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Machine learning for perovskite materials design and discovery
Qiuling Tao1,3, Pengcheng Xu2,3, Minjie Li 1✉ and Wencong Lu 1,2✉

The development of materials is one of the driving forces to accelerate modern scientific progress and technological innovation.
Machine learning (ML) technology is rapidly developed in many fields and opening blueprints for the discovery and rational design
of materials. In this review, we retrospected the latest applications of ML in assisting perovskites discovery. First, the development
tendency of ML in perovskite materials publications in recent years was organized and analyzed. Second, the workflow of ML in
perovskites discovery was introduced. Then the applications of ML in various properties of inorganic perovskites, hybrid
organic–inorganic perovskites and double perovskites were briefly reviewed. In the end, we put forward suggestions on the future
development prospects of ML in the field of perovskite materials.
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INTRODUCTION
Perovskite materials have attracted much attention in many
scientific fields for the composition diversity, easily available
synthetic conditions and a variety of attractive properties1,2. For
instance, hybrid organic–inorganic perovskite has widely applied
in the fields of solar cells, light-emitting diodes, lasers, and
photodetectors due to its longer charge diffusion lengths both for
electrons and holes, higher carrier mobility and broad tunable
bandgap (Eg)

3,4. ABO3-type perovskite oxide has gradually become
a research hotspot in modern industrial catalysis and thermoelec-
tricity for the controllable structure, outstanding stability and low
cost5,6. Inorganic double perovskite has aroused an interest in
solar cells and light-emitting diodes because of adjustable
photoelectric properties7,8. The trends of published papers
searched on the website ‘web of science’ from 1961 to December
2020 are shown in Fig. 1. The number of papers under the
keyword of perovskite shows an alarming increase. Especially after
2013, since the perovskite solar cell was proposed, the related
publications has increased exponentially, indicating that perovs-
kite materials have always been a hotspot for scientists.
The traditional way to develop materials is usually based on trial

and error, continuous synthesis and characterization keep trying
until the properties of virtual materials meet the target. The
method requires a long-time study on a limited quantity of
materials and complicated experimental procedures, which can be
a time-consuming and expensive endeavor. Under this limitation,
important scientific progress often comes from the researchers’
experience and intuition or even was discovered by accident9,10.
Besides, the discovery of high-performance materials needs a long
cycle from experimental design to commercialization. With the
development of synthesis and characterization techniques, the
corresponding data become more and more complex. It is a great
challenge to figure out the relationship between materials
descriptors and properties by traditional experimental methods.
To overcome this shortcoming, material simulated methods,
including Density Functional Theory (DFT)11, Monte Carlo simula-
tion12 and molecular dynamics13 are employed to explore the
relationship between the structural, compositional, and technolo-
gical descriptors and performance of materials at different scales.
In particular, DFT could be used to obtain some key properties of

the material without the need for experimental synthesis.
However, most computational methods only aim at a specific
system, leading to an unbearable amount of computation for
complex systems. Some theoretical methods still cannot meet the
requirements of quantitative description of material properties.
Moreover, computational simulation methods require high
computational costs and professional skills.
In recent years, artificial intelligence (AI), known as the ‘fourth

paradigm of science’, has attracted worldwide attentions14. Since
the 1980s, machine learning (ML) has been the core of AI for the
power of reorganizing existing knowledge structures and mining
implicit relationships. ML can extract valuable information from
existing data, even failed experimental data15,16. For material
science, ML has been becoming a powerful tool to assist design
and screen various materials. A series of achievements about ML
have been made in superconductor, photovoltaic materials and
high entropy alloys17–19. As shown in Fig. 1, ML has also been
applied widely in perovskite materials. Considering that ML has
conducted a lot of researches in this field, reviewing their progress
and providing an outlook for future work will be helpful in the
development of perovskite materials.
In this review, we briefly discuss the successful application of

ML in properties prediction and stability assessment of perovskite
material. In section 2, the basic workflow of ML in material science
is outlined. In section 3, we introduce the different types of
perovskites and applications of ML in various properties of
perovskite materials. In section 4, some of the current challenges
and opportunities encountering in ML applications to perovskite
design and discovery are briefly discussed. Our work is to provide
practical guidance for accelerating the design of perovskite
materials.

WORKFLOW OF MACHINE LEARNING
ML is an interdisciplinary subject that combines knowledge of
computer science, statistics, mathematics and engineering to form
an important branch of artificial intelligence20,21. The most
common application of ML is to construct a statistical model
used for data analysis and prediction. The main purpose of ML
aims at evaluating or predicting the objects after training the
model with historical data and specific conditions22. With the
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development of materials genome initiative (MGI), ML keeps
playing an important role in materials science with the ability of
mapping the relationships and trends through the available data
without the physical mechanisms. In addition, the constructed ML
model could also be applied again for reverse discovery of high-
performance materials. To screen virtual materials with desired
properties, ML could be allowed to develop quantitative structure-
property relationships to predict the properties of virtual materials.
The general workflow (Fig. 2) of ML in material science includes
data preparation, feature engineering, model selection, model
evaluation, and model application.

DATA PREPARATION
The dataset used for ML usually contains dependent and
independent variables associated with the materials. Independent
variables, also known as features or descriptors, refer to the
representative information related to the structure and character-
istics of materials, including the chemical composition, atomic or
molecular parameters, structural parameters, as well as the

technological conditions for synthesis process. The dependent
variables refer to the target property of the materials affected by
the independent variables, also known as the target variables23,24.
the quantity and quality of data are key factors in the discovery of
materials.
The amount of required samples depends on the ML model, but

a general rule of thumb is that a reasonable ML model requires
the number of data more than three times of descriptors at least,
but some models such as neural networks and deep learning
require large amounts of samples25. The quality of the data
depends on the spatial coverage of the target properties and the
uncertainties associated with the data. In general, data with a
normal distribution is better for ML. Insufficient data of specific
target or poor coverage of specific properties may not form an
appropriate data distribution for ML. Also, data uncertainty, such
as experimental error or calculation error, could affect the quality
of data. The roughness of the modelling data directly determines
the results of the constructed model. In general, the prediction
error of the model is higher than the error of the training data. The
methods adopted to reduce the roughness of the data include
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preparation, feature engineering, model selection, model evaluation and model application.
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deletion of missing values, completion of experimental conditions,
data normalization and other methods.
Data can be collected from available databases (Table 1) or

published papers. The database contains many types of data,
which could be generated from experiments, simulations and ML.
A large amount of data could be collected from database, while
the reproducibility of the data is uncertain, which might not
ensure the quality of data. To guarantee the quantity and quality,
data should be collected from the authoritative databases if the
data are available. Using autonomous workflows to generate data
could be a very convenient and fast way, but the quality of data
obtained in this way may be inferior to the data from the
database. If the database or autonomous workflows does not
obtain the needed data, the dataset could also be generated
through lab-scale calculations. Lab-scale calculations could be
performed in many existing open sources and various software
platforms, such as Materials Studio (MS), Vienna Ab initio
Simulation Package (VASP), Car-Parrinello Molecular Dynamics
(CPMD). Lab-scale calculations could generate a large amount of
required data with good reproducibility to guarantee the quality
of data. Generally, ML models constructed by the calculated data
have relatively good evaluation metrics. However, the calculations
of complex materials may take up too many calculation resources
and take a long time.
The origin data collected from computational simulations or

experimental measurements are often presented with incomple-
teness, noise, and inconsistency26. Thus, data preprocessing
should be performed to ensure consistency and integrity from
origin data. Specifically, individual data need to be reformatted
into a single tabular form, imputed missing values, eliminated
erroneous or incomparable data points, and normalized and
rescaled the data. Data standardization can improve model
accuracy and convergence speed. The results of several ML
algorithms can vary with whether any standardization or scaled. It
is worth noting that both feature variables and target variables
can be normalized or scaled27.

FEATURE ENGINEERING
The properties of each material depend on a specific set of
features, also called descriptors. Before model construction, it is
crucial to identify the key features closely related to the target
properties28. Features are generally derived from known proper-
ties of the constituent elements, such as atomic radius and
electronegativity. The quantity of features should be less than that
of dataset samples for effectively training and avoiding overfitting.
Therefore, feature selection should reduce the dimension of input
space as much as possible without losing important information.
In particular, redundant and high self-correlation features should
be removed to guarantee the efficiency and accuracy of
models25,29. Reasonable material features should meet the
following three conditions of perfect representation of material
properties, sensitive to target properties, and easy to obtain30.

MODEL SELECTION
ML algorithms could be briefly divided into two categories:
supervised learning and unsupervised learning. Supervised learn-
ing is the process of using a set of samples with known labels to
adjust the parameters of the models and achieve the required
performance, which be further divided into regression and
classification31. With the target property being a continuous
value, the process is called regression. If the target is a discrete
value, the process of searching the prediction function is called
classification. Tables 2, 3 have summarized common ML algo-
rithms in material design. Generally, the best model is obtained by
comparing multiple algorithms. The criteria of algorithm selection
are mainly based on the results of cross validation and
independent test. The commonly used evaluation metrics include
mean absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), determination coefficient (R2), correlation
coefficient (R) for regression; confusion matrix, precision, recall,
receiver operating characteristic curve (ROC), and area under ROC
curve (AUC) for classification.

Table 1. Publicly accessible databases of various materials.

Database Brief description URL

Materials Project (MP) Calculation data of properties of known and hypothetical materials https://materialsproject.org

The Inorganic Crystal Structure
Database (ICSD)

Experimental characterization data of inorganic crystal structure https://icsd.fiz-karlsruhe.de/index.xhtml

Cambridge Structural Database (CSD) The structure database of small molecules and metal-organic
molecular crystals based on X-ray and neutron diffraction
experiments collected by the Cambridge Crystallographic
Data Centre

https://www.ccdc.cam.ac.uk/

Aflow-Automatic-FLOW for Materials
Discovery (AFLOW)

A data repository of structure and property of inorganic materials
from high-throughput ab initio calculations

http://www.aflowlib.org

Crystallography Open
Database (COD)

Structures data of organic, inorganic, and metal-organic
compounds and minerals

http://cod.ensicaen.fr

Open Quantum Materials
Database (OQMD)

Theoretical simulation calculation data of mostly hypothetical
materials

http://www.oqmd.org/

Springer Materials The world’s largest material data resource, a unique, high-quality
numerical database

https://materials.springer.com

GDB Hypothetical small organic molecule database http://gdb.unibe.ch/downloads

ZINC Commercially available organic molecules in two-dimensional and
three-dimensional formats

https://zinc15.docking.org/

Materiae Topological material database http://materiae.iphy.ac.cn/

Materials Cloud Structural calculation data of candidate two-dimensional materials https://www.materialscloud.org/
discover/2dstructures/dashboard/ptable

Materials Platform for Data
Science (MPDS)

Peer-reviewed crystal structure, phase diagram, or physical
property

https://mpds.io/#modal/menu

Q. Tao et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    23 

https://materialsproject.org/
https://icsd.fiz-karlsruhe.de/index.xhtml
https://www.ccdc.cam.ac.uk/
http://www.aflowlib.org/
http://cod.ensicaen.fr/
http://www.oqmd.org/
https://materials.springer.com/
http://gdb.unibe.ch/downloads
https://zinc15.docking.org/
http://materiae.iphy.ac.cn/
https://www.materialscloud.org/discover/2dstructures/dashboard/ptable
https://www.materialscloud.org/discover/2dstructures/dashboard/ptable
https://mpds.io/#modal/menu


It is important for researchers to construct optimal models that
map existing data without overfitting or underfitting23. After the
model selection, it is generally necessary to optimize the internal
hyper-parameters of the model algorithm to balance overfitting
and underfitting32. Overfitting refers to that the model focuses too
much on each individual data point in the training set, the
unknown data cannot be well predicted. While underfitting means
that the model is too simple to capture the general information of
the training set, resulting in a large deviation. Models insensitive
to hyper-parameters usually do not require repeated adjustments
to achieve satisfying results33,34. For the hyper parametric sensitive
model, the performance of the model will be closely related to the
selection. It is necessary to adjust different hyper-parameters to
achieve the robust ML model.

MODEL EVALUATION
The core of ML is to realize accurate prediction of unknown
samples based on known information. There are inevitably some
statistical errors in the calculation, which should rationally be
checked and evaluated in the process model evaluation for the
subsequent model application. There are three commonly used
model evaluation methods: independent test, cross validation,
and bootstrapping.

In general, the generalization error of the model can be
evaluated by testing, but the goal of the model is the prediction of
unknown samples. Therefore, a testing set is needed to test the
generalization ability. The error obtained with the testing set can
be taken as an approximation of the generalization error. The
smaller error of independent test usually indicates the stronger
generalization of the model available. It is worth noting that the
independent testing set should be mutually exclusive to the
training set35.
Cross validation (CV) could be used to evaluate the reliability of

the ML models. In the CV, the input data is divided into k mutually
exclusive subsets of the similar size, each subset is generated by
‘stratified samples’. Then, the union of k-1 subsets is used as the
training set with the remaining one used as the testing set. After k
times of training and testing, all test results are averaged to
represent the final ML performance. The stability and fidelity of
the evaluation results of the CV method depend to a large extent
on the value of k. Hence, the CV method is usually called k-fold
cross validation. In the k-fold CV, k is a specified number, the
commonly used values are 5, 10, and 20. When k is equal to the
sample number of input data, this method is called leave-one-out
cross validation (LOOCV). LOOCV is not affected by random
sample partitioning and the results are often considered to be

Table 2. Common ML algorithms in material design.

ML algorithms Category Brief description

Support Vector Machine (SVM) Regression,
classification

Support vector machine (SVM) includes support vector classification (SVC) and
support vector regression (SVR). The main idea of SVC is to establish an optimal
decision hyperplane to maximize the distance between the two kinds of samples
closest to the plane on both sides of the plane. The basic idea of SVR is to map the
data X into a higher-dimensional feature space F via a nonlinear mapping Φ and
then to do linear regression in this space. SVM provides good generalization
ability for classification and regression tasks.

Artificial Neural Networks (ANN) Regression,
classification

A neural network is composed of a large number of connected nodes (neurons).
Samples are classified or regressed according to different connection modes and
connection signals (weights) between nodes.

Random Forest (RF) Regression,
classification

An ensemble learning algorithm contains multiple decision trees.

Extra-Trees (ET)/Extremely Randomized
Trees (ERT)

Regression,
classification

An ensemble learning algorithm composed of multiple decision trees is similar to
random forest.

Gradient Boosting Regression (GBR) Regression An ensemble learning algorithm contains multiple decision trees (regression
trees).

Multiple Linear Regression Regression Solve the regression problem when the relationship between multiple
independent variables and one dependent variable is linear.

Ridge Regression (RR) Regression The linear least-squares method with regularization.

Kernel Ridge Regression (KRR) Regression The algorithm combines ridge regression with kernel function.

Gaussian Process Regression (GPR) Regression A nonparametric model that uses Gaussian process priors to perform regression
analysis on data.

Partial Least-Squares Regression Regression Least-squares fit of the output data to the input features

Decision Tree (DT) Classification Generate a tree based on the features and categories of the data and classify the
unknown data with this tree.

k-Nearest Neighbors (KNN) Classification Classification is performed by measuring the distance between different feature
values.

Naive Bayes Classification Solve the occurrence probability of each classification category, then divide
samples into the category with the largest occurrence probability.

Logistic Regression Classification Explain the relationship between a dependent variable and one or more
independent variables.

k-means clustering Clustering A typical partition clustering algorithm. It uses a clustering center to represent a
cluster. The algorithm can only treat numeric-type data.

k-modes clustering Clustering Extension of k-means algorithm. Adopt the simple matching method to measure
the similarity of classification type data.

k-prototypes clustering Clustering Combine two algorithms of k-means with k-modes, which can handle mixed data.
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more accurate. However, LOOCV may cost a long time and a lot of
computational resources, which is not suitable for large dataset.
Bootstrap method is based on bootstrap sampling36. Given a

dataset D containing m samples, the bootstrapping method
would randomly copy a sample from D to the dataset D’ at a time
until D’ contains m samples. In this process, some data may be
sampled repeatedly while some data may never be sampled.
Finally, D is designated as the training set and D∪D’ is used as
the testing set. The number of training samples obtained by the
bootstrapping method is equal to the original dataset. The
bootstrapping method is effective under the condition of a small
dataset. Nevertheless, the dataset generated by the bootstrap
method may change the distribution of the original dataset and
introduce the deviation.

MODEL APPLICATION
The purpose of ML is to generalize the hidden patterns between
descriptors and material properties of existing data samples. The
properties could be accurately predicted with the constructed
model. Therefore, the developed ML model can be applied to
high-throughput screening. First, many virtual samples could be
designed, and then the properties could be predicted with ML
model. Finally, the materials with desired properties would be
selected from the hypothetical samples for the experiments.
To further develop the application of ML model, it has also

become one of the hotspots to develop the online prediction
model for sharing. The network model enables more users to
predict target properties. For example, Shi et al.37 developed the
online server for predicting the specific surface area of ABO3

perovskites. Furmanchuk et al.38 developed an online application
to predict the Seebeck coefficient of crystalline materials. The
approach of developing models into online servers not only
exposes sharing models, but also makes model applications easier
and faster.

APPLICATIONS OF MACHINE LEARNING IN PEROVSKITE
MATERIALS
Perovskite, named after Russian geologist Perovski, originally
referred to a specific compound, calcium titanate (CaTiO3). Now it
is used to stand for a group of compounds with the same crystal
structure as CaTiO3

39. The structural formula of perovskite material
is usually represented as ABX3 or AA’BB’X6, where A and B are
cations, the ionic radius of A is larger than that of B, and X usually
means halogen ions or oxygen ions with small radius40. ABX3
perovskite is called simple perovskite, while AA’BB’X6 perovskite is
known as double perovskite (DP). According to whether A-site
cations are organic small molecules or metal ions, the simple
perovskite could be classified into inorganic perovskite and hybrid
organic–inorganic perovskite (HOIP)39,41. As shown in Fig. 3a, the
ideal structure of simple perovskite generally presents a cubic
structure. The eight vertex angles of the cube are occupied with
inorganic cations or small organic groups A, the body center
position is occupied with cations B, and the six face center
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positions are occupied with anions X42,43. The BX6 regular
octahedron consists with six face-centered X anions and the
body-centered B cations. Furthermore, the crystal structure of DP
can be composed of the regular alternate arrangement of BX6 and
B’X6 octahedrons (Fig. 3b). Normally, B and B’ are different
transition metals, and A and A’ could be the same or different
alkaline-earth or rare-earth metals44. Due to the flexibility of
perovskite crystal structure, the ions at the Ca, Ti, or O positions of
CaTiO3 can be replaced by elements or groups with similar radius,
making the types of perovskite rich and diverse. The number of
potential perovskites could reach tens of thousands. Taking the
element doping into consideration, the potential number of
perovskites could easily exceed 107 41,45. Up to now, there are
about 1000 perovskites that have been developed through
experiments46. There is still a huge space for stable perovskites
to be excavated. It would be a time-consuming and inefficient
project to find stable and high-performance perovskites simply by
experiments or DFT calculations. Based on many existing
experimental and computational data, ML technology has
gradually played an important role in the perovskites discovery.
This review mainly introduces the application of ML in the

discovery and rational design of ABX3 inorganic perovskites,
HOIPs, and DPs. In addition, two-dimensional layered perovskites
are often classified as perovskites. However, the related works in
layered perovskites are too seldom to discuss.

ABX3 INORGANIC PEROVSKITES
ABX3 inorganic perovskite is one of the most active materials. The
diversity and flexibility make them a wide variety, and also lead to
many different material properties, such as ferroelectricity and
piezoelectricity47,48. In many applications, these properties are
unmatched by other known materials, which makes inorganic
perovskites greatly important in various fields, such as magnetic
refrigeration49,50, solid oxide fuel cells51,52, and photocatalysis53,54.
Theoretically, most elements in the periodic table can replace

the A or B of ABX3 to form perovskites (Fig. 4). However, not all
compounds with ABX3 stoichiometry are perovskite structures.
Therefore, finding an efficient way to determine whether a
compound with the formula ABX3 exhibits a perovskite structure
has been the first challenge in perovskite discovery and design. In
many researches, the Goldschmidt tolerance factor (t)55 (Formula
(1)) is usually used to judge the structure formability and phase
stability of perovskite. However, the Goldschmidt tolerance factor
is insufficient with an increasing variety of perovskites. Some
researchers have proposed methods to determine the formability
of perovskite structure. For instance, Sun et al.56 proposed a
descriptor based on the tolerance factor and the octahedral factor,
which accuracy reached 90%. Bartel et al.57 developed a tolerance
factor (Formula (5)) that can be used to determine the formability

of simple perovskite and double perovskite, defining when τ of
the compounds less than 4.18 represents perovskite with 91%
accuracy.

t ¼ rA þ rX
ffiffiffi

2
p

rB þ rXð Þ (1)

μ ¼ rB
rX

(2)

η ¼ VA þ VB þ 3 � VX
a3

(3)

μþ tð Þη (4)

τ ¼ rX
rB
� nA nA �

rA
rB

ln rA
rB

� �

0

@

1

A (5)

Where rA, rB, and rX are ionic radii of A, B, and X, respectively; μ is
the octahedral factor; η is the atomic packing fraction; VA, VB, and
VX are atomic volumes of A, B, and X, respectively, based on the
rigid sphere model; a is the lattice constant of cubic cell; nA is the
oxidation state of A.
Although these descriptors can well evaluate the formability and

stability of perovskite with high accuracy, researchers still try to
find the factors and patterns controlling the formability of
perovskite structure through ML to develop a method that can
fully judge the formability and stability of perovskite in a faster and
more accurate way. The energy beyond the convex hull (Ehull) is a
measure of the decomposition of the compound into a linear
combination of the stable phases present on the phase diagram58.
It is significant to evaluate the materials dynamic stability of.
Normally, thermodynamically stable compounds have zero Ehull,
while more positive values of Ehull indicate decreasing stability59.
Ehull can be calculated by the DFT, but the huge computational
costs limit the power of DFT in materials with a large chemical
search space. In 2017, Schmidt et al.60 constructed a dataset
containing 250,000 ABX3 compounds, from which about 20,000
ABX3 perovskite compounds were randomly extracted for model
construction. An ML model with Ehull as the target variable was
built to predict the stability of the compound. The ML model was
used to predict the thermodynamic stability of the remaining
approximately 230,000 virtual samples, in which there were 641
formally candidates with Ehull less than 5meV/atom. Li et al.61

developed a ML model to predict the thermodynamic phase
stability of perovskite oxides using a dataset of more than 1900 Ehull
predicted by DFT. Two ML models were constructed respectively to
classify and regress the Ehull, and then predict 15 perovskite
candidate materials. Finally, four stable perovskites (La0.5Y0.5-
Co0.5Mn0.5O3、Y0.75Sr0.25VO3、CeReO3 and Dy0.75Nd0.25RuO3) were

La-Lu

Li Be B C N O F

Na Mg Al Si P S Cl

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I

Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

XA / BA B

Fig. 4 The elements of the periodic table to form perovskites. Elements that have the probability of form the perovskite structure in the
periodic table.
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presented. In 2020, Liu et al.62 screened stable and metastable
ABO3 perovskites using ML and the materials project based on the
dataset of 397 ABO3 compounds (Fig. 5a). The ML classification
model was applied to divide 891 ABO3 compounds into perovskite
and non-perovskite compounds. The results showed that 331
compounds had perovskite structures, in which 174 had a
formation probability of ≥85%. In addition, 37 thermodynamically
stable ABO3 perovskites (0meV/atom< Ehull < 36meV/atom) and 13
metastable perovskites (36meV/atom< Ehull < 70meV/atom) were
screened through the ML regression model for further synthesis
and application. These researches have proven that the ML model
could provide effective guidance to determine the stability of
various perovskite oxides.
In addition to Ehull, the formation energy of compounds could

also be used to evaluate the formability and stability of perovskite.
Li et al.63 proposed a transfer learning strategy to evaluate the
stability of the ABX3 inorganic perovskites. First, an ML transfer
learning model was constructed by taking the formation energies
of 570 perovskites as the target variable and the physics-informed
structural and elemental parameters of perovskites as descriptors.
Then the transfer learning model was applied to predict the
formation energies of 578 compounds with unknown target. With
the combination of two datasets above, 1148 data were used to
train a convolutional neural network model for high-throughput
screening. Finally, 764 promising perovskite materials with the
tolerance factor τ less than 4.8 were selected from 21316 assumed
perovskites by the screening model, 98 of which have been
validated to be stable by DFT calculation. In typical ML-based
material discovery and large-scale screening of hypothetical
perovskites, transfer learning is a recently developing ML method
in dealing with the small data problems.
It is also an effective strategy to use the ML model constructed

with experimental perovskite and non-perovskite to predict the
formation probability of large quantities of unknown potential
perovskites. In 2016, Pilania et al.64 demonstrated the powerful
function and practicality of ML via SVM based classifier, which
used elemental parameters to evaluate the formability of ABX3
halides in the perovskite crystal structure. After the exploration of
vast descriptors, ionic radii, tolerance factor, and octahedral factor
are identified as the most crucial related features for the model,
indicating that steric and geometric packing effects have a great
impact on the stability of these halides64. 40 ABX3 with perovskite-

type crystal structures were proposed through predicting the
perovskite formability of 455 ABX3 compounds with ML.
Balachandran et al.65 developed two decision tree classifiers to
acquire many potential perovskite materials and cubic perovskites,
as shown in Fig. 5b. Two models with accuracy more than 90%
were trained to predict unknown 625 compounds, in which 235
were perovskite and 20 were cubic perovskites. Besides, 87
promising perovskite candidates were selected for further
experimental guide. Analyzing the results, potential perovskites
may locate at (a) A and B atoms are a lanthanide or actinide
elements, (b) A atom is an alkali metal, alkali earth metal or late
transition metal atom, or (c) B atom is a p-block element65.
In 2019, Jain et al.66 constructed an ML classification model based

on SVM with 189 ABX3 inorganic samples to predict the perovskite
formability of 454 ABX3 compositions, among which the formation
probability of 45 compounds is equal to or higher than 0.8. After
comparing the thermodynamic stability information of perovskite in
MP, AFLOW, and OQMD, 18 compounds were subject to carry out
the DFT-based bulk structural optimizations and electronic structure
predictions. According to the overall DFT results, two promising
stable photovoltaic candidates, RbSnCl3 and RbSnBr3, were repre-
sented for further study. This work is an important step towards a
basic understanding of the interfacial properties of perovskites,
facilitating further breakthroughs in photovoltaic technology.
Recently, Park et al.67 proposed a method to identify the stability

of perovskite. A series of ML models were developed for the target
properties of the perovskite, namely, octahedral deformation
parameters including the energy difference (ΔHc) between the
relaxed and ideal cubic structures, quadratic elongation (λ), as well
as octahedral angle variance (σ2) (Fig. 6a). The possibility of a known
cation embedded in the perovskite was systematically analyzed.
The influence of A-site cation on the phase stability of the
perovskite was evaluated by measuring the degree of octahedral
deformation when a given cation embedded in [BC6]

4− 67. This
work shows that the combination of advanced electronic structure
theory and ML analysis can provide an effective strategy that is
superior to the conventional trial-and-error method in material
design. More importantly, it provides a powerful guide for exploring
a broad composition space of inorganic and mixed perovskites.
Eg is a significant parameter in the applications of electrical

conductivity, light-harvesting capability, photoelectric conversion,
and other functions in perovskites, which is directly related with

Fig. 5 Workflows of ML in ABO3 perovskites. a Workflow for predicting stability and metastability of ABO3 perovskite. Reproduced with
permission from ref. 62. Copyright Elsevier 2020 b Workflow for the ABO3 cubic perovskite65.

Q. Tao et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    23 



the properties of various photovoltaic devices68. The theoretical
models of Eg could accelerate the discovery of perovskites, and
help navigate the broad space of potential perovskite materials,
and guide chemists to screen out candidates for experiments.
In 2018, Takahashi et al.69 used the RF to predict the Eg of ABX3

perovskite to determine whether the Eg values of the candidates
meet the requirement of the applicable range of solar cells
(1.7–3.0 eV). After model training with the Eg data of 15,000
perovskite materials, 9328 potential perovskite materials with Eg at
the range of 1.7–3.0 eV were extracted from 414,736 candidates.
Then the Eg values of the selected candidates based on Li and Na
were calculated and evaluated with DFT, where 11 undiscovered
Li (Na) based perovskite materials fell into the ideal Eg and
formation energy ranges for solar cell applications (Fig. 6b). In
addition to using the classification models to screen promising
candidates with appropriate Eg, the ML regression models also
have excellent predictive performance. Li et al.45 constructed a ML
model with ABO3 perovskite formation energy (Ef) as the target.
Then, the Ef predicted by the model was used as the instrumental
variable to build a progressive learning model to predict the Eg of
the perovskite materials. The results of the model indicated that
the addition of predicted Ef as an instrumental descriptor can
promote the prediction accuracy of Eg regression model (R2=
0.855). This progressive learning strategy with instrumental
descriptors provides an approach to widen the feature pool and
reduce the computational effort instead of high-cost DFT
calculations.
Even in the era of big data, limited samples are still the majority

in material science. How to make full use of the limited samples
for ML has also been a research potential in recent years. It is
believed that the emergence of each method for small sample
datasets would bring a bit of dawn to the development of ML in
material science. Gladkikh et al.68 presented an ML technology
suitable for small datasets-alternating conditional expectations

(ACE). ACE has an advantage in that it shows the results in a
graphic form, which can help for model interpretation. The
graphic form of the ACE transformations can view the impact of
each descriptor on the target property. Furthermore, ACE does not
suffer from the curse of dimensionality due to it is estimated by
univariate functions. They used ACE to study nonlinear mappings
between Eg and descriptors of component elements and
constructed a model to predict the Eg of the perovskites. The R2

and RMSE of the training set were 0.824 and 0.836 eV, respectively.
Their study indicated that the Eg values of ABO3 perovskites
mostly depend on the electronegativities, electron affinities,
ionization energies, and atomic radii of the constituents.
The critical temperature at which ferroelectric materials convert

from the ferroelectric to the paraelectric phase is called Curie
temperature (Tc), also known as the Curie point70. Tc has been a
key indicator in property measurement of ferroelectric materials.
Most inorganic perovskites represented by ABO3 structure have
excellent ferroelectric properties and become one of the most
promising materials for electronic and magnetic components such
as multilayer capacitors and sensors71,72. Tc has a considerable
influence on many applications of perovskite materials in the
magnetic recording, sensor, actuators, and refrigeration73,74.
Therefore, it is quite meaningful to predict Tc of perovskite
materials quickly and effectively before experiments.
In 2018, Zhai et al.75 developed a prediction model of Tc with

physicochemical parameters based on ML. In the meanwhile, the
potential perovskite material (La0.66Sr0.3Ba0.04MnO3) with high Tc
of 390.35 °C were found from the virtual samples by the SVR
model combined with the genetic algorithm search strategy.
Similarly, Yang et al.76 used RR, SVM, ERT and other ML methods to
train the Tc of lead-based perovskite ferroelectrics. The ML model
integrating with the above three algorithms was used to predict
the Tc of more than 200,000 kinds of lead-based perovskite
materials outside the dataset. Then two lead-based perovskite

Fig. 6 Applications of ML in inorganic perovskites. a The parameters ΔH, λ, and σ2 were used to quantify the distortion out of the ideal cubic
perovskites67. b the formation energy and Eg of predicted Li(Na)BX3 perovskite with DFT. The perovskites in the red box have the ideal
formation energy and Eg values

69. c Relationship between the total energy values for BaNbO2N supercells in the training set (rhombuses) and
the test set (triangles) predicted by RR and the data calculated by DFT. Reproduced with permission from ref. 98. Copyright Elsevier 2019 d The
predicted phase-transition energy difference ΔE versus DFT calculations. Reproduced with permission from ref. 100. Copyright John Wiley and
Sons, Inc. 2019 e Comparison between test bandgap EHSE gand predicted bandgap EML g. Reproduced with permission from ref. 100. Copyright
John Wiley and Sons, Inc. 2019 f 151 promising perovskites with different types of X-site compositions. Reproduced with permission from
ref. 100. Copyright John Wiley and Sons, Inc. 2019.
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solid solution ferroelectric materials were screened with high Tc of
481 °C and 466 °C were selected for further experiments. In
addition, the integrated ML model was also applied to analyze the
Tc prediction results of PbGa1/2Nb1/2-PbMn1/2Nb1/2O3-PbTiO3

system.
Neel temperature (TN) is the critical temperature at which

antiferromagnetic material becomes paramagnetic77. It has been
reported that TN is closely related to the applications of ABO3

perovskite in the fields of magnetic refrigeration, colossal
magnetoresistance, etc78,79. Therefore, accurate and rapid predic-
tion of TN is a very significant work in the design and discovery of
perovskite oxides. Xiao et al.79 mapped the relationship between
the main atomic parameters of Mn-based perovskite oxide and TN
with SVM. It is worth noting that SVM is an algorithm especially
appropriate for small sample datasets, which can build ML model
with high generalization in a limited sample size. This work is
helpful for the simple and rapid prediction of the TN of Mn-based
perovskite.
Energy efficiency and sustainable development are the priority

topics in modern society. However, refrigeration and air-
conditioning consume a large amount of electric energy among
various end-uses of energy in both commercial and residential
areas80. Most refrigeration technologies rely on traditional
conventional gas compression technologies, which have come
under increasing criticism for their inefficiency and the use of air
pollutant gases. The latest development of magnetic refrigeration
technology based on the magnetocaloric effect of magnetic
materials (especially near room temperature) has provided a
promising alternative to vapor compression refrigeration81,82. In
order to design a magnetic refrigerator with an operating
temperature close to room temperature, much attention has
been paid to the magnetocaloric material with a large maximum
magnetic entropy change (MMEC) over a wide temperature
range83,84. Zhang et al.85 established a GPR model to elucidate the
statistical relationship between the MMEC and lattice parameters
of magnetocaloric lanthanum manganite perovskites. The model
demonstrated a high accuracy and stability with RMSE, MAE and
correlation coefficients being 0.0121, 0.0054, and 99.997%,
respectively. In addition, the model could be used as part of ML
to get a better understanding of magnetic phase transformations
and magnetocaloric effects in various types of doped magneto-
caloric lanthanum manganite.
The dielectric breakdown strength refers to the highest electric

field strength that a material can withstand without being
destroyed under the action of an electric field, which is the key
property to assess the performance of electrical and electronic
devices86–88. Dielectric materials with high dielectric breakdown
strength are necessary for high energy density electric energy
storage applications in combination with continued miniaturiza-
tion of electronic devices89,90. It is not only determined by the
intrinsic factors of the material (chemical constituents, nature of
the chemical bonding, crystal structure, etc.) but also affected by
the extrinsic factors (defects, morphology, impurities, degradation,
interfaces, etc.)91,92 Therefore, it is very challenging to accurately
calculate the dielectric breakdown strength of complex materials
entirely by DFT method and perform high-throughput screening
from a large number of promising candidates. By contrast, ML may
be a more potential approach to predict dielectric breakdown
strength.
Kim et al.91 applied the ML technology to train and validate on a

limited amount of accurate data from DFT calculations, then to
predict the dielectric breakdown strength of hundreds of ABX3
compounds in a highly efficient manner. After making predictions
on these compounds using the ML model, the dielectric break-
down strength of the most promising candidates was further
validated by DFT calculations. The research results have shown
that boron-containing perovskites may be extremely tolerant
toward high electric fields. The prediction results of BSiO2F and

SrBO2F showed a breakdown strength of almost 2 GV/m, which is
worthy for further experimental studies. Gao et al.93 studied the
dielectric permittivity of perovskites based on ML. They employed
the GPR algorithm to obtain the relationship between the
composition of perovskites and the dielectric permittivity to find
the maximum dielectric permittivity in Ba (Ti1-x%Hfx%)O3 ceramic
material. According to ML prediction, the optimal composition is
found to be x= 11 with the highest dielectric permittivity εr=
4.5 × 104. The predicted materials are synthesized experimentally
to further verify the accuracy of the model. This strategy
combined with ML shows higher efficiency compared with the
traditional experimental search.
ABO3-type perovskite oxides have also been considered as the

potential materials for solid electrolytes in solid oxide fuel cells
(SOFCs). Conductivity is an essential parameter to describe the
ease of charge flow in a material. In addition to external factors
like oxygen pressures and operating temperature, the conductivity
of perovskite oxides is also affected by its composition and
structure94–96. To discover or design perovskite oxides with high
ionic conductivity, it is necessary to figure out the relationships
between the molecular composition parameters and the oxygen
ionic conductivity of the perovskite oxides. Liu et al97. explored
the correlation between atomic parameters and ionic conductivity
properties of 117 perovskite oxide data via partial least squares,
backpropagation artificial neural network and SVR, in which model
constructed by SVR processed the best generalization. It was
found that and the ratio of O–O charge population to the O–O
band length (P/L) and logarithm of oxide ionic conductivity (Lnσ)
have a quadratic curving relationship. The value of P/L is one of
the important quantum chemical parameters to predict the ion
conductivity of perovskite oxides. Based on the calculation of P/L,
a semi-empirical formula can be used to predict the oxide ion
conductivity of the doped ABO3 perovskite.
Kaneko et al.98 proposed a regression model built by ML based

on the data with DFT calculations to predict the stability of anion
ordering in perovskite-type BaNbO2N supercells. DFT was used to
calculate the total energies of 560 small BaNbO2N supercells with
random anion ordering. Using the total energy of 420 BaNbO2N
supercells as the training set, an ML model was established with
prediction accuracy reaching 94% (Fig. 6c). The conclusion
indicates that the most stable perovskite BaNbO2N supercells
had each Nb atom coordinated with two N atoms, along with NbN
chains in a cis conformation98. This work has suggested an
approach for the property predictions of complex-compositions
materials at a reasonable computational cost and provided
guidance for the design of stable perovskite oxynitrides.
The specific surface area (SSA) of the photocatalyst plays a

significant role in the photocatalytic reaction. Generally, the larger
the SSA of the photocatalyst is, the more reaction sites and the
better the photocatalytic performance are. ABO3 perovskite has
been widely applied as the photocatalyst or photocatalytic active
component in photocatalytic reactions. Shi Li et al.37 used GA and
SVM algorithms to explore the relationship between the SSA of
perovskites and the composition as well as experimental
conditions. After virtual screening with the developed model, five
visual perovskites with larger SSA and photocatalytic potential
were proposed. In addition, the author has also developed the
established model into an online forecasting application, making
the model more available to researchers to predict the required
large SSA perovskites. This method should be extended to ML-
aided design of other properties and other materials.
Zheng et al.99 established a series of models by RF, RR and SVM

with the electronegativity of atoms at A, B and the effective
atomic radii of atoms at A, B, and X as descriptors for the
predictions of four properties including density and formation
energy, Eg and crystal volume. The results showed that RF method
could effectively predict the density and Eg of perovskite materials;
RR method could realize the prediction of density; SVM with linear
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kernel function method could achieve the prediction of formation
energy. The research demonstrated that different ML algorithms
have different sensitivity to the distribution of data samples. In the
process of building ML models with different properties, different
algorithms need to be evaluated and screened to optimize the
evaluation function.
Lu et al.100 combined DFT calculation and ML technology to

propose a multistep screening scheme for all-inorganic perovskite
with stability, high spontaneous polarization, and proper Eg. The
phase-transition energy difference was adopted as the target
property to directly judge whether the compound can be exposed
spontaneous polarization. As shown in Fig. 6d, e, the ML
prediction accuracy of both energy difference and Eg regressions
exceeds 90%, which is highly consistent with DFT calculations.
After screening, 151 promising ferroelectric photovoltaic (FPV)
perovskites were successfully extracted from 19,841 compositions
(Fig. 6f). The accuracy of the ML predictions is further verified by
DFT calculations, and 8 randomly selected FPV perovskites
exhibited good thermal stability, appropriate Eg (1.01–1.62 eV),
and considerable spontaneous polarization (7.10–32.78 µC cm−2).
This scheme realized the ML for accelerating the material design
of multi-property and the extension of materials database.

HYBRID ORGANIC–INORGANIC PEROVSKITE
HOIPs have become a major hotspot in the field of optoelectronics
in recent years due to its easy synthesis, low cost and excellent
optoelectronic properties, such as tunable optical Eg high optical
absorption coefficient, high carrier mobility, and long load of
diffusion length101,102. It has been widely applied in fields of solar
cells103,104, light-emitting diodes105,106, and photodetectors107,108,
and its performance is comparable to traditional materials. In
addition, the development of HOIPs is still in continuous
improvement and breakthroughs.
In 2009, Kojima et al.109 used perovskite-type organic–inorganic

hybrid materials to prepare thin film solar cells and obtained a
3.8% power conversion efficiency (PCE). Since then, perovskite-

type solar cells (PSCs) have attracted many interests of researchers
for the huge development potential and the title of new hope in
the field of photovoltaic110. The highest certified PCE of PSCs to
date has reached 25.2%, according to the National Renewable
Energy Laboratory111,112. It is reported that Pb is the key factor in
the high performance of PSCs due to the strong antibonding
coupling between the 6 s lone pairs of Pb and the 5p states of I,
resulting in a small effectively masses and a direct Eg with a p-p
transition113. However, Pb based halide perovskites are easily
degraded spontaneously under exposure to moisture, air, light,
heat, and other environments, resulting in the degradation
product of carcinogenic PbI2

114,115. These obvious shortcomings
have hindered the industrial application of HOIPs solar cells,
prompting researchers to seek high-performance perovskite
materials with better chemical stability and environmentally
friendly composition. ML method may accelerate the discovery
of such materials.
The Eg of HOIPs is an important parameter for evaluating high-

efficiency photovoltaic perovskite materials. Electrons in the
valence band could be excited to the conduction band only
under the condition of enough energy. Therefore, a comprehen-
sive understanding of Eg and its relationship with HOIPs
composition and structure would be very necessary before
looking for photovoltaic materials with high light absorption
coefficient. Lu et al.116 developed a target-driven method based
on ML and DFT calculations to discover stable Pb-free HOIPs.
Taking the Eg values of 212 HOIPs calculated by DFT as the training
set, an ML model was built based on the GBR algorithm to predict
the Eg values of 5158 unexplored possible HOIPs. After further
screening, six orthorhombic lead-free HOIPs with proper Eg for
solar cells and room temperature thermal stability were selected.
And two of them have direct Eg in the visible region, excellent
thermal stability, and excellent environmental stability. As shown
in Fig. 7a, the maximum error of Eg obtained by ML prediction and
DFT calculation is less than 0.1 eV, which shows that ML has a
huge advantage in Eg prediction, and its accuracy is comparable to
DFT calculation. The workload of DFT calculation has greatly

Fig. 7 Applications of ML in HOIPs. a A comparison of ML-predicted with DFT-calculated data of six HOIPs116. b The Eg energy changes with
Cs (mol %) in CsxMA0.85-xDMA0.15PbI3 and the cubic structure begins to recover when x= 0.02118. c Ternary diagram denoting the different-
stoichiometry crystal structures118. d The correlation of the ML Eg data and the experimental Eg data. Reproduced with permission from ref. 121.
Copyright John Wiley and Sons, Inc. 2019 e Blackline: the maximum PCE predicted by ML corresponding to each Eg (1.2–1.3 eV); redline: the
PCE of Shockley–Queisser limit. Reproduced with permission from ref. 121. Copyright John Wiley and Sons, Inc. 2019 f 4D-plot of PCE with
respect to Eg, ΔH, and ΔL, indicating the highest PCE values with the bandgap in the range of 1.2–1.3 eV. Reproduced with permission from
ref. 121. Copyright John Wiley and Sons, Inc. 2019.
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reduced with the assist of ML, which is very important for large-
scale screening of materials. Besides, HOIPs with small Eg (less than
0.9 eV) can be used in infrared sensors, and large Eg of HOIPs
(larger than 3 eV) may serve as good insulating materials.
Therefore, ML not only accelerates the prediction of Eg in
photovoltaic materials but also in other related fields.
In 2020, Saidi et al.117 used DFT to calculate the Eg and structural

parameters of 862 HOIPs for modelling. Then a hierarchical
convolutional neural network (CNN) was used to construct an ML
model to predict the Eg of HOIPs. The results show that the lattice
constant and the octahedral till angle play the key role in the
prediction of the Eg. When these two features are removed from
the dataset, the RMSE increases from 0.07 to 0.16 eV. In addition,
applying hierarchical CNN to alleviate problems related to the
imbalanced target values is also the key to success. In material
design, small samples are a common problem, which are usually
unevenly distributed. And this well-designed hierarchical ML
approach is expected to be used in the design of other materials
with uneven data distribution.
In addition to Eg, stability is also a key parameter affecting the

overall performance of PSCs. Recently, Ali et al.118 constructed a
dataset of A-site cation-doped HOIPs containing 852 data with the
target of the energy difference (ΔHC) between the of cubic
structure and the fully relaxed structure and 12 descriptors. These
descriptors include the period and group numbers, the effective
radius and the number of lone pairs to describe the A-site cations,
the ionization energy and the electron affinity of the inorganic
elements in B- and X-sites in combination with the tolerate factor
and the octahedral factor118. The deep learning method was
employed to train the model to predict the cubic phase stability,
which was further applied to accelerate the search and discovery
of HOIPs with stable cubic phase from the enormous material
search space. A series of mixed-cation perovskites were synthe-
sized under the guidance of the model, namely CsxMA0.85-

xDMA0.15PbI3, where x= 0, 0.02, 0.05, 0.1, 0.2, 0.255, 0.595, and
0.765118. The experimental characterization results indicate that
the cubic structure began to be restored when x equals 2 mol% Cs
in CsxMA0.85-xDMA0.15PbI3 (Fig. 7b). This work also showed that the
cubic structure could be recovered through converting the
severely unstable double-cation perovskite (MA0.85DMA0.15PbI3)
in the cubic structure at room temperature into a triple-cation
compound by the incorporation of Cs cation (Fig. 7c)118. The work
shows that the ML perovskite structure stability prediction model
has greatly sped up the experimental process of cubic perovskites
and reduced experimental costs.
There are many factors that affect the applications of HOIPs in

photovoltaics. Li et al.119 using the ML approach and non-
equilibrium Green’s function together with DFT to explore the
electronic transport properties of MAPbI3. The band structure of
MAPbI3 calculated with DFT indicated that the ferroelectric and
antiferroelectric dipole configurations have very little effect on the
Eg

119. They tested the tunnel junctions composed of MAPbI3 and
48 different metal electrodes with the same fixed lattice constant
as MAPbI3 and found that the electron transmission coefficient of
Mg electrodes is the highest, and the conductivity of the Pt
electrodes is the least119. In addition, as the perovskite unit cell
number increases, the electron transmission coefficients usually
exponentially decrease. The ML algorithms were employed to
explore the correlations of the transport properties of MAPbI3 with
different metal electrodes and tunnel barrier lengths119. This work
could quickly and effectively predict the electron transmission
coefficients of MAPbI3 under different metal electrodes and
different tunnel barrier lengths, thereby stimulating more experi-
mental and theoretical interests in other tunnel junction systems
and electron transport problems with the “DFT+ML” strategy119.
PCE is a momentous indicator to evaluate the performance of

solar cells. It would be strategically significant to study the PCE of
reported PSCs with ML. In 2019, Odabaşı et al.120 collected

1921 samples of HOIPs solar cell devices to propose an effective
strategy to improve the PCE of PSCs. RF algorithm was used to
build the ML model for predicting the PCE of PSCs. The RMSE for
training set and testing set were 1.70 and 3.29 for regular cells,
1.51 and 2.91 for the inverted cells, respectively. In addition, the
factors were explored with association rules to provide theoretical
guidance for the design of PSCs with high PCE. The results
revealed that the factors like mixed-cation perovskites, dimethyl-
formamide and dimethyl sulfoxide as solvents, chlorobenzene as
the antisolvent were crucial to obtain the PSCs with PCE higher
than 18.0%. Li et al.121 established a ML model for predicting Eg of
perovskite materials with the material composition as descriptors.
Taking the perovskite Eg, the energy difference (ΔH) between
the HOMO of the hole transport layers and the HOMO of the
perovskite material, and the energy difference (ΔL) between the
LUMO of the perovskite material and the LUMO of the electron
transport layers as features, a series of ML models were
established to predict the open-circuit voltage (Voc), short-circuit
current density (Jsc) and fill factor (FF) of PSCs. The performances
of PSCs and the physical principles behind getting high-
performance PSCs devices were fully studied based on the
models. Moreover, perovskite materials were synthesized experi-
mentally to verify the model. As shown in Fig. 7d, the Eg of the
synthesized perovskite materials was highly consistent with the
result predicted by ML, which strongly proved the reliability of
the ML model prediction. In addition, the PCE tendency of the
PSCs predicted by the model was also consistent with that by the
theory of the Shockley–Queisser limit (Fig. 7e). The relationship
between Eg, ΔL, ΔH, and PCE was further analyzed to derive a
strategy for developing high-performance PSCs with different Eg
(Fig. 7f). These findings indicate that ML has been very promising
in terms of properties prediction and a deeper understanding of
the physical phenomena associated with PSCs.

DOUBLE PEROVSKITE
In order to solve the instability and toxicity of HOIPs and the wide
b Eg of ABO3 perovskite, the researchers replaced A-site or B-site
cations of perovskite with two cations, forming a type of stable
perovskite called double perovskites (DPs)122,123. Theoretically,
DPs could achieve both the excellent performance of HOIPs and
the stability of ABO3 inorganic perovskite, but the properties of
DPs reported so far is not ideal. For example, Cs2AgBiBr6, which
has been more popular in the DPs research direction recently,
showed only 2.79% PCE in PSCs application, and the hydrogen
production rate in photocatalytic water splitting was
48.9188 μmol h−1 g−1 124,125. The average oxygen production rate
and hydrogen production rate of Sr2CoWO6 in the application of
photocatalytic water splitting were 188 μmol h−1 g−1 and
30 μmolэh−1 g−1, respectively126. These properties are still
relatively limited compared with more mature perovskite materi-
als. Therefore, exploring high-performance DPs materials still has
huge research and development prospects.
In 2016, Pilania et al.127 proposed a robust ML model based on

elemental descriptors, which effectively predicted the electronic
Eg values of AA’BB’O6 double perovskite. The statistical learning
model of KRR was used to train and test the dataset consisting of
the Eg values of ~1300 double perovskites calculated with
Gritsenko, van Leeuwen, van Lenthe, and Baerends potential
and further optimized for solids (GLLB-SC) functional. The most
important chemical pattern derived from the adopted learning
framework is that the Eg is mainly controlled with the LUMO
energy of the A-site 1 of the B-site. The R2 of cross validation of
the best model reached 0.993 and the RMSE was 0.132 eV; the R2

of the test set was 0.947 and the RMSE was 0.36 eV. The results of
the test set proved the strong generalization ability of the ML
model and its high consistence with the DFT calculation results. In
addition, this ML technique can be applied to any materials in a
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restricted chemical space with a given crystal structure to obtain
the accurate prediction of Eg. In 2018, Xu et al.128 developed a
procedure to identify the perovskites formability of all ABX3 and
AA′BB′X6 compounds stored in the Materials Projects database.
This program could identify the perovskite-forming properties of
ABX3 and A2BB’X6 compounds with the crystal structure stored in
the material project database. A variety of ML algorithms are
employed to comprehensively analyze the correlation between
atomic number, ionic radius, electronegativity, tolerance factor,
and octahedral factor and perovskite formation to provide an
intuitive view of these data. The prediction accuracy of best ML
model reached more than 90%, which was used to identify
suspicious data about the perovskite formation of A2BB’O6

compounds. Excluding those suspicious data, ML could achieve
a prediction accuracy of up to 96.3%. In addition, the program
also identified 11 ABO3 compounds, which showed different
formative properties compared with previous publications. This
work has largely enriched the perovskite formability and
corrected the possible errors in the previous data of the ABO3

compounds.
In 2019, Agiorgousis et al.113 used ML to explore chalcogenide

DPs to identify photovoltaic absorbers that can replace
CH3NH3PbI3. After considering the thermodynamic stability,
kinetic stability, and optical absorption, five promising perovskite
photovoltaic absorbers (Ba2AlNbS6, Ba2GaNbS6, Ca2GaNbS6,
Sr2InNbS6, and Ba2SnHfS6) were screened from more than 450
possible chalcogenide DPs candidates. Li et al.129 proposed a
strategy with the combination of ML and DFT to engineer stable
halide DPs. By choosing 283 DFT-calculated perovskite decom-
position energy (ΔHD) as the training set, the ML mapping
between the stability of the perovskite and the compositional
ionic radii was established. The ML model was applied to predict
the ΔHD of 14190 possible A2B(I)B(III)X6 type halide DPs, in which
2275 were stable (ΔHD > 0) and 11915 were unstable (ΔHD < 0).
The ML method combined with DFT calculation could not only
provide guidance for the experimental engineering of stable
perovskites, but also offer enlightenment for the design and
discovery of other materials without redundant experimental
engineering and complex calculation simulation process.
Magnetism is the significant property of materials in many

different applications. In 2019, Halder et al.130 used a combination
method of computational tools to predict virtual magnetic DPs: an
ML technique for the screen of stable candidate DPs, an
evolutionary algorithm for the determination of crystal structure,
and DFT calculations for characterization of electronic and
magnetic properties. ML technique was applied to screen the
most likely B/B’ combination to predict a stable perovskite
structure. Among the 412 screened candidates of A2BB’O6

composition with 3d, 4d or 5d transition metals at B and B′ sites,
33 compounds were found to form stable DP structures, 25 of
which were further considered for characterization of their
structure and properties. Twenty-one DPs with different magnetic
and electronic properties are predicted, ranging from ferromag-
netic half metals to ferromagnetic, from antiferromagnetic
insulators to ferromagnetic metals, and then to a rare example
of antiferromagnetic metals. This ML study is expected to help the
discovery of magnetic DPs.
It is very challenging to solve the model overfitting caused by

data scarcity. In 2020, Li et al.131 developed an adaptive learning
strategy to find high-performance AA’B2O6 cubic perovskites for
catalyzing the oxygen evolution reaction (OER). Through mapping
the correlations between a large amount of available informatics
and the adsorption energies (i.e., *O and *OH), the probabilistic
Gaussian processes quickly estimated the adsorption energies of
reaction intermediates and the corresponding uncertainties of a
rich material space. This adaptive learning strategy gradually
improves the robustness of the model by verifying promising
samples, albeit with large uncertainties. After iteratively validating/

refining the candidates with theoretical overpotentials <0.5 V, an
excellent ML model with RMSE less than 0.5 eV was attained. The
model rapidly predicted nearly 4000 AA’B2O6 compounds and
proposed nine stable cubic perovskite candidates with the optimal
OER performance (OER overpotential is about 0.5 V, tolerance
factor > 0.9): KRbCo2O6, BaSrCo2O6, KBaCo2O6, KCaCo2O6, BaPb-
Ti2O6, BaRbTi2O6, BaSnTi2O6, BaTnTi2O6, RbEuTi2O6. Furthermore,
they also revealed the potential relationship between the
electronic structure descriptors and the OER activity of the
perovskites, indicating that the orbital electronic structure
characteristics of the B-site ion might be latent factors governing
the OER activity. This work indicated that adaptive learning is a
cost-effective strategy that can reduce the uncertainty of model
predictions in high-dimensional feature spaces with the least
computational cost.

CONCLUSIONS AND OUTLOOK
This paper has briefly summarized the basic process of the ML
method in material discovery and design and reviewed part of
applications of ML in the large-scale screening and rational design
of perovskite materials. The applications of ML in perovskites can
be divided into the following four categories. The first type is
using ML to explore the better evaluation indexes to describe the
stability of perovskite materials. The second type aims to perform
the high-throughput screen with the constructed ML model and
many virtual samples to screen out the potential perovskite
candidates with better properties for experimental guidance. The
third type is to deeply dig out the relationship between the
descriptors and perovskite properties to get a better under-
standing of the properties. The last type is the combination of ML
and DFT calculation to deal with the problem of limited data. From
this review, we have realized that ML has great potential and
advantages in discovering materials and revealing the relationship
between structural, compositional, and technological descriptors
and performance based on known material information. In spite of
some successful researches, the applications of ML in material
research are still in its infancy and a lot of work needs to be further
deepened in the future. Here, we propose some possible
directions for ML in the field of perovskite materials:
(1) The combination of ML models and experiments/simula-

tions: The ML development in the field of perovskites is still in its
infancy. ML has focused on only a small part of the many excellent
material properties of perovskite. Therefore, ML should be used to
predict more material properties of perovskites and optimize the
synthesis process of perovskites. Besides, ML could be effectively
combined with DFT, molecular dynamics, Monte Carlo, and other
theoretical simulation methods to accelerate the screening of
large-scale perovskites and other materials. More importantly,
experiments are the basis for the synthesis and characterization of
materials. Therefore, it is necessary to strengthen the combination
of ML and experiment to shorten experiment time, reduce
experiment cost, and improve experiment efficiency. There are
many recent studies on the combination of ML and perovskite
experiments132–135. Sun et al.132 used deep neural network
methods to build ML models based on experimental X-ray
diffraction data to assist in structural analysis. The data
synthesized by the experiment could serve back to ML again to
increase the amount of data and then improve the generalization
ability of the ML model. For example, the perovskites with
required specific surface area (SSA) values could be discovered by
integrating ML with experiments. First, a ML model could be
constructed with collected data to predict the perovskite SSA. The
potential candidates would be screened out after visual screening
for experiments. Then the experimental data could be added back
to the dataset for model reconstruction. The loop would keep
performing until the perovskites with targeted SSA are obtained.
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(2) The establishment and sharing of perovskite databases: ML
is the data-driven method that strongly depends on the quantity
and quality of data. Compared with speech recognition, image
processing, and other fields with millions of data, the amount of
data in material science is extremely limited. The ML method is
more prone to overfitting with limited data, leading to the
reduction of the generalization ability of the ML model126.
Although there has existed a database containing a large amount
of materials data, more data in the published papers has not yet
been entered into the database. It is necessary to establish a more
comprehensive, more standard, and more general perovskite
information database to speed up the realization of data sharing
and reduce the barriers to data access. In the meanwhile,
researchers could also obtain more theoretical data through
high-throughput calculations, as well as develop methods for
intelligently reading literature, access and obtain a large number
of related experimental and theoretical data from publications and
enter these data into the database.
(3) Development of ML algorithms for small samples: Many

powerful ML algorithms have been developed to be successfully
applied in various fields. However, these algorithms usually have
their own limitations, such as not suitable for small sample data,
difficult to adjust parameters, etc. Therefore, developing faster,
more accurate, advanced, and intelligent learning algorithms to
deal with the challenge of insufficient data would be very
indispensable, especially when most data in publications about
ML in perovskite materials belong to small samples. A common
method to deal with small samples is meta-learning, that is,
learning knowledge within or across a specific field136,137. The
development of new technologies such as neural Turing
machines138 and imitation learning139 could make it possible. It
has recently been reported that the Bayesian program learning
framework can reach the level of human experience through one-
shot learning under limited data conditions140. This may have a
huge boost in materials science with scarce and expensive data. It
would greatly improve the applicability of the ML method in
perovskites and improve the efficiency and generalization of
the model.
(4) ML computation platform: The current ML work is more

about using programming languages to call various ML algorithms
for modeling. For many non-computer researchers, it would very
inconvenient and difficult due to the lack of basic programming
knowledge. Even if some ML platforms and toolkits have been
developed, problems of higher fees, fewer algorithms, simple
functions, and inaccessibility are particularly prominent. Therefore,
it is urgent to develop computing platforms with free access,
complete algorithms, powerful functions, and smart computing. In
addition, associating computing platforms with various material
databases is also an in-depth direction.
(5) Descriptor interpretation and construction: The predictions

or decisions made by ML are mainly based on classical probability
theory and mathematical statistics. The physical and chemical
meanings of the model still need further research and explanation.
Therefore, discovering physical descriptors and making the black
box model of statistical ML interpretable is a promising direction
for data-driven perovskites. It would not only help experimenters
to quickly design and screen visual materials with desired targets,
but also enable them to understand the underlying physical laws
behind the characteristics for further perovskite design. Alterna-
tively, the accurate and interpretable descriptors could be created
with existing descriptors, domain knowledge and ML algorithms.
In summary, with the continuous improvement of high-tech

requirements for materials and the rapid development of
computer technology and computational methods, ML will be
more widely applied in other materials. It is believed that ML will
become an indispensable auxiliary tool for experiments and
computations in the field of materials science in the future.
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