

Variant and Product Line Co-
Evolution

Individual collaborative embedded systems (CESs) in a collaborative system group (CSG)
are typically provided by different manufacturers. Variability in such systems is pivotal
for deploying a CES in different CSGs and environments. Changing requirements may
entail the evolution of a CES. Such changed requirements can be manifold: individual
variants of a CES are updated to fix bugs, or the manufacturer changes the entire CES
product line to provide new capabilities. Both types of evolution, the variant evolution
and the product line evolution, may be performed in parallel. However, neither type of
evolution should lead to diverging states of CES variants and the CES product line,
otherwise both would be incompatible, it would not be possible to update the CES
variants, and it would not be possible to reuse bug fixes of an individual variant for the
entire product line. To avoid this divergence, we present an approach for co-evolving
variants and product lines, thus ensuring their consistency.

Jörg Christian Kirchhof, RWTH Aachen University
Michael Nieke, TU Braunschweig
Ina Schaefer, TU Braunschweig
David Schmalzing, RWTH Aachen University
Michael Schulze, pure-systems GmbH

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_18

333

https://doi.org/10.1007/978-3-030-62136-0_18
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_18&domain=pdf

334 Variant and Product Line Co-Evolution

18.1 Introduction

Configurability and variability play a pivotal role for collaborative
embedded systems (CESs). Individual configurations enable
customization and flexibility while, optimally, allowing a high degree
of reuse between different variants. Product line engineering is an
approach that enables mass customization for families of similar
(software) systems [Schaefer et al. 2012]. During domain engineering
(DE), commonalities and variabilities of variants of a product line—
that is, its configured product instances—are typically captured in
terms of features [Pohl et al. 2005]. A feature represents increments
to the functionality of products. Variability models, such as feature
models [Kang et al. 1990], organize features and the relationships
between them. Features are mapped to realization artifacts, such as
code, models, or documentation. During application engineering (AE),
a variant is derived by defining a configuration that consists of
selected features [Pohl et al. 2005]. Using this configuration and the
feature-artifact mapping, the resulting artifacts can be composed to
form a variant.

For collaborative embedded systems (CES), supporting and
managing variability is crucial. Typically, a CES is developed once and
deployed for different customers and in different environments. Thus,
a CES must accommodate customer-specific requirements and be
applicable in different environments. Developing these different CES
variants individually does not scale economically. Moreover, separate
variant development is bad practice as the different variants
inevitably diverge from each other, which results in incompatibilities,
bugs/errors, and significantly higher maintenance effort [Pohl et al.
2005].

The optimal situation is that all variants are created, maintained,
and updated during DE using the product line artifacts and the
variability model. In practice, however, customers often require
adaptations or updates for their variant, with the adaptations or
updates being implemented by changing only this particular variant
during AE. For instance, a CES is deployed for one specific customer
and this customer requires changes at short notice or implements
their own changes. This has several advantages: first, the complexity
of implementing such changes is comparably low as the impact on
other variants does not have to be considered; second, the time
required to deploy new changes and thus the costs are low as well.

Product line engineering

Variability for
collaborative embedded

systems

Modifying derived
variants

18.1 Introduction 335

This procedure is particularly interesting for variability of CESs.
Typically, a CES is used in multiple different CSGs by different
companies. Thus, changes to a CES product line require a lot of effort
as the impact on all possible variants and the CSGs that use the CES
must be considered. Consequently, required changes are
implemented directly in a CES variant that is used in a particular CSG.

However, this procedure comes at the cost of lost compatibility
between the product line and the changed variant. If product line
artifacts are updated, it is unclear whether these changes affect the
modified variants and, even worse, it is unclear how to merge the
changes at DE level with changes at AE level. As a result, the product
line and the modified variants diverge. Consequently, respective
variants are not updated if the product line is updated, and other
variants cannot benefit from changes that have been made at variant
level.

To overcome these limitations, we provide an approach that
enables engineers to modify variants at AE level while keeping these
changes and changes at DE level synchronized. The first part of the
approach propagates updates from DE level to modified variants. To
this end, an internal repository is automatically maintained. The
variants originally derived from the DE level are stored in this
repository. If the product line is changed, a three-way-merge
mechanism compares the original variant, the updated variant
derived from the updated product line, and the modified original
variant. As a result, updates from the product line level are merged
into the modified variant. Thus, the variant users benefit from product
line updates but are still able to modify their variant individually.

The second part of the approach propagates changes from AE level
to DE level. First, changes at variant level are identified. In the next
step, the features that are affected by these changes are identified.
This is particularly important to allow these changes to be propagated
to product line level. However, this task is challenging as, typically, the
information about which part of a variant stems from which feature is
not preserved when a variant is derived. Finally, the variant changes
are transferred semi-automatically to the respective product line at
DE level. To this end, regression deltas between original artifacts and
modified artifacts are computed and mapped to the respective feature
at DE level. As a result, product line artifacts are updated with the
most recent changes at the AE level without the need for additional
costs to redevelop the variant changes for the entire product line.

Diverging changes of
product lines and their
variants

Propagating product
line changes to modified
variants

Lifting variant changes
to product line level

336 Variant and Product Line Co-Evolution

18.2 Product Line Engineering

In product line engineering, features are typically captured in
variability models. The most prominent variability model type is a
feature model [Batory 2005], [Kang et al. 1990]. Feature models
capture the abstract functionality of a product line as features and
organize them in a structured tree. Thus, the feature tree has exactly
one root feature and can have multiple child features. Each feature,
except for the root feature, has exactly one parent feature — that is,
the feature tree is an acyclic graph. This tree defines basic
relationships between features — that is, a feature can only be
selected if its parent feature is selected. Additional constraints can be
defined by using feature types or cross-tree constraints in
propositional logic with features as variables. In feature-oriented
programming (FOP), each feature is implemented separately
[Prehofer 1997]. Thus, artifacts, such as code, models, or
documentation, that realize a specific feature are developed. In
addition, artifacts that are necessary to enable the collaboration of
multiple features must be implemented as well.

To realize the variability that artifacts express, there are different
mechanisms and notations that establish a feature-artifact mapping.
With annotative or negative approaches, parts of artifacts are marked
with feature expressions that define the feature combinations in
which they should be used [Schaefer et al. 2012]. If a feature is not
selected, its annotated artifact parts are removed. A prominent
example of the annotative method is C/C++ preprocessor annotations.
With compositional or positive variability, distinct artifacts for each
feature (combination) are implemented that are composed later
[Schaefer et al. 2012]. For instance, plug-in systems can be used with
a distinct plug-in for each feature. Finally, transformational
approaches, such as delta-oriented programming (DOP) [Clarke et al.
2010], are a combination of the positive and negative approaches.
They enable specification of deltas that define changes to artifacts that
add, delete, or modify parts of the respective artifacts.

During AE, variants of a product line are derived [Pohl et al. 2005].
To this end, configurations are defined that consist of selected
features of the feature model. To derive a concrete variant from such
a configuration, a generator uses this configuration, the feature-
artifact mapping, and a concrete variability realization mechanism.
This variability realization mechanism is specific to the notation used
to implement feature artifacts, such as preprocessors, plug-ins, or
DOP, and transforms the product line artifacts to match the selected

Feature models to
represent variability

Variability at
implementation level

Deriving variants during
application engineering

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 337

configuration. For preprocessors, this means removing all annotated
parts that do not match the current feature configuration. For additive
approaches, such as plug-ins, this means composing all artifacts of the
selected features to form a variant. For transformational approaches,
such as DOP, the deltas that are mapped to the selected features are
collected and their change operations are applied.

Similar to other systems, product lines evolve to meet new
requirements or to fix bugs [Schulze et al. 2016]. To this end, feature
artifacts and their mapping are modified at DE level and variants can
be updated by triggering a new generation at AE level. In theory, this
is the optimal way to perform product line evolution. However, in
industrial practice, this is often infeasible or simply not done.
Consequently, variants are modified at AE level to match specific
requirements, to fix bugs, or to be updated. This results in a
divergence of product line and variants which we address with the
approach presented.

18.3 Propagating Updates from Domain Engineering
Level to Application Engineering Level

This section is largely based on [Schulze et al. 2016].

18.3.1 The Challenge of Propagating Updates

To illustrate the process and the resulting problems of propagating
updates from DE to AE, we present an abstract overview of variant
derivation in conjunction with the evolutionary process described in
Figure 18-1. The Product Line Assets boxes depicted act as
placeholders for different artifacts and each Variant A box represents
all artifacts belonging to variant A. The creation of a specific customer
variant A starts with the derivation step at T0, which is symbolized in
the figure by Step . This step basically consists of multiple actions

Deriving variants and
performing customer-
specific modifications

Fig. 18-1: Challenges of DE and AE co-evolution

338 Variant and Product Line Co-Evolution

(e.g., selecting features, transforming corresponding artifacts,
generating the variant) to be performed for each artifact type, such as
requirements, source code, models etc. The result is a working copy
for the derived variant that constitutes the base for further
development as the product line is not usually able to deliver the
entire functionality customers want. Hence, changes to particular
artifacts, such as add, remove, and modify, take place on the derived
variant at AE level, leading to a customer-adapted and, usually,
functionality enriched variant (represented as Variant A' in Figure 18-
1).

Beside modifications on variants' working copies, changes also
take place on the entire product line (i.e., DE level) — for example,
through maintenance activities such as bug fixing or functionality
extension in order to satisfy emerging market needs. The changes at
both levels are made simultaneously and in an unsynchronized
manner (marked with in the figure). In general, this is not a problem
and often even desired in industry as it allows variants of different
customers to develop at their own speed. However, a problem arises
if a derived variant requires further functionality or bug fixes from the
product line. This means that the same derivation process of Step
is performed again at T1 (Step), which results in a newly generated
working copy for that variant, and as a side effect, all variant
modifications () on Variant A are lost, since the artifacts are
replaced by the DE level versions.

The loss of essential changes performed at AE level (visualized by
scissors in Figure 18-1) is a major concern for real-world product
lines due to the resulting increased time and cost of recreating the
changes.

18.3.2 Artifact Evolution and Co-Changes

Three basic operations can be part of an evolutionary task, regardless
of the artifacts affected:

 Add: An artifact (e.g., a requirement, code, model, etc.) is
added — for example, to extend functionality.

 Remove: An artifact is removed — for example, because it
became irrelevant.

Product line level
changes and

incompatibilities with
variant modifications

Basic artifact
modifications

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 339

 Modify: An artifact is adapted according to changing
circumstances — for example, due to legal issues.1

These types of changes happen at both DE and AE level
respectively, and it is only if a change was made on an artifact that
exists at both levels that we call it a co-change. Such co-changes can
lead to a conflict if an artifact was modified at both levels at the same
location but in different ways. In order to preserve the co-changes
made at the AE level during update propagation, we have to a) detect,
b) classify, and if possible, c) (automatically) resolve each conflicting
co-change. The matrix in Figure 18-2 visualizes all possible cases and
helps to classify the possible co-changes. As depicted, there are also
some cases that can never occur (e.g., an addition of a new artifact at
DE level being removed at AE level), other cases that can be fully
resolved (e.g., removal of the same artifact at both levels), and cases
that can be (partially) automatically resolved (e.g., a modification of a
DE level artifact that was removed at AE level). However, before we
can classify or even resolve changes, the initial detection of a co-
change is key for the subsequent steps.

1 While this operation can be considered as a combination of the two basic operations
add and remove, its semantics is important for determining conflicts. Hence, we treat
this operation separately.

Fig. 18-2: Co-change operations between DE and AE and their effects

340 Variant and Product Line Co-Evolution

Since an evolution is performed simultaneously at both levels,
detecting where a change happened and what type of change it was is
essential to enable informed decisions in the subsequent steps.
Considering the variants’ derivation process in Figure 18-1, a
comparison of the artifacts of Variant A’ with Variant A at T1 might be
a solution, since a change can easily be detected if an artifact differs
between both versions. However, this simple approach is not
sufficient to detect the level at which the change happened. More
problematically, the most difficult case cannot be uncovered in this
way — that is, a case where the same artifact was changed in a
different way in both versions. This means that with this two-way
comparison, in general, no information about the origin (Variant A',
Variant A at T1, or both versions) or the kind of change can be
retrieved.

The problem of the two-way comparison is that it lacks a common
base to compare both variants with. In the derivation process in
Figure 18-1, the original working copy Variant A at T0 constitutes this
common base from which both variants originate. Given this common
base, we can use a three-way comparison to obtain the changes
between DE and AE. This enables us to compare the evolved variants
of DE and AE level not only with each other, but also with their origin
— that is, the common base at time T0. As a result, we can determine
precisely which change operations were performed on the respective
variant. We can therefore classify the changes according to our matrix
and thus identify possible conflicts.

With a full classification for each conflicting co-change, the
resolution can be reached partially or full automatically, depending
first on the nature of the co-change and second on the resolution
strategy — for example, if one level takes precedence during conflict
resolution. For most of the cases, this allows a fully automatic
resolution. For those cases where conflict resolution needs user
assistance, there are often tools that allow for adequate visualization
and even merging of the conflict. If such tool support is not available,
the user must resolve the conflict by hand, which is in any case the last
resort.

18.3.3 Changes to the Variant Derivation Process

The detection of any possible co-change requires the application of a
three-way comparison of the artifacts of three different versions
(Variant A at T0 and T1, as well as Variant A’) of product line variants.
However, in the scenario in Figure 18-1, not all the three required

Detecting and
classifying co-changes

Resolving changes

Necessity of a common
base for three-way
comparison

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 341

versions are available explicitly. Basically, only Variant A’ is available
and Variant A at T1 can be generated from the product line artifacts in
their current state. Retrieving the common base version of those two
versions is more sophisticated. Generally, two approaches are
conceivable to solve this problem as follows.

In the first approach, the base version is regenerated from the
product line, which requires a snapshot of the product line, including
generators employed at the point in time when the previous base
version was generated (i.e., time T0 in Figure 18-1). Provided that the
product line is published in fixed release versions, these snapshots
can easily be retrieved even if application engineers have no access to
interim versions. However, if there are no such release versions, a
snapshot of the entire product line must be created every time a
variant generation process is triggered on a changed product line.

In the second approach, each variant generated is saved in a,
possibly local, repository to keep it for later use. This approach is
shown in Figure 18-3. Between the DE level and the working copy of
a specific variant at AE level, a new level for the repository is
introduced that is transparent for application engineers. When
application engineers derive a specific variant A for the first time at
T0, it is stored automatically in the internal repository for that variant
(Step). The working copy is initially just cloned from that version
(Step). Over time, the product line and Variant A are changed
independently of each other (Step). Then, at T1, application
engineers want an update of their working copy to synchronize with
the current product line version. During that update propagation, a
new version of Variant A is derived and stored in the internal

Regenerating a common
base from the product
line

Saving generated
variants as a common
base in a repository

Fig. 18-3: Solution for co-evolution and propagating updates from DE to AE

342 Variant and Product Line Co-Evolution

repository (Step), but this version is not shown to application
engineers directly. Instead, a three-way comparison (Step) is
performed between the two versions in the repository (the ancestor
reference as common base and the latest reference) and the working
copy version Variant A’. As discussed above, most merges are done
without user interaction and it is only for conflicts that cannot be
resolved that application engineers must decide which changes
should be applied. The result is an updated working copy with merged
changes of the DE and AE level (Step). This update process can be
repeated each time the product line is changed.

18.3.4 Applicability and Limitations

Basically, our proposed classification scheme is general enough to be
applicable with different scenarios and different artifacts in product
line development. This is because our definition of both change
operations and change conflicts is artifact-independent and we
address the integration in the common product line development
process. However, due to its general nature, our method requires
some manual effort to be adapted for concrete product lines. Most
importantly, the concrete artifacts that are subject to change
operations must be defined and an instantiation of their granularity
levels must be provided. The latter is of specific importance, because
the granularity plays a pivotal role in deciding whether a conflict
exists or not. Moreover, granularity levels are different for specific
artifacts. For instance, for source code, it may be sufficient to
distinguish between statement, block, and file level. In contrast, if we
consider artifacts in a hierarchical structure, such as requirement
specifications, different levels of granularity such as line, section, or
subsection may be required to detect conflicts with a suitable
accuracy. Finally, developers must specify how the conflict detection
and resolution is integrated in the (most likely already existing)
development process, for instance, which tools should be used for
conflict detection. However, the aforementioned instantiation has to
be done only once (when setting up or integrating with an existing
product line engineering process) and can subsequently be used for
the entire evolution process.

Finally, it is worth mentioning that, with our proposed
classification, we focus mainly on syntactical changes. As a result, our
classification does not ensure semantic correctness. However, we
argue that syntactical correctness is the stepping-stone for consistent

18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level 343

co-evolution in product lines and thus for ensuring integrity of both
DE and AE level.

18.3.5 Implementation

In our prototypical implementation, we have integrated the process
described into pure::variants2, the leading industrial variant
management tool, which supports the development of product lines.
This tool can manage different types of realization artifacts, either by
means of generic modeling in the tool or by means of integration into
external tools using specific connectors. The derivation process for
variants is handled by an extensible set of transformations that are
specific to the artifact type or external tool. These transformations are
the connection point for our implementation. Since the chosen
approach is generic, the prototypical implementation supports all
types of artifacts as long as a three-way comparison is available for
the specific artifact type. For example, for source code, the internal
local repository is realized by simply creating folders for the ancestor
as well as latest references, as can be seen in Figure 18-4 from the box
in the upper left corner.

The three-way comparison and the merge are then executed using
the three directories directly, while specifying the ancestor directory
as the common base of the two others once. Thus, when an application
engineer wants to update their working copy, they start a new
derivation of the current variant, which leads to the generation of a
new latest version, followed by triggering the compare and merge
operation. If there are no conflicts that have to be resolved manually,
the application engineer will get the merged result. If there are
conflicts, the application engineer must resolve them by deciding
which version—working copy or latest—they prefer to be in the
merged result. At the end, the application engineer gets a merged
version semi-automatically.

The prototypical implementation was presented to different
customers and received a positive response, with many of those
customers facing the challenges mentioned with regard to variant and

2 www.pure-systems.com

http://www.pure-systems.com

344 Variant and Product Line Co-Evolution

product line co-evolution. Thus, our method addresses a highly
relevant topic in the industrial domain.

18.4 Propagating Changes from Application
Engineering Level to Domain Engineering Level

18.4.1 The Challenge of Lifting Changes

Propagating updates from the AE level to the DE level produces a few
challenges. Introducing changes from the AE level to the DE level may
result in conflicts, as development may go ahead at the DE level as
well. Detecting changes and applying them to DE level artifacts is
made more complicated here, as, in feature-oriented programming,
there is often a mapping between features and implementation
artifacts. Depending on the variability specification mechanism used,
reconstructing the feature mapping from AE level artifacts is often not
straightforward. In constructive mechanisms - for example, when
constructing a 150% model - references to features may still exist in
AE level artifacts. Yet, with transformational approaches, feature
references are usually removed during the generation of AE level
artifacts. However, reconstructing this mapping on the AE level is
crucial for assigning changes to the correct features.

Challenges in
propagating changes

from the AE level

Fig. 18-4: Updating a variant in pure::variants preserving local changes

18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level 345

Our goal is to lower the barrier for adopting changes to variants in
product line engineering by supporting the propagation of changes
from a variant's working copy to the product line. To adequately
propagate changes to the DE level, we have to a) detect changes, b)
make the feature information available at AE level, c) assign changes
to features or the codebase, and d) resolve each conflicting co-change.
We propose a process that detects changes in the working copy of a
variant then maps them to the appropriate features and transfers
them semi-automatically to the product line.

18.4.2 A Process for Lifting Changes

Similar to updating the working copy of variants with changes from
the product line, detecting co-changes requires a three-way
comparison of the artifacts in questions when lifting changes to the
product line. Here, two possible approaches are conceivable. In the
first approach, changes in the working copy of the variant (Variant A’,
see Figure 18-1) are detected by comparing it to its base version
(Variant A at T0). The changes detected are then translated and
applied to the base version of the product line (Product Line Assets at
T0), resulting in a new product line version. These two versions are
then compared with the updated product line (Product Line Assets at

T1) in a three-way comparison to detect and resolve conflicting co-
changes. In the second approach, co-changes are instead detected and
resolved on the AE level artifacts and only then translated and applied
to the product line. This approach follows the process of updating the
working copy of a variant (see Section 18.3.3) with changes from the
product line, as co-changes are identified and resolved through a
three-way differencing and merge on the three different variant
versions.

We follow the second approach, as this approach builds upon the
previously proposed process for updating a variant. The proposed
process for this approach is presented in Figure 18-5. It consists of
four steps: first, we update the working copy of a variant with changes

Prerequisites for
propagating changes

Approaches to
propagating changes

Process description for
propagating changes
from the AE level

Fig. 18-5: Activities for propagating changes from the AE level to DE level

346 Variant and Product Line Co-Evolution

in the product line through a three-way merge on the artifacts of the
three different variant versions. In addition to resolving conflicting
co-changes, we also calculate regression deltas between the new
variant versions (Variant A derived from the Product Line Assets at T1
and the working copy of Variant A resulting from the merge). These
regression deltas represent the changes detected that will be applied
to the DE level artifacts. However, changes must first be assigned to
their corresponding feature (Seed feature information), and for this we
require access to domain knowledge at AE level. To this end, in the
second step, we annotate AE level assets with feature information.
These annotations are the input in the third step to assign each change
to a corresponding feature. Finally, in the fourth step, we translate and
apply changes to DE level artifacts. In the following, we focus on the
second and third steps, which we present in more detail.

18.4.3 Deducing Feature Information

Conflicting co-changes must also be resolved if changes from the AE
level are to be propagated to the DE level. Changes must also be
assigned to a feature to be made available to other variants of the
product line. However, developers at the AE level implement changes
concerning the variant's configuration, and information about
individual features is usually not available. Changes at AE level can
change the implementation of existing features or the codebase (e.g.,
bug fixing) or add new features (implementation of new
functionalities). Before we can assign changes to features, the changes
must first be detected, and domain knowledge must be made available
at AE level.

Underlying Model

Artifacts, their content, and their relationships can be represented
abstractly as a graph 퐺 = (푉,퐸). Here, the set of vertices V represents
artifacts or elements of artifacts in the desired granularity, and the set
of typed edges 퐸 = 푉 × 푉 × 푇 represents their relationships, where T
is the set of kinds of relationships identified. One possible realization
of this data structure is object diagrams, which adequate
transformations can extract directly from a development project and
which we can employ to identify the impact of individual changes
[Butting et al. 2018]. We use this data structure as an internal
representation of model artifacts to abstract from concrete syntax
changes.

Conflicts when updating
DE level artifacts

General model
description

18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level 347

Besides the internal representation of model artifacts, we annotate
elements (vertices) with features, which we store as a mapping 푎:푉 ∪
퐸 → 퐹, where F is the set of features. In our representation, the
common codebase is mapped to the root feature, which is thereby
represented as well. After the second phase (Seed feature
information), each model element and each relationship of the base
variant is annotated with exactly one feature. When assigning changes
to features, we calculate recommendation values for each change and
feature pair; that is, we calculate a mapping 푟 ∶ 퐶 × 퐹 → [0, 1] that
assigns to each pair (c, f) the probability that change c belongs to
feature f. Here, 푐 ∈ 퐶,푎푛푑 푓 ∈ 퐹, where C is the set of changes.
Furthermore, we then calculate 푟 (푒, 푓), 푟 (푒,푓), 푎푛푑 푟 (푒,푓),
which state whether the removal, the addition, or the modification of
a model element e may belong to a feature f.

Seeding Feature Information

Since changes in AE level artifacts are applied to model elements of
implementation artifacts, information about which model elements
belong to which feature is essential to allow informed decisions when
assigning changes to features. While feature-oriented programming
usually includes a feature mapping that assigns implementation
artifacts or even model elements to features, this mapping is usually
not available at AE level. The availability of the feature mapping at AE
level depends on the variability mechanism and the variant
generation process. If feature information is part of implementation
artifacts at AE level, then even assigning changes to features may be
trivial, as application engineers can implement changes in the scope
of the corresponding feature directly.

In most cases, feature information is not part of the resulting
implementation artifacts. One example of this is transformational
approaches, which transform some core model based on the selected
features without traces of these transformations at AE level. As
feature information is not available at AE level, we can instead
reconstruct this information through the variant generation process.
This can either be done directly during the initial variant generation
or be recomputed from the product line. With the former, the feature
information would have to be computed and derived for all variants,
even if changes in a variant are never propagated to the product line.
The latter would require the version of the product line, including
generators employed at the point in time when the variant was
generated. In either case, the goal is to annotate each model element

Description of
annotations and
recommendation values

Prerequisites for seeding
feature information

Required domain
knowledge

348 Variant and Product Line Co-Evolution

of the desired granularity of the unmodified variant at AE level with
the corresponding feature.

In addition to the feature annotation derived from the product line,
we require application engineers to annotate which major changes at
AE level (e.g., the introduction of new artifacts) represent new
features. Since these features are not (yet) known in the product line,
it is otherwise not possible to distinguish between new features and
changes to an existing feature. In contrast to variability mining, it is
not possible to compare several variants to identify new features,
since changes usually affect a single working copy of a variant.
Instead, by partially annotating changes with a new feature, the full
variant may be explored through further analysis. The resulting
feature annotation of elements is used in the following to assign
changes to specific features.

Assigning Changes to Features

With a complete annotation of the original model elements with
features, and incomplete information about new features, we can
annotate the remaining changes with features through further
analysis. Generally, this can only be achieved partially automatically
through a recommendation engine. In some cases, annotating changes
with features may be computed fully automatically depending on the
quality of analyses employed, the unambiguity of the resulting
annotations, and on conflicts in other variants when propagating
changes to DE level artifacts.

As before, we focus on the three operations add, remove, and
modify. Furthermore, we incorporate domain knowledge into our
analysis; that is, we consider the parent-child relationship and
the requires relationship of features. Using well-formedness rules
together with domain knowledge enables us to limit the set of features
that can contain a particular change. The concrete implementation,
however, depends on the modeling language and variability
specification mechanism used. The notes here provide the basis for
implementing appropriate analyses for the respective circumstances.

A model element can only be removed in the feature that
introduced it (the annotated feature) or in any of its dependent
features. We call a feature f1 dependent on a feature f2 if f1 is in a child-
hierarchy of f2 or if f1 requires f2. Dependent features can be removed
only if the variability specification mechanisms support removing
elements that have been introduced in another feature (e.g.,
transformational variability specification mechanisms). If model
element e is removed at AE level, then 푎(푒) = 푓 (model element e is

Introducing new
artifacts at AE level

Prerequisites for
assigning changes to

features

Noteworthy feature
relationships for the

recommendation

Removal of model
elements

18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level 349

annotated with feature f) implies 푟 (푟푒푚 푒,푓) = 1 (whether the
removal of e may occur in feature f) and in the latter case, this also
implies 푟 (푟푒푚 푒,푓) = 1, where f1 is dependent on feature f.

Similar to the removal of elements, a model element can only be
modified in the feature that introduced it or in any of its dependent
features. Therefore, if model element e is modified at AE level, then
푎(푒) = 푓 (model element e is annotated with feature f) implies
푟 (푚표푑 푒,푓) = 1 and in the latter case, this also implies
푟 (푟푒푚 푒, 푓) = 1, where f1 is dependent on feature f.

Any domain-specific or general-purpose language supports
relationships between model elements, where relationships between
two elements can be expressed by the relation 푅 ⊆ 퐸 × 퐸, where
(푒 , 푒) ∈ 푅 states that model element e1 relates to model element e2
in some way. Common relationships are containment relationships
and references to other elements. Examples of the former are classes
in Java that contain fields and method declarations. An example of the
latter are transitions between two states in an automaton that
reference their source and target state. Model elements must be
introduced in the same feature that introduces a relationship on that
feature, or in any of that feature’s parent features - that is, if there is a
relationship (푒 , 푒) between model element 푒 and 푒 , and
푎((푒 ,푒)) = 푓 (the relation is annotated with feature f), then
푟 (푎푑푑 푒 ,푓) = 1, 푟 (푎푑푑 푒 ,푓) = 1, 푟 (푎푑푑 푒 ,푓) = 1, and
푟 (푎푑푑 푒 ,푓) = 1 for all features f1 in the parent-hierarchy of
feature f.

We compute the overall recommendation 푟 for each change with
푟(푒,푓) = 푟 (푒, 푓) + 푟 (푒, 푓) + 푟 (푒,푓) by merging the
recommendations of 푟 , 푟 , and 푟 . The highest recommended
feature f for each model element e is returned by the recommendation
engine.

18.4.4 Applicability and Limitations

The proposed update process and the proposed recommendation
mechanism are general enough to be applicable for different
variability specification mechanisms and can be realized for different
modeling languages. This is because we generally regard models as
constructs consisting of model elements and relationships between
these elements. Implementation of the recommendation mechanism
and of the update process for different modeling languages, however,
requires additional implementation effort, as for each modeling
language, we have to identify possible relationships between artifacts

Modification of model
elements

Addition of model
elements

Calculating overall
recommendation value

350 Variant and Product Line Co-Evolution

and extract these to transfer them into the recommendation engine.
Furthermore, the proposed recommendation mechanism considers
all modeling elements and changes to be equally important. If this is
not desired, then weights must be defined for these elements.
Moreover, domain engineers still have to manually merge changes
into the product line artifacts, as recommendations provide only a
general idea as to which features particular changes can be applied to.
Here, the domain engineers' decisions can be used to limit the
decision space further and update recommendations. Updating
product line artifacts with changes from the AE level may and will
cause conflicts in existing variants. Developers must integrate the
process for propagating changes into the product line's development
process and define how conflicts across variants will be resolved.
Finally, the accuracy of the recommendations depends on the
granularity of the overlying model, the maturity of the analysis, and
the differencing algorithms employed. Here, we consider only
syntactic changes, but algorithms that analyze semantic changes could
also be used to enhance recommendations.

18.5 Conclusion

Variability and configurability play a pivotal role for CESs and CSGs.
Product line engineering is an approach for structured reuse and
management of CES and CSG variability. To meet new requirements,
product lines evolve, and their variants can be updated accordingly.
However, in industrial practice, individual variants are modified,
which yields the threat of incompatibility. In this article, we proposed
an approach to keep product lines and their variants synchronized.
With this approach, the benefits of performing evolution at both
product line level and variant level are combined. With a high degree
of automation, engineers can perform evolution at variant level
without the drawback of a high manual effort to synchronize the
product line with the modified variant. Consequently, our
contributions make product line engineering more applicable for
industrial practice.

18.6 Literature
[Batory 2005] D. Batory: Feature Models, Grammars, and Propositional Formulas. In:

International Conference on Software Product Lines, Springer, Berlin, Heidelberg,
September 2005, pp. 7-20.

18.6 Literature 351

[Butting et al. 2018] A. Butting, S. Hillemacher, B. Rumpe, D. Schmalzing, A. Wortmann:
Shepherding Model Evolution in Model-Driven Development. In: Modellierung
(Workshops), 2018, pp. 67-77.

[Clarke et al. 2010] D. Clarke, M. Helvensteijn, I. Schaefer: Abstract Delta Modeling. In:
Proceedings of the Ninth International Conference on Generative Programming and
Component Engineering, ACM, 2010, pp. 13-22.

[Kang et al. 1990] K.C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson: Feature-
Oriented Domain Analysis (FODA) Feasibility Study (No. CMU/SEI-90-TR-21).
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst., 1990.

[Pohl et al. 2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer 2005, ISBN 978-
3-540-24372-4.

[Prehofer 1997] C. Prehofer: Feature-Oriented Programming: A Fresh Look at Objects.
In: ECOOP'97 - Object-Oriented Programming, 11th European Conference,
Springer, 1997, pp. 419-443.

[Schaefer et al. 2012] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G.
Botterweck, A. Pathak, S. Trujillo, K. Villela: Software Diversity: State of the Art and
Perspectives. In: International Journal on Software Tools for Technology Transfer,
Volume 14, Number 5, Springer, 2012, pp. 477-495.

[Schulze et al. 2016] S. Schulze, M. Schulze, U. Ryssel, C. Seidl: Aligning Coevolving
Artifacts Between Software Product Lines and Products. In: Proceedings of the
Tenth International Workshop on Variability Modelling of Software-Intensive
Systems, ACM, 2016, pp. 9-16.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	18 Variant and Product Line CoEvolution
	18.1 Introduction
	18.2 Product Line Engineering
	18.3 Propagating Updates from Domain Engineering Level to Application Engineering Level
	18.3.1 The Challenge of Propagating Updates
	18.3.2 Artifact Evolution and Co-Changes
	18.3.3 Changes to the Variant Derivation Process
	18.3.4 Applicability and Limitations
	18.3.5 Implementation

	18.4 Propagating Changes from Application Engineering Level to Domain Engineering Level
	18.4.1 The Challenge of Lifting Changes
	18.4.2 A Process for Lifting Changes
	18.4.3 Deducing Feature Information
	Underlying Model
	Seeding Feature Information
	Assigning Changes to Features

	18.4.4 Applicability and Limitations

	18.5 Conclusion
	18.6 Literature

