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ABSTRACT Combined with the Internet of Vehicles, some intelligent systems for connected health can
make medical vehicles transport medical supplies more safely and timely in response to catastrophic natural
disasters or serious accidents. However, in an urban scenario, the crisscrossing of roads and the uneven
distribution of vehicles exist, which lead to problems such as the high mobility of vehicles and the attachment
of data. These have become important contributors to the low stability of the vehicle community and the
high distortion of the data among medical vehicles. Focusing on the above problems, this paper proposes
a prediction-based multirole classification community clustering method (PMRC) for the vehicular ad hoc
network (VANET). The experimental results show that the method can effectively improve the stability of
the community in VANET and reduce the probability of data distortion.

INDEX TERMS Community clustering, Internet of Vehicles, load balancing, medical supplies, connected
health.

I. INTRODUCTION
Prompt medical supplies transportation takes an important
role in some situations, such as emergency response, where
multiple vehicles are utilized to transport plenty of medicines
and armamentariums timely. However, as shown in Fig. 1,
the traffic on urban roads is complex, and the moving direc-
tions of the ordinary vehicles are uncertain, which obstruct
the transportation of medical supplies. Nowadays, with the
advance in vehicle-mounted systems and the arrival of 5G
network, increasinglymore studies onVANET have been car-
ried out [1], and VANET-based smart management systems
have been developed for connected health. VANET is uti-
lized to transmit information among nodes instantly in some
emergency response management systems [2] and smart
accident management systems [3], which provide effective
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strategies and decisions in route planning, intelligent schedul-
ing, cotransport, etc.

The complicated urban roads cause the position of themed-
ical vehicles to change frequently. Meanwhile, the vehicles
on the roads are often unevenly distributed, thus their routing
and forwarding capabilities change with their position. These
problems above result in an unstable network connection
of the Internet of Vehicles, which has a negative influence
on the stability of these smart management systems. This
paper focus on these problems in the network among medical
vehicles to make these VANET-based systems work stably
and efficiently.

Usually, the application based on the Internet of Vehicles
requires the Internet of Vehicles wireless communication
technology to interact with other vehicles or other vehicular
networking entities (such as infrastructure, network access
cloud service providers, etc.) under the guidance of the Inter-
net of Vehicles routing protocol to achieve the correspond-
ing functions. Therefore, establishing a stable and reliable
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FIGURE 1. Example of cotransport on urban roads.

data transmission link through the vehicle network routing
protocol is the basic guarantee for the VANET-based emer-
gency response system. Traditional vehicular network rout-
ing protocols which are adapted from the greedy algorithm,
usually choose some single node as the primary forwarding
node and select the node closest to the destination node as
the forwarding node, such as greedy perimeter coordinator
routing (GPCR) [4] and greedy perimeter stateless routing
(GPSR) [5]. These methods cannot discover the relationship
between connected nodes and cannot fully adapt to highly
dynamic topological network changes. To solve this problem,
in recent years, some routing protocols based on the clus-
tering of vehicular networking communities have emerged.
These protocols first cluster vehicle nodes into several com-
munities and then use the clustered communities and infor-
mation between the communities as the basis to guide the
routing to adapt to the rapidly changing network, thus estab-
lishing a relatively stable data transmission link [7]–[11].

Traditional vehicular networking clustered community
usually selects some central nodes or nodes that are closely
related to other communities in the community as key nodes
for routing and forwarding [13]–[20]. The vehicle network-
ing community routing usually emphasizes the role of a
few key nodes in data forwarding. The limited forwarding
capacity of the node is not considered, and some key nodes
are frequently selected as data forwarding nodes, resulting in
data aggregation on these key nodes. The load of each key
node is too high, and data packets are easily lost, resulting
in data distortion. This phenomenon is more obvious when
the vehicle nodes are dense and the data transmission tasks
are numerous. Therefore, the location variability of vehicle
nodes and the integration of data in urban roads are important
factors affecting the stability and the development of routing
in the community of medical vehicles.

To reduce the influence of vehicle node location variability
on the stability of the medical vehicular community, the exist-
ing studies mainly use the current position, speed and moving
direction of the vehicle to predict the topology changes of
the community in the future and take this as the basis for
community clustering to improve the stability of the medical
vehicular community.

In view of the above problems, this paper comprehensively
considers the influence of a medical vehicle’s attributes,
the road information and the driving behavior of the driver
to predict the position of the vehicle node. The predicted
locations of the medical vehicle are used to guide the clus-
tering of the community. At the same time, community
members are divided into different roles, according to which
alternative nodes for forwarding are selected to balance
the load. Based on the above basis, this paper proposes a
prediction-based multirole classification (PMRC) commu-
nity clustering method in VANET to improve the stability
of the medical vehicular networking community, balance the
load of nodes, establish a reliable data transmission channel,
and reduce the occurrence of data distortion. The contribu-
tions of this article are as follows.

1) To improve the stability of the community in VANET,
factors such as the medical vehicle’s attributes, the road
information and the driving environment that affect driving
the vehicle are all considered. Based on the vehicle location
prediction model [6], we present a multirole classification
community clustering strategy to improve the stability of the
community in VANET.

2) To solve the problem of data distortion caused by the
high load on key nodes, we propose a scheme for selecting
candidate nodes for key nodes.

This article is organized as follows. Section II intro-
duces the related work. Section III introduces the sym-
bols and definitions used in this paper. Section IV presents
the VANET multirole classification community clustering
method. Section V discusses the results and analysis of the
simulation experiments. Section VI summarizes this paper.

II. RELATED WORK
A. COMMUNITY STABILITY PROBLEM
Different from traditional community clustering, vehicle
nodes move faster in the Internet of Vehicles, and the topo-
logical relationship between nodes changes rapidly. Using
a traditional community clustering method in the IoV will
result in a short community life cycle and low stability.

A community clustering methods designed for the Inter-
net of Vehicles, AMACAD [7], proposed by Morales et al.,
comprehensively considers the current position of the node
in community clustering, the current speed and the end posi-
tion of each node to estimate the topological changes of the
vehicle nodes for a period of time in the future, which are
used as the clustering basis to extend the survival time of the
community.

ASPIRE [8] was proposed by Koulakezian and aims to
establish a large-scale community. When the head nodes of
two communities enter the mutual area, the head node of
each community maintains a relatively stable connectivity
state and then merges the community to reduce the sepa-
ration and merger of the two communities. Daeinabi et al.
added the direction of vehicle movement, the number of
neighbor nodes and some uncertain factors to the basis for
clustering in VWCA [9]. MC-DRIVE [10] was proposed as
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a direction-based clustering algorithm for the intersection
area, which attains a good stability and accurate density
estimation within the clusters. VANET QoS-OLSR [11] is a
new QoS-based clustering algorithm that considers a tradeoff
between QoS requirements and high speed mobility con-
straints, which aims to form stable clusters and maintain
the stability during communications and link failures while
satisfying the quality of service requirements. The methods
discussed above simply select the most obvious factors that
influence vehicle location and discard a large number of
road conditions that may affect future vehicle locations. As a
result, when the community is clustered by using these influ-
encing factors, the stability of the community is not improved.
The community after clustering still shows the characteristics
of a short life cycle and a fast change in node attribution.
Reference [12] proposed a model to accurately evaluate the
network connectivity of a highly dynamic IoV, which can be
adapted to a clustering basis to make the community stable.

B. LOAD-BALANCING PROBLEM
The community clusteringmethod for the Internet of Vehicles
usually assigns roles to the vehicle nodes as the basis for
the selection of the forwarding node. Zegorz proposed the
MDMAC [13] community clustering model, which divided
the vehicle nodes into a cluster head node (CH) and multiple
cluster member nodes (CM). In [14], Poongodi and Tamil-
selvi assigned different roles to nodes in the community,
including a cluster head node, several gateway nodes (GW)
and multiple cluster members.

In [15], Dror et al. also proposed to divide the vehicle
nodes in the community into a cluster head node, cluster
relay nodes (CR) and common nodes (slave). MOBIC [16]
uses aggregate mobility to select the CH node. Every node
calculates relative mobilities between all of its neighbors
and itself based on the received signal strength (RSS). The
node with the lowest aggregate mobility is chosen as the
CH. New-ALM [17] also chooses a node with less variance
relative to its surroundings as a CH. New-ALM calculates
the relative distance between two nodes, rather than using
the RSS parameter. To choose a better forwarding node,
Reference [18] proposed a k-hop clustering approach. K-hop
uses the ratio of the packet delivery delay of two consecu-
tive packets to calculate the relative mobility. FQGwS [19]
is a QoS-balancing gateway selection algorithm, where the
decision over the gateway depends on the class of traffic
to be transmitted to the infrastructure. The load-balancing
algorithm proposed in [20] considers the equalization load on
the gateway nodes. However, these methods do not provide a
load-balancing strategy for the head nodes with higher load.

C. SUMMARY
At present, increasingly more studies focus on the clustering
of the Internet of Vehicles community. They use the motion
state of the vehicle, the steering of the vehicle intersec-
tion, the direction of vehicle movement and the speed of
the vehicle as the basis for clustering, while the impact of

vehicle positions at future times is ignored. Thus, the effect of
improving the stability of the community is not particularly
obvious. Some algorithms select gateway nodes to balance
the load of the head node, but they lack reasonable allocation
strategies, resulting in massive data on the forwarding node.

Aiming at solving the problem of low stability and data
distortion of the VANET community caused by node location
variability and data attachment, this paper studies the scheme
of community clustering and role allocation based on the
vehicle location prediction model. At the same time, con-
sidering the load balancing of key nodes in the community,
we provide the multirole classification community cluster-
ing method in the VANET scenario to make the emergency
response management system work stably and efficiently.

III. FORMAL SPECIFICATION
A. FORMAL SPECIFICATION OF MEDICAL VEHICULAR
COMMUNITY PROPERTIES
In this section, we transform the medical VANET into a
weighted undirected graph, denoted by G. The medical vehi-
cle nodes in VANET are transformed into nodes in the graph,
the set of which is denoted by Vg = {ve1, ve2, . . .}. The con-
nections between vehicle nodes in VANET are transformed
into the edges in the graph, the set of which is denoted
by Eg = {e1, e2, . . .}. The community in VANET can be
translated into a subgraph of G, denoted by

COMk = {Vk ,Ek |Vk ⊆ VG,Ek ⊆ Eg} (1)

If two vehicles are in the communication range of each
other, an edge exists between the nodes representing the two
vehicles. The weight of the edge denoted by we is measured
by transmission factor (see Definition 1). The weight of
the node denoted by wve is measured by expected neighbor
connection centrality (see Definition 4).
Definition 1: The transmission factor (TRF) represents

the reliability of the connection between two vehicle nodes,
which satisfies (2)

TRF(vei, vej)

=

0, distt (vei, vej) < TR
TR2 − (distt (vei, vej))2

TR2
, 0 < distt (vei, vej) ≤ TR

(2)

where the following apply:
1) Transmission range (TR) is the maximum transmission

range for vehicle communications.
2) distt (vei, vej) is the distance between vei and vej at

time t .
When the distance between vehicles is within the maxi-

mum transmission range, TRF is negatively correlated with
the distance between vehicles. The closer the distance is,
the more reliable the connection is between the two vehicle
nodes.
Definition 2: The neighbor nodes of vei are the nodes that

satisfy TRF(vei, vej) > 0.
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Definition 3: Neighbor connection centrality (NCC) is the
sum of TRFs between vei and its neighbor nodes at time t ,
denoted by

Ci,t =
∑

vei∈NSi

TRF(vei, vej) (3)

where NSi is the neighbor set of vei.
Definition 4: Expected neighbor connection central-

ity (ENCC) represents the weighted average of the NCC
values of the node over a period of time, starting from the
current moment. The ENCC value of vei at time t is denoted
by

Ci,t =
∑

wk∈WS,dtk∈DTS

wkCi,t+dtk (4)

where DTS is the set of time intervals, denoted by DTS =
{dt|dt = 0,1t, 21t, 31t, . . .}, WS is the set of weights,
denoted by WS = {w|w = w1,w2,w3, . . .}, and wi is the
weight of the NCC value at time t + (i− 1)1t .
Definition 5: Community neighborhood connection cen-

trality (CNCC) represents the sum of TRFs between vei and
the nodes within the community COMk at time t , denoted by

CCOMk
i,t =

∑
vej∈NS

COMk
i

TRF(vei, vej) (5)

where NSCOMk
i is the set of neighbor nodes of vei in COMk .

Definition 6: Expected community neighborhood connec-
tion centrality (ECNCC) represents the weighted average of
the CNCC values of the node over a period of time, starting
from the current moment. The ENCC value of vei at time t is
denoted by

CCOMk
i,t =

∑
wk∈WS,dtk∈DTS

wkC
COMk
i,t+dtk (6)

where WS and DTS are defined in Definition 4.
Definition 7: The residual load capacity (RLC) of the node

represents the buffer space remaining for the node to forward
data at the current time. The RLC value of vei at time t is
denoted by RLCi,t . Sending packets larger than RLCi,t to vei
at time t will cause the packet to be lost.

B. FORMAL SPECIFICATION OF MEDICAL VEHICULAR
COMMUNITY ROLES
To distinguish the position of different nodes and to charac-
terize the status of them in the community and their contribu-
tions to the routing of the vehicular network, different roles
are defined for the nodes in the medical vehicular network
community. Typically, there is at least one cluster head and
several members in a community. The head nodemanages the
information of the community, such as the set of CM nodes,
the location of each node and routing tables. In the process
of community evolution, due to the high direct connectivity
and the important information of the community, the head
node is often regarded as an important forwarding node,
which can usually determine whether a new node can join
the community.

In addition to the CH node and CM nodes, to study the
association between the current community and other com-
munities, some clustering methods put forward the concept
of a gateway node, which belongs to a community and is
directly connected to nodes of other communities. Usually,
the number of GW nodes and the quality of connections to
the other community can indicate how closely the community
is connected to the other one. In the routing protocol based
on community clustering, the GW nodes are often used as
the relay nodes of intercommunity communication, which are
responsible for forwarding packets to other communities.

In a routing protocol based on community clustering,
the special position of the head node and the gateway nodes
leads to a high load of data forwarding on these nodes.
To balance the load of the head node and gateway nodes,
this section newly defines collaboration nodes of the head
node and the gateway nodes and thus divides the nodes in a
community into the head node, gateway nodes, collaboration
nodes of the head node, collaboration nodes of the gateway
nodes and the ordinary member node. Nodes that are not
subsumed into the community are defined as single nodes.
Definition 8: The cluster head (CH) is the node with the

highest ECNCC value in the community. vei is thought to
have the best connection quality in the community at time t ,
if it satisfies

CCOMk
i,t ≥ CCOMk

j,t , ∀vej ∈ VCOMk (7)

If there is more than one node with the highest ECNCC
value, select the node with the lowest number as the CH node.
Definition 9: The CH collaboration node (CHC) is a node

in the community with a relatively high ECNCC value.
In COMk , whose CH node is veh, a CHC node must satisfy

CCOMk
i,t ≥ δCCOMk

h,t , 0.5 ≤ δ < 1 (8)

where δ is a factor that controls the number of CHC nodes.
At the beginning of the community formation, the CH node
and the CHC nodes have a lower load of data transfer. δ can be
set to a larger value to reduce the number of CHC nodes. This
enables the connection quality and forwarding features of the
selected CHC nodes to be closer to the CH node. With more
packet forwarding tasks, the CH node and the selected CHC
nodes have reached a high data load, and δ can be reduced
appropriately to select more CHC nodes that can assist in data
forwarding.
Definition 10: The set of gateway nodes between COMk

and COMl is denoted by GWSk,l , which satisfies

GWSk,l = {vei|vei ∈ VCOMk ∧ ∃(vej ∈ NSi ∧ vej ∈ VCOMl )}

(9)

as shown in Fig. 2.
Definition 11: The gateway node between COMk and

COMl , denoted by GWk,l , is the one in GWSk,l with the
largest ECNCC value on COMk . If vei ∈ GWSk,l satisfies
CCOMl
vei ≥ CCOMl

vej ,∀vej ∈ GWSk,l , it is chosen to be GWk,l .
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FIGURE 2. Example of VANET Community Gateway Node Set, where COMl
is the medical community and COMk is ordinary community.

FIGURE 3. Community node role conversion.

If there is more than one node with the highest ECNCC value,
select the node with the lowest number as GWk,l .
Definition 12: The collaboration nodes of the gateway node

between COMk and COMl , denoted by GWCk,l , are nodes
in GWSk,l except GWk,l . The set of GWCk,l is denoted by
GWCSk,l , which satisfies

GWCSk,l = {vei|vei 6= GWk,l, vei ∈ GWSk,l} (10)

CM nodes refer to all community nodes in the community
other than the CH node, the CHC nodes, the GW node and
the GWC nodes, which satisfy the following:

1) The CM node is a single-hop neighbor node of the CH
node. There must exist an edge between the CM node and the
CH node.

2) If vei is a CM node inCOMk , it satisfies ∀(vej ∈ NSi)⇒
(vej ∈ VCOMk ).
Nodes that do not belong to any community are defined

as single nodes (SN). The role transformation of the nodes
is shown in Fig. 3. The arrow direction in the figure indi-
cates role conversion. CH(C) represents a CH or CHC node.
GW(C) refers to a GW or GWC node. In a community,
the CH(C) node can also be a GW(C) node.

IV. CLUSTERING METHODS OF MEDICAL VEHICULAR
COMMUNITY
Community clustering is the process of dividing nodes in the
Internet of Vehicles into different communities. This section
divides the process of clustering into two stages: community
formation and community maintenance. The definition given
in Section III is used as the standard for dividing nodes into
communities.

A. COMMUNITY FORMATION
In the initial stage of VANET, each medical vehicle node is
initialized as an SN node. Then, whether in the community
formation phase or in the community maintenance phase,

TABLE 1. Information table of neighbor nodes.

the node will periodically broadcast heartbeat (HB) packets
to the neighbor node. The HB packet carries information of
the node, including current position of the node, predicted
position of the node, id of the current community, ENCC
of the node, ECNCC of the node and RLC of the node.
The neighbors’ information table (NIT) is maintained for
all nodes to calculate and compare neighbor node’s ENCC,
ECNCC and other indicator data. The items of the table are
shown in Table 1. BEAT_ LENGTH in the table represents a
time interval between two adjacent HB packets.

The node updates the NIT based on the received HB pack-
ets and calculates its ENCC value according to (4). Suppose
that the current node is vei and the current time is t; the table
of neighbor vehicular information stored by node i is used
to obtain the position of neighbor nodes at time t , t + 1,
t + 2, and t + 3. In combination with the predicted position
of vei at the corresponding time, the distances between the
vei node and its neighbor nodes are calculated to obtain the
ENCC of vei. Since the data of the NIT are updated when
receiving the periodically broadcasted HB packets, there may
be a situation that the update is not timely, and there is no
position information at t , t+1, t+2, and t+3. In this situation,
the node is no longer a neighbor of vei. At this time, the TRF
value at the corresponding time is assigned to 0, thus reducing
the contribution to the vei node ENCC value. If the HB packet
is missing for a long time, it is considered that the neighbor
node is disconnected from vei, and its information is removed
from the neighbors’ information table.

Community formation begins with the election of the CH
node. When a node updates its ENCC value, it compares its
ENCC value with that of its neighbor nodes to find the node
with the largest ENCC value, whichwill be selected as the CH
node. When there are multiple nodes with the largest ENCC
value, the node with the smallest ID is selected as the CH
node. After the CH node is selected, the new community ID is
marked as the ID of the CH node, and the neighbor nodes are
informed of the establishment of a new community through
the HB packet broadcast by the CH node. If the neighbor
node is an SN, it joins the community directly and notifies the
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CH node by sending a joining community (JC) request. If the
neighbor node belongs to other nodes, it needs to be judged
whether it is suitable to join the new community. The judg-
ment basis will be detailed in the community maintenance
(Section IV-B) stage. The CH node updates the community
membership table based on received JC packets. If the JC
packet requests to join this community, the node is added to
the table. If the JC packet requests to join another community,
the node is removed from the table. After several iterations,
the community gradually tends to a relatively stable state.
This completes the process of community formation.

B. COMMUNITY MAINTENANCE
In the phase of community maintenance, it is necessary to
address the situation of nodes joining or leaving the commu-
nity dynamically and the situation of communities merging,
splitting and dying. At the same time, the role assignment of
CHC, GW and GWC nodes is also carried out in this phase.

1) PROPERTIES OF NODES AND COMMUNITIES
At this stage, the ownership of nodes needs to be disposed.
When a node receives the HB packet broadcast by its neigh-
bor node, it estimates the duration of the connection between
the node and its neighbor node based on the speed and the
current and the predicted position and then updates the infor-
mation table of neighbor nodes. The implementation is as
shown in Algorithm 1, where calculateFreshness is proposed
in [13].

After updating the NIT, if a new CH node is found in
the table, it can be judged whether the new one is more
suitable to be a CH node than the old one. We improve the
testClusterHeadChange algorithm in the MDMAC method.
Suppose that vei receives the HB packet sent by veh, where
veh is the new CH node in the neighbor nodes’ information
table, and veh is considered superior to vei if it meets the
following criteria:

1) veh is the CH node in its community.
2) Ci,t < Ch,t .
3) The expected connection time of veh and vei as estimated

byAlgorithm 2 is long enough to be greater than the threshold
value α.
4) The angle between veh and vei is less than the threshold

β.
5) CCOMm

i,t < CCOMn
h,t .

If veh is more suitable as a CH node, then vei chooses
to join veh’s community. Based on its role, vei performs the
following operations:

1) If vei is not a CH node, it broadcasts JC packets to
request to join veh’s community. The original community of
vei was informed that vei left this community.
2) If vei is a CH node, it broadcasts JC packets to request

to join veh’s community and notify other nodes in the original
community that the community died. Other nodes in the
community become SN nodes. The SN node selects to join
a new community according to the HB packets of other CH

Algorithm 1 Calculation of the Expected Remaining Con-
nection Time
1: Input: current position of the node Epos, current speed Ev,

positions of neighbor node npos, speed of neighbor node
Env, current time t , predicted positions of the node after
1 s, 2 s, and 3 s posSet , predicted positions of neighbor
node after 1 s, 2 s, and 3 s nPosSet , BEAT_ LENGTH,
Maximum transmission range of the vehicle TR

2: freshness← calculateFreshness( Epos, Enpos, Ev, Env)
3: freshtime← freshness · BEAT_LENGTH
4: coff ← 0
5: for all i ∈ {1s, 2s, 3s} do
6: if If the position of neighbor node at t+ i ∈ nPosSet ∧

dist(nPosSet[t + i], posSet[t + i]) < TR then
7: coff ← i
8: end if
9: end for
10: if freshtime < coff then
11: remainTime← coff
12: else if coff = 3s then
13: remainTime← bfreshtime/BEAT_LENGTHc
14: else
15: remainTime← bcoff /BEAT_LENGTHc
16: end if
17: return remainTime
18: Output: Remaining connection time with neighbor

nodes remainTime

nodes or becomes a CH node of a new community and attracts
surrounding nodes to join.

According to the above rules, nodes can complete the
dynamic change of community ownership, and communities
can die out, split and merge.

2) ROLE ALLOCATION OF CHC, GW AND GWC NODES
At this stage, the role allocation of CHC, GW and GWC
nodes also needs to be addressed. The CH and CHC nodes
maintain the same list of community members. The CH
node and CHC nodes maintain a gateway information table,
respectively, according to the updated information of GW and
GWC nodes in their neighbor nodes. The CH node maintains
a list of community members to know the status of each node
in the community. The common node does not have a list of
community members, so it is impossible to know the status of
each node in the community. The CH node can select nodes
whose community statuses are similar to the CH node as CHC
nodes. Since other nodes in the community can get to know
their adjacent communities and calculate the ECNCC value
of the adjacent communities, GW and GWC nodes can be
selected by common nodes in community, and the CH node
and adjacent CHC node are notified of the results.

CHC nodes are selected according to the ECNCC value.
The closer they are to the ECNCC value of the CH node,
the more suitable they are to be CHC nodes. Assuming that
maxCHCN nodes will be selected, the specific selection steps
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are as follows: finding all the node IDs whose ENCC value
is greater than δCCOMk

h,t in the NIT, taking maxCHCN nodes
with the smallest IDs into newCHCSet and broadcasting the
newCHCSet to all nodes in the community.

The selection of GW and GWC nodes is based on the
ECNCC value of the adjacent community. The selection pro-
cess is shown in Algorithm 2, where the adjacency commu-
nity information table records the ID values of all adjacent
communities of the node and the ECNCC values of the node
for these communities.

Algorithm 2 Selection of GW and GWC Nodes
1: Input: NIT , current node n, CH node h
2: neighborClusters ← find all neighboring communities

of n in NIT
3: newNClusterSet ← ∅
4: for all cluster ∈ neighborClusters do
5: cc← Calculate ECNCC of n for the cluster according

to Definition 6
6: newNClusterSet ← newNClusterSet ∪ {(cluster, cc)}
7: end for
8: if newNClusterSet 6= ∅ then
9: for all CHC ∈ CHCSet do
10: Broadcast newNClusterSet to all CHC nodes to

notify that n becomes a GW node
11: end for
12: if h.id 6= n.id then
13: Send newNClusterSet to CH node to notify that n

becomes a GW node
14: end if
15: end if
16: isGW ← newNClusterSet 6= ∅
17: return isGW , newNClusterSet
18: Output: Whether the node is a GW/GWC node isGW ,

Adjacent community information tablenewNClusterSet

The CH node and CHC nodes need to maintain their own
lists of community members, including CH node lists (only
oneCHnode in the table), CHC lists, GW/GWC lists, andCM
lists. The list of the CH node, CHC and GW/GWC are collec-
tively called the key node member list. In the process of CHC
and GW/GWC election, CH nodes and the corresponding
CHC nodes update the list of key node members according
to the election results. As new nodes join the community,
CH nodes and their corresponding CHC nodes update their
CM lists. When a CM node leaves the community, the CH
node and the CHC node remove the corresponding member
and make a new role selection according to the role of the
removed member. There are two situations in which a mem-
ber node leaves the community:

1) The member node joins other communities and proac-
tively notifies the CH node and corresponding CHC nodes.
In this case, the CH node and CHC nodes remove the member
node from the corresponding lists.

2) The member node is disconnected from the CH node.
In this case, if there are not enough CHC nodes, reselect new
nodes to fill the gap. If these new CHC nodes are GW nodes
as well, remove them from GWSet.

Finally, in addition to updating the table entries maintained
by the node itself when receiving the HB or other notification
packets of the neighbor node, each node in the community
will periodically update its node state to determine the situa-
tion of the neighbor node losing the connection. At the same
time, the CH node needs to select or update the lists of CHC
and GW/GWC. The node vei in COMk , at time t , is updated
as follows:

1) Update CCOMk
i,t .

2) Subtract 1 from the expected remaining connection time
of the neighbor node. If the value is reduced to 0, the neighbor
node is considered to be disconnected with vei, and reselect
new CHC nodes if necessary.

3) If vei is the CH node, the CHC nodes need to be selected
or updated, and all nodes in the community are notified of the
result of the selection or update.

4) Update the ECNCC values between the node and other
communities. If this value changes, the CH node and CHC
nodes are notified to update the community GW nodes’ infor-
mation table.

3) MULTIROLE MEDICAL VEHICULAR COMMUNITY
LOAD-BALANCING ALGORITHM
In routing protocols based on community clustering, the CH
node and GW nodes often play important roles in packet
forwarding and are frequently selected as packet forwarding
nodes. For example, the algorithm in [21] adapts the AODV
routing algorithm of the traditional vehicle network and stores
the routing table between communities in the head node.
When a node in the community sends a packet to a non-
neighbor node, the packet is first sent to the head node, which
determines whether the destination node is in the community.
If the destination node is in this community, the packet is
forwarded directly; otherwise, according to the maintained
information in the routing table, the packet is forwarded to the
corresponding gateway node. Therefore, the header node and
gateway node become the key nodes in the packet sending
path, and the load is heavy. According to the community
node role definition in Section III-B, this section presents an
algorithm to balance the load of the CH node and the GW
node to avoid an excessive load of the CH node and the GW
node.

When the CH node needs to be selected for data forward-
ing, CHC nodes are used as the alternative nodes for the head
node for load balancing. The set of CH nodes and all the
CHC nodes in the community are considered as a CH node
pool (CHP) of the community. The node with relatively high
ECNCC and RLC from the pool is selected to forward data.
At time t , the evaluation factor of vei is defined as

τi,t = CCOM
i,t · l(RLCi,t ) (11)
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Algorithm 3 Selection of the Forwarding Node From the
CHP
1: Input: CH node h, set of CHC nodes CHCSet , NIT
2: neighborNodeSet ← find all neighboring nodes of h in

NIT
3: nCHCSet ← neighborNodeSet ∩ CHCSet
4: if nCHCSet 6= ∅ then
5: fhid ← n.id
6: else
7: τh.id ← NeighborTable[h.id][ENCC] ·

l(NeighborTable[hid][RLC])
8: τmax ← 0
9: for all CHC ∈ CHCSET do
10: CENCC ← NeighborTable[CHC][ENCC]
11: CRLC ← NeighborTable[CHC][RLC]
12: τ ← CENCC · l(CRLC )
13: if τ > τmax then
14: (τmax , τmaxCHC)← (τ,CHC)
15: end if
16: end for
17: end if
18: if τmax > τh.id then
19: fhid ← τmaxCHC
20: end if
21: return fhid
22: Output: ID of the selected forwarding head node fhid

where

l(x) =
1

1+ e−ρ(x−µ)
(12)

Select the node with the largest τ value as the head node of
data forwarding. When the residual load capacity (RLC) of
the node is relatively high, l(RLCi,t ) is close to 1, and CCOM

i,t
will become the dominant factor of selection. When RLC
falls below the threshold, l(RLCi,t ) rapidly approaches 0,
and RLC becomes the dominant factor of selection. At this
point, the load of the node is already relatively heavy, and the
corresponding value of τ is relatively small. According to the
selection rules of CHCnodes in Section IV-B, CHCnodes and
CH nodes have similar ECNCC values. Therefore, nodes with
higher RLC are more likely to be selected, and the nodes in
CHP share the load with each other to balance the load. The
curve of τi,t is shown in Fig. 4, where ρ = 3, µ = −1.67,
the x-axis represents CCOM

i,t , the y-axis represents RLCi,t and
the z-axis represents τi,t .
The implementation of the selection of forwarding the

header node is as shown in Algorithm 3.
When a CH node or a CHC node needs to select a GWnode

for data forwarding, the GWC nodes can be used to share the
load of the GW node. When selecting a GW or GWC, the set
of the GW node and GWC nodes are treated as a gateway
node pool (GWP). An appropriate evaluation factor is used
to find the nodes that are closely connected with the current
community and the target community, and the nodes with

FIGURE 4. The curve of τi,t .

Algorithm 4 Selection of the forwarding gateway node
1: Input: ID of the current community cid , ID of the

destination neighbor community ncid , set of GW nodes
betweenCOMcid andCOMncid GWSet , ECNCC thresh-
old of GW nodes for COMcid ϑin, ECNCC threshold of
GW nodes for COMncid ϑout , ECNCC weight of GW
nodes for COMcid win, ECNCC weight of GW nodes for
COMncid wout , NIT

2: AvailGWSet ← ∅
3: for all GW ∈ GWSet do
4: gwid ← GW .id
5: gwInnerC ← NIT [gwid][ECNCC]
6: gwOuterC ← gw[ECNCC]
7: if gwInnerC ≥ ϑin ∧ gwOuterC ≥ ϑout then
8: AvailGWSet ← AvailGWSet ∪

{(gwid, gwInnerC, gwOuterC)}
9: end if
10: end for
11: for all gwItem ∈ AvailGWSet do
12: (gwid, gwInnerC, gwOuterC) ←

gwItem(gwid, gwInnerC, gwOuterC
13: aw← NIT [gwid][RLC]
14: h′← (win · gwInnerC + wout · gwOuterC) · l(aw)
15: if h′ > h′max then
16: (h′max , fgwid)← (h′, gwid)
17: end if
18: end for
19: return fgwid
20: Output: ID of the selected GW node fgwid

higher residual load capacity are used as the gateway node for
data forwarding. The specific selection steps are as shown in
Algorithm 4, where the selected evaluation factor h′i,t satisfies

h′i,t = (win · C
COMm
i,t + wout · C

COMn
i,t ) · l(RLCi,t ) (13)

and

win + wout = 1. (14)

win and wout are set to 0.5 here. The node with the largest
h′i,t ’ is selected as the gateway node. Similar to Algorithm 3,
when RLC is larger, CCOMm

i,t and CCOMn
i,t are dominant factors

VOLUME 7, 2019 71891



J. Cheng et al.: Research on the Prediction-Based Clustering Method

FIGURE 5. Topology of TAPASCologne dataset road.

for selection. When RLC is less than the threshold value,
the influence of RLC gradually increases, and the nodes with
larger RLC are more likely to be selected. Thus, the nodes in
the GWP share the load with each other to balance the load.
Factor h′ takes into account the ECNCC values between the
node and current community and the connected neighboring
communities. During the forwarding process, the selected
gateway node has a close relationship with the current com-
munity and the destination community; thus, the probability
of packet loss during forwarding is reduced.

V. SIMULATION EXPERIMENTS AND RESULT ANALYSIS
A. THE DATA AND METHOD OF SIMULATION
EXPERIMENTS
1) SIMULATION ENVIRONMENT AND DATASET
The simulation experiments in this section use the Veins [22]
vehicular networking simulation framework. Veins is an open
source framework for running vehicular network simula-
tions, which is based on two well-established simulators:
OMNeT++ [23], an event-based network simulator, and
SUMO [24], a road traffic simulator. It extends these to offer
a comprehensive suite of models for IVC simulation. And we
use the TAPASCologne dataset [25], which is from the Insti-
tute of Transportation Systems at theGermanAerospace Cen-
ter (ITS-DLR), to create a simulation scenario that describes
the traffic flow in an area of 400 square kilometers within
the city of Cologne (Germany) for a whole day. The road
topology of the dataset is shown in Fig. 5.

In this section, the vehicle trajectory data from 6:00 to
8:00 (am) is used to provide the vehicle node motion basis
for vehicle network simulation. During this time period,
more than 8,000 vehicles are driving on the road at the
same time, which can simulate real road conditions and
test the stability of the VANET-based smart management
systems.

2) METHODS
The MDMACmethod, the Nhop [26] method and the PMRC
method given in Section IV are used to cluster the vehicles in
the TAPASCologne dataset. The survival time of the VANET
community formed under the three methods and the number
of node community changes in the community were counted.
The results were recorded, and the stability of the community
formed by the PMRC, Nhop and MDMAC methods was
compared. After the community is formed, the source node
and the destination node sent by the data packet are selected
randomly in the same manner, and the data packet is peri-
odically transmitted. The number of data packets forwarded
by each node in the community, the delivery rate of the data
packet and the average end-to-end delay are recorded. The
results were used to compare the performance of the VANET
community formed by the two methods in the route of the
car network community. The packet delivery rate indicates
the ratio of the number of packets successfully arriving at the
destination node to the total number of transmitted packets.
The average end-to-end delay represents the average time
it takes for a packet to be sent by the source node to the
destination node.

According to the protocol [27], the selection rules for the
data forwarding node are as follows:

1) If the destination node is a direct neighbor node of the
current data packet holding node, the data packet is directly
forwarded to the destination node.

2) If the current data packet holding node is a CM node,
the node is selected from the head node pool according to
Algorithm 3 as the next hop of the packet forwarding.

3) If the current data packet holding node is a CH node or
a CHC node, it is first determined whether the destination
node is a community node. If so, send the packet directly
to the destination node. Otherwise, select the appropriate
community to forward the packet in the neighbor community
as described in protocol [27]. At this point, according to
Algorithm 4, the node is selected from the pool of gateway
nodes as the next hop to forward the packet.

4) If the current data packet holding node is a GW node
or a GWC node, the next forwarding community node in the
neighbor node table is selected as the next hop to forward
the packet according to the information marked by the data
packet.

5) If it is not one of the above four cases, the node continues
to hold the data packet and waits for any of the above four
cases to be satisfied.

In (12), ρ is taken as 1 andµ is taken as 20 KB. In (14), win
andwout are both 0.5. The rest of the experimental parameters
are set as shown in Table 2.

B. RESULT ANALYSIS OF SIMULATION EXPERIMENT
1) COMMUNITY STABILITY ANALYSIS
Fig. 6 shows the average community survival time as a func-
tion of maximum vehicle speed. It can be seen from the fig-
ure that when the speed is small, the increase of the maximum
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TABLE 2. Parameter setting.

FIGURE 6. Comparison of average community survival time.

speed will lead to a rapid decline in the average survival time.
When the speed is greater than 10 m/s and less than 25 m/s,
with the vehicle speed increases, the average survival time of
communities formed by the three methods slowly reduced.
When the maximum speed is greater than 25 m/s, the average
community survival time is short due to the low accuracy
of the vehicle position prediction. After the speed reaches
35 m/s, the average survival time of communities is even
slightly lower than that of MDMAC communities. Overall,
the average survival time of communities formed by PMRC
method presented in this paper is higher than that inMDMAC
and NHop communities.

The community-changing number of the node refers to
the number of times the node joined a new community.
Fig. 7 shows the distribution of the number of nodes with
the community-changing number of nodes. It can be seen
from the figure that as the community-changing number of
nodes increases, the number of nodes obtained by MDMAC,
NHop and PMRC methods all increase rapidly first and then
gradually decrease. In MDMAC clustering communities,
the mode of the community-changing number is 8, and the
average is 9.04. In NHop clustering communities, the mode
of the community-changing number is 10, and the average

FIGURE 7. The number of nodes distributed with the number of node
community changes.

FIGURE 8. High load node packet forwarding amount distribution.

is 9.51. In the PMRC clustering community, the mode of
the community-changing number is 6, and the average is
8.45. In summary, communities formed by the PMRCmethod
have the best stability in vehicular networking communities
formed by PMRC, MDMAC and NHop methods.

2) COMMUNITY ROUTING PERFORMANCE ANALYSIS
Fig. 8 shows the distribution of the proportion of high-load
nodes among all nodes with the number of packets forwarded
by nodes. It can be seen from the figure that in commu-
nities formed by MDMAC and NHop methods, there are
no load-balancing nodes, and there are cases where a few
nodes forward too many data packets. However, the PMRC
method considers load balancing. When the node load is too
high, the residual load capacity is used as the main factor for
selecting the forwarding node. Therefore, the PMRC method
prevents excessive load nodes from appearing in the commu-
nity.

Fig. 9 shows the comparison of packet delivery rates in
communities formed by the MDMAC, NHop and PMRC
methods. As seen from the figure, when the packet
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FIGURE 9. Comparison of packet delivery ratio.

transmission rate is low, communities obtained by the three
methods have similar packet delivery rates in the route of
the car network community. As the packet transmission rate
increases, the forwarding node load increases, and the packet
delivery rate of all three methods decreases gradually. Since
the MDMAC method and the NHop method do not select
alternate forwarding nodes for the head node in the commu-
nity, the data transmission rate is excessively dependent on
the head node after the data packet transmission rate is greater
than 0.4 p/s, and the data packet delivery rate decreases
rapidly. Communities obtained by the PMRC method select
the candidate nodes, namely, the CHC node and the GWC
node, for the head node and the gateway node. When the data
transmission rate increases and the head node and the gateway
node are heavily loaded, the appropriate data forwarding node
is selected from the CHP and the GWP, thereby avoiding
data concentration. Therefore, after the data transmission fre-
quency is greater than 0.4 p/s, the packet delivery rate drops
slowly. When the packet transmission rate is greater than
0.7 p/s, the load of the CHC node and the GWC node begin
to approach saturation and the packet delivery rate also has
a rapid decline. At this time, increasing the number of CHC
nodes and GWC nodes in the community can improve the
load capacity. Overall, compared to the MDMAC and NHop
communities, communities formed by the PMRC method
have the highest packet delivery rate in the route of the car
network community, and the probability of data loss is the
smallest.

Fig. 10 shows the average end-to-end delay as a function
of the packet transmission rate. As seen from the figure,
as the packet transmission rate increases, the average end-
to-end delay in the MDMAC method, NHop method and
PMRC method increases. At low packet transmission rates
(sending rate≤ 0.4 p/s), the node load is low, and the average
end-to-end delay is similar. As the packet transmission rate
increases, the load of key nodes in communities formed
by the MDMAC method and the NHop method gradually
increases and becomes saturated, resulting in a decrease in

FIGURE 10. Comparison of average end-to-end delay.

forwarding performance, and the average end-to-end delay
grows faster than that in PMRC. When the packet transmis-
sion rate is greater than 0.7 p/s, the candidate nodes in the
PMRC community also tend to load saturation, resulting in a
rapid increase in the average end-to-end delay. At this point,
increasing the number of candidate nodes can be considered.

In summary, communities formed by the PMRC method
presented in this paper have the highest community stability
compared with communities formed by theMDMACmethod
and the NHop method, which can effectively balance the
node load, improve the packet delivery rate, reduce data loss,
reduce end-to-end delay and improve routing and forwarding
performance.

VI. CONCLUSION
Based on the vehicle position prediction model given in [6],
this paper presents a multirole classification community clus-
tering method PMRC for the VANET scenario. The method
considers the location of the medical vehicle in the future
as a guiding factor of community clustering to improve the
stability of the medical vehicular community. Furthermore,
the method selects the candidate nodes for balancing the load
for the head node and the gateway node in the community
to reduce the probability of an excessive node load and
improve the packet delivery rate, thereby reducing the occur-
rence of data distortion. The rationality and effectiveness of
the PMRC method are verified by simulation experiments.
This proposed method provides a reliable network for the
smart management systems for connected heath, thusmedical
vehicles can transport medical supplies more efficiently and
safely.
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