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ABSTRACT In the field of post-quantum cryptography, lattice-based cryptography has received the most
noticeable attention. Most lattice-based cryptographic schemes are constructed based on the polynomial
ring Rq = Zq[x]/f (x), using a cyclotomic polynomial f (x). Until now, the most preferred cyclotomic
polynomials have been xn + 1, where n is a power of two, and xn + · · · + x + 1, where n + 1 is a prime.
The former results in the smallest decryption error size, but the choice of degree is limited. On the other
hand, the latter gives rise to the largest decryption error size, but the choice of degree is very flexible. In this
paper, we use a new polynomial ring Rq = Zq/f (x) with a cyclotomic trinomial f (x) = xn − xn/2 + 1
as an intermediate that combines the advantages of the other rings. Since the degree n is chosen freely as
n = 2a3b for positive integers a and b, the choice of the degree n is moderate. Furthermore, since the
error propagation is small in the middle of polynomial multiplication in the new ring, if the middle part is
truncated and used, the decryption error size can be reduced. Based on these observations, we propose a new,
practical key encapsulation mechanism (KEM) that is constructed over a ring with a cyclotomic trinomial.
The security of our KEM is based on the hardness of ring learning-with-rounding (LWR) problems. With
appropriate parameterization for the current 128-bit security model, we show that our KEM obtains shorter
secret keys and ciphertexts, especially compared to the previous Ring-LWR-based KEM, Round5, with no
error correction code. We then implement our KEM and compare its performance with that of several KEMs
that were presented in the second round of the NIST PQC conference.

INDEX TERMS Cyclotomic trinomial, key encapsulation mechanism, lattice-based encryption,
post-quantum cryptography, ring-LWR problem.

I. INTRODUCTION
As quantum computers advance, post-quantum cryptography
has become one of the most demanding research topics. It has
already been proven that, given idealized quantum computers,
number-theoretic problems such as integer factorization and
discrete logarithms can be solved in polynomial time, which
means that currently employed cryptographic schemes based
on these two hardness problems can also be broken in poly-
nomial time. Accordingly, the National Institute of Standards
and Technology (NIST) has launched the Post-Quantum
Cryptography (PQC) Standardization to define new standards
for cryptographic schemes including public key encryption
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(PKE) / key encapsulation mechanism (KEM), digital signa-
ture, and key-establishment protocols. In the second round of
NIST PQC presentations in 2019, 12 out of 26 schemes were
lattice-based, and 9 out of the 12 lattice-based schemes were
PKE/KEM candidates. As this result indicates, lattices are the
most prominent tool for designing cryptographic schemes at
this point.

Such popularity can be traced back to Regev’s work [1],
which introduced the Learning With Errors (LWE) problem
and proved its worst-case to average-case hardness reduction.
In 2011, Lindner and Peikert [2] improved Regev’s original
PKE scheme and suggested a more efficient LWE-based PKE
scheme in which a public key and ciphertexts are generated
in the form of LWE instances. Since then, the improved con-
struction by Lindner and Peikert has been adopted as a basic
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design principle for most of the subsequent lattice-based
PKE/KEM schemes. In 2012, Banerjee et al. [3] introduced
a derandomized version of LWE, called the Learning With
Rounding (LWR) problem. In contrast to the LWE prob-
lem, an LWR instance is generated by discarding some least
significant bits through rounding operations without error
sampling. Later, some LWR-based PKE/KEM schemes were
suggested by [4], [5], with the advantage of shorter public
keys and ciphertexts than in LWE-based constructions.

In 2010, Lyubashevsky et al. [6] introduced the ring variant
of the LWE problem, called the Ring-LWE, and showed
that it is hard to distinguish a Ring-LWE instance from a
uniform one over cyclotomic polynomial rings. Despite the
potential vulnerability inherent in an algebraic ring structure,
PKE/KEM constructions based on the Ring-LWE problem
can offer significant improvements in efficiency, such as
much shorter public keys and ciphertexts. Similar to the LWR
case, the Ring-LWR problem was defined in [3], and several
PKE/KEM schemes [7], [8] have been proposed based on
the Ring-LWR problem that have the advantages of shorter
bandwidths and no error sampling. For this reason of effi-
ciency improvements, most of the lattice-based PKE/KEM
candidates presented in the second round of the NIST PQC
conference were constructed based on the hardness of Ring-
{LWE, LWR} problems or their variants.

A. MOTIVATION
Let Rq = Zq[x]/f (x) be a polynomial ring for a cyclo-
tomic polynomial f (x) with a modulus q. Depending on
the choice of polynomial f (x), the computational speed of
polynomial multiplication and the error propagation during
decryption are determined. As a simpler explanation, con-
sider an LWE-based PKE scheme in which the public key is
given as (a,b = a · s+ e1) ∈ R2q, and s ∈ Rq is a secret key.
Following [2], a ciphertext is generated as (c1 = a · r + e2,
c2 = b · r + e3 + E(m)) ∈ R2q for some encoding method
E of a message m. Now, the decryption algorithm performs
D(c2 − c1 · s) for a decoding methodD. Notice that the secret
polynomials s, r, e1, e2, and e3 are sampled from distributions
with small coefficients. The operation c2 − c1 · s becomes
r · e1 + e3 − e2 · s + E(m), where r · e1 + e3 − e2 · s is a
decryption error. When E is the encoding method of Regev
[1], the decryption succeeds only if |r · e1 + e3 − e2 · s| <
q/4 for each coefficient related to E(m). Here, the point is
that the size of the decryption error is dominated by the two
polynomial multiplications r · e1 and e2 · s in Rq.
The most preferred polynomial ring for Ring-LWE or

Ring-LWR is Rq = Zq[x]/f (x), where f (x) = xn + 1
and n is a power of two. This is because (1) the polynomial
multiplication is simple and fast using the equation xn = −1
in Rq, and (2) the decryption error is the smallest in that each
coefficient of r · e1 and e2 · s is computed as the sum of n
terms. The primary disadvantage is that the choice of n is
critically restricted since the degree nmust be a power of two,
e.g., n = 512, 1024, 2048, etc. Moreover, from current lattice

attacks based on sage module estimator1 of [9], it has been
shown that choosing n = 512 is not sufficient for providing
the desired 128-bit security. To reach this security level, one
might think to use f (x) = x1024 + 1 for the next cyclotomic
polynomial, but the larger degree n = 1024 greatly increases
the bandwidths of the resulting scheme. Another way is to
increase the variance of the coefficients in the above secret
polynomials, but in that case, the size of the decryption error
also increases.

Another preferred polynomial ring is Rq = Zq[x]/f (x),
where f (x) = xn + · · · + x + 1 and n + 1 is a prime; this
ring is used in Round5 [8]. In such a ring Rq, the polynomial
multiplication is simple and fast using the equation xn+1 = 1
in Rq due to the fact that xn+1−1 = (x−1)(xn+· · ·+x+1),
and above all, there are many degrees to choose from, e.g.,
n + 1 = 521, 523, 541, 547, etc. To meet a specific security
level, one can choose the degree n flexibly from among a
dense set of n values. Despite these advantages, choosing the
polynomial xn + · · · + x + 1 poses a serious problem of
error propagation that significantly increases the size of the
decryption error. Indeed, each coefficient of r · e1 and e2 · s in
the decryption error becomes the sum of 2n− 2 terms. Thus,
for a similar polynomial degree, f (x) = xn+· · ·+x+1 almost
doubles the error propagation compared to xn + 1, resulting
in a relatively higher decryption failure rate. Furthermore,
in the case of Ring-LWR, all coefficients of e1 and e2 are
sampled from a set with a uniform distribution. For instance,
after a 3-bit rounding operation, the coefficients of e1 and e2
are uniformly distributed on [−4, 3), which makes the error
propagation larger than for Ring-LWE.

As mentioned above, the two preferred polynomial rings
have pros and cons where the advantage of one is a disadvan-
tage for the other. This motivates us to consider a new polyno-
mial ring that properly combines their strengths. In this paper,
we propose using a cyclotomic trinomial f (x) = xn−xn/2+1,
where n = 2a3b for positive integers a and b. For instance,
possible choices of degree are n = 486, 576, 648, 768, etc,
which shows that the set of possible degrees {n} is sparser
than for xn+ · · · + x + 1 but denser than for xn+ 1. In terms
of error propagation, we can truncate some of the coefficients
of r · e1 and e2 · s in order to minimize decryption errors
with the highest probability. This stems from the fact that,
somewhat surprisingly, polynomial multiplication in a ring
Rq = Zq[x]/f (x) with a cyclotomic trinomial f (x) affects
the number of terms added to each coefficient of a multiplied
polynomial. Figure 1 presents the number of terms added to
a coefficient of a multiplied polynomial c(x) = a(x) · b(x) in
each ring. Especially, in the case of the ring Rq = Zq[x]/f (x)
with f (x) = xn−xn/2+1, we can see that the number of terms
added increases linearly starting from the middle degree to
the smallest degree. To minimize the size of the decryption
error, we can therefore truncate the colored parts (in Figure 1)
of r · e1 and e2 · s, depending on the length of the encoded
message E(m), and use them to encrypt the message m. For

1https://bitbucket.org/malb/lwe-estimator/src/master/

112586 VOLUME 8, 2020



S. H. Park et al.: Improved RLWR-Based KEM Using Cyclotomic Trinomials

FIGURE 1. Number of terms {ai bj } added into coefficients {ck }
n−1
k=0, where c0 + c1x + · · · + cn−1xn−1 = (a0 + a1x + · · · + an−1xn−1) · (b0 + b1x + · · ·+

bn−1xn−1) in each ring Rq.

instance, if E(m) is 128 bits long, then each coefficient of the
truncated r · e1 and e2 · s consists of the sum from terms n to
n+ 128. This is a slight increase over xn + 1 but a very large
decrease compared to xn+· · ·+x+1 in the number of terms
added.

B. OUR CONTRIBUTION
Based on a new ring with the cyclotomic trinomials men-
tioned above, we propose an efficient KEM whose secu-
rity relies on the hardness of the Ring-LWR problem.
As always, we construct a PKE scheme that is secure against
chosen-plaintext attacks (i.e., CPA-secure) and then apply
the simpler version [10] of the Fujisaki-Okamoto transform
to construct a KEM that is secure against chosen-ciphertext
attacks (i.e., CCA-secure). To achieve the current 128-bit
(classical) security level, we choose a set of parameters
and compare the implementation result of our KEM with
other comparable KEMs including NewHope [11], LAC [12],
Round5 [8], Saber [5], and Kyber [13] in Section VI. The
main features of our KEM are as follows:

• Cyclotomic trinomials on ring choice: our KEM is con-
structed based on a ring Rq = Zq[x]/f (x) with f (x) =
x576 − 2288 + 1 for 576 = 2632 for the 128-bit security
level. Since the set of degrees is quite dense, we can
also use cyclotomic trinomials with degrees {864 =
2533, 1152 = 2733} to enhance security to the {192,
256}-bit security level, respectively.

• Negligible decryption failure rate: our KEM does not
use an error correction code, but nevertheless the prob-
ability that a decryption fails (i.e., decryption failure
rate) is negligible (i.e., 2−100), using the truncation tech-
nique above. We provide a formula for the decryption
failure rate that is calculated automatically, given our
PKE/KEM parameters.

• Shorter size of ciphertexts: because of the new ring
with cyclotomic trinomials and the truncation tech-
nique, we can set relatively small moduli for our KEM
while preserving a negligible decryption failure rate.
Indeed, our KEM uses moduli (211, 28, 24), compared
to (213, 210, 22) in Saber and (213, 29, 24) in Round5,
without error correction code. The small moduli allow
our KEM to obtain the shortest ciphertexts among the
compared KEMs, as long as an error correction code is
not used.

• Fixed-weight ternary distribution: following Round5
[8], two secret polynomials r and s in our KEM are
sampled from a fixed-weight ternary distribution, where
only non-zero coefficients are represented as an array
called ‘index.’ We also adopt the index-based method to
make polynomial multiplication in our new ring simple
and fast.

• EMBLEM encoding method: we adopt the simple
encoding method [14] to perform decryption with no
rounding operation. Using the EMBLEM encoding,
decoding (during decryption) is done by simply extract-
ing the most significant bit from each coefficient, in con-
trast to the Regev encoding, which requires a rounding
operation per each bit.

We show that polynomial multiplication in a ring Rq =
Zq[x]/f (x) with a cyclotomic trinomial f (x) = xn− xn/2+ 1
can also be performed in a simple manner. Roughly speaking,
let a = 6n−1

i=0 aix
i, b = 6n−1

i=0 bix
i, and c = a · b in Rq. The

first step is to compute c′ = 62n−2
i=0 cix i using the index-based

multiplication method [], and the second step is to replace
the terms from cnxn to c2n−2x2n−2 by lower-degree terms.
During the replacement process, we can use the relations
xn = xn/2−1 for the degrees n, . . . , 3n2 −1 and x

3n/2
= −1 for

the degrees 3n
2 , . . . , 2n − 2. Such polynomial multiplication
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in Rq with cyclotomic trinomials is described as an algorithm
in Section VI.

II. PRELIMINARIES
A. NOTATION
For q ∈ N, Zq denotes the set of all integers in {0, 1, . . . ,
q− 1}. For r ∈ R, bre is the nearest integer to r, rounded up
in the case of a tie.

Suppose that a is a polynomial of degree n − 1 whose
coefficients are real-valued and ai is the i-th coefficient of
a. Then, bae denotes a polynomial of degree n whose i-th
coefficient is baie. In addition, a ← P denotes that a is an
output of the algorithm P , and a

$
←− U implies a is uniformly

randomly chosen from a set U or sampled according to the
distribution U . The hamming weight of a is the number of
non-zero coefficients of a. Define an algorithmHWT n(?, h)
that has a seed ? as an input and outputs a polynomial for
which h out of n coefficients are −1 or 1 and the others are
all zeros. For a bit string b ∈ {0, 1}∗, [b]t is defined by the
most significant t bits of b. Throughout this paper, we assume
that q, p, and t are powers of 2 and that t|p|q. We represent
polynomials as bold lowercase letters.

B. DEFINITIONS
1) PUBLIC KEY ENCRYPTION
A public key encryption (PKE) scheme consists of the fol-
lowing three algorithms: KeyGen, Encrypt, and Decrypt
together with a message space M.

- KeyGen(λ): The KeyGen algorithm takes as input a
security parameter λ and outputs a public and secret key
pair, (pk, sk).

- Encrypt(pk,m): The Encrypt algorithm takes as input
the public key pk and a message m ∈ M and then
outputs a ciphertext C .

- Decrypt(sk,C): The Decrypt algorithm takes as input
the secret key sk and a ciphertext C and then outputs a
message m or ⊥ to indicate ‘reject.’

Correctness. We say that a PKE is (1 − ε)-correct if the
following condition holds: for all messages m ∈M,

Pr
[
(pk, sk)← KeyGen(λ);C ← Encrypt(pk,m) :

Decrypt(sk,C) = m
]
> 1− ε(λ),

where ε is a negligible function for the security parameter λ.

2) KEY ENCAPSULATION MECHANISM
A key encapsulation mechanism (KEM) consists of the
following three algorithms: KeyGen, Encap, and Decap
together with a key space K.

- KeyGen(λ): The key generation algorithm takes as input
a security parameter λ and outputs a public and secret
key pair, (pk, sk).

- Encap(pk): The encapsulation algorithm takes as input
the public key pk and then outputs a ciphertext C and a
key K ∈ K.

- Decap(sk,C): The decapsulation algorithm takes as
input a secret key sk and a ciphertext C and then outputs
a key K or ⊥ to indicate ‘reject.’

Correctness. We say that a KEM is (1 − ε)-correct if the
following condition holds:

Pr
[
(pk, sk)← KeyGen(λ); (C,K )← Encap(pk) :

Decap(sk,C) = K
]
> 1− ε(λ),

where ε is a negligible function for the security parameter λ.

3) IND-CPA SECURITY OF PKE
Let PKE=(KeyGen, Encrypt, Decrypt) be a public key
encryption scheme. As the standard security notion for PKE,
indistinguishability under chosen-plaintext attacks (IND-
CPA) is defined via the following experiment between an
adversary A and a challenger C:

Experiment IND-CPAb
PKE,A(λ):

1. C runs (pk, sk)← KeyGen(λ) and gives pk to A.
2. A outputs two messages (m0,m1) of the same length.
3. C computes C ← Encrypt(pk,mb) for a randomly

chosen bit b ∈ {0, 1} and gives C to A.
4. A outputs a bit b′. C returns 1 if b = b′ and otherwise

returns 0 as the output of the game.
The advantage of A for breaking the IND-CPA security of a
PKE is defined as

AdvIND-CPAPKE,A =

∣∣∣Pr [IND− CPA1
PKE,A(λ) = 1

]
+Pr

[
IND− CPA0

PKE,A(λ) = 1
]
− 1

∣∣∣.
We say that a PKE is IND-CPA secure if for any polyno-

mial time adversary A, we have AdvIND-CPAPKE,A ≤ ε(λ), where
ε is a negligible function for the security parameter λ.

4) IND-CCA SECURITY OF KEM
Let KEM = (KeyGen, Encap, Decap) be a key encapsula-
tion mechanism. As the standard security notion for KEM,
indistinguishability under chosen-ciphertext attacks (IND-
CCA) is defined via the following experiment between an
adversary A and a challenger C:

Experiment IND-CCAb
KEM,A(λ):

1. C runs (pk, sk)← KeyGen(λ) and gives pk to A.
2. A queries decapsulation oracle Decap(sk, ·) with a

ciphertext C .

3. C computes (C∗,K∗0 )← Encap(pk) and K∗1
$
←− K. Then

C gives (C∗,K∗b ) to A for a randomly chosen bit b ∈
{0, 1}.

4. A continues to query the decapsulation oracle but is not
allowed to query the challenge ciphertext C∗.

5. Finally, A outputs a bit b′. C returns 1 if b = b′ and
otherwise returns 0 as the output of the game.

The advantage of A for breaking the IND-CCA security of
KEM is defined as

AdvIND-CCAKEM,A =

∣∣∣Pr [IND− CCA1
KEM,A(λ) = 1

]
+Pr

[
IND− CCA0

KEM,A(λ) = 1
]
− 1

∣∣∣.
112588 VOLUME 8, 2020
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We say thatKEM is IND-CCA secure if for any polynomial
time adversary A, we have AdvIND-CCAKEM,A ≤ ε(λ), where ε is a
negligible function for the security parameter λ.

C. RING LEARNING WITH ROUNDING PROBLEMS
Let q, p, and t be positive integers that are represented as
powers of 2 and that have the relation t|p|q. Let Rq, Rp,
and Rt denote the rings Zq[x]/83n(x), Zp[x]/83n(x), and
Zt [x]/83n(x), respectively, where 83n(x) is the 3n-th cyclo-
tomic trinomial. More precisely, for any positive integers a
and b, 83n(x) = xn − xn/2 + 1 for n = 2a3b.
With the above rings, we define two decisional Ring Learn-

ing With Rounding (RLWR) problems as a derandomized
version of the Ring Learning With Errors (RLWE) problem
[1], [6]. The first is the ordinary RLWR problem as proposed
by [3], while the second is a slightly generalized version
tailored to our security proofs.
Definition 1: Let n, q, p be positive integers such that q >

p. Let Rq and Rp be polynomial rings constructed by 83n(x),
and let Ds be a distribution over Rq. A decisional RLWR
problemRLWRn,1,q,p(Ds) is to distinguish uniformly random
(a,u) ∈ Rq × Rp and (a,b = b pq a · se) ∈ Rq × Rp, where s
is sampled from Ds. Then, the advantage of an adversary A
in solving the decisional RLWR problem RLWRn,1,q,p(Ds) is
defined as follows:

AdvRLWR
n,1,q,p(A) =

∣∣Pr[A(a,b) = 1]− Pr[A(a,u) = 1]
∣∣.

Definition 2: Let n, q, p, t be positive integers such that
q > p > t . Let Rq,Rp, and Rt be polynomial rings
constructed by 83n(x), and let Ds be a distribution over
Rq. A generalized version of the decisional RLWR problem
RLWRn,2,q,p,t (Ds) is to distinguish two uniformly random
pairs {(a1,u1) ∈ Rq × Rp, (a2,u2) ∈ Rp × Rt } from
{(a1,b1 = b

p
q a1 · se) ∈ Rq × Rp, (a2,b2 = b tp a2 · (s

mod p)e) ∈ Rp × Rt }, where s is sampled from Ds. Then,
the advantage of an adversary A in solving the generalized
version of the decisional RLWR problem RLWRn,2,q,p,t (Ds)
is defined as follows:

AdvRLWR
n,2,q,p,t (A)

=
∣∣Pr[A({ai,bi}2i=1) = 1]− Pr[A({ai,ui}2i=1 = 1)]

∣∣.
The second RLWR problem can be viewed as a module

version of two distinct RLWR problems, one from q to p and
the other from p to t . Intuitively, the second RLWR problem
fitsmore exactly into RLWR-based PKE/KEMconstructions,
and thus it is easy to understand our security analysis.

D. TRUNCATION FUNCTION
• Truncation function. Trunc is a function that takes as
input a polynomial (in a ring) and outputs a truncated
polynomial. Let a =

∑n−1
i=0 aix

i be a polynomial of
degree n−1 and ` be a positive integer such that ` < n/2.
Trunc(a, `) is defined as in Figure 2.

• Fact. For a constant c ∈ Z, c × Trunc(a, `) =
Trunc(c a, `).

FIGURE 2. Truncation function.

FIGURE 3. R.Encode (above) and R.Decode (below) functions.

E. EMBLEM ENCODING & DECODING METHOD
• Encoding and decoding over rings. Let M = {0, 1}`

be a message space for a positive integer `. Follow-
ing [14], we define the encoding (decoding) function
R.Encode (R.decode), which takes an `-bit string
(a truncated polynomial in a ring) as input and outputs
a truncated polynomial (an `-bit string). Let blog tc =
d +2. For an `-bit message m, a degree n, and a positive
integer d , R.encode and R.decodework as follows:

I R.encode(m, n, d, `)
1) Let mi be the i-th bit of m for i ∈ [0, `− 1].
2) Compute m′i = mi||1||0d ∈ Zt .
3) Output a polynomial m =

∑`−1
i=0 m

′
i x

n/2−`+i
∈ Rt .

I R.decode(m, n, d, `)
1) m =

∑`−1
i=0 m̃i x

n/2−`+i
∈ Rp.

2) Let mi = [m̃i]1 for i ∈ [0, `− 1].
3) Output an `-bit string m = m0|| · · · ||m`−1.

III. RLWR-BASED CPA-SECURE PKE
A. SCHEME
For the security parameter λ, the system parameter params
is generated as follows: choose an integer n such that n =
2a3b for positive integers a, b ∈ N and modulus q, p, t as
a power of 2 such that t|p|q. Also, choose positive integers
d, `, h, k such that log2 t = d + 2, ` is the bit-length
of an encrypted message m, h is the number of non-zero
elements among n coefficients, and k is the bit-length of a
random ? used in the HWT n(?, h) function. Then, params
is given by (n, d, `, h, k, q, p, t,Rq,Rp,Rt ). Note that Rq =
Zq[x]/83n(x), Rp = Zp[x]/83n(x), and Rt = Zt [x]/83n(x)
for a 3n-th cyclotomic trinomial83n(x) = xn− xn/2+1. It is
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assumed that params is used for all algorithms in our PKE
construction.
• KeyGen(λ).

1) Choose a random polynomial a ∈ Rq.
2) Choose a random w̃ ∈ {0, 1}k .
3) Compute x← HWT n(w̃, h).
4) Compute b = b pq a · xe ∈ Rp.
5) Output pk = (a,b) and sk = (x).

• Encrypt(pk,m;w). To encrypt a message m ∈ M =

{0, 1}` under a random w ∈ {0, 1}k , the encryption
algorithm proceeds as follows:
1) m← R.encode(m, n, d, `).
2) Compute r← HWT n(w, h).
3) Compute u = b pq a · re ∈ Rp.
4) Compute v = Trunc(b tp b · re, `)+m.
5) Output the ciphertext C = (u, v).

• Decrypt(sk,C = (u, v)).
1) Compute m̃ = p

t v− Trunc(u · x, `).
2) Output m← R.decode(m̃, n, d, `).

B. CORRECTNESS
From each of the rounding operations, we obtain the follow-
ing equations:

eb = a · x−
q
p

⌊p
q
a · x

⌉
= a · x−

q
p
b, (1)

eu = a · r−
q
p

⌊p
q
a · r

⌉
= a · r−

q
p
u, (2)

ev = b · r−
p
t

⌊ t
p
b · r

⌉
. (3)

Notice that each coefficient of eb and eu is in
[
−

q
2p ,

q
2p

)
and

that each coefficient of ev is in
[
−

p
2t ,

p
2t

)
.

Recall that q, p, and t are powers of 2 and that t|p|q,
so that p/t can also be represented as a power of 2. During
decryption, the polynomial m̃ is computed as

m̃ =
p
t
v− Trunc(u · x, `)

=
p
t

Trunc(b
t
p
b · re, `)+

p
t
m− Trunc(u · x, `)

= Trunc(
p
t
b
t
p
b · re − u · x, `)+

p
t
m.

Since each coefficient of the polynomial m is of the form
mi||1||0d , all coefficients of p

t m in the truncated poly-
nomial are shifted left by log2

p
t bits, i.e., mi||1||0d0log2

p
t

(which belongs to Zp). For a polynomial e in a ring Rq,
we define |e|i as the absolute value of the coefficient of the
i-th term in e. To correctly recover all message bits, the abso-
lute value of each coefficient of the truncated polynomial
Trunc( pt b

t
p b · re − u · x, `) must be smaller than p

t × 2d .
This means that the following inequality should hold:∣∣∣∣Trunc

(
p
t
b
t
p
b · re − u · x, `

)∣∣∣∣
i
<
p
t
× 2d ,

for i = n
2 − 1, . . . , n2 − `.

Equivalently, in order to avoid the fractional notation of
coefficients inTrunc( pt b

t
p b · re−u · x, `), the above inequal-

ity can be changed into the following:∣∣∣∣Trunc
(
q
p

(
p
t
b
t
p
b · re − u · x

)
, `

)∣∣∣∣
i
<
q
p
×
p
t
× 2d

(4)

by shifting more blog2
q
pc bits to the left. We also use the

following fact:
q
p
(b · r) = (

q
p
b) · r, (5)

where the multiplication is carried out differently in Rp for
the left-hand side and in Rq for the right-hand side. However,
unless otherwise noted, parentheses will be omitted hence-
forth. Using equations (1)-(5), we now show the correctness
of our PKE scheme.
Theorem 1: For i = n

2 − 1, . . . , n2 − `, let

εi = Pr
[∣∣Trunc

(
−eb · r+ eu · x−

q
p
ev, `

)∣∣
i <

q
t
× 2d

]
,

where ` is the bit-length of an encrypted message and d =
log2 t − 2. Let ε = 1 −

∏
i εi. Then, our (IND-CPA-secure)

PKE scheme is (1− ε) correct.
Proof: From the truncated polynomial in equation (4)

above, we have the following equations:

Trunc
(
q
p

(
p
t
b
t
p
b · re − u · x

)
, `

)
= Trunc

(
q
t
b
t
p
b · re −

q
p
u · x, `

)
(3)
= Trunc

(
q
p
(b · r− ev)−

q
p
u · x, `

)
(5)(2)
= Trunc

(
q
p
(b · r− ev)− (a · r− eu) · x, `

)
(5)
= Trunc

((
q
p
b− a · x

)
· r−

q
p
ev + eu · x, `

)
(1)
= Trunc

(
−eb · r−

q
p
ev + eu · x, `

)
.

Thus, as long as
∣∣∣Trunc

(
−eb · r+ eu · x−

q
p ev, `

)∣∣∣
i
<

q
t ×

2d simultaneously for i = n
2 − 1, . . . , n2 − `, the decryption

succeeds. This means that the probability that the decryption
succeeds becomes

∏
i εi, which concludes the proof of The-

orem 1. �

C. SECURITY
We now prove that the PKE scheme above is IND-CPA secure
under the RLWR assumptions.
Theorem 2: For any adversaryA against our PKE scheme,

there exist distinguishers B and C such that

AdvIND-CPAPKE (A) ≤ 2 AdvRLWR
n,1,q,p(B)+ 2 AdvRLWR

n,2,q,p,t (C).

Proof: We prove the IND-CPA security of our PKE
scheme through a sequence of hybrid games. For eachGamei
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for i = 0, . . . , 5, Si is defined as the event that an adversary
A correctly guesses. Game0 is the original game in which
the ciphertext is an encryption of m0, whereas in Game5 the
ciphertext is an encryption of m1. Let Di be the distribution
of Gamei for i = 0, . . . , 5. It will be shown that D0 of
Game0 andD5 ofGame5 are computationally indistinguish-
able under two (decisional) RLWR assumptions from the
view of A.
F Game 0. Game 0 is the real game in which the public key
is properly generated and the ciphertext is an encryption of
m0. Note thatm0← R.encode (m0, n, d, `).D0 is given as
follows:
• D0 = {pk = (a,b = b pqa · xe),

C = (b pq a · re,Trunc(b tp b · re, `)+m0)}.
F Game 1. In Game 1, b in the public key is replaced with a
uniformly random polynomial in Rp. D1 is given as follows:

• D1 = {pk = (a,b
$
←− Rp),

C = (b pq a · re,Trunc(b tp b · re, `)+m0)}.

Therefore, |Pr[S0]− Pr[S1]| ≤ AdvRLWR
n,1,q,p(B).

F Game 2. In Game 2, b pq a · re and b tp b · re are replaced
with uniformly random polynomials in Rp and Rt , respec-
tively. D2 is given as follows:

• Let u
$
←− Rp and v

$
←− Rt .

• D2 = {pk = (a,b
$
←− Rp),

C = (u,Trunc(v, `)+m0)}.
Therefore, |Pr[S1]− Pr[S2]| ≤ AdvRLWR

n,2,q,p,t (C).
F Game 3. In Game 3, the message encoding m0 is replaced
withm1← R.encode(m1, n, d, `). D3 is given as follows:

• Let u
$
←− Rp and v

$
←− Rt .

• D3 = {pk = (a,b
$
←− Rp),

C = (u,Trunc(v, `)+m1)}.
Since v is uniformly random,D2 andD3 are identical. There-
fore, Pr[S2] = Pr[S3].
F Game 4. In Game 4, the ciphertext is restored to RLWR
instances. D4 is given as follows:

• D4 = {pk = (a,b
$
←− Rp),

C = (b pq a · re,Trunc(b tp b · re, `)+m1)}.

Therefore, |Pr[S3]− Pr[S4]| ≤ AdvRLWR
n,2,q,p,t (C).

F Game 5. In Game 5, b in the public key is restored to a
RLWR instance. D5 is given as follows:
• D5 = {pk = (a,b = b pqa · xe),

C = (b pq a · re,Trunc(b tp b · re, `)+m1)}.

Therefore, |Pr[S4]− Pr[S5]| ≤ AdvRLWR
n,1,q,p(B).

It follows that

AdvIND-CPAPKE (A) = | Pr[S0]− Pr[S5]|

≤

4∑
i=0

∣∣Pr[Si]− Pr[Si+1]
∣∣

≤ 2 AdvRLWR
n,1,q,p(B)+ 2 AdvRLWR

n,2,q,p,t (C),

which concludes the proof of Theorem 2. �

IV. RLWR-BASED IND-CCA SECURE KEM
In this section, we describe an IND-CCA secure KEM in
the (quantum) random oracle model over rings. We construct
our KEM by applying a variant of the Fujisaki-Okamoto
transformation [10], [15] to our IND-CPA secure PKE
scheme.

A. SCHEME
Let PKE = (KeyGen,Enc,Dec) be an IND-CPA secure
PKE scheme with a message space M, a randomness space
R = {0, 1}k , where k is determined by the security parameter
λ, a ciphertext space C, and a key space K. Let G and H be
cryptographic hash functions such that G : M → R and
H : M × C → K. For the security parameter λ, our KEM
then works as follows:
• KeyGen(λ).

1) Generate (pk ′, sk ′)← PKE.KeyGen(λ).
2) Sample s

$
←−M.

3) pk := pk ′ and sk := (sk ′, s).
4) Return (pk, sk).

• Encap(pk).

1) Select a random δ
$
←−M.

2) Compute C = PKE.Enc(pk, δ;G(δ)).
3) Compute K = H (δ,C).
4) Output (K ,C).

• Decap(sk,C).
1) Parse sk = (sk ′, s).
2) Compute δ′ = PKE.Dec(sk ′,C).
3) If PKE.Enc(pk, δ′;G(δ′)) = C ,
4) Return K := H (δ′,C).
5) Else, return K := H (s,C).

Since the KEM above is constructed by our IND-CPA
secure PKE scheme, the correctness of our KEM is straight-
forwardly obtained from that of the corresponding PKE
scheme.
Theorem 3: If the underlying PKE scheme is (1 − ε)-

correct, then the above KEM is (1− ε)-correct.

B. SECURITY
Based on the results of [10], [15], we prove that our KEM
is IND-CCA secure under two RLWR assumptions in the
classical and quantum random oracle, respectively.
Theorem 4: (Theorems 3.2 and 3.4 in [15]). Assume the

PKE is (1−ε) correct. For any IND-CCA adversaryB against
the KEM issuing at most qG queries to random oracle G, qH
queries to random oracle H , and qD queries to the decryption
oracle, there exists an IND-CPA adversary A such that

AdvIND-CCAKEM (B)≤qG · ε+
2 qG+qH + 1
|M|

+3AdvIND-CPAPKE (A),

and the running time of A is approximately that of B.
Theorem 5: (Theorem 3 in [10]). Assume the PKE is (1−

ε) correct. For any IND-CCA adversary B against KEM
issuing at most qG queries to random oracle G, qH queries
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to random oracle H , and qD queries to the decryption oracle,
there exists an IND-CPA adversary A such that

AdvIND-CCAKEM (B)

≤ 2qH
1
√
|M|
+ 4qG

√
ε

+ 2

√
(qG + qH + 1)AdvIND-CPAPKE (A)+ 2

(qG + qH + 1)2

|M|
,

and the running time of A is approximately that of B.

V. PARAMETER SELECTION
A. ANALYSIS OF DECRYPTION FAILURE RATE
For an `-bit encrypted message, Theorem 3 (and Theorem 1)
shows that our KEM is (1− ε) correct, where ε = 1−

∏
i εi

and

εi = Pr
[∣∣Trunc

(
−eb · r+ eu · x−

q
p
ev, `

)∣∣
i <

q
t
× 2d

]
(6)

where q, p, and t are all powers of 2 such that t|p|q, d =
log2 t − 2, and i = n

2 − 1, . . . , n2 − `. We call the probability
ε the decryption failure rate. In this section, we first show
how the absolute size of each coefficient in the truncated
polynomial Trunc

(
−eb · r + eu · x −

q
p ev, `

)
can be cal-

culated. To do this, with specific distributions of {eb, eu, ev}
and {r, x}, it is necessary to analyze how multiplication is
performed in Rq = Zq[x]/83n(x), especially in the truncated
part. We next present a formula that can automatically calcu-
late the decryption failure rate, given the system parameters
such as (n, d, `, h, q, p, t).

1) DISTRIBUTIONS
- {eb, eu, ev} distributions: from equations (1)-(3), we see
that each coefficient of eb and eu is in [−q/2p, q/2p) and
each coefficient of ev is in [−p/2t, p/2t). We assume that
coefficients of eb and eu are uniform in [−q/2p, q/2p]. The
inclusion of the integer q/2p can increase the size of coef-
ficients, making the decryption failure rate larger than in
the original (exclusion) case. Nevertheless, we assume the
inclusion for simpler analysis when building a formula for
the decryption failure rate.

- {r, x} distributions: the two polynomials x and r are
generated by the sampling function HWT n(?, h) for some
random ?. This means that all of the n coefficients of x and r
consist of {0, 1,−1}; among the n coefficients the number of
0 coefficients is n−h, and the number of {1,−1} coefficients
is h.

2) POLYNOMIAL MULTIPLICATION
To analyze the distributions of {eb · r, eu · x} in the above
truncated polynomial, we need to show how multiplication is
performed on the ring Rq = Zq[x]/83n(x), where 83n(x) =
xn − xn/2 + 1 is a 3n-th cyclotomic trinomial. Generally, for
two polynomials a,b ∈ Rq, such as a =

∑n−1
i=0 aix

i and b =∑n−1
i=0 bix

i, let c = a · b =
∑n−1

i=0 cix
i
∈ Rq. Conceptually,

FIGURE 4. Relation between the number of ai bj terms added (vertical)
and the degree of the ck xk term (horizontal).

before considering modular reductions by83n(x), we see that
c =

∑2n−2
i=0 cix i, where each coefficient is represented as

follows:

c0 = a0b0,

c1 = a0b1 + a1b0,
...

cn/2 = a0bn/2 + · · · an/2b0,
...

cn−1 = a0bn−1 + a1bn−2 + · · · + an−1b0,
...

c3n/2 = an/2+1bn−1 + · · · + an−1bn/2+1,
...

c2n−3 = an−2bn−1 + an−1bn−2,

c2n−2 = an−1bn−1.

Figure 4 depicts the relation between the number of aibj
terms added and the degree of ckxk for k = 0, . . . , 2n − 2.
We now perform modular reductions in Rq, using 83n(x) =
xn − xn/2 + 1, from the term cnxn to c2n−2x2n−2. First, for
k = n, . . . , 3n2 − 1, the coefficient ck of the term ckxk is
added to the two terms ck−n/2xk−n/2 and ck−nxk−n, using the
relation xn = xn/2 − 1 in Rq. For instance, cn (when k = n)
is added to cn/2 and c0, and cn+1 (when k = n+ 1) is added
to cn/2+1 and c1. These modular reductions are depicted in
part (a) of Figure 5 in which the red dotted line is added into
the blue solid line, leading to the purple line from degree 0
to n − 1. Second, for k = 3n

2 , . . . , 2n − 2, the coefficient
ck of the term ckxk is added to only one term ck−3n/2xk−3n/2,
using the relation x3n/2 = −1 inRq. For instance, c3n/2 (when
k = 3n/2) is added to c0, and c3n/2+1 (when k = 3n/2 + 1)
is added to c1. Similarly, these modular reductions are rep-
resented in part (b) of Figure 5, and the resultant number of
terms added when computing c = a · b =

∑n−1
i=0 cix

i
∈ Rq

is shown in part (c) of Figure 5. Consequently, it can be
seen that the coefficients {ci} from i = n

2 − 1 to n
2 − `

(for an `-bit encrypted message) have the fewest addition
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FIGURE 5. Modular reduction steps in ring Rq = Zq[x]/83n(x).

terms; this corresponds to the truncated part of our Trunc(·)
function.

We now can compute the distributions of {eb · r, eu · x}
in the above truncated polynomial. Because the coefficient
distributions of eb and r are the same as those of eu and x,
respectively, we focus on only one polynomial multiplication:
eb · r. Let c = eb · r =

∑n−1
i=0 cix

i
∈ Rq. Assuming

the coefficients of eb are uniform in [−q/2p, q/2p] and r is
sampled from HWT n(w, h) for some random w, then ci (in
the truncated part) is a sum of ( 3n2 − 1 − i) terms added for
i = n

2 −1 to n
2 −`. Among the summed terms in each ci, only

the h/n portion of the summed terms contributes to the sum
of the inner products. As a result, ci can be viewed as a sum
of ( 3n2 − 1− i) · hn variables in [− q

2p ,
q
2p ], and by the Central

Limit Theorem,2 we see that each ci (in the truncated part)
converges to

N
(
0,
(3n
2
− 1− i

)
·
h
n
·
q2

12p2

)
, (7)

for i = n
2 − 1 to n

2 − `.

3) FORMULA FOR DECRYPTION FAILURE RATE
Recall that for a polynomial a in the ring Rq, we define |a|i
as the absolute value of the coefficient of the i-th term in a.
Theorem 3 (and Theorem 1) shows that the probability that
the decryption succeeds is

∏
i εi for i =

n
2 − 1, . . . , n2 − `,

where

εi = Pr
[∣∣Trunc

(
−eb · r+ eu · x−

q
p
ev, `

)∣∣
i <

q
t
× 2d

]
.

More precisely, εi is the probability that the i-th bit of an `-bit
message is recovered correctly. Now that we have the (dis-
tinct) distributions of the coefficients of {|eb · r|i, |eu ·

2We use the fact that the variance of the uniform distribution on [− q
2p ,

q
2p ]

is q2/12p2.

x|i, |q/p ev|i} for i = n
2 − 1, . . . , n2 − `, we can obtain a

concrete bound for εi as follows:

εi = Pr
[∣∣Trunc

(
−eb · r+ eu · x−

q
p
ev, `

)∣∣
i <

q
t
× 2d

]
≥ Pr

[∣∣Trunc
(
−eb · r+ eu · x, `

)∣∣
i

+
∣∣Trunc

(q
p
ev, `

)∣∣
i <

q
t
× 2d

]
≥ Pr

[∣∣Trunc
(
−eb · r+ eu · x, `

)∣∣
i +

q
2t
<
q
t
× 2d

]
.

The last inequality holds because all coefficients of ev are in
[−p/2t, p/2t), and thus

∣∣Trunc
( q
p ev, `

)∣∣
i ≤

q
2t .

Assuming that all coefficients of {eb, eu} are in
[−p/2t, p/2t] and {r, x} are randomly chosen from
HWT n(?, h) for some random ?, it is easy to see that from
the equation (7), the distribution of

∣∣Trunc
(
−eb ·r+eu ·x, `

)∣∣
i

converges to

N
(
0, 2

(3n
2
− 1− i

)h
n
·
q2

12p2

)
,

where i = n
2−1, . . . ,

n
2−`. Therefore, from the last inequality

above (regarding εi), we continue to obtain

εi ≥ Pr
[∣∣Trunc

(
−eb · r+ eu · x, `

)∣∣
i <

q
t
× 2d −

q
2t

]
= erf

( q
t × 2d − q

2t√
4
( 3n
2 − 1− i

) h
n ·

q2

12p2

)
.

In this case, the probability that the decryption succeeds is∏
i εi, and thus the decryption failure rate ε(= 1 −

∏
i εi) is

at most

ε ≤ 1−
∏
i

erf
( q

t × 2d − q
2t√

4
( 3n
2 − 1− i

) h
n ·

q2

12p2

)
, (8)
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TABLE 1. Comparison of CCA-secure KEMs over rings.

where i = n
2 − 1, . . . , n2 − `. Notice that the upper bound in

equation (8) can be calculated automatically, given the system
parameters (n, d, `, h, q, p, t).

B. PROPOSED PARAMETERS
In Table 1, we propose a set of parameters for our CCA-secure
KEM described in Section IV, aiming at the 128-bit classical
security level. We set n = 576 = 2632 as the degree of a
cyclotomic trinomial, h = 112 as the number of non-zero
coefficients in the secret key x and a random polynomial r,
and q = 211, p = 28, and t = 24 as the modulo numbers.
Under these parameters, we use the sage module estimator
by Albrecht et al. [9] to estimate the security level for RLWR
instances made from the public key and ciphertexts (without
considering the security degradation in Theorem 4). Accord-
ing to this estimator, our proposed parameters give us 128-bit
security.

Let ` = 128, meaning that the underlying CPA-secure
PKE scheme encrypts a 128-bit message. The public key
of our KEM consists of two polynomials pk = (a,b) ∈
Rq × Rp, where the random polynomial a can be gener-
ated from a 128-bit seed (using a pseudo-random function
(PRF)) and b is a polynomial with log2 p-bit coefficients.
The size of the public key is then (256 + n · log2 p)/8 =
(256 + 576 · 8) = 608 bytes. The secret key of our KEM
consists of sk = (x, s), where x is a polynomial gener-
ated from HWT n(?, h) for some random ? ∈ {0, 1}k and
s is an `-bit random string. Using the index-based repre-
sentation [16] of x in Round5, x is stored as an array of
(index[0][0], . . . , index[ h2 − 1][0], index[0][1], index[ h2 −
1][1]), where the array is filled with randomly generated
values among {0, . . . , n − 1} that indicate non-zero terms.

(The algorithm for the HWT function will be described
in Algorithm 1 in Section VI.) In that case, each entry is
represented as a dlog2 ne-bit string, and thus the size of the
secret key is (` + dlog2 ne · h)/8 = (128 + dlog2 576e ·
112)/8 = 156 bytes. The ciphertext of our KEM consists
of two polynomials C = (u, v), where u ∈ Rp and v is
a truncated polynomial with log2 t-bit coefficients. Recall
that the number of coefficients in v is `. Thus, the size of a
ciphertext is (n · log2 p+` · log2 t)/8 = (576 ·8+128 ·4)/8 =
640 bytes. Furthermore, by applying the above parameters to
equation (8), we can see that the decryption failure rate of our
KEM is up to 2−100.
We notice that due to the density of polynomial degrees,

we can provide additional parameter sets aiming for the 192-
bit and 256-bit classical security levels. For instance, poly-
nomial degrees {864 = 2533, 1152 = 2732} can be chosen
for the {192, 256}-bit classical security levels, respectively.
These security levels are also measured based on sage mod-
ule estimator by estimating the classical security of RLWR
instances (without considering the security degradation in
Theorem 5).

VI. IMPLEMENTATION
In this section, we describe subroutines characteristic of our
implementation technique and compare the performance of
our scheme with several CCA-secure KEMs over rings from
among the NIST PQC second-round submissions.

A. TERNARY POLYNOMIAL GENERATION
In our KEM, the secret key x and a random polyno-
mial r are generated from the function HWT n(?, h),
given a k-bit random bit-string ? as input. Algorithm 1
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Algorithm 1: HWT n(?, h)

Input : ? ∈ {0, 1}k

Output: index
1 int tmp[n] = {0};
2 int index[ h2 ][2];
3 int i = 0, j = 0;
4 div← the largest positive integer such that div · n < 216;
5 while i < h do
6 z← 16-bit random data;
7 //In the generation of 16-bit random data, we use
8 //SHAKE, a kind of hash function, with seed ?.
9 if z < div · n then
10 j← b z

divc;
11 if tmp[j] is 0 then
12 if i is even then
13 index[ i2 ][0] = j;
14 tmp[i] = 1;
15 else
16 index[ i2 ][1] = j;
17 tmp[i] = −1;
18 end
19 i← i+ 1;
20 end
21 end
22 end
23 free tmp;

describes the algorithm for HWT n(?, h), where the out-
put is an array index = (index[0][0], . . . , index[ h2 −
1][0], index[0][1], . . .,index[ h2 − 1][1]) representing the
degrees of non-zero terms. The first half of the entries indi-
cates the degrees of terms with coefficient 1, and the last
half indicates the degrees of terms with coefficient -1. Let
div be the largest positive integer such that div · n < 216

with respect to the degree n of 83n(x) = xn − xn/2 + 1.
A procedure for generating z is initialized with a seed ?, and
then 16-bit random strings are obtained by operating a kind of
hash function, SHAKE. Note that two procedures initialized
with the same seed generate two identical sequences of 16-bit
strings. Every time z is newly generated, it is checked whether
z < div·n, and if so, a quotient through b z

divc is assigned to an
entry of index. Otherwise, z is re-generated. The reason for
checking the inequality z < div·n is to find a random quotient
(from 0 to n − 1) in an evenly distributed range [0, div · n).
These processes continue until all h entries of index are
filled.

B. POLYNOMIAL MULTIPLICATION
All polynomial multiplication in our KEM is performed in the
form of a ·b, where a is a ternary polynomial (represented by
an array index) and b ∈ Rq or Rp. Algorithm 2 presents the
procedure of multiplying two polynomials a · b when taking
index and b ∈ Rq as input. The whole procedure follows

Algorithm 2: Polynomial Multiplication
Input : index (instead of a ternary polynomial a),

b ∈ Rq
Output: c ∈ Rq

1 int ct [2n− 1] = {0, };
2 int c[n] = {0, };
3 // Compute a · b =

∑2n−2
i=0 ct [i]x i

4 for i = 0 to i = h
2 − 1 do

5 for j = 0 to n− 1 do
6 ct [j+ index[i][0]] = ct [j+ index[i][0]]+ b[j];
7 ct [j+ index[i][1]] = ct [j+ index[i][1]]− b[j];
8 end
9 end
10 // Compute a · b =

∑n−1
i=0 ct [i]x

i (mod 83n(x))
11 for i = n to 3n

2 − 1 do
12 ct [i− n

2 ] = ct [i− n
2 ]+ ct [i];

13 ct [i− n] = ct [i− n]− ct [i];
14 end
15 for i = 3n

2 to 2n− 2 do
16 ct [i− 3n

2 ] = ct [i− 3n
2 ]− ct [i];

17 end
18 for i = 0 to n− 1 do
19 c[i] = ct [i] mod q;
20 end
21 return c =

∑n−1
i=0 c[i]x

i

the same line of the polynomial multiplication explained in
Section V. First, a · b =

∑2n−2
k=0 ct [k]xk is computed without

83n(x) modular reduction, using the index. Since ct [k] =∑
i+j=k a[i]b[j] conceptually, it is sufficient to consider only

the h non-zero coefficients {a[i]} that the index points to. This
is equivalent to the computation in which b[j] is added to or
subtracted from ct [k] depending on whether a[i] = 1 or −1,
respectively, under the relation i+ j = k . Following this idea,
lines 4-9 in Algorithm 2 show that each coefficient b[j] of b
is added to or subtracted from ct [k] for k = 0, . . . , 2n − 2,
depending on the h values in index. Second, the expanded
a · b =

∑2n−2
k=0 ct [k]xk is reduced using the reduction poly-

nomial 83n(x) = xn − xn/2 + 1. As mentioned in Section V,
this process can be done in two steps; for terms with degrees
k = n, . . . , 3n/2 − 1, we use the relation xn = xn/2 − 1 in
Rq, and for terms with degrees k = 3n/2, . . . , 2n− 2, we use
the relation x3n/2 = −1 in Rq. Lines 11-17 in Algorithm 2
show such a reduction process. Third, all coefficients of the
resulting a · b =

∑n−1
k=0 ct [k]x

k are reduced modulo q.
We note that polynomial multiplication in Rp can be done in
the same way, except that the modulus q in line 19 changes
to modulus p.

C. COMPARISON TO PREVIOUS CCA-SECURE KEMs
Table 1 presents the performance result of our KEM and
compares it to results from several CCA-secure KEMs [5],
[8], [11]–[13] over rings. All implementations are performed
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in C on an Intel Core i7-6700k running Ubuntu 18.04 LTS,
and GNU GCC version 7.5.0 is used for the compilation.
For comparison with the approximately 128-bit security
level (NIST security category 1), we select the follow-
ing parameter sets for each scheme; NewHope-512,3

LAC128,4 R5ND_1KEM_0d,5 LightSaber-KEM,6 and
KYBER512.7 Our implementation codes are available to
https://github.com/RLWR-KEM/RLWR_KEM.

Regarding a cyclotomic reduction polynomial of the ring
Rq = Zq/f (x), NewHope, LAC, Saber, and Kyber use the
polynomial f (x) = xn + 1, where n is a power of 2, while
Round5 uses the polynomial f (x) = xn + · · · + x + 1,
where n + 1 is a prime. In contrast, our KEM uses the new
trinomial f (x) = xn − xn/2 + 1 with n = 2a3b for positive
integers a and b. For choosing a reduction polynomial, xn+1
has a limited number of degrees, whereas xn + · · · + x + 1
provides a wider range of degrees. In comparison, with a
moderate number of degrees xn− xn/2+ 1 is an intermediate
between the two reduction polynomials. Especially in the
case of f (x) = xn + 1, sage module estimator of [9] shows
that the degree (or dimension) n = 512 is not sufficient for
achieving 128-bit security, and this poses a problem in that
choosing the next degree n = 1024 can cause the resulting
KEMs to be inefficient.

In the case of LAC and NewHope using the reduction
polynomial x512+ 1, LAC enhances the security by reducing
the modulus to the 8-bit q = 251, which inevitably increases
the decryption failure rate. Thus, LAC is required to addi-
tionally use an error correction code such as the BCH code
[12]. In contrast, NewHope chooses to increase the modulus
to the larger 14-bit q = 12289 and set the variance of the
coefficients in the secret polynomials to be σ 2

= 4, but the
obtained security is far below the 128-bit level even with a
better decryption failure rate. On the other hand, Saber and
Kyber are constructed based on the Module-{LWR, LWE}
problems, respectively, where x256 + 1 is used as a basic
module. The module technique has the same effect that mul-
tiples of 256 (such as 512, 768, 1024) can be selected as
the degree of a reduction polynomial. However, as shown
in Table 1, Saber and Kyber are slightly lacking in fully
providing 128-bit security when choosing the polynomial
degree n = 2 × 256. In order to compensate for the security
loss, a larger n = 3 × 256 = 768 can be chosen, but the
sizes of the public key, secret key, and ciphertext then also
increase. Otherwise, when using n = 2 × 256 as it is, one
can increase the variance σ 2 of the coefficients in the secret
polynomials. In that case, however, there is a disadvantage in
that the decryption failure rate increases.

With the polynomial xn + · · · + x + 1, Round5 offers a
wider range of parameter selection than the other compared

3https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
4https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-

submissions
5https://round5.org/
6https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
7https://pq-crystals.org/kyber/index.shtml

KEMs. However, as mentioned before, this polynomial gives
the same error propagation effect as using a polynomial of
a degree of approximately 2n when compared to the poly-
nomial xn + 1. To alleviate this error propagation problem,
Round5-[I] has to set larger moduli q = 213 and q = 29,
although a larger number of a polynomial degree n = 586
is also chosen. Table 1 shows that the larger moduli of
Round5-[I] yield a larger public key, secret key, and cipher-
text than those of our KEM. To reduce the larger bandwidth,
Round5-[II] uses an error correction code called XEf, an f -bit
error correcting code originally introduced in theHILA5 [17].
In comparison, our KEM provides the shortest bandwidth
among the comparable KEMs, unless an error correction
code is also used. This is even true when NewHope, Saber,
and Kyber are modified to encapsulate 128-bit keys and the
simpler version [10] of the Fujisaki-Okamoto transform is
applied to them.

The secret polynomials in NewHope, Saber, and Kyber
are sampled from centered binomial distributions, whereas
the secret polynomials in LAC, Round5, and our KEM are
sampled from fixed-weight ternary distributions. As shown
in [18], sampling secret polynomials from a ternary distribu-
tion makes the ciphertext and public key smaller than when
sampling from a centered binomial distribution. In addition,
it also enables a secret polynomial to be represented with an
array of length h. As shown in Table 1, this allows our KEM to
achieve shorter keys than the comparable KEMs. Moreover,
NewHope and Kyber use the NTT (number theoretic trans-
form) [19] to speed up polynomial multiplication in a ring
Rq. To do this, they use the modulus q = 12289 in NewHope
and q = 3329 in Kyber. LAC uses the modulus q = 251 due
to its security analysis. However, from our implementation
results in Table 1, it can be seen that KEMs with a power-of-
two modulus (including Round5, Saber, and ours) perform
much faster than those KEMs that do not have a power-of-
two modulus.

VII. CONCLUSION
In this paper, we proposed a new KEM whose security is
based on Ring-LWR problems. Unlike previous Ring-LWR-
based KEMs, our scheme has a clear distinction in that it is
constructed using a ring with a cyclotomic trinomial xn −
xn/2 + 1 where n = 2a3b for positive integers a and b.
While two polynomial rings Zq[x]/xn + 1 and Zq[x]/xn +
· · · + x + 1 have been used to construct several KEMs that
are presented in the second round NIST PQC conference,
the two rings have distinct advantages and disadvantages
with respect to the density of parameter space and decryption
failure rate. The new ringwith cyclotomic trinomial, however,
has advantages in both and can be viewed as an intermediate
that provides a moderate set of parameter choices and also
quite low decryption failure rates. Moreover, our experiment
showed that using cyclotomic trinomial rings results in not
only smaller-sized ciphertexts and secret keys, but also com-
parable cpu cycles, compared to previous Ring-LWE/LWR-
based KEMs with no error correction codes. In addition,
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we presented a formula for computing decryption failure rates
in cyclotomic trinomial rings for given security parameters.
We expect that our KEM over cyclotomic trinomial rings is
used as a reference data for future works.
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