous workloads in a Hadoop cluster to reduce task
outsourcing costs. It is an online algorithm to schedule
MapReduce workloads in the hybrid cloud to achieve a mini-
mum cost within delay constraints. By an efficient scheduling
mechanism, it improves resource utilization for real-time
systems.

In [34], the authors proposed a generalized scheduling
algorithm that considers the resource provisioning based on
cloud computing based on queueing theory. They modeled
a cloud computing system using the M/M/C/C model that
allocates the resources to clients based on different service
levels with different priority classes. The main performance
measure in their analysis is the rejection probability for differ-
ent customer classes, which can be analytically determined.
The proposed solution supports cloud service providers in
decision making on 1) defining realistic Service Level Agree-
ments (SLAs), 2) dimensioning of data centers, 3) whether
to accept new clients, and 4) the amount of resources to
be reserved for high priority clients. In [35], a scheduler
to minimize the energy consumption subject to deadlines
was proposed for yet another resource negotiator (YARN).
It approaches in two levels: job level and task level. At the
job level, the scheduler tries to finish the jobs within deadline,
while at the task level, it focuses on minimization on the
energy consumption of the tasks.

In light of the above discussion on the existing systems,
we are motivated to extend the existing work using a pre-
emptive queueing model based on M/M/C, queue model.
Several constraints can be considered for job scheduling to
improve the system performance, such as least slack time,
deadline, size of jobs, and data locality. The proposed scheme
is explained in the following section.

III. THE PROPOSED SCHEDULING SCHEME
In this section, the proposed LSTPD scheme for MapReduce
job scheduling is presented. The LSTPD scheme attempts to
maximize resource utilization and minimize the completion
time, response time, and scheduling delay for the submitted
jobs under their deadlines and available resources in the
system. It determines the priority of the job by calculating
the deadline and slack time of the submitted job to eliminate
unnecessary preemption and complete it within the given
deadlines.

A. DESIGN GOAL
The design goal of the proposed scheme is to improve the
performance of Hadoop scheduler in terms of job completion
time and resource utilization. The proposed scheme analyzes
the submitted MapReduce job with different constraints such
as least slack time and the deadline to complete the job with
minimum cost and reduce the response time of the Hadoop
system. To this end, we employ a multi-priority M/M/C
model that schedules the job requests in a preemptive-resume
manner [36], [37]. It is a multi-server queueing model where
the jobs arrive according to a poison process. In the proposed
scheme, the request with a higher priority can achieve reduced
waiting time and minimize the missing rate of the deadlines,
while the existing non-preemptive scheduler does not con-
sider the priority. Furthermore, since the proposed LSTPD
scheme takes into account data locality, the preempted job
is resumed on the same TaskTracker or node. In order to
improve the schedulability of processes, we proposed a more
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FIGURE 3. The architecture of the proposed M/M/βi /LSTPD queue system.

queueing model, M/M/βi/LSTPD, by modifying a typical
preemptive queuing model, M/M/C.

B. PROPOSED SCHEDULING
In order to effectively deal with the MapReduce jobs that run
with different execution times, the proposed scheme adopts a
least slack time-based scheduling for both queues of master
and slave nodes. It assigns a priority based on the least slack
time of the job. The JobTracker (master) node assigns the
arrival tasks to the TaskTracker (salve) nodes based on the
available amount of resources. If the JobTracker receives
new jobs with no available resources, the new jobs wait
in the queue for resources to become idle or to preempt a
running job if they have a higher priority. Fig. 3 demonstrates
the architecture of the proposed LSTPD scheme. Jobs are
arrived at the JobTracker and then, they are transferred to one
of TaskTrackers for processing. All the submitted tasks are
sorted by each TaskTracker based on slack time and deadline.
It is possible that the proposed scheme sends the task, Ti−1,
to a busy TaskTracker to be waited if the waiting time is less
expensive than data transfer cost. Then, the busy TaskTracker
contains data, ∂i−1, for the task, Ti−1, because of data locality.
Consequently, the proposed LSTPD scheme mainly focuses
on data locality management, slack time, deadline, and pre-
emption for the tasks.

FIGURE 4. The process of job scheduling for services in M/M/C .

C. PERFORMANCE ANALYSIS
Queuing theory is an effective tool to deal with different types
of queuing systems as shown in Fig. 4. The analytical model
of the proposed scheme is based on an M/M/c queuing model
[36], [37]. For the proposed LSTPD scheme, we modify it
as a novel, M/M/βi/LSTPD, model. Based on this model,
we evaluated the performance of the proposed scheme in
terms of job completion time, average waiting time, resource
utilization, job deadline, the probability of missing deadline,
and scheduling delay. The variables used in the model are
listed in Table 1.

Let us assume, Ji (i = 1,2,3, . . . n), is a queue for arrived
jobs with an input data size of ∂i and deadline Di (i =
1,2,3, . . . n). When the task, Ji, arrives at the queue, it is able
to preempt the resources allocated to the earlier job, Ji−1.
Suppose that Ji is the currently running task and the priority of
the newly arriving task is higher than that of Ji. If the new task
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TABLE 1. The notation used in the model.

does not preempt Ji, all the jobs with higher priorities than Ji
verify if they can meet their deadlines based on the following
Eq. (3) with which defines the condition of preemption.(

Ci − Ri +Wi +
∑n

m=1
Cm
)
≤ Di|i ∈ Q, (3)

whereQ is the ready queue, Ci denotes the computation time,
and Ri denotes the execution time spent for job, i. Slack time,
s, is the difference between the deadline and waiting and
execution time. For the i-th job, it is defined as

si = (Di − ti)− C
′

i . (4)

FIGURE 5. A timing diagram of the jobs described in Table 2.

Table 2 lists an example of task executions and Fig. 5 shows
the corresponding timing diagram. Note that J2 has the high-
est priority while J1 is the lowest priority based on the dura-
tion of the jobs. Assume that, Di and Di−1, are the deadlines
for the running job and the newly arriving job, respectively.
Then, we check the following condition to decide preemption.

TABLE 2. An example of task executions.

If Di < Di−1 like J1 and J2 in the example, no preemption
occurs. Otherwise, a preemption occurs like J2 and J3 in the
example.

In Fig. 5, there are two preemption points. One is the arrival
of J2 at 4. At this point, J1 is preempted because J2 has an
earlier deadline. The other one is the arrival of J3 at 5 where
J2 keep keeps running without a preemption since J3 has a
later deadline than J2.
Suppose that there are βi servers (1≤ i ≤ βi), in which

the service rate is µ_i. Then, the total arrival rate is of λ and
the total service rate is, µ =

∏n
k=1 µ_i, (k = 1, 2, 3, . . . n).

It is obvious that the system is stable when λ/µ < 1. The
jobs arrive in the queue according to a Poisson process and
are served by an available server that fulfills the data locality
requirements. Otherwise, the jobs preempt any running job
based on the deadlines. To evaluate the waiting and slack
time of the jobs, the M/M/βi/LSTPD, queueing model.
M/M/1 model [38] represents a single server that has queue
with unlimited capacity and infinite requests, in which inter-
arrival and service time follows exponential distributions.
A series of different performance measures can be calculated
based on the arrival rate, λ, and service rate, µ. As well-
known, in the M/M/1 model, the average number of jobs in
the system, N , can be calculated as follows.

N =
λ2

µ (µ− λ)
. (5)

The probability that an arriving job needs to be waited for
service is expressed as

ρ =
λ

µ
, (6)

where Pn denotes the server utilization factor or task intensity
when n jobs are in the system. The probability that no job/task
is waiting in the system is expressed as

Po= 1−
λ

µ
. (7)

From Eq. (6) and (7), we can generalize the formula to
compute the probability of n waiting for jobs in the queue
as

Pn =
(
λ

µ

)n
Po. (8)

With multiple servers, each arriving request waits in a single
queue, and then it is moved to the first available server to be
served. The utilization of the queue, ρ, is written by

ρ =
λmp

βiµmp
, (9)
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FIGURE 6. Hadoop simulation environments for LSTPD.

where λmp, is the MapReduce job, µmp, is the service rate,
and βi denotes TaskTrackers (servers). As the requests of a
cloud system come from all over the world, the pool of the
jobs and the size of the queue are deemed to be unlimited. Let
us denote a set of states of the system is, E = {0, 1, 2, . . .},
where each state denotes the number of MapReduce jobs in
the Hadoop system. When the number of jobs is less than βi,
only n out of βi nodes are busy and the mean service rate is
equal to βiµ. In this case, the probability that there are n jobs
in the system is expressed as

Pn = p0

(
λmp

µmp

)n 1
n!
, if 1 ≤n ≤ βi.pn

(10)

If the number of MapReduce jobs is greater than or equal to
βi, i.e., n≥ βi, all the nodes are busy and the effective service
rate is equal to βiµ. Thus, Eq. (10) can be rewritten by

Pn = p0

(
λmp

µmp

)n 1
βi!

(
1
βi!

)n−βi
if n ≥ βi. (11)

Here, ρ = λmp/βiµmp, must be less than 1 for the system
to be stable. Note that the expected number of busy nodes
is equal to βiρ, which is, λmp/µmp. Returning to Eqns. (10)
and (11) by substituting βiρ for λ/µ, we obtain

Pn = P0
(βiρ)n

n!
, for n ≤ βi, (12)

P0 =
(βiρ)n

β
n−βi
i βi!

, for n > βi. (13)

To obtain P0, both sides of Eqns. (12) and (13) are summed
up, and since

∑
∞

n=0 ρn= 1,P0 is obtained as

Po =
1∑k−1

n=0
(λmp

/
µmp)

n

n! +
(λmp

/
µmp)

k

k!

(
kµmp

kµmp−λmp

) . (14)

In addition, the average number of jobs in the queue is
computed as.

Nq =
(λmp

/
µmp)

n
µmpλmp

(k − 1) !
(
kµmp − λmp

)2 . (15)

Assuming that the maximum number of jobs in the queue is
k and the maximum queue length is (k−1), the upper bound
of waiting time in the queue is given by follows.

WU =

k−1∑
n=0

(λmp
/
µmp)

n

k
+

(λmp
/
µmp)

k

n!

(
kµmp

kµmp − λmp

)
.

(16)

Moreover, the lower bound of waiting time also given by

WL =

k−1∑
n=0

(
(λmp

/
µmp)

n

k
+

kµmp
kµmp − λmp

)
. (17)

Eqns. (16) and (17) can be generalized to compute the prob-
ability that there exist n waiting jobs in the queue as

Pn =
(λmp

/
µmp)

n

n!
Po for n ≤ k, (18)

Pn =
(λmp

/
µmp)

n

kk!(n−k)
Po for n > k. (19)
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For a preemptive, M/M/βi/LSTPD queue, the job with a
higher priority,Hi, and a lower priority Li arrive at the system
according to the Poisson process as with the arrival rates of
λHi and λLi , respectively. Their service time and arrival time
are independent of each other. According to Eq. (6),

ρHi + ρLi < 1. (20)

Let, ρk = λk /µk , the queue utilization of jobs, Jk , with the
preemptive-resume policy, where the lower priority job, Li,
is interrupted and the server proceeds with the higher priority
job,Hi. Once there is no higher priority job in the system, the
server resumes the service of the lower priority job from the
moment where it was interrupted. The priority here is decided
by the deadline. As mentioned earlier, the jobs are resumed
in the same TaskTracker where they were interrupted in order
to support data locality.

Let NHi and WHi denote the number of jobs of the i-th
priority and the sojourn time in the system, respectively. The
average values of them, E[SHi ] and E[NHi ], are derived as

E[SHi ] =
1
/
µHi

1− ρHi
. (21)

E
[
NHi

]
=

ρHi

1− ρHi
. (22)

Since the remaining service time of the jobs is exponentially
distributedwith the samemean, the total number of jobs in the
system does not depend on the order that the jobs are served.
Therefore, the number is the same as the case where all the
jobs are sequentially served in the order of arrival. Hence,

E
[
NHi

]
+ E

[
NHL

]
=

ρHi + ρLi

1− ρHi − ρLi
. (23)

By the Little’s law,

E
[
SHL

]
=

1
/
µHi(

1− ρHi
) (
1− ρHi − ρLi

) , (24)

WQ =

k∑
Hi=1

λLiσ
2
j

2
(
1−

∑k−1
Li=1 ρLi

) (
1−

∑k
Li=1 ρLi

) , (25)

where WQ represents the average waiting time in the queue.
As we mentioned in the previous section, the main goal of
the proposed LSPD scheme is to improve the performance
by preemption based on the deadline in the local scheduling
of the queues. To this end, the deadline, residual time, waiting
time, sojourn time of the preempted job, and the total number
of jobs needs to be estimated. The schedulability analysis [39]
requires worst-case execution time of the jobs as well as that
of operating system functions in order to check if a given
set of jobs can be successfully executed without missing the
deadline. To evaluate the waiting and slack time of the jobs,
the proposed,M/M/βi/LSTPD, queueingmodel is used. The
proposed LSTPD scheduling algorithm for both JobTracker
and TaskTracker are describe in Algorithm1 and Algorithm2,
respectively.

Algorithm 1 JobsTracker_Schedular
Initialize the values:
QJob: Queue of jobs in the JobTracker
QNode: Queue of node in cluster
Nstatus: status of node in cluster (idle/busy)
Di: Deadline for jobs.
Procedure:
Check status of TaskTracker (heartbeats)
Nstatus← Idle
Nstatus← busy
While JobQueue is not empty do
if Nstatus is idle then
if (Di < Di−1) then
Nidle← QJob[i]Di
Nstatus← busy
end if
else
check and update the status of the node
Nstatus← Idle
Nstatus← busy
end if
end while

IV. PERFORMANCES EVALUATION
In this section, we describe our experimental setup for eval-
uating the proposed LSTPD scheduling scheme by using
Hadoop 2.7.2 (stable), Linux operating system, and Cen-
tOS. The proposed LSTPD scheduler is compared with four
existing scheduling schemes developed for Hadoop: FIFO,
Fair, Capacity, and Proactive and Reactive Scheduling (PRS)
[27], [28], [40]. The efficiency of the proposed scheduling
scheme is evaluated in terms of job completion time, slot uti-
lization, and deadline under least slack time and preemption
techniques. Two data-intensive applications, TeraSort and
WordCount [41]–[43], are used to evaluate the performance
of the proposed scheme in a heterogeneous Hadoop cluster.
TeraSort and WordCount are MapReduce applications run-
ning on Hadoop clusters. WordCount is a benchmark that
measures the performance of MapReduce by counting words
in text files. It splits the input text into words, shuffles every
word in the map phase, and counts its number of occupations
in reduce phase. It counts the occurrences of each word in
the input file. WordCount runs on different size of data,
e.g., 1∼5 GB. TeraSort is a popular benchmark that mea-
sures MapReduce performance and the elapsed time to sort
randomly distributed data. TeraSort runs on 1 GB of data.
A full TeraSort benchmark run consists of the following three
steps [43]:
1. Generating the input data via TeraGen.
2. Running the actual TeraSort on the input data.
3. Validating the sorted output data via TeraValidate.

As shown in Fig. 6, the tested cluster consists of a single
JobTracker (Master) and ten TaskTrackers (Salves) nodes,
and twenty heterogeneous nodes, whose parameters are sum-
marized in Table 3.
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TABLE 3. Node setup and Hadoop configuration.

Algorithm 2 TaskTracker_Schedular
Initialize the values:
QTask : Queue of tasks in TaskTracker
TTstatus: The state of each (idle/busy) on the TaskTracker
STi: slack time of job i
Procedure
Check status of resources
TTstatus← Idle
TTstatus← busy
While TaskQueue is not empty do
if TTstatus is idle then
Schedule the next job from QTask [i] to the TT
Remove the task from QTask [i] & set QTT [i] as busy
if(TaskQueue is not empty) &
(All resources are busy) then

if (ST_QTask [i] < ST_runnTask ) then
(Preempt running task and assign PE
to new task)
QTask [i+1]← ST_ runnTask
QPE [i]← ST_QTask [i]
end if
end if
end if
end while

FIGURE 7. Comparison of missing deadline.

Fig. 7 shows the performance comparison of the conven-
tional schemes with the proposed LSTPD scheme in terms of
jobs missed deadline. This figure shows the result for varying

workloads as the number of submitted jobs (10 to 100). All
these jobs are heterogeneous in terms of requirements. The
proposed LSTPD scheme schedule the jobs based on the
deadlines. Therefore, the proposed LSTPD scheme achieves
40% ∼ 50% better performance compared to the other three
schemes: Fair, Capacity, and FIFO schedulers in terms of
the number of jobs missed deadline. The proposed LSTPD
scheme maximizes the resource utilization and by minimiz-
ing the number of deadline missing.

FIGURE 8. Comparision of total completion time.

Fig. 8 shows the total completion time of the proposed
LSTPD scheme for varying workloads, compared with the
conventional schemes. As shown in the figure the difference
among the total completion time of the 10-100 jobs for
each scheduling scheme gradually increases as the number of
submitted jobs increases. Among the schemes, the proposed
LSTPD scheme achieves the best performance by finishing
the submitted jobs in minimum time shows better perfor-
mance to finished the submitted jobs in minimum time.

Fig. 9 shows the result of average completion time by
running 550 number of jobs with deference groups from 10 to
100. For each group of jobs, the average completion time
is computed. As shown in the figure, the proposed LSTPD
scheme outperforms the other schemes by 30%∼50% on
average.

Fig. 10 shows the average waiting time of the submit-
ted jobs. It is shown that the waiting time of the proposed
LSTPD scheme is basically smaller than the other conven-
tional schemes. As the number of jobs increase the proposed
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FIGURE 9. Comparision of average completion time.

FIGURE 10. Comparision of average waiting time.

LSTPD scheme significantly outperforms the other schemes.
The reason is that the proposed LSTPD scheme considers
deadlines and slack time in every scheduling epochs, while
the other schemes do not consider the priorities which can
yield long waiting time due to lower priority jobs.

FIGURE 11. Comparison of job waiting time.

Fig. 11 shows the total waiting time of proposed and
conventional schemes for varying the number of submitted
jobs.schemes. It is observed that the total waiting time of
the proposed LSTPD scheme is always smaller than the
conventional schemes regardless decrease of workloads. This
implies that the proposed LSTPD scheme is effective in aver-
age sense in terms of total waiting time.

FIGURE 12. Comparison of response time.

Fig. 12 shows the response time of the schedulers for
varying. For each batch of jobs, we calculate the response
time of jobs and present the results in the figure. For all of
the ten batches of heterogeneous jobs, the response time of
the proposed LSTPD scheme is 40 %∼50 % smaller than the
other three scheduling schemes, while the other scheme gets
significantly longer response time because they basically use
almost the same policy in the queue. They never consider the
deadline and priority of jobs and thus, the overall results of
these schemes in terms of response time are very poor.

FIGURE 13. Comparision of resource utilization.

Fig. 13 shows the resource utilization for varying the num-
ber of submitted jobs. The resource utilization for the pro-
posed LSTPD scheme is better than the other three schemes.
This is because for the Poisson distribution, at the tail of
the queue, the size of jobs is reduced, and these jobs can
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be completed before the big sized-jobs arrive. For the other
three scheme high priority jobs can be delayed until low
parity or big sized-jobs are completed. The average resource
utilization of the proposed LSTPD scheme is 93% which
seems sufficiently good, compared to the other schemes.

FIGURE 14. Comparison of scheduling delay.

In order to observe the delay of the scheduling process,
we submitted the 550 MapReduce jobs for WordCount and
TeraSort benchmarks. For real-time heterogeneous jobs in
term of the deadline and slack time, the proposed LSTPD
scheme achieves shorter scheduling delay, compare to the
other three schemes as shown in Fig. 14. The proposed
LSTPD scheme considers the priority for the jobs with
respect to deadline and slack time. Hence, the proposed
LSTPDscheme shows better performance and attempts to
process all the high priority jobs with minimum delay. Fur-
thermore, the proposed LSTPD scheme considers high data
locality for the jobs with respect to heterogeneous demands
in resources request.

V. CONCLUSION
MapReduce jobs scheduling and resource allocation have a
great impact on Hadoop clusters, especially in heterogeneous
environments. Big data analytics and workload management
become more complex if the job and resources are hetero-
geneous. In this paper, we proposed a preemptive scheduler
based on deadline and slack time for MapReduce to improve
the performance of the Hadoop. When the slack time for
the jobs is diverse with respect to the deadline and data
locality, the different number of jobs can be assigned to
TaskTracker. In addition, in this paper, we also quantitatively
describes the worst-case waiting time in the ready queue.
The proposed least slack time preemptive deadline constraint
scheduler (LSTPD) scheme avoids unnecessary preemption
if a certain condition is satisfied based on the slack time of
the jobs. It also improves schedulability regarding available
resources. We did not include constraint scheduling such
as runtime estimation of Map or Reduce task, filter ratio
estimation, data distribution and dynamic data replication
base on job scheduling. We plan to address these issues as

future work. In the future, we will consider the aspects
that may have effects on the performance of scheduling
including data distributions and replication in heterogeneous
MapReduce system, and the iterative MapReduce jobs under
deadline.
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