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Abstract: The problem of how to identify the piecewise affine
system is studied in this paper, where this considered piecewise
affine system is a special nonlinear system. The reason why it is
not easy to identify this piecewise affine system is that each sepa-
rated region and each unknown parameter vector are all needed to
be determined simultaneously. Then, firstly, in order to achieve the
identification goal, a multi-class classification process is proposed
to determine each separated region. As the proposed multi-class
classification process is the same with the classical data clustering
strategy, the multi-class classification process can combine the
first order algorithm of convex optimization, while achieving the
goal of the classification process. Secondly, a zonotope parameter
identification algorithm is used to construct a set, which contains
the unknown parameter vector. In this zonotope parameter iden-
tification algorithm, the strict probabilistic description about the
external noise is relaxed, and each unknown parameter vector
is also identified. Furthermore, this constructed set is consistent
with the measured output and the given bound corresponding to
the noise. Thirdly, a sufficient condition about guaranteeing our de-
rived zonotope not growing unbounded with iterations is formulated
as an explicit linear matrix inequality. Finally, the effectiveness of
this zonotope parameter identification algorithm is proven through
a simulation example.
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1. Introduction

In this paper, our considered piecewise affine system can
be regarded as a special hybrid dynamical system, as the
piecewise affine system denotes the switching principle by
using a collection of linear differential or difference equa-
tions, whose state space is partitioned by a finite number
of linear hyperplanes. Generally hybrid dynamical systems
belong to a class of complex dynamic systems, which in-
clude interacting discrete events and continuous variable
dynamical systems. All above mentioned hybrid dynami-
cal systems are important in lots of application fields, such
as embedded systems, cyber physical systems, robotics,
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manufacturing systems and biomolecular networks, and
they have recently been at the center of intense research ac-
tivities in the control theory and artificial intelligence com-
munities. However, in order to control a dynamical system,
generally after modeling the considered plant by using the
system identification theory, the process of system iden-
tification is finished and the process of control design is
started. Moreover, the control performance depends on the
mathematical model for the considered plant closely, i.e.,
the accuracy of the mathematical model will affect the lat-
ter control performance. It means the goal of system iden-
tification is to provide a mathematical basis for the next
controller design, and this is the reason of the name for
“identification for control”. Because the considered plant
and controller exist in the original closed loop system si-
multaneously, before identifying that unknown plant, the
controller needs to be considered whether it is known or
not in priori.

According to [1], the process of system identification
consists of designing and conducting the identification ex-
periment in order to collect the measurement data, se-
lecting the structure of the model, specifying the parame-
ters to be identified, and eventually fitting the model pa-
rameters to the obtained data. A large number of non-
linear model structures have been constructed to investi-
gate their properties [2], where some real time fast con-
vex algorithms are proposed to identify model parame-
ters. Identification of the hybrid systems is an area that
is related to many other research fields within nonlinear
system identification, as such hybrid systems are suffi-
ciently expressive to model many physical processes [3].
The identification of the piecewise affine system is a chal-
lenging problem, as it involves the estimation of both the
parameters of the affine sub-models, and the coefficients
of the hyper-planes [4]. Lauer et al. proposed to exploit the
combined use of clustering, linear identification, and pat-
tern recognition techniques [5]. In [6], the sub-model pa-
rameters were described through probability density func-
tions. The sum of the norms regularization strategy in [7]
can be computationally heavy in case of appropriate step
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size. The piecewise affine system identification problem
amounts to learning from a set of training data [8]. This
piecewise affine system identification problem is a non-
deterministic polynomial (NP) hard problem in general [9].
For the sake of simplicity, the sparse property is imposed in
piecewise affine systems [10]. The strengths of the piece-
wise affine system identification problem of [11] are the
computational efficiency and the ability to be run both in
a batch and in a recursive way. A three-stage procedure
of a bounded error approach for parametric identification
of piecewise affine autoregressive exogenous models was
proposed in [12]. The conversion of piecewise affine mo-
dels from the state space input-output form was addressed
by deriving necessary and sufficient conditions [13]. A
convex relaxation based on L1 regulation was proposed in
[14] to approximate the underlying combinatorial problem.
The statistical clustering technique in [15] computed the
parameters of the affine local models, then partitioned the
regressor space.

It is well known that in the piecewise affine system, the
space is partitioned into many separated regions and a lo-
cal linear form is used for each separated region. Thus the
first step in identifying the piecewise affine system is to
determine these separated regions. After the separate re-
gions are given, the second identification problem is re-
duced to identify the linear submodels for each region. To
deal with the above mentioned steps, we reformulate the
problem of determining the separated regions as a multi-
class classification problem, which can be solved by the
classical first order algorithm from the convex optimiza-
tion theory. A multi-class classification problem coincides
with a data clustering process into the separated regions.
When we identify the unknown parameter in each sepa-
rated region, many classical identification algorithms can
be used directly. However, all the classical identification

algorithms hold in case that the considered noise may be a
zero mean random signal. To relax this strict probabilistic
description on noise, a zonotope parameter identification
algorithm is investigated in the presence of bounded noise.
Generally the zonotope parameter identification algorithm
computes a set that contains the parameters, and this set is
consistent with the measured output and the given bound
of the disturbance. To keep our derived zonotope not grow-
ing unbounded with the iteration steps, some contracting
properties must be imposed.

The rest of this paper is organized as follows. In Sec-
tion 2, the problem setting and the piecewise affine sys-
tem are presented. In Section 3, a multi-class classification
problem based on the first order algorithm from the convex
optimization theory is introduced to determine the sepa-
rate regions. In Section 4, a zonotope parameter identifica-
tion algorithm is proposed to identify the unknown para-
meters in the presence of bounded noise for each separated
region. In Section 5, a very simple numerical example is
used to illustrate the proposed algorithm. Finally, conclu-
sions and comments about future research are presented in
Section 6.

2. Piecewise affine system

Consider the following affine model as

y(t) = −
na∑
i=1

aiy(t − i)+
nb∑

j=1

bju(t − i)+e(t) (1)

where u(t) and y(t) are input and output signals respec-
tively, ai (i = 1, . . . , na) and bj (j = 1, . . . , nb) are the
unknown models or system parameters, and e(t) is an ex-
ternal noise or disturbance. Two numbers na and nb are
priori known.

Rewrite (1) as a linear regression form, and define a re-
gression vector φ(t) as{

φ(t) = [−y(t − 1) − y(t − 2) · · · − y(t − na) u(t − 1) u(t − 2) · · · u(t − nb)]T

y(t) = φT(t)θ + e(t) (2)

where the unknown parameter vector is stacked as

θ = [a1 a2 · · · ana b1 b2 · · · bnb
]T. (3)

For large enough orders na and nb, the affine model can
be used to approximate any linear system, but it cannot
capture any nonlinear properties, so to extend the affine
model into the nonlinear system, our considered piecewise
affine system is obtained. At this time, the unknown pa-
rameter vector θ is dependent of the region in the regres-
sion space, where the regression vector φ(t) lies. Thus the
regression space can be divided into n separated regions
R1 · · ·Rn. Let us define the piecewise affine system as

y(t) = φT(t)θi + e(t), φ(t) ∈ Ri (4)

where the parameter vector θi depends on its correspond-
ing separated region Ri. The identification problem for the
piecewise affine system is reformulated as that, after the
output and input observed data point {u(t), y(t)} is col-
lected by using some sensors, how to identify those un-
known parameter vectors θi (i = 1, . . . , n)? Due to the
fact that the regression vector φ(t) is constituted by the
output and input observed data point {u(t), y(t)}, the first
step is to determine which region the regression vector be-
longs to.

3. Multi-class classification process

Because n separated regions R1 · · ·Rn exist, the determi-
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nation about which region the regression vector lies is in
conjunction with a multi-class classification process.

Observing N input-output data points z(t) (t =
1, . . . , N) as follows:

z(t) = [y(t) φ(t)]T =

[y(t) − y(t − 1) − y(t − 2) · · · − y(t − na)

u(t − 1) u(t − 2) · · · u(t − nb)]T (5)

where N denotes the number of observed input-output data
points, and each data point z(t) is included in one of n non-
overlapping classes, along with labels λt ∈ Rn, where Rn

is the real number set with dimension n, and basic quad-
rants in Rn, and the index of the only nonzero entry in λt

is the number of class to which z(t) belongs.
A multi-class analogy of the standard linear classifier is

built as follows: a multi-class classifier is specified by a
matrix A and a vector a ∈ Rn. Given the input-output ob-
served data point z(t), compute the n dimensional vector
Az(t) + a, identify its maximal component, and treat the
index of this component as our guess for the serial number
of the class to which z(t) belongs.

Set λt = 1 − λt as the component of λt. Given a data
point z and the corresponding label λ, let us set

h = h(A, a, z, λ) = [Az + a] − [λ(Az + a)] + λ. (6)

If i∗ is the index of the only nonzero entry in λ, then the
i∗th entry in h is zero. h is nonpositive if and only if the
classifier, given by A, a and evaluated at z, recovers the
class i∗ of z with a margin 1, i.e., we have

[Az + a]j � [Az + a]i∗ − 1, j �= i∗. (7)

On the other hand, if the classifier fails to classify z cor-
rectly, that is,

[Az + a]j � [Az + a]i∗ (8)

for some j �= i∗, then the maximal entry in h is equal to or
larger than 1, so we introduce the following equation:

η(A, a, z, λ) = max
1�j�n

[h(A, a, z, λ)]j . (9)

A nonnegative function is obtained, and it always vani-
shes for the pairs (z, λ). The pairs are quite reliably (with
margin � 1) classified by (A, a), and equal to or larger
than 1 for the pairs (z, λ) with z not classified correctly.
Thus, the following function is simplified as

F (A, a) = E{η(A, a, z, λ)}. (10)

This expectation being taken over the whole distribution
of the pairs (z, λ) is an upper bound on the probability for
the classifier (A, a) to misclassify a data point. What we
would do is to minimize F (A, a) over A and a. To achieve
this mission, since F (A, a) is not observable, we replace
the expectation by its empirical counterpart

FN (A, a) =
1
N

N∑
t=1

η(A, a, z(t), λt). (11)

For the sake of simplicity, imposing an upper bound
on some norm ‖A‖ of A, an optimization problem is ob-
tained.

min
A,a

1
N

N∑
t=1

max
i�n

[Az(t) + a − λt(Az(t) + a) + λt]i

s.t. ‖A‖ � 1 (12)

A natural choice of the norm ‖A‖ is the maximum of
the ‖A‖2 norm. Once optimization variables A and a are
obtained, then the linear classifier Az(t) + a is get. From
the above multi-class classification process, after a data
point is collected, we cluster it with a linear classifier.
Thus based on the above linear classifier, all data points
can be clustered together, then those data points clustering
together as a class can be used in the second identification
problem for an unknown parameter.

4. Zonotope parameter identification
algorithm

After all collected input-output data points are clustered
as these n classes, then these data points belonging to the
same class can be used to identify an unknown parameter.
Here we only rewrite the following piecewise affine system
in the ith separate region.

y(t) = φT(t)θi + e(t), φ(t) ∈ Ri (13)

The goal of this section is to identify the unknown pa-
rameter vector θi in case of the unknown but bounded
noise. Based on this unknown but bounded noise, one of
the new identification approaches, the zonotope parameter
identification algorithm, is chosen to identify the unknown
parameter vector θi. This identification algorithm obtains a
set iteratively that includes the parameters consistent with
the measured output signal and the given bound of the dis-
turbance or noise. The zonotope is used to represent this
obtained set. The reason of using the zonotope is that a
zonotope is an affine map of a unitary hypercube.

Observing (13) again, as e(t) represents the considered
disturbance or external noise, and assume this external
noise belongs to a bounded set, i.e.,

e(t) ∈ {e ∈ R : |e| � σ} (14)



1080 Journal of Systems Engineering and Electronics Vol. 31, No. 5, October 2020

where σ ∈ R is an upper bound and external noise e(t) is
unknown, but it has a known bound in priori.

From the set membership identification theory, given a
set of measured outputs, the feasible solution set (FSS)
for the unknown parameter is defined as the set of pa-
rameters that are consistent with measured outputs and
the given bounds of the considered external noise. More
precisely, the following definitions are given through this
whole zonotope parameter identification algorithm.

Definition 1 FSS
Suppose the observed input-output pairs {y(t), φ(t)} (t =

1, 2, . . . , N) are given. The unknown parameter vector θi

is regarded to belong to the FSS if there exists θi, such that

|y(t) − φT(t)θi| � σ, t = 1, 2, . . . , N. (15)

Definition 2 Information set
Given the observed input-output pairs {y(t), φ(t)} (t =

1, 2, . . . , N) at time instant t, the information set It is
deemed as a set of all feasible parameters, which are con-
sistent with the linear regression model (13), the measured
output y(t) and the known bound at time instant t, namely,

It = {θi ∈ Rna+nb : −σ � y(t) − φT(t)θi � σ}. (16)

Geometrically, It represents a strip, which is consis-
tent with the observed input-output pairs {y(t), φ(t)} (t =
1, 2, . . . , N).

The FSS at the next time instant t + 1, denoted as
FSSt+1, can be computed exactly from the one corre-
sponding to time instant t by the following iterative recur-
sion:

FSSt+1 = FSSt ∩ It. (17)

Because it is difficult to compute the FSS, an outer
bound of the FSS can be defined again.

Definition 3 Approximated FSS (AFSS)
An AFSS is a set that satisfies FSS. The intersection

FSSt ∩ It is approximated by means of the intersection
between a zonotope and a strip at time instant t.

Definition 4 Zonotope of order m

Given a vector p ∈ Rna+nb and a matrix H ∈
R(na+nb)×m, a zonotope of order m is a set with n1 =
na + nb dimensional vectors.

Z = {θi ∈ Rn1 : θi ∈ p ⊕ HBm} (18)

where HBm is a linear projection of Bm into n1 =
na +nb dimensional parameter space, Bm is a unit hyper-
cube of the order m, and ⊕ denotes the Miniowski sum.

Using the above definitions and the AFSS on the inter-
section (17), then we have

FSSt+1 = FSSt ∩ It ⊆ AFSSt+1. (19)

If in (19), FSSt is denoted by a defined zonotope, and
the information set It is a strip, then a family of zonotopes,
bounding the intersection between a zonotope and a strip,
are derived as the following obtained Theorem 1.

Theorem 1 Suppose a zonotope is used to denote an
FSS at time instant t.

FSSt = p̂t ⊕ ĤtB
r ⊂ Rn1 (20)

and the information set or a strip is given as

It = {θi ∈ Rna+nb : −σ � y(t) − φT(t)θi � σ} (21)

and a scalar γ defines the following variables as{
p̂t(γ) = p̂t + γ(y(t) − φT(t)p̂t)
Ĥt(γ) = [(I − γφ(t))Ĥt σγ]

(22)

where I is an identity matrix. Thus we have

FSSt+1 = FSSt ∩ It ⊆ AFSSt+1 =

p̂t(γ) ⊕ Ĥt(γ)Br+1. (23)

A scalar γ ∈ R is chosen by an optimization based
method, through minimizing the volume of the obtained
zonotope. Now the minimization of the P-radius of a zono-
tope is applied, as the P-radius criterion allows to guaran-
tee the non-increasing property of the guaranteed zonotope
at each time instant. It tells us that to guarantee the AFSS
not growing unbounded with iteration steps, the following
inequality relation between two neighboring zonotopes is
imposed to guarantee that property.

lt � βlt−1 + σ2 (24)

where β ∈ (0, 1] is a contraction rate, and lt is a chosen
parameter or the P-radius of the zonotope parameter esti-
mation set at time instant t, which is defined by

lt = max
θi∈FSSt

(‖θi − p̂t‖2
P ) (25)

where P is an n1-dimensional positive definite matrix.
After substituting (25) into (24), we have

max
bz∈Br+1

(‖Ĥt(γ)ẑ‖2
P ) �

max
z∈Br

β(‖Ĥt−1z‖2
P ) + max

η∈B1
‖ση‖2

2. (26)

Expanding (26) to obtain the following inequity:

ẑTĤt(γ)PĤt(γ)ẑ − βzTĤt−1PĤt−1z − η2σ2 � 0.

(27)

Due to the recursion property of Ĥt(γ) in (22), we con-
tinue to compute

Ĥt(γ)ẑ = (I − γφ(t))Ĥt−1z + σγη =

(I − γφ(t))z + σγη (28)
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where we set two new defined variables{
z = Ĥt−1z
ẑ = [z η]T

. (29)

Applying (28) in (27), we get

[zT(I − γφ(t))T + σγη]P [(I − γφ(t))z + σγη]−
βzTPz − η2σ2 � 0. (30)

Formulating the above inequality to simplify it as

zT(I−γφ(t))TP (I−γφ(t))z+zT(I−γφ(t))TPσγη+

σγηP (I−γφ(t))z+σ2γ2η2−βzTPz−η2σ2 � 0. (31)

A sufficient condition for (31) to hold can be rewritten
as the following linear matrix inequality:

[
z
η

]T

×
[

(I − γφ(t))TP (I − γφ(t)) − βP (I − γφ(t))TPσγ
Pσγ(I − γφ(t)) σ2(γ2 − 1)

] [
z
η

]
� 0,

∀z, η. (32)

Using the definition and the property of the positive
definite matrix, we rewrite it as[
(I−γφ(t))TP (I−γφ(t))−βP (I−γφ(t))TPσγ

Pσγ(I − γφ(t)) σ2(γ2 − 1)

]
�0,

∀
[

z
η

]
�= 0. (33)

The linear matrix inequality in (33) defines the feasible
solution for scalar γ, i.e., γ can be computed by solving
the following eigenvalue problem:

max
τ,γ

τ

s.t.
(1 − β)P
max
η∈B

‖γη‖2
2

� τI, τ > 0

[
(I−γφ(t))TP (I−γφ(t))−βP (I−γφ(t))TPσγ

Pσγ(I − γφ(t)) σ2(γ2 − 1)

]
�0.

(34)
After solving the above convex optimization algorithm,

then based on this optimal scalar γ ∈ R, a zonotopic outer
approximation of the intersection between a zonotope and
a strip is obtained by using the matrix inequality optimiza-
tion strategy.

Finally, our zonotope parameter identification algorithm
is formulated as follows.

Algorithm 1 Zonotope parameter identification algo-
rithm

Step 1 Obtain measured input-output data points and
construct the regressor vector φ(t) according to (5).

Step 2 Build a strip that bounds the consistent parame-
ters, i.e., it is similar to the following information set:

It = {θi ∈ Rna+nb : −σ � y(t) − φT(t)θi � σ}.

Step 3 Construct a zonotope

FSSt = p̂t ⊕ ĤtB
r ⊂ Rn1

to denote the FSS at time instant t.
Step 4 Compute the intersection between a zonotope

and a strip at time instant t and obtain a new zonotope at
the next time instant t + 1:

FSSt+1 = FSSt ∩ It ⊆ AFSSt+1 =

p̂t(γ) ⊕ Ĥt(γ)Br+1

to denote the AFSS at time instant t + 1.
Step 5 Choose an optimal scalar γ through solving a

matrix inequality optimization strategy according to (34).
Step 6 Repeat the above steps and terminate the recur-

sive algorithm when the P-radius lt is zero, then denote p̂∗

as the vector in the last zonotope, so the unknown parame-
ter vector θi is given by

θ̂i = p̂∗. (35)

It is similar to applying the above six steps to identify
another unknown parameter vector.

Based on the linear matrix inequality (33), it corre-
sponds to the contracting properties between two neigh-
boring zonotopes, then this linear matrix inequality can be
regarded as a sufficient condition to guarantee that the vo-
lume of the obtained zonotope will be decreased as the iter-
ation steps increase. It means that after the above six steps
are stopped, the volume of the final zonotope will be suf-
ficiently small, then the center of the final zonotope can
be chosen as the parameter estimation. Therefore, the con-
vergence consistency of the proposed zonotope parameter
identification algorithm can be guaranteed by the added
contracting properties.

5. Numerical example

In this numerical example section, a special piecewise
affine system is used to prove our ideas, such as the two
class classification process and the zonotope parameter
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identification algorithm. This simple piecewise affine sys-
tem is given as follows:

y(t) =
{

φT(t)θ1 + e(t), φ(t) > 0
φT(t)θ2 + e(t), φ(t) � 0 (36)

where the condition that the regression vector φ(t) satisfies
φ(t) > 0 means all the elements in the regression vector
φ(t) are positive. Furthermore, similarly the condition that
the regression vector φ(t) satisfies φ(t) � 0 means all the
elements in the regression vector φ(t) are negative or zero.

In (36), the regression vector φ(t) and two unknown pa-
rameter vectors θ1 and θ2 are described as⎧⎨

⎩
φ(t) = [−y(t) − u(t)]T

θ1 = [7 2]T

θ2 = [2 0.5]T
. (37)

The input signal u(t) is used to excite the piecewise
affine system (36), then the actual input signal is plotted in
Fig. 1(a). We use its approximated input signal to replace
the actual input signal in our simulation, because it is not
useful in practice, where the approximated input signal is
similar to the sinusoidal signal in Fig. 1(b). Then we collect
the output signal y(t) by using some sensors, the observed
output signal is plotted in Fig. 2.

Fig. 1 Applied input signal

Fig. 2 Observed output signal

Firstly, our mentioned multi-class classification process
is reduced to two class classification problems. After col-
lecting one input-output data point (y(t), φ(t)), the re-
gion, which this data input-output point belongs to, is de-
termined. In the whole simulation process, the number of
given input-output data points is set to be N = 500, i.e.,
these 500 data points belong to one of the two classes. The
detailed clustering process can be seen in Fig. 3, where the
data points are clustered around two ellipsoids. As from
three points deviate away these two ellipsoids, then they
are regarded as outliers and they are deleted in our simu-
lation. From Fig. 3, all data points are classified correctly,
except those three data points.

Fig. 3 Whole clustering process for estimated collected data

Secondly, in the presence of unknown but bounded ex-
ternal noise, choose its upper bound as

|e(t)| � σ = 0.5

and all initial parameter values are chosen as

θ̂0 =
1
p0

I.

The introduced zonotope parameter identification algo-
rithm is used to identify those two unknown parameter vec-
tors. Using the above six steps to construct a sequence of
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candidate zonotopes iteratively, we see that after 20 iter-
ations, these candidate zonotopes are given in Fig. 4 and
Fig. 5.

Fig. 4 Candidate zonotopes iteratively for the first optimal parame-
ter vector

Fig. 5 Candidate zonotopes iteratively for the second optimal pa-
rameter vector

In Fig. 4, the black star denotes the optimal parameter
vector to be θ1 = [7 2]T, and a sequence of candidate
zonotopes are generated by the zonotope parameter iden-
tification algorithm, which include θ1 = [7 2]T as their
interior points. The volumes of these candidate zonotopes
decrease with iterations, i.e., certain contracting properties
are guaranteed. Generally, the other unknown parameter
vector corresponding to θ1 = [7 2]T can be chosen as
the center of the smallest zonotope. Furthermore, the black
star is the optimal parameter vector as θ2 = [2 0.5]T in
Fig. 5, and the results are similar to those in Fig. 4.

From Fig. 3, all data points are classified correctly, so
Fig. 3 can be used to measure the performance of the multi-
class classification process.

Fig. 4 and Fig. 5 are used to measure the performance
of the zonotope parameter identification algorithm, and

the black star is the optimal parameter vector. After run-
ning the zonotope parameter identification algorithm, a
sequence of zonotopes are obtained. Moreover, the opti-
mal parameter vector is an interior point or a center of the
smallest zonotope.

6. Conclusions

In this paper, we study the problem of identifying a special
nonlinear system, the piecewise affine system, which com-
bines linear and nonlinear properties. As this piecewise
affine system is piecewise affine in the regression space,
the parameter vector depends on the region in the whole
considered regression space. The separated regions are de-
termined as a multi-class classification problem, which can
be solved by the classical first order algorithm from the
convex optimization theory. In the presence of unknown
but bounded external noise, the zonotope parameter iden-
tification algorithm is introduced to identify the unknown
parameter vector in each separated region. Generally, the
finite sample property of the zonotope parameter identifi-
cation algorithm is our ongoing work.
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