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ABSTRACT With the continued increase of usage of High-Performance Computing (HPC) in scientific
fields, the need for programming models in a heterogeneous architecture with less programming effort has
become important in scientific applications. OpenACC is a high-level parallel programming model used
with FORTRAN, C, and C++ programming languages to accelerate the programmers’ code with fewer
changes and less effort, which reduces programmer workloads and makes it easier to use and learn. Also,
OpenACC has been increasingly used in many top supercomputers around the world, and three of the top
five HPC applications in Intersect360 Research are currently using OpenACC. However, when programmers
use OpenACC to parallelize their code without correctly understanding OpenACC directives and their usage
or following OpenACC instructions, they can cause run-time errors that vary from causing wrong results,
performance issues, and other undefined behaviors. In addition, building parallel systems by using a higher
level programming model increase the possibility to introduce errors, and the parallel applications thus
have non-determined behavior, which makes testing and detecting their run-time errors a challenging task.
Although there are many testing tools that detect run-time errors, this is still inadequate for detecting errors
that occur in applications implemented in high-level parallel programming models, especially OpenACC
related applications. As a result, OpenACC errors that cannot be detected by compilers should be identified,
and their causes should be explained. In this paper, our contribution is introducing new static techniques
for detecting OpenACC errors, as well as for the first time classifying errors that can occur in OpenACC
software programs. Finally, to the best of our knowledge, there is no published work to date that identifies
or classifies OpenACC-related errors, nor is there a testing tool designed to test OpenACC applications and
detect their run-time errors.

INDEX TERMS OpenACC, OpenACC run-time errors, OpenACC error classifications, OpenACC testing
tool, static approach for OpenACC application.

I. INTRODUCTION
Over the past few years, OpenACC has become increasingly
used in many high-performance computers, including the top
supercomputer at theWorld Summit. Also, OpenACC attracts
more non-computer science specialists for accelerating their
systems in several scientific fields, including weather fore-
casting and simulations. OpenACC is a high-level parallel
programming model designed for heterogeneous systems,
first released in 2011. This programming model is used for
supporting parallelism in sequential programming languages
by adding OpenACC directives without low-level details and
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is easy to learn and use. Therefore, programmers could cause
some errors when using OpenACC to parallelize their code
without fully understanding OpenACC instructions.

Testing parallel applications built by using programming
models is a difficult task because if badly programmed they
can have a non-determined behavior, which makes it chal-
lenging to detect their errors when they occur and determine
the causes of these errors, whether from the user source code
or the programming model directives. Also, it is difficult to
see if the errors have been corrected or are still present but
hidden, even when these errors have been detected and the
source code modified.

Many studies have investigated several programming
models-related applications for detecting and identifying
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run-time errors, as well as other semantic and syntax errors.
However, OpenACC has not been investigated or identified
clearly, as the other programming models have. Although
there are many testing tools that detect run-time errors, this
is still not enough to detect errors that occur in applica-
tions implemented in high-level parallel programming mod-
els used for a heterogeneous system architecture, especially
OpenACC-related applications.

In this paper, our contribution is introducing new static
techniques for detecting OpenACC errors, and for the first
time classifying errors that can occur in OpenACC soft-
ware programs.We brieflymention someOpenACC run-time
errors in our previous study, which was published in [1], but
in this paper, we broadly cover OpenACC run-time errors and
explain their causes with examples. Part of our study focuses
onOpenACC errors that cannot be detected by compilers. Our
experiments have been conducted using C++ applications
with OpenACC directives, andwe used the PGI 19.4 compiler
(community edition) to conduct our experiments and compile
our applications. Also, we propose a solution for detecting
these errors by building a static testing tool for detecting run-
time errors in OpenACC applications. Finally, to the best
of our knowledge, we are the first to identify and classify
OpenACC run-time errors, as well as building a static testing
tool designed to detect these errors in OpenACC applications.

The rest of this paper is structured as follows. Sec-
tions 2 and 3 will discuss related work and briefly give
an overview of OpenACC. Our classification of OpenACC
run-time errors will be discussed in Section 4. In Section 5,
we will explain our testing tool architecture design, and in
Section 6 our static approach in detecting OpenACC errors
will be explained in detail. In Section 7, we will discuss some
aspects of our study, and our tool will be evaluated in Section
8. Finally, conclusions and future work will be discussed in
Section 9.

II. RELATED WORK
Building massively parallel applications is challenging and
has several difficulties that can affect the system’s efficiency
and accuracy. One of these difficulties is that parallel appli-
cations if badly programmed they can have non-determined
behavior, which makes it hard to detect parallel errors or
test parallel applications. Also, run-time errors vary from
one programming model to another, and it is not easy to
determine whether errors have been corrected or are hidden
when modifying the source code.

There are many studies that have investigated parallel
applications errors and identified them and their causes.
Also, many programming models-related errors have been
identified, including MPI, OpenMP, CUDA and OpenCL.
However, OpenACC has not been investigated or identified
as thoroughly as the other programming models.

OpenMP application common errors have been identified
and classified in [2], where OpenMP errors were divided
into defects and failures with explanations and some exam-
ples. Also, the published survey in [3] presented 15 different

mistakes and how to avoid them by recommending best prac-
tices in these cases. In terms of MPI errors, the communi-
cation deadlock was investigated and identified in [4], while
in [5] the authors introduced a classification for summarizing
the error types that apply to MPI’s non-blocking collectives.
Finally, CUDA run-time errors were identified and ways to
avoid these errors were published in [6], in which CUDA
issues were classified into three categories: errors in using
CUDA directives, general parallel errors, and algorithmic
errors.

In terms of testing parallel applications, our previous work
published in [7] found that several programming model-
related applications have been investigated to identify their
run-time errors, and many testing tools have been designed
to detect these errors. Our study covered more than 50 testing
tools and several run-time errors, including deadlock, race
condition, livelock, and datamismatching. These testing tools
are varied in their purposes and scopes, including testing tools
that detect specific type of errors, the targeted programming
models used, and the testing techniques.

There are many tools that have been created to detect a spe-
cific type of run-time error, including data race detection [8]
and deadlock detection such as UNDEAD [9]. Also, many
testing tools have been designed to test a specific targeted
programming model such as testing tools for MPI [10], [11],
OpenMP [12], [13], CUDA [14] and OpenCL [15]. In terms
of OpenACC testing, there is no testing tool dedicated to
testing OpenACC applications or detecting their related run-
time errors. However, there are some studies that relate to
compilers’ evaluation published in [16], in which test cases
have been created for evaluating OpenACC 2.0. Also, another
study that evaluated CAPS, PGI, and CRAY compilers [17]
and OpenACC 2.5 was evaluated in [18] for validating and
verifying the compiler implementation of OpenACC’s new
features.

Despite efforts made to test parallel applications, there is
still more work to be done with respect to high-level pro-
gramming models used in heterogeneous systems. We have
noticed that OpenACC has several advantages and benefits
and has been used widely in the past few years, but its errors
have not been investigated or identified as clearly as the other
programming models or targeted by any testing tool. Finally,
to the best of our knowledge, there is no parallel testing tool to
test applications programmed by OpenACC or designated to
test OpenACC applications and detect their run-time errors.

III. OVERVIEW OF OPENACC
OpenACC is a high-level parallel programming model
designed for heterogeneous systems that is used to add par-
allelism to the FORTRAN, C, and C++ programming lan-
guages. In November 2011, OpenACC was released at the
International Conference for High-Performance Computing,
Networking, and Storage. OpenACC stands for open accel-
erators, which was developed by Cray, CAPS, NVIDIA, and
PGI, and the latest version was released in November 2018.
In addition, OpenACC has been used widely in the past few
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FIGURE 1. OpenACC error classifications.

years by non-computer science specialists due to decreased
programming efforts needed to accelerate their original code,
as well as the simplicity of learning and using OpenACC.
Also, OpenACC has been increasingly used in many top
supercomputers around the world and in five out of 13 appli-
cations in the Summit Supercomputer, which is the top super-
computer in the world, as published in [19].

OpenACC has several directives and clauses used to
accelerate source code without many changes. OpenACC
directives have been divided into the data region, which is
responsible for the data movements between host and device,
and the compute region, which is used for executing the code
on the device [20]–[22]. OpenACC’s data region is defined
by data directives that determine data lifetime on the device
and is divided into structured and unstructured data regions,
both used for data movements but in different aspects and
behaviors. OpenACC can have multiple data and compute
regions within the same source code.

OpenACC has several advantages and features that give
it the ability to parallelize the code, including portability.
Unlike other programming models like CUDA, which only
work on NVIDIA, OpenACC is portable across platforms
and different types of GPU [23], [24]. Also, OpenACC can
work with various compilers and requires less programming
effort, which gives it the ability to add parallelism to existing
code with less code, decreasing programmers’ workloads
and improving their productivity. Finally, OpenACC sup-
ports three levels of parallelism by using three OpenACC
clauses, including Gang, Worker, and Vector, which are
coarse, medium, and fine-grained parallelism, respectively.

IV. OPENACC ERROR CLASSIFICIATIONS
After analyzing the recent OpenACC version 2.7 documents
[20], consulting OpenACC-related books, and conducting
several experiments, we classify and identify several run-time
errors based on our experiments and build several programs

to simulate these errors to discover their behavior and effects
on OpenACC-related applications, as shown in Figure 1.
Programmers can cause these errors when they try to paral-
lelize their applications by using OpenACC. Also, there are
some directions and instructions that OpenACC documents
indicated to avoid some errors, and when programmers do
not follow these instructions, that can cause errors. In the
following, we classify OpenACC run-time errors that cannot
be detected by the compilers and explain each class and
discuss their causes.

A. OPENACC DEVICE-BASED DATA TRANSMISSION
ERRORS
Data management is one of the features supported by Ope-
nACC, which uses data clauses to conduct data movement
between CPU and GPU and vice versa. The programmers
must be aware of the usage of each data clause and how to
use them in both structured and unstructured data regions.
In this classification, we identify run-time errors resulting
from the mishandling of OpenACC data clauses and direc-
tives, which leads in turn to non-deterministic behaviors
or wrong results. OpenACC data regions are divided into
structured and unstructured data regions, as we explained in
Section 3. The following identifies and explains OpenACC
data clause-related errors that cannot be detected by the com-
piler.

1) ERRORS LEAD TO RUN-TIME ERROR MESSAGES AFTER
EXECUTING THE PROGRAM
Sometimes when programmers are misusing OpenACC data
clauses, the compiler will not detect the presence of errors,
but after compilation and during runtime, an error message
will be issued indicating the invalid value without giving extra
information about the error type or the cause of this error.
Several scenarios explain this type of error and its causes.
This error can occur in both structured and unstructured
OpenACC data regions.
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FIGURE 2. Errors leading to run-time error messages in the unstructured
data region.

In the unstructured OpenACC data region, several scenar-
ios can cause this type of error. One scenario arises when
there is a variable in the copyout clause in the exit data
region without having the same variable in any data clause
in the enter data region, which will cause an error at the
runtime without being detected by the compiler. As shown in
Figure 2a, the array ‘‘a’’ at the copyout clause will cause this
error because you simply ask the GPU to copy the array ‘‘a’’
to the CPU, but this variable is not present in the GPU, which
will then result in an error message during runtime of ‘‘invalid
value’’. Also, another case is when programmers write the
data clause in the exit data region without writing the enter
data region, as shown in Figure 2b.

The third situation that causes this error is deleting the
variable before using the same variable in the copyout data
clause, as in Figure 2c. Finally, there is a syntax error that
can also lead to this type of error and is not detected by the
compiler when the programmers write the enter data region
directive without the ‘‘acc’’, as shown in Figure 3. In this case,
the same array ‘‘a’’ is in both the enter and exit data regions,

FIGURE 3. Syntax error causing a run-time error in the unstructured data
region.

but the compiler will ignore the enter data region directive,
which affects the application in the same way as in Figure 2b.

In the structured OpenACC data region, when program-
mers use OpenACC data clauses to manage the data move-
ment between GPU and CPU or vice versa, and the array is
not present in the GPU or partially present for any reason, this
will be not detected by the compiler, and the error message
will be issued during runtime. One reason for this situation is
multiple routines controlling the data movements in the same
application; therefore, the programmers should be aware of
tracing the variables’ movements both from and to the GPU.
This error can be avoided by using the OpenACC API func-
tion to test for the presence of the variable in the GPU before
further execution and preventing this error from occurring.

2) ERRORS LEADING TO WRONG RESULTS WITHOUT
PROGRAMMERS’ AWARENESS
Programmers using OpenACC data clauses without paying
attention to their characteristics and features could lead to
wrong results and cause the application to fail to meet the
final user requirements. Also, programmers and compilers
might not be aware that there is an error and therefore cannot
detect the error without using the testing tool, which currently
is unavailable, as we discussed in our survey published in [7].
Several scenarios cause this type of error, including structured
and unstructured OpenACC data regions.

In unstructuredOpenACCdata regions, if the programmers
want to copy data from CPU to GPU but mistakenly use
the data clause create instead of copy or copyin, this will
lead to wrong results without the programmers’ or compilers’
awareness. Figure 4a shows an example of this error, in which
the programmers’ use creates the array ‘‘a’’, which will create
a space in the GPUwithout considering the previous values of
the array ‘‘a’’ in the CPU, which will in turn eventually lead
to wrong results. Another case of this error arising is when
the programmers mistakenly use the delete clause at the exit
data region when the variable needs to be used in the CPU,
as shown in Figure 4b, which causes the variable to not be
copied from the GPU to the CPU, therefore leading to wrong
results. Similarly, when the exit data region directive has not
been written or the ‘‘acc’’ keyword is forgotten, this also will
lead to wrong results as shown in the codes in Figures 4c and
4d, respectively.

In the structured OpenACC data region, there are differ-
ent causes of this type of error, including using the wrong

113238 VOLUME 7, 2019



A. M. Alghamdi, F. E. Eassa: OpenACC Errors Classification and Static Detection Techniques

FIGURE 4. Errors leading to wrong results in the unstructured data region.

data clause or forgetting to write the OpenACC data direc-
tives correctly, which are considered syntax errors, but the
compilers do not detect them. For example, in Figure 5a,
the programmers use the copyin data clause instead of the
copy data clause, while the array ‘‘a’’ needs to be copied
from the CPU to the GPU and then copied back to the CPU.
In this situation, the final result will be incorrect because by
using copyin, the array will be copied to the GPU and stay
there without being copied back to the CPU. Also, if the

FIGURE 5. Errors leading to wrong results in the structured data region.

keyword ‘‘data’’ has not been written in the structured data
region directive, as in Figure 5b, any data clause will not
be activated because the compiler simply ignores the data
region directive and completes the compilation, which results
in incorrect values. However, when the keyword ‘‘acc’’ is
missing, the PGI compiler 18.4 will generate implicit copy
for the array ‘‘a’’ that only occurred in the structured data
region, but in the unstructured data region the compiler will
do nothing, as we see in the previous examples.

B. OPENACC MEMORY ERRORS
In this classification, this type of error will result in wrong
results in some cases, similar to the previous classification,
but this error will also affect application performance and
GPU memory. The main concept behind this classification
is that we identify cases of some unnecessary programming
operations such as keeping unused variables and matrices
in the GPU. Also, they create temporary arrays in the GPU
for some operations and keep them unnecessarily after fin-
ishing operations, which can affect system performance by
allocating unnecessary data to GPU memory and consuming
space and energy. In Figure 6, the arrays ‘‘a’’ and ‘‘b’’ have
been copied to the GPU for calculating the array ‘‘c’’, but
after this operation has been completed, these two arrays still
consume GPU memory without any further usage. In this
case, the programmers should delete these two arrays per
the exit data region directive. Also, further errors can result
from using the same GPU memory with another part of the
code, which conflicts with GPU memory or slows down the
execution of the other operation. This type of error only
happens in the unstructured data region because the pro-
grammers’ responsibility is to use the enter and exit data
regions directives correctly and to determine allocation and
deallocation operations based on the data clause directives.
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FIGURE 6. Memory error causing memory consumption for unnecessary
variables.

FIGURE 7. Calling by value for data clause variable causing an error.

In the structured data region, the programmers determine only
the data clause that they need, and the compiler deals with
internal operations.When exiting the data region, the exit data
directive handles GPU memory deallocation by using either
the delete or copyout data clauses. Finally, one of the most
important issues that some programmers might not be aware
of is if they have as many exit data directives for a given array
as enter data directives.

Another cause of this error is programmers’ use of Ope-
nACC data clause variables designated by functions; this
designation should be determined by reference, not by value.
In Figure 7, the variable ‘‘val’’ in the function ‘‘func’’ is not
the same as the variable ‘‘val’’ in the copyin data clause in the
main program. When the programmers call passes ‘‘val’’ by
value, this means it will make a copy of ‘‘val’’ and send it to
the function, which will then add it to the present data clause.
Therefore, an error message will be issued to indicate that the
variable ‘‘val’’ is not present in the GPU. The solution to this
error is to pass the variable ‘‘val’’ by reference, which lets the
compiler know that the variable ‘‘val’’ is on the GPU, and the
function ‘‘func’’ can then use it directly.

C. RACE CONDITION
The race condition is a common error in parallel applica-
tions, as well as in different programming models. However,
the OpenACC race condition behaves differently and has
different causes as a result of the nature of OpenACC and its

execution in a heterogeneous system architecture. The race
condition can arise from executing processes concurrently
in multiple threads without considering the sequence of the
execution, while the thread execution sequence is critical
to the final result. Also, a race condition can occur when
there is competition between several threads to access the
same memory location. Additionally, when programmers use
OpenACC for parallelizing their applications, there is no
guarantee of the thread execution order [22]. As a result,
the programmers are responsible for examining their code
to make sure there is no data dependency, and they should
not make any assumptions about the thread order execution.
Therefore, OpenACC is more likely to have a race condition
resulting from different causes and situations. We classify
the OpenACC race condition causes into the following six
categories:

1) HOST AND DEVICE SYNCHRONIZATION RACE
In some situations, the synchronization between the
CPU (host) and the GPU (device) is important to maintain
data coherence. Therefore, data updating operations between
host and device and vice versa should be done carefully,
and programmers must determine when and how to update
their data; otherwise, this can cause a race condition. The
code in Figure 8 is an example of a race condition that
occurs because of CPU/GPU synchronization. The elements
in the ‘‘hist’’ array might be updated by multiple threads
concurrently, which causes a data race. The OpenACC update
directive updates the values of the ‘‘hist’’ array between
GPU and CPU in the same data region without ensuring
data independence between each element because of the Ope-
nACC parallel directive, which depends on the programmers
to ensure data independence for each element in the array.
Finally, when programmers use ‘‘kernels’’ to parallelize their
code, they will avoid the data race, but they will lose loop
parallelism because the code will execute sequentially, as the
usage of ‘‘kernels’’ relies on the compiler to determine
dependency in this case.

2) LOOP PARALLELIZATION RACE
When programmers want to parallelize their loops, they
can use OpenACC directives to enable the loop body to
be executed in parallel using concurrent hardware execu-
tion threads. The loop iterations might run in parallel at the
same time without considering the iteration order. Moreover,
the last iteration can be executed and completed before the
first iteration, which will lead to a potential race condition
if the execution order is important to the application. Also,
the data dependency between iterations causes a race con-
dition. As a result, based on the application analysis and
requirements, the programmers should parallelize their loops
carefully to ensure there is no dependency in their loop body
because if so, that will lead to a race condition, causing the
application to fail to meet the user requirements. Figure 9a
shows an example of a race condition resulting from data
dependency. In this example, some x[i] may be read or written
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FIGURE 8. Race condition because of synchronization between host and
device.

FIGURE 9. Race condition caused by data dependency.

by two different threads simultaneously, which causes a race
condition because of the data dependency in the second loop.
Also, in Figure 9b, when using the keyword ‘‘kernels’’ instead
of ‘‘parallel’’ and the loop body has data dependency, this
will generate an error message on runtime, indicating illegal
address during kernel execution.

In addition, some syntax errors affect loop parallelism and
prevent OpenACC from being executed correctly without
compiler detection or programmer awareness. The results
of these errors range from wrong results to performance
issues. For instance, when programmers write the OpenACC
loop directives without using the ‘‘parallel’’ or ‘‘kernels’’
directives, as shown in Figure 10a, it simply executes the
loop, ignoring the OpenACC directive and without compiler
detection, which leads to wrong results. Similarly, if the
programmers write the OpenACC directives using ‘‘parallel’’
instead of using ‘‘parallel loop’’ when they parallelize their
loop, this will also not be detected by the compiler, but
also will not yield wrong results. However, the loop will

FIGURE 10. Syntax error caused loop parallelism errors.

be executed sequentially without the programmers’ aware-
ness, which will affect the overall application performance,
as shown in Figure 10b.

3) SHARED DATA READ AND WRITE RACE
Reading, writing, and updating to or from a shared array by
multiple threads concurrently can be critical and error-prone,
and all need to be handled carefully by programmers. For
instance, writing data by thread ‘‘A’’ in a specific location
and the same location is read by another thread ‘‘B’’; in this
case, there is a potential race condition. This shared data race
can be classified into read-after-write, write-after-read, and
write- after-write, but in read-only cases, there is no data
race. The C and C++ programmers should use the ‘‘restrict’’
keyword [25] whenever the pointers are not aliased and the
compiler needs to be able to parallelize the code; otherwise,
it will not work in parallel. Finally, we have multiple loops,
each of which has a temporary array used during its own
calculation, as in Figure 11. If the array ‘‘tmp’’ is not declared
to be private in each loop, then the ‘‘tmp’’ shared array
might be accessed by different threads executing different
loop iterations in an unpredictable way, which will cause a
race condition and lead to the wrong results.

4) ASYNCHRONOUS DIRECTIVES RACE
All OpenACC directives are synchronous by default, which
means that when there are operations or instructions sent from
the CPU to the GPU to be processed or calculated, the CPU
will wait for the GPU to complete the assigned work before
continuing further CPU execution. By using synchronous
operations, OpenACC ensures the operation execution order
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FIGURE 11. Race condition caused by shared data read and write.

when running on the GPU as run in the original program,
ensuring that the program will work correctly with or without
an accelerator [21]. However, while waiting for GPU compu-
tation to be completed, the system resources will be unused
for a while, which is not an efficient way to run the code.
Therefore, OpenACC supports asynchronous operations by
assigning the work to the GPU while the CPU can complete
other operations, which allows the applications to be worked
asynchronously and can thus enhance efficiency.

By using the OpenACC asynchronous and wait directives,
the CPU can continue working while the GPU works at the
same time, allowing the system to be executed in a pipeline
manner, thus enhancing performance. As a result, the pro-
grammers can ensure the synchronization of their applica-
tions when using asynchronous and wait directives to avoid
causing a race condition between host and device. The race
condition can be caused by misusing these directives without
considering the dependency between different parts of the
code, including OpenACC compute regions or data move-
ments. An example of a race condition caused by misuse of
OpenACC asynchronous and wait directives is shown in Fig-
ure 12. The array ‘‘A’’ will be assigned to asynchronous queue
number 1, while array ‘‘B’’ is assigned to queue number 2,
and the CPU continues working without waiting for these
two queues to be completed before computing array ‘‘C’’.
The race condition occurs as a result of dependency between
different parts of the code where arrays ‘‘A’’ and ‘‘B’’ are
needed before calculating array ‘‘C’’, which leads to wrong
results.

5) REDUCTION CLAUSE RACE
The OpenACC reduction clause can generate private variable
copies for each loop iteration in the OpenACC compute
regions, collecting and reducing all these copies into one
final result based on the specified operations, which will be
returned from the compute region to the CPU. The opera-
tor on the scalar variable can be specified by the reduction
clause, which supports some common operations such as
summation, multiplication, maximum, minimum, and vari-
ous bitwise operations. Some compilers can detect reduc-
tion of the summation variable and implicitly insert the

FIGURE 12. Race condition because of the misuse of asynchronous
directive.

FIGURE 13. Reduction clause error.

reduction clause, but for other operations and other compilers,
the programmers should always indicate the reductions in
their codes. Even though the reduction clause can avoid some
data dependencies by combining the results of each copy of
the reduction variable with the original variable at the end of
the compute region, the absence or misuse of this clause will
lead to a race condition in some cases. Also, the variables
involved in the reduction clause must be initialized properly
based on the reduction clause operations before using them in
the clause, or undefined behavior will result. Figure 13 shows
an example of a race condition that occurs as a result of
reduction clause absence. The variables ‘‘sum’’ and ‘‘multi’’
will cause a race condition resulting inwrong results, and they
should be included in a reduction clause. Some compilers can
detect that the variable ‘‘sum’’ needs to be in the reduction
clause and will implicitly generate a reduction clause, but
other compilers cannot detect it or the variable ‘‘multi’’.

6) OPENACC INDEPENDENT CLAUSE RACE
As previously discussed, the data dependency can cause a
race condition in OpenACC and run-time errors, as well as
preventing the code from being parallelized. The compiler
data dependency analysis does not always have enough infor-
mation to make a decision as to whether the code can be
parallelized or work sequentially, as in the case of using

113242 VOLUME 7, 2019



A. M. Alghamdi, F. E. Eassa: OpenACC Errors Classification and Static Detection Techniques

FIGURE 14. Race condition caused by misuse of OpenACC independent
clause.

OpenACC kernel directives. Therefore, programmers some-
times need to provide the compiler with this information,
which can be done by using theOpenACC independent clause
that tells the compiler that a specific loop is data-independent,
meaning that there is no dependency or relationship between
any two loop iterations, thus overriding the compiler’s loop
dependency analysis. However, the use of the OpenACC
independent clause can be a solution, but also can cause
a race condition when there is data dependency and the
programmers use this clause, which allows the compiler to
generate code to compute these loop iterations using indepen-
dent asynchronous threads. The code shown in Figure 14 is
an example of using the independent clause in a loop that
includes data dependency, resulting in a race condition. In this
example, the programmers tell the compilers that these loop
iterations are data-independent with respect to each other, but
they still have a dependency that causes a race condition,
resulting in wrong and inconsistent results. Finally, program-
mers must be cautious when using this clause, because if any
array element is written by iteration, and if there is another
iteration that also writes or reads, this will cause a race
condition, except for variables in the reduction clause.

D. DEADLOCK
Deadlock in OpenACC can be divided into a host (CPU) and
a device (GPU) deadlock. The device deadlock can occur
when two threads get stuck waiting for each other to release
the lock on a shared resource. In addition, OpenACC is con-
sidered lock-free programming, which is more challenging
than simply using locks in protecting critical regions, as in
OpenMP [22]. In OpenACC, the host deadlock can be a
result of having device livelock because of the nature of the
OpenACC hidden implicit barrier at the end of each compute
region, and the execution of the CPUwill not proceed until all
threads on the GPU have reached the end of the parallel com-
pute region. In other words, the CPU will be waiting for the
GPU to finish its work while the GPU is continuously busy
because of the livelock. We call this CPU deadlock implicit
barrier deadlock, as shown in Figure 15a, in which the second
compute region calculating the array ‘‘B’’ is in an infinite
loop, and the CPU is stuck waiting for all threads to reach the
end of the compute region. The second case of host deadlock
is similar to the previous case, but it behaves differently than
when programmers use the OpenACC asynchronous and wait
directives, as shown in Figure 15b. In this case, the deadlock
will not occur at the end of the compute region because it

FIGURE 15. CPU deadlock because of GPU livelock.

has been assigned to an asynchronous queue, and the CPU
will proceed with the execution until it arrives at the wait
directive, where the deadlock will occur. If there is no wait
directive, the deadlock will occur at the end of the code.
Finally, the interaction between the asynchronous and wait
directives will determine how the deadlock will behave.

E. LIVELOCK
There is a similarity between livelock and deadlock, except
that livelock occurs when two or more threads change their
status continuously in response to other thread changes with-
out performing any useful work. In OpenACC applications,
there is a relationship between deadlock and livelock, as dis-
cussed in the previous section and shown in Figure 15. The
GPU livelock is causing a deadlock in the CPU, while the
CPU livelock will keep the process busy forever, and none
of the processes will make any progress and will not be
completed. Also in livelock, the threads might not be blocked
forever, and it is hard to distinguish between livelock and
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other long-running processes. Finally, livelock can lead to
performance and power consumption problems because of its
useless busy-wait cycles.

V. ARCHITECTURE DESIGN
We designed a static testing tool for detecting OpenACC
related applications errors as discussed in the previous
section, and also discussed our design in [26]. Our design
has the flexibility to detect actual and potential run-time
errors and report them to the programmers with related error
information that helps the programmer to correct them. Our
architecture used a static testing technique for building a new
testing tool for OpenACC systems, which will enhance the
system’s execution time.

Our architecture is responsible for analyzing the input
source code to detect static errors before compilation. As we
discussed OpenACC errors previously, we noticed that we
could detect some OpenACC run-time errors from the source
code, and these errors should therefore be resolved because
they will definitely occur at run time. After compilation and
during run time, potential run-time errors might or might
not occur based on the execution behavior. We can detect
the causes of these potential errors from the source code
before compilation by using static testing. However, these
potential errors will become run-time errors if they have not
been detected, and the programmers should be warned and
consider them.

Finally, it is difficult to test parallel applications due to
the different factors and complicated scenarios that can cause
run-time errors, as well as the nature of parallel applications
and their behavior. These reasons lead to more effort to build
the testing tool in terms of covering every possible scenario
of the test cases and the data.

VI. STATIC TESTING APPROACH FOR DETECTNG
OPENACC ERRORS
In this approach, we will check and examine different
OpenACC directives and clauses to identify actual and poten-
tial run-time errors. Since there is a wide range of errors and
directives to be covered, we also classify our testing approach
into several classes that include OpenACC data clause check-
ing, reduction checking, and asynchronous checking, as well
as instrumenting data race and deadlock for further check-
ing in the dynamic phase of our approach. The targeted
OpenACC source code will be classified into potential error
data region code, free data region code; potential error com-
pute region code, free compute region code, and serial code.
In detail, potential error regions refer to the regions with
actual and potential errors, while the free regions refers to
regions without errors.

Our static tool will understand the tested source code that
includes C++ and OpenACC, analyzing the source code
syntax and semantics to be checked to ensure its correctness.
Different information will be extracted from the source code
and displayed in a log file for the programmer for further
debugging. This information will include the total number of

compute region and structured and unstructured data regions,
as well as their starts and ends in the source code. Also,
the variables in each compute region will be stored with their
related information, including their related compute region
and which part of the equation, as well as in which loop if
it is within a loop. In addition to any information related to
loops, equations, and parallel threads that will be displayed
in the log file with much details of the tested source code.
In the following we will explain our static approach in detect-
ing several type of OpenACC errors based on our previous
classifications.

A. OPENACC DATA CLAUSE DETECTION
We assume that any OpenACC data clause is potentially
error-prone because developers seem to use them ineffi-
ciently, and the compilers cannot detect any errors that related
to OpenACC data clause directives. Our approach uses static
testing that can statically detect OpenACC data clause related
to run-time errors, including the copy, copyin, copyout as
well as the other OpenACC data clauses. The data clauses
related variables will be monitored and tested to ensure their
correctness and to detect any unsafe behavior because these
errors cannot be detected by any compiler, and they will lead
to wrong results. Also, these monitored data clauses variables
can be used to be instrumented for further dynamic testing
during run-time. In more details, when OpenACC directives
are founded in the targeted source code, our algorithm will
determine the areas that have OpenACC data clauses and
their type as well as the region that they belong to whether
compute, structure or unstructured data regions. This mecha-
nismwill help our algorithm to call the related function to test
this part of the code and check for a run-time error statically.
In the case of testing the unstructured data region, there is
an additional test which is counting the number of variables
that appear in the enter data region, which appears in copyin
or create clauses. Also, counting the number of variables that
appear in copyout or delete clauses at the exit region. Then,
comparing these two numbers, and they should be equal if not
an error message with the related information will be sent to
the user as we will explain in Listing 1.

The following algorithm in Listing 1 shows our main
data clause checking algorithm, which started by exploring
the targeted source code to find OpenACC directives that
including data clauses. Then, saving some OpenACC data
clause related information for further using in our algorithm.
When a compute region, structure or unstructured data region
are founded we first check their OpenACC syntax by using
(Chk_ACC_Syntax) to find some related errors, because not
all syntax errors are detected by the compiler and we will
cover these errors that cannot be detected.

After completing our OpenACC syntax checking, our main
checking algorithm will mapping between each directive
type with its appropriate checking algorithm, which includes
(Chk_Struct) and (Chk_Unstruct) to test structured, unstruc-
tured data regions and compute region that will be discussed
in algorithms in Listings 2 and 3. In the case of checking
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Listing. 1. The main data clause algorithm.

unstructured data regions, our approach will count the num-
ber of variables that appear in enters and exit data regions.
Finally, a comparison of these two counters, if they are not
equal, an error message will be issued to the developers
because in unstructured data region the variables at the enter
data region (in create or/and copyin data clauses) must appear
at the exit data region clause (in copyout or/and delete data
clauses).

The algorithm in Listing 2 is responsible for check-
ing data clauses founded in the structured data region or
compute region because they have the same behavior and
roles. The targeted OpenACC data clauses in this algorithm
are copy, copyin, copyout, create, and present. However,
the present data clause will be instrumented for further
dynamic testing because it cannot be detected during our
static approach. Structured data region is defined as that part
of the code that has explicit start and end points where data
lifetime both begins and ends, and the memory only exists
within the data region. Compute region is defined as the
region in which the computation processes are executed in
GPUs, whether it is a parallel region, kernel region, or serial
region. Our static approach targets data clause variables,
checking for their initialization, assignments, and usages in
detecting any error related to any data clause. Some of these
tests for the variables are similar, and some of them are
different depending on the data clause related to the tested
variable.

The algorithm in Listing 2 begins by receiving the tested
data clause variable as well as the data clause type, and then
determining the variable places in the source code to be exam-
ined in three locations: in the source code, the data region,
and before and after this region. The data clause variable
will be tested differently in these three locations to ensure
correctness and report any errors that cannot be detected by
any compiler. In addition, different data clause types will be

Listing. 2. Check structured data clause algorithm.

tested differently in our algorithm based on their purpose
and behavior. We studied and examined these data clauses
to ensure that our approach can detect any potential run-time
errors related to OpenACC data clause directives, which to
the best of our knowledge have not been detected before in
any compiler or testing tool. The developers will receive an
error message if any incorrect situation arises.

In the case of data region testing, different situations can
cause run-time errors and can be detected during the static
testing phase of our algorithm and display an error message
indicating the error place and type, with some additional
information for the developers to consider when correcting
these errors. These situations including, for example, when
a copyin data clause variable is part of an equation, this
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will be indicated as an error because the copyin data clause
will not return the values to the CPU. Therefore, any results
stored in this variable will end in the GPU, and the CPU will
complete execution without considering the newest result of
this variable, which leads the developer to get thewrong result
without the compiler knowing or detecting.

The second area tested by our algorithm is before the
structure data region or the compute region. The variables’
initialization and assignment will be tested in this area, detect-
ing any potential error situations varying from one data clause
type to another. One error satiation can occur in this area of
code caused by the copyin data clause variable. As a result of
the copyin data clause behavior that takes the variable from
the CPU into the GPU, we need to determine whether these
variables are initialized or have value before going to the
GPU. As a result, if the copyin variables are not initialized or
part of an equation, an error message will be displayed to the
developer that includes the error type and the consequences
of this error.

Finally, the last part of the code to be covered is after the
region. In this part, we focus on the data clause variables’
appearance as to whether it appears or is used after the region,
which will cause a run-time error in some situations, and the
developer will receive an error message indicating that. These
error situations include the appearance of copyin and create
data clauses variables because these data clauses will not
move out of the GPU, so their results will not be considered
by the CPU, and the final result will be wrong.

Regarding the unstructured data region, the algorithm in
Listing 3 detects run-time errors that occur in data clauses,
including create and copyin while entering the data region,
as well as copyout and delete at the exit data region. In addi-
tion, the data clause variable that appears in the entering data
region must appear in any data clause at the exit data region.
Otherwise, it will cause undetermined behavior or run-time
errors in the worst case. The unstructured data region is
different from the structured data region in different aspects,
including the fact that the unstructured data region can have
multiple starting and ending points, can branch across multi-
ple functions, and memory exists until explicitly deallocated.
Furthermore, the enter data region directive handles device
memory allocation, and the developer can only use the create
or copyin data clauses. The exit data region directive handles
device deallocations, and developers can only use either the
copyout or the delete data clauses.

Similar to the previous algorithm, this checking process
firstly receives data clause variable and type from the main
algorithm and then scans the source code to allocate the vari-
able locations in the data region, before and after. An addition
check will be conducted to test the variables’ appearance
upon entering the region and an exit region when any variable
appears at one only; an error message will be displayed to
the developer. The second step is checking the data clause
variable for the three locations based on their data clause type
to detect any potential error and report to the developers. Listing. 3. Check unstructured data clause algorithm.
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Listing. 3. (Continued.) Check unstructured data clause algorithm.

One example of the checking process is checking the
copyin clause in the unstructured data region, which is used
to allocate memory in the GPU and copy data from the
host (CPU) to the device (GPU) when entering the data
region. In this case, the copyin variables on entering data
should be deleted or copied out when exiting the data region.
However, the compiler does not detect the related run-time
errors that can occur. When the algorithm in Listing 3 deals
with an unstructured data region copyin clause, there are
some similarities and differences from the previous structured
situation. Before the unstructured data region, our algorithm
will use the same mechanism to detect any related errors
that can be affected by the copyin variables. However, in the
after data region, the variable will be tested if it appears after
the data region, and if the same variable is not part of the
copyout clause at the exit data region, there is an error, and
the developer will receive an error message to address this
problem. Finally, when the variable is in the unstructured
data region, there are some cases where Algorithm 3 detects
them as errors and sends error messages to the developers.
The variables in the copyin clause must appear in either the
copyout or delete clauses, but not both because this will be
detected and reported as an error.

Finally, in data clause detection, the present data clause
refers to the listed variables already present on the device,
so no further action need be taken. This is most frequently
used when a data region exists in a higher-level routine.
Because there is no data movement, we do not check the
variable behavior; we check only the syntax with the pre-
viously mentioned algorithms. We cannot detect run-time
errors resulting from the present clause using our static
approach, and s a result, we will mark this data clause for
further testing because this clause needs to be tested using
dynamic testing techniques.

B. OPENACC RACE CONDITION DETECTION
Different causes can result in a race condition, including
executing processes by multiple threads and where the execu-
tion sequence makes a difference in the result, the execution

timing, and order. Also, this happens when there are two
memory accesses in the program, where they both are per-
formed concurrently by two threads or are targeting the same
location. In addition, by using OpenACC, developers cannot
guarantee the thread’s execution order. Because of the devel-
opers’ responsibility to ensure there is no data dependency,
OpenACC is more likely to have race conditions. Therefore,
our static approach focuses on covering different causes of
OpenACC race condition to ensure an OpenACC race-free
code.

Our tool analyzes the user source code to explore and get
different information to be used in the detection of OpenACC
run-time errors. From the user source code, our tool obtains
the following:

1) Counting the number of compute regions, structured
and unstructured data regions. Determining the start
and end for each of them.

2) Detecting if there is an independent clause and in which
compute region they are located.

3) Creating a variable list for all variables located in each
compute region and storing them in the data structure.

4) Detecting loops in each compute region for further
investigation regarding the data race test, to include the
following information:

• Count the total number of for loops in the user code
in the compute region only; any loop outside the
compute region are not considered.

• Determine the starting value and ending value for
each for loop. Also, for the increment or decrement
values, even if the ending value is a variable, our
tool scans the user source code to identify the value
of the ending variable in the loop.

• Determine compute region for this loop.

5) Detecting all equations located in the compute regions.
6) Storing each array variable in each equation with its

status (read/write) and its index.

Our approach has several techniques to address race condi-
tions based on their causes, as discussed earlier. The follow-
ing is our solution for each classification of race condition.

1) HOST AND DEVICE SYNCHRONIZATION RACE DETECTION
The programmer should be careful when dealing with updat-
ing data between host and device and should know when and
how to do this updating. Sometimes this can cause a race
condition. In this case, our static approach will investigate
any update between host and device to ensure data coherence
and warning the developers in case of any potential error.
The data-dependency analysis can be used in some cases if
it involves the updating operation. Also, our static approach
will insert an instrumentation statement to check the values
between host and device to ensure correctness. These instru-
mentation statements will capture the updated variables on
the one side (GPU or CPU) before the updating process and
compare the results with the developer’s updated variable on
the other side (GPU or CPU) and compare the two values.
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If they have any differences, this will be reported as an error
to the developers. These instrumentation statements will be
executed during our dynamic phase.

2) LOOP PARALLELIZATION RACE DETETION
When parallelizing for loop what happened in reality,
the threads are using different values of iteration variable in
this loop variable and may be running in parallel at the same
time. OpenACC does not make any guarantee regarding the
execution order of the threads. It is even possible that the
last iteration of the loop may be completed before the zero
loop iteration. This will lead to a potential race condition.
Therefore, our static approach will instrument the source
code for data dependency analysis as well as execution order
analysis. In our situation, we will focus on the OpenACC
parallel region because when it has been used, the developer
is responsible for ensuring that the code has enough paral-
lelism, while the kernel directives depend on the compiler to
detect whether the code has enough parallelism or should be
executed sequentially. Our static approach will also mark a
parallel clause for further dynamic investigation during run-
time.

Our tool will investigate each compute region, loop, and
equation in detail, analyzing the variables in these compute
regions and their behavior and values, reporting any possible
race condition to the programmer. Dependency analysis also
will be conducted for any equation in any given loop to detect
any actual or potential race condition. Also, the errors in
loops that prevent execution will be detected in the case of
writing wrong conditions or any other mistakes in the loop
statement.

For detecting code parallelism issues, our tool will test the
generation of threads, which includes gang and vectors. Our
static phase is based on the analysis of the user source code
and will generate gang and vectors for each compute regions
to compare with the actual gang and vectors from the execu-
tion of the user code. Our static phase will insert statements
in the user code to extract the actual gang and vectors from
the user code to compare them with our generation of gang
and vectors. This will help us to detect any related errors
to include user code work sequentially rather than work in
parallel because of not using OpenACC directives properly.
This could help the user to enhance their code’s performance
because the user assumes that some compute regions work in
parallel, but they actually work sequentially. The following
algorithm in Listing 4 shows the process of detecting race
condition in loops:

3) SHARED DATA READ AND WRITE RACE DETETION
For detecting read/write race conditions, our tool builds a
table for each equation that has more than one array variable
because it could have data dependency, using the related loop
information to find the index values. Then, compare their
values to find if there are two or more threads with writing
and reading in the same variable. We store this information
in the data structure, as shown in Figure 16:

Listing. 4. Data dependency race detection algorithm.

FIGURE 16. Data structure to store information for each equation.

Our tool computes the values for each equation in a given
compute region and compares to test if there is a thread read
and another write in the same place; this indicates a race
condition called read/write race condition. Also, if there is
one thread writing to place and another thread writing to
the same place, this will cause a write/read race condition.
Also, in the case of two threads writing in the same variable,
this causes a write/write race condition. However, in the case
of two threads reading from the same variable, this will not
cause a race condition. The data structure in Figure 16 will
be used to detect read and write from multiple threads’
race condition in our static testing tool. This will be shown
in the following algorithm in Listing 5, which can detect
read after write, write after read, and write after write race
conditions.

4) ASYNCHRONOUS DIRECTIVES RACE DETETION
OpenACC has support for both asynchronous and wait
directives. When using asynchronous computation or data
movement, developers are responsible for ensuring that the
program has enough synchronization to resolve any data races
between the host and the GPU. In OpenACC, there is an
implicit default barrier at the end of the parallel accelerator
region, and the execution of the local thread will not pro-
ceed until all threads have reached the end of the parallel
region. By default, all OpenACC directives are synchronous;
that means that the CPU thread sends the required data and
instructions to the GPU, and after that, the CPU thread will
wait for the GPU to complete its work before continuing
execution. Using asynchronous and wait directives allows the
CPU to continue working while the GPU works at the same
time, which allows the pipelining execution of the system and
enhances performance. However, when developers use these
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Listing. 5. Read write race detection algorithm.

directives without considering their system requirements, that
can lead to a race condition.

In this case we focus on testing two main aspects: first,
to test if there is no dependency between the asynchronous
directives, and if they can work pipelining without errors.
In other words, the asynchronous operation region should not
have variables needed by another region; otherwise, a race
condition will occur because the data will arrive before or
after the time that it is needed. Second, our approach will
test the completion of the asynchronous directives at the end
of the region; otherwise, a deadlock situation can arise. The
first situation can be tested during our static phase, and some
instrumentation statements will be needed for further run-
time investigation. The second case will be instrumented by
our static approach and will need further dynamic testing to
detect any errors that may occur. Finally, the asynchronous
operation can cause deadlock and race condition and needs
to be marked by our static analyzer for further testing with a
dynamic approach.

5) REDUCTION CLAUSE RACE DETECTION
One potential cause of a race condition in OpenACC is the
misuse of the reduction clause. Therefore, our static approach
conducts extra testing for this situation to ensure that there
is no misuse of this clause, as the compiler will not detect
errors if there are any. In OpenACC reduction clause and for
each loop iteration, variable copies are generated, and all of
these private copies from different threads are reduced into
one final result that returns to the CPU to be available at the
end of the compute region. Reduction clause operators can
be specified on the scalar variables, which include several
operations, but we focus on the main following four oper-
ations: summation, multiplication, maximum and minimum
operators, and others in our future works. Some compilers
will detect reduction of the reduction variable and implicitly
insert the reduction clause, but in other cases, it is the pro-
grammer’s responsibility to indicate reductions in OpenACC
codes.

Although some data dependency can be avoided by using a
reduction clause, misusing the reduction clause in some cases
will lead to a race condition. Also, the race condition can be
caused by the absence of the reduction clause. The reduction
clause combines the results for each copy of the reduction
variable from different threads with the original variable at
the end of the OpenACC compute region. Therefore, the
variable should be initialized to some value based on the
used operator before using the reduction clause. Otherwise,
undefined behavior will result and lead to a wrong final
result that cannot be detected by compilers. The PGI compiler
can detect the summation reduction clause in some cases
and add it as implicit reduction but cannot detect the other
reduction operations, and the other compilers cannot detect
any reduction operations.

Our static approach considers those problems and the fol-
lowing algorithm in Listing 6 to check the potential errors
related to a reduction clause, including the reduction vari-
ables’ initialization based on their operator types. Concerning
reduction variables involved in multiple nested loops where
two or more of these loops have associated loop directives,
the reduction clause containing these variables must appear
in each of those loop directives; otherwise, a race condition
will occur.

Finally, our algorithm will check if any of the variables
included in the OpenACC compute region have one of the
reduction operations without using reduction directives; this
will be reported as an error to the developers, as an absence
of reduction clause can lead to the race condition. In addition
to inserting some instrumentation statements for the parts
that cannot be detected during our static phase for further
dynamic checking during run-time, and this instrumentation
will be used in case of the absence of the reduction clause
when our static approach determines that the compute region
has reduction operation and the developers forget to use the
reduction clause. Our static approach will instrument this
region by using our reduction-inserted statement.

6) INDEPENDENT CLAUSE RACE DETECTION
When the developers use the independent clause that tells
the compiler that this loop is data-independent, this can
cause problems if there is a dependency. The developers’
responsibility is to ensure not using this clause if there is
a data dependency because the independent clause allows
developers to indicate that the iterations of the loop are data-
independent of each other. As a result, our static approach
will investigate whether the developer decision is correct by
conducting data-dependency analysis in this case.

Our static tool will detect any OpenACC independent
clause and determine their place in the source code and in
which compute region they are located. Then, the source code
will be analyzed to detect any dependency in each equation in
the independent compute region to ensure there is no depen-
dency; if there is a dependency, our tool will detect the race
condition that could result from this dependency and report
them to the user. This examination will be done because
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Listing. 6. Check reduction clause algorithm.

of the nature of the independent clause of the OpenACC,
because it tells the compiler that the programmer is respon-
sible for making sure this area is independent; as a result,
the compiler cannot detect that and resulted in race condition.
The algorithm in Listing 4 shows our static analysis of detect-
ing data dependency and independent clause analysis.

C. OPENACC DEADLOCK DETECTION
Due to OpenACC’s hiding some details, OpenACC compute
regions have an implicit barrier at the end of each compute
region, and we cannot be sure about the thread executions
as well as the thread arrival at the end of each compute
region at a certain time. Therefore, we can consider the end
of each compute region as a potential deadlock point that

might or might not occur. As a result, our static tool will mark
the end of each compute region for further checking during
runtime.

Also, one of the reasons for OpenACC deadlock in the
CPU is having livelock in the GPU. This happens because of
the nature of the implicit barrier at the end of each compute
region. That means the GPU will be busy with the livelock
while the CPU is waiting for the GPU to finish its operation.
In the usage of the asynchronous directive, the GPU livelock
also causes CPU deadlock, but by different behavior than in
the usage of the wait directive, which will cause the CPU to
have a deadlock in that statement. In this case, the deadlock
behaviors are based on the asynchronous and wait directives
interactions. To detect these situations, our static analysis will
investigate the source code to ensure that there are no infinite
loops in each compute region. Any situation that cannot be
detected during our static phase will be marked for further
checking.

Our static analyzer will partially detect OpenACC dead-
lock and mark some places of the code for further dynamic
testing. The main purpose of our deadlock detection is to
ensure there is no livelock in each compute region because
it will cause a deadlock in the host. As a result, we analyze
each loop in the compute region and examine their conditions
to avoid any possibility of ‘‘always true’’ situations. However,
our static analysis is limited to loops and detecting their
conditions to avoid deadlock. More testing will be needed
during run-time for any undetected situations, which will be
marked by our static analyzer, and a warning will then be sent
to the programmer.

VII. DISCUSSION
In Section 4, we identified and classified run-time errors that
can occur in OpenACC applications and explained them with
examples. These errors can happen because of programmers’
lack of understanding of OpenACC and misuse of some
OpenACC directives and clauses. Also, some of these errors
occur when the programmers try to parallelize their code
without fully understanding it and the regions that can be
parallelized, considering different aspects as well as the data
movements. In addition, some errors are related to the nature
of OpenACC and how it behaves, as well as the high-level
programming used inOpenACCwhere the programmers only
use the directives without considering the operations behind
these directives, which is one of the OpenACC features of
which programmers should be aware.

We noticed that some syntax or logical errors caused some
of the OpenACC run-time errors, but compilers do not detect
these syntax errors and just ignore the directive if it is not
written correctly. Some of the run-time errors might have
similar names, but behave differently in OpenACC and have
different causes. In our study, we included only the run-time
errors in OpenACC applications that cannot be detected by
the compilers. Finally, the programmers’ responsibility is
to understand their code and the OpenACC different data
regions as well as compute regions to maximize their code
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TABLE 1. Our static tool evaluation.

being parallelized and benefiting from OpenACC’s capabili-
ties and features.

In addition, we briefly explained our testing tool archi-
tecture design in Section 5, and we discussed our static
approach to detect OpenACC errors in Section 6. We used
several techniques and algorithms to detect different types of
OpenACC errors based on their causes and how they behave.
Since we are dealing with big-sized codes as well as error-
prone applications, we choose to use the static approach to
resolve as many errors as possible before compilation and
without executing the code. This will give us the ability to
analyze the code in detail and obtain full coverage of the
source code. The static analysis gives us the ability to detect
actual run-time errors as well as potential errors from the
source code, which will be beneficial in enhancing the testing
execution time by minimizing the errors that will need further
testing during run-time. Finally, our static approach will mark
the code that has potential errors or needs further testing
during run-time, as well as determining the code parts that
need inserted statements for further testing.

VIII. EVALUATION
In this section, we present the evaluation of our static test-
ing tool and discuss our tool’s capability to detect several
types of OpenACC errors based on our classifications, as we
discussed before, as well as measuring the performances of
our testing tool. The experiments have been performed on
an Intel(R) Core(TM) i7-7700HQ CPU (2.80GHz), 16 GB
main memory, with an NVIDIA GeForce GTX 1050 Mobile
GPU. Also, we used 50 benchmarks from five differ-
ent benchmarks suites including NAS [27], SHOC [28],

TABLE 2. OpenACC statics from the chosen benchmarks.

FIGURE 17. Testing time for our OpenACC static testing approach.

PolyBench-ACC [29], TORMENT OpenACC2016 [30], and
EPCC [31] to conduct the experiments and measure our static
approach error coverage and testing performance.

The following Table 1 shows the OpenACC errors and our
static tool’s ability to detect these errors. Our evaluation takes
each type of OpenACC error and our tool ability to detect
them fully or partially, where full detection means that our
static tool can detect this error, while partial detection means
that our tool can detect some cases, while other cases need
to be tested during run-time or investigated more than static
testing. In some cases, our tool cannot detect these errors by
using static testing, and the errors need dynamic testing due
to the nature of the OpenACC error and the causes behind
them.

As we noticed in Table 1, the majority of OpenACC data
clause-related errors can be detected and resolved by using
our static approach, while race condition and deadlock can
be detected partially and need further testing during run-time.
However, our tool will minimize the number of errors that
need to be detected during run-time, as well as the parts that
need further testing as marked by our static tool. Finally,
our static testing tool has successfully detected OpenACC
errors including data clause-related errors, data transmission
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errors, and memory errors, as well as some race condition and
deadlock cases.

The following Table 2 shows selective comparative study
for our testing approach that from all 50 benchmarks that
we experimented, we choose ten benchmarks, two from each
benchmarks suites we discussed before, as a sample to be
displayed on this table. This table shows some statistics about
the chosen benchmarks, including some OpenACC related
information we used in our static testing approach. Finally,
Figure 17 shows the testing time for each of the tested
benchmarks, where also will be used in our future overhead
measurements whenwe apply our insertion statements for our
future dynamic testing.

IX. CONCLUSION
OpenACC has many advantages and features that lead to
increased use to achieve high parallel systems working in a
heterogeneous architecture. OpenACC is designed for per-
formance and portability that maintains existing sequen-
tial code and parallelizes it by using high-level directives
without considering many details. This will attract more non-
computer science specialists to use OpenACC to acceler-
ate their systems when building powerful simulations with
minimum investment of effort or time in learning how to pro-
gram GPUs. Therefore, misunderstanding OpenACC direc-
tives and clauses can lead programmers to misuse them or
to fail to follow the OpenACC instructions correctly. In this
case, several run-time errors can occur due to OpenACC’s
nature as well as behavior. Programmers could cause these
errors when trying to parallelize applications without follow-
ing directions to avoid some of these errors.

We conducted many experiments and built several appli-
cations to test and simulate run-time errors that can occur in
OpenACC, and we studied their behavior to better understand
them and discover their causes and effects on the applications.
Our contribution is to identify OpenACC errors that cannot
be detected by compilers and that can happen without the
programmers’ awareness. Also, we classify these errors into
five main types based on error similarity and their causes,
as well as how they behave and their effects on the system.
We explain these errors with examples and determine their
causes with respect to application output when they occur.

Also, another main contribution is to design and build a
new static testing tool capable of detecting OpenACC errors
by using static testing techniques. We built a testing tool that
can detect as many OpenACC errors as possible by using
static testing techniques. Our tool has successfully detected
OpenACC errors, including data transmission errors and
memory errors, as well as some race condition and deadlock
cases. Also, our tool has detected OpenACC potential errors
and marked them for further testing during run-time, which
will be part of our future work.

Finally, to the best of our knowledge, there is no published
work that identifies or classifies OpenACC-related errors,
as well as a testing tool that designated for detecting errors
in OpenACC applications. In our future work, we will build a

dynamic testing tool for detecting OpenACC run-time errors
that we cannot detect or partially detect with our static testing
tool.
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