
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Bridging a Gap in SAR-ATR: Training on Fully
Synthetic and Testing on Measured Data

Nathan Inkawhich, Matthew Inkawhich, Eric Davis, Uttam Majumder,
Erin Tripp, Chris Capraro and Yiran Chen

Abstract—Obtaining measured Synthetic Aperture Radar
(SAR) data for training Automatic Target Recognition (ATR)
models can be too expensive (in terms of time and money) and
complex of a process in many situations. In response, researchers
have developed methods for creating synthetic SAR data for
targets using electro-magnetic prediction software, which is then
used to enrich an existing measured training dataset. However,
this approach relies on the availability of some amount of
measured data. In this work, we focus on the case of having 100%
synthetic training data, while testing on only measured data. We
use the SAMPLE dataset public released by AFRL, and find
significant challenges to learning generalizable representations
from the synthetic data due to distributional differences between
the two modalities and extremely limited training sample quan-
tities. Using deep learning-based ATR models, we propose data
augmentation, model construction, loss function choices, and en-
sembling techniques to enhance the representation learned from
the synthetic data, and ultimately achieved over 95% accuracy
on the SAMPLE dataset. We then analyze the functionality of
our ATR models using saliency and feature-space investigations
and find them to learn a more cohesive representation of the
measured and synthetic data. Finally, we evaluate the out-of-
library detection performance of our synthetic-only models and
find that they are nearly 10% more effective than baseline
methods at identifying measured test samples that do not belong
to the training class set. Overall, our techniques and their
compositions significantly enhance the feasibility of using ATR
models trained exclusively on synthetic data.

Index Terms—Synthetic Aperture Radar, Automatic Target
Recognition, Deep Learning.

I. INTRODUCTION

A key issue in the development of ATR models for SAR
data is the availability of realistic measured data for targets-
of-interest, in situations-of-interest. The means of collecting
measured SAR data for training an ATR model is costly, and
involves several complex processes [1]. From the availability
of the physical radar system, to the staging and imaging of
realistic scenes, to the post-processing and manual labeling of
ground truth data, it is not feasible to invoke this pipeline for
every ATR task of interest.

One promising way to reduce (or potentially eliminate)
the need to collect measured training data is to simulate the
collection process and create synthetic SAR data. Unlike the
previously mentioned pipeline, the simulation starts with the
formation of realistic Computer-Aided Design (CAD) models
of the targets, and the estimation of the reflective properties
for each surface on the model and background. Then, radar
signal returns are predicted at regular positions over a dome-
shaped pattern surrounding the target using a ray-tracing
based technique [2], [3]. The predicted returns can then be
used to build simulated phase history records similar to what

would be collected by a sensor under common operating
conditions. Finally, the simulated phase history is processed
by a SAR image formation algorithm, such as the FFT-based
Polar Format Algorithm [4], to form the complex image for
a range of selected azimuth views at a desired resolution [2].
Albeit computationally expensive, creating synthetic data for
training ATR models avoids many of the challenges related
to measured data collection; the major downsides being the
accuracy with which we can simulate the targets in CAD, and
the complexities of the radar estimation.

The central motivation of this paper is to train DL-based
SAR-ATR models entirely on synthetically generated data, and
achieve high performance when testing on measured data.
Critically, we consider the performance in the context of both
accuracy on known targets as well as the ability of the ATR
system to detect and reject out-of-library confusers. This defi-
nition of performance addresses a more realistic “open-world”
assumption for the deployment of SAR-ATR systems, where
it can not be assumed that all targets encountered in the field
have been trained on. The key challenge we must overcome
lies in the differences between the synthetic (training) and
measured (testing) data distributions [5]. Our models must
not over-fit to the unique properties of the synthetic data,
while also learning a robust and transferable representation
of the target signatures. We introduce several techniques that
are individually known to bolster generalization and reduce
over-fitting, and whose composition we find to greatly improve
the effectiveness of ATR systems trained on synthetic and
tested on measured data. Specifically, our techniques fall in the
categories of data augmentation, model construction, training
function choice and model ensembling.

To perform the experiments, we leverage the recent Syn-
thetic and Measured Paired Labeled Experiment (SAMPLE)
dataset [2], which has (measured, synthetic) pairs of tar-
gets from the Moving and Stationary Target Acquisition and
Recognition (MSTAR) public dataset [6]. As a part of [2],
four core experimental designs were proposed, of which we
consider two (i.e., Experiments 4.1 and 4.3 of [2]). The first
experiment is to maximize the accuracy of a classifier that
is trained on a mixture of measured and synthetic data, and
tested on exclusively measured data. Specifically, we focus on
the case where 100% of the training data is synthetic. The
second experiment is to achieve high accuracy on some in-
distribution set of classes, while being capable of identifying
out-of-library test samples. We follow the previous setup of
training on synthetic and testing on measured data, however,
we additionally hold-out a subset of classes from the training
dataset and work to identify samples from these classes at

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

test time as out-of-distribution. Throughout the experiments,
emphasis is also placed on the analysis of our techniques,
which provides intuition for how/why they work.

A summary of our contributions are:
• We identify and articulate several key problems for train-

ing ATR algorithms on 100% synthetic and testing on
100% measured SAR data.

• We introduce four categories of modifications to the
standard SAR-ATR training procedure: data augmenta-
tion, model construction, training function choice and
ensembling; and show that individually each category
can boost the transferability of the learned representation,
while being most effective when composed.

• We analyze the underlying behaviors behind our proposed
techniques and find that they cause the ATR models to
focus on salient regions of the target object and to blend
the representations of the synthetic and measured samples
in feature space.

• We show that models trained with a composition of our
proposed modifications are significantly more proficient
at identifying out-of-library confusers during testing.

The remainder of this work is organized as follows. Section
II provides background information regarding the SAMPLE
dataset, challenges of working with synthetic data, and several
related works. Section III describes our training methodologies
and experimental results focused on accuracy. Section IV de-
scribes methodologies and results for detecting out-of-library
confusers at test time, and Section V provides conclusions and
motivations for future works.

II. BACKGROUND

A. SAMPLE Dataset
We use the SAMPLE dataset [2] to train and evaluate our

ATR models, which contains (measured, synthetic) pairs for
the ten public MSTAR [6] target classes. Measured 1 SAR data
was taken directly from the MSTAR public release dataset.
Corresponding synthetic samples for each of the MSTAR
images were first recreated as CAD models in software with
estimated reflectivity properties for each surface, then the
electromagnetic signatures of each target were predicted using
asymptotic ray-tracing techniques [2]. The synthetic phase
history was then formed to images using a polar format
algorithm [4] with parameters to mimic the MSTAR targets
(i.e., 0.3 meter range resolution, 128 × 128 px image size,
HH polarization, 10◦− 80◦ azimuth range). Fig. 1 shows one
(measured, synthetic) pair from each class. Like the MSTAR
standard operating condition (SOC) test, the training and test
data vary in elevation [6], [7]. Under SOC for SAMPLE, the
training data comes from elevations 14◦ − 16◦ and the test
data is all from 17◦ elevation. Table I shows the number of
training and test samples from each class.

B. Challenges Presented by Synthetic Data
The core challenge of training exclusively on synthetic

data is the apparent distribution gap between the synthetic

1for the remainder of this document, we will use the terms “measured” and
“real” data interchangeably

M
ea
su
re
d

2S1 BMP2 BTR70 M1 M2

M35 M60 M548 T72 ZSU23

Sy
nt
he
tic

M
ea
su
re
d

Sy
nt
he
tic

Fig. 1. SAMPLE dataset (measured, synthetic) pairs.

and measured distributions. Informally, from the samples in
Fig. 1 we may describe the synthetic and measured data
as “similar-but-different.” Reasons for the differences include
difficulties in accurately modeling intricate objects in CAD
software, imperfect radar estimation algorithms, variability
operating conditions, and complications in simulating realistic
background clutter. One straightforward way to show the
statistical differences between the synthetic and measured data
is to plot histograms of the image means and variances in
Fig. 2. Clearly, the synthetic data tends to have lower mean
and variance than the measured. In part, this difference has
to do with the lack of clutter in the synthetic chips [5], [8],
as evident from the darker background regions in Fig. 1. In
addition, Fig. 3 shows selected (measured, synthetic) data pairs
with clear differences in the overall structure of the targets as
well as fine differences in the target details. To succeed, our
methods must prevent over-fitting to the unique properties of
the synthetic data distribution, while simultaneously learning
a robust representation of the target classes.

Another challenge more specific to the SAMPLE dataset
is the lack of training data. From Table I, there are a total
of 806 training images, yielding an average of 80 samples
per class. This lack of data opposes the sample-complexity

TABLE I
DETAILS OF THE SAMPLE DATASET

Class # Class Name # Train # Test Total

0 2S1 116 58 174
1 BMP2 55 52 107
2 BTR70 43 49 92
3 M1 78 51 129
4 M2 75 53 128
5 M35 76 53 129
6 M548 75 53 128
7 M60 116 60 176
8 T72 56 52 108
9 ZSU23 116 58 174

Totals 806 539 1345

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

0.1 0.2 0.3 0.4
mean

0

5

10

15

20

Mean Values
real
synth

0.010 0.015
variance

0

100

200

300

400

500

Variance
real
synth

Fig. 2. Histograms of image means and variances.

M
ea
su
re
d

Sy
nt
he
tic

Fig. 3. Select (measured, synthetic) pairs with significant differences.

requirements of training DNNs and also implicates the “curse
of dimensionality” because our training samples are sparsely
distributed in the high dimensional input space. To overcome
the lack of training samples, our methods must also focus on
bolstering generalization with very little data.

C. Learning with Synthetic Data

With the clear utility of leveraging synthetic SAR data in
ATR tasks, there has emerged several different methodologies
for learning with synthetic data, some of which also use the
SAMPLE dataset.

Learning a transform function. One popular method is
to learn a transform/pre-processing function between the syn-
thetic and measured distributions. The goal is to reconcile any
differences between the manifolds of the synthetic/measured
data by transforming the synthetic data to “look” more like the
measured data. This is motivated by the observation that using
synthetic data in its unaltered form yields poor performing
models in measured data applications [9]. Some methods in
this category rely on training DL-based Generative Adver-
sarial Networks (GANs) and/or Auto-Encoders to learn the
transform based on seeing many examples of both synthetic
and measured data [10], [11], [9]. Further, Scarnati and Lewis
[8] design a pre-processing function for synthetic SAMPLE
data which performs a de-specking, quantization, and clutter
transfer between (measured, synthetic) pairs. Critically, the act
of learning transform functions implicitly requires access to
both synthetic and measured data. Thus, learned transforms
do not fit within our 100% synthetic training data scheme.

Transfer Learning. Another popular technique for lever-
aging synthetic data is to perform transfer learning (TL)
[12], [13], [14]. In most of these works, one trains an initial
source model on synthetic SAR data to learn useful and

generalizable features of the targets. Then, the model is fine-
tuned by re-training to update the learned representation using
a training set of measured data. Thus, the goal is to learn
the most beneficial features from the synthetic data and to
efficiently refine them in the re-training process. Note, the TL
problem statement also assumes access to training sets of both
measured and synthetic data, which makes it outside of our
synthetic-only problem statement.

Towards Fully Synthetic Training. Finally, there are a few
works that focus on using little to no measured training data,
which are the most closely related to our work. Sellers et al.
[15] design an augmentation method for applying measured-
phase-error noise to the synthetic data as to account for
differences in measurement conditions. To apply the noise,
the method requires a small amount of measured training data
from which it can then extrapolate the noise to all of the
synthetic images. The method ultimately uses 1% measured
and 99% synthetic training data, and is able to improve the
classification performance of the SAMPLE problem to 95%,
while incidentally increasing the training time by a factor of
10×. Although impressive, we remark that there is a critical
distinction between having/needing 1% and 0% measured data
available for training. Lewis et al. [16] consider the 100%
synthetic training data case for the SAMPLE dataset, while
using an atypical implementation of adversarial training (AT).
The intuition is that the AT procedure would better align
the decision boundaries for separating the measured data.
However, they report marginal benefits. We also consider AT in
this work, however we use a standardized version [17] which
has proven to learn more robust representations, and is distinct
from the version used in the referenced work [16].

III. ENHANCING GENERALIZATION AND ACCURACY

Within our stated “open-world” operating assumption, our
first performance target is to train accurate models for the
in-distribution test samples using a purely synthetic training
distribution. In this case, we can assume that the test data is
from the set of training classes, so performance is measured
as the generalization ability (i.e., accuracy) of the trained
classifier to the measured distribution. Specifically, we operate
within the rules described in Experiment 4.1 of [2]. In the
generic setup of Experiment 4.1, a parameter K ∈ [0, 1] is
introduced which defines the percentage of measured training
data, while the test data is always 100% measured. For
example, if K = 0.75 then 75% of the 806 (measured,
synthetic) training data pairs use the measured component,
while the remaining 25% of training samples are represented
by their synthetic data component. Most related to our work,
if K = 0, then 100% of the training samples are synthetic.

To show that K = 0 is a special case worth studying,
consider Fig. 4 which shows the test accuracy as K is swept
from 0 to 1 (using the default model and training configuration
from [2]). The general trend is that as K → 0, the test accuracy
decreases. This alone is not surprising because the model is
presumably learning the dominant features of the synthetic
data, which may not align perfectly with the dominant features
of the measured test data. However, notice the rate of change

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

0.00.20.40.60.81.0
Fraction of Measured Training Data (K)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Test Accuracy vs K

Fig. 4. Test accuracy versus percentage of measured training data.

in the test accuracy w.r.t. K. For K ∈ [0.1, 1] the average test
accuracy is consistently above 90%, for K = 0.05 accuracy
drops to ∼ 85%, then at K = 0 accuracy drops sharply to
∼ 50%. Motivated by understanding and reconciling this drop
in performance, the remainder of this section is dedicated to
improving accuracy at K = 0.

A. Methodology for training at K=0

To address the aforementioned problems with training on
100% synthetic data and testing on 100% measured data, we
consider three methodological categories of modifications to
the standard training setup: (1) data augmentations, (2) model
construction, (3) training function selection. Each category
includes two or more methods, on which we elaborate here.

Data Augmentation. The first category of improvements
adds image-level augmentations to the training data, which
reduce the model’s propensity to over-fit any particular view
of the data [18], [19]. Thus, the model learns more informative
underlying features, as opposed to memorizing weak features
such as orientation or exact pixel magnitudes. In this work, we
consider two augmentations: Gaussian noising and rotation. To
apply Gaussian noise to a training image x, we first set the
standard deviation σ (as a hyper-parameter), then create an
augmented version as x̃ = x + N (mean = 0, stdev = σ).
The values of x̃ are then clipped to the image range of
[0, 1]. Since the synthetic chips are found to have a lack
of background clutter, adding Gaussian noise to effectively
estimate such clutter is of particular interest, and may di-
rectly address the found distribution gap. The second training
augmentation we consider is a straightforward image rotation
by a maximum of ±r◦. This process is randomized, so for
any given training image the amount of rotation applied is
rot ∼ Uniform(−r, r). Rotation augmentations are of
interest in this work because they have been shown to enhance
the learned representations of DNNs and reduce over-fitting
in several computer vision tasks [20], [19]. Importantly, data
augmentations are only applied at training time.

Model Construction. The second category of improve-
ments is to change the construction of the DNN model
itself. This technique addresses the bias-variance trade-off
by controlling the complexity of the searched hypothesis
space. Firstly, we would like to avoid a situation where an

unnecessarily high bias is induced through the choice of an
overly simplistic model (i.e., we use a very small model to
search a limited hypothesis space that cannot perform well on
a complex task). We would also like to avoid extreme variance
via over-fitting the model’s decision boundaries to the training
samples (i.e., we use too big of a model which memorizes the
training data and has weak generalization to unseen samples).

The first method of changing model construction is to add
Dropout layers [21] between existing processing layers of a
DNN (usually, dropout layers are inserted directly after the
non-linear activation unit, and may be added between convo-
lutional and/or linear layers). The strength of a dropout layer
is determined by a parameter p_drop, which represents the
probability that a unit within the feature map will be randomly
dropped. For dropout layers placed between convolutions,
p_drop is the probability that any channel of the input feature
map will be zeroed out. For dropout layers between linear
layers, p_drop is the probability that the output of any node
in the layer will be zeroed out. During training, the dropout
layers are active and randomly select units of the feature maps
to drop for each input sample. During testing, the dropout
layers are inactive, and act as pass-throughs. Intuitively, each
layer (and ultimately the whole model) learns a more robust
and generalized representation of the data by simulating cases
when not all features are present. In terms of the bias-variance
trade-off, dropout layers act to reduce variance by resisting a
large model’s ability to over-fit.

The next method of changing model construction is the use
of different DNN architectures. The first model we employ
is a relatively small LeNet-style [22] architecture, called the
sample model (SMPL). This model is first described in
Table 7 of [2] and is composed of 4 {convolution, max
pool} blocks, followed by 4 linear layers. The next model
is ResNet18 (RN18) [23] which is larger in parameter count
and also incorporates residual connections. The inclusion of
residual connections has shown to significantly improve the
performance of ResNets on the ImageNet task, which prompts
its use here. The final model is Wide-ResNet18 (WRN18) [24]
and is the largest in parameter count. This model has a similar
structure to ResNet18 however has 2× the number of convo-
lutional kernels in each layer, and thus is considerably larger
than the other two models. By using these three architectures,
we are testing the effect of using small, medium, and large
architectures, which effectively represents three points on the
bias-variance curve.

Training Function Choice. The third category of im-
provements is to change the primary training function for
learning the model weights, to accomplish the SAMPLE data
classification task. We consider a total of five variants, all of
which stem from the generalized risk minimization objective
for classifiers over the distribution of SAR images (ptrue),

θ∗ = argmin
θ

E
(x,y)∼ptrue

[
L(x, y; θ)

]
. (1)

For a given model parameterized by θ, we wish to learn
the optimal set of parameters θ∗ to minimize the expected
classification loss L for SAR chips x and labels y drawn
from ptrue. However, we do not have access to the infinite

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

set of samples in ptrue, rather, we assume to start with a
N sample training dataset D = {(xn, yn)}n=1...N ∼ ptrue.
In our specific problem, D is the 806 synthetic training data
samples from the 10-classes in the SAMPLE dataset.

The first three training function variants extend directly from
the formulation of empirical risk minimization (ERM) over
samples in D, i.e.,

min
θ

1

N

∑
(xi,yi)∼D

L(xi, yi; θ). (2)

Critically, the variation between these techniques comes from
modifications to the loss function L and ground truth labels
y, which encode how we measure risk.

1) Cross-entropy with one-hot labels: The first variant will
serve as the baseline and is the most common configuration of
loss in DNN image classifiers: cross-entropy loss with one-hot
labels. Cross-entropy loss is the extension of log-loss for the
binary classification case to a multi-class setting. For a C-class
classification problem, cross-entropy loss is defined as

Lxent(x, y; θ) = −
∑
c∈C

yclog(f(x; θ)c). (3)

Here, yc is the cth element of the ground truth label vector y,
and f(x; θ)c is the predicted probability that input x belongs
to class c (by our DNN model f which is parameterized by
θ). Being a one-hot label, the y vector is sparse so the log-loss
is only calculated against the predicted probability for class c.
The intuition behind this loss/label formulation is to learn a
model that maximizes the output probability for the true class.

2) Label smoothing: The second variant of loss function
choice we consider is label smoothing [25]. The key difference
is the construction of the ground truth label, as cross-entropy
loss is still used. Label smoothing introduces a single param-
eter α which defines how much weight is distributed across
the incorrect classes in the label formulation. The smoothed
label vector yLS is constructed from the original one-hot label
vector y as

yLSc = yc(1− α) + α/C. (4)

For example, if we have a 4-class classification problem with
α = 0.1 and one-hot ground truth label vector y = [0, 0, 1, 0],
the smoothed label is yLS = [0.025, 0.025, 0.925, 0.025].
Note, yLS still constitutes a valid probability distribution
over the classes, and by training with this ground truth label
the model learns to simultaneously maximize the predicted
probability of the true class while uniformly minimizing the
predicted probability of the false classes. In practice, label
smoothing has shown to improve the generalization capability
of DNNs through a regularization effect [18], while also
improving the calibration of predictions [25], both of which
are useful properties in our SAMPLE classification setting.

3) Cosine loss: Unlike the previous two variants, the cosine
loss [26] does not use the cross-entropy function, however, it
does have a direct interpretation from the ERM objective in
(2) through defining L as Lcos. The intuition for cosine loss
is to encourage the model’s output vector to have high cosine

similarity with the ground truth one-hot label vector. This is
as opposed to the cross-entropy loss which tries to predict
a truth-encoded label distribution. The cosine loss we use is
described as

Lcos(x, y; θ) = 1−
〈
y ,

f(x; θ)

||f(x; θ)||2
〉
. (5)

Note, we consider the cosine loss because it has been em-
pirically shown to improve generalization in extremely low
data settings [26]. The authors believe this is because cosine-
similarity as a loss metric is more informative than cross-
entropy when there are very limited samples per class [26].

4) Adversarial Training: The fourth loss function variant
is called Adversarial Training (AT) [17]. Different from the
previous three methods, AT reformulates the ERM objective
in (2) into a saddle point problem through the introduction of
a concept called adversarial risk. The AT objective is

min
θ

E
(x,y)∼D

[
max
δ∈S

Lxent(x+ δ, y; θ)
]
. (6)

Note, the principal difference between (2) and (6) is the
inclusion of an inner maximizer, which, given the current set
of model parameters, maximizes the loss via perturbations to
the input data x. Once the inner maximization is approximately
solved, the network parameters are then updated to minimize
this adversarially maximized loss (i.e., to minimize the adver-
sarial risk). Here, δ is an image-domain perturbation and S is a
set of allowable perturbations w.r.t. x. Commonly, S is defined
as an `p norm-ball of radius ε centered at x (so, ||δ||p ≤ ε).
This norm constraint ensures that the perturbed sample is
sufficiently close to x as to be adversarial. In practice, the
inner maximization is approximately solved by an iterative
Projected Gradient Descent (PGD) adversarial attack [17].

Although AT is traditionally used for training models robust
to adversarial attacks, in recent literature it has also been
shown to prioritize the learning of “robust” features that are
capable of maintaining correlation with the true label despite
perturbation [27]. This is as opposed to standard models which
may rely on “non-robust” features that are weakly correlated
with the true label. In the context of SAR-ATR, [7] shows that
performing AT on MSTAR models can improve the accuracy
of the classifiers while also boosting robustness. In this work,
we believe AT may improve performance at K = 0 because
the synthetic and measured data share the “robust” features
of the targets; whereas in contrast, non-AT models rely more
heavily on non-robust features such as clutter.

5) Mixup: The final training method is mixup [28], which
defines a generic vicinal distribution on which to perform
empirical vicinal risk minimization (VRM) [29] (as opposed
to ERM). To define the vicinal distribution, mixup creates
“virtual” feature-label samples. First, two feature-label pairs
(xi, yi) and (xj , yj) are sampled from the training dataset D.
Then, mixup creates a virtual sample (x̃, ỹ) as

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj ,

(7)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

where λ ∼ Beta(α, α) for the only introduced hyper-
parameter α ∈ (0,∞) (which ensures that λ ∈ [0, 1]). Using
these virtual samples, the network parameters are trained to
minimize the expected cross-entropy loss between f(x̃; θ) and
ỹ in a way very similar to (2). The key difference between
VRM and ERM is that the risk is minimized using the virtual
training samples as opposed to just using the samples in D.
The net effect is the model learns to have linear behavior
between and around the training samples. In practice, mixup
has shown to improve generalization performance on the
ImageNet task and displays properties of a strong regularizer.
As applied to the SAMPLE problem, the regularization effect
may help to increase the bias (and thus reduce the variance)
of a large DNN classifier applied to a relatively small dataset.

Aggregation of Techniques. As introduced, each of the
aforementioned techniques alone has the potential to improve
ATR performance in our setting, where there is a distribution
gap between the training and test data. Data augmentations
work to reduce over-fitting to non-informative image-level
features of the training data. Model construction choices
implicate the bias-variance-trade-off through dictation of the
hypothesis space to be searched. And, the definition of the
training function directly effects the features learned by the
model through redefinition of risk. However, we believe
that aggregating techniques from across these methodological
categories may yield the most substantial gains, as there is
potential to attain combined benefits. To understand how each
of the techniques fit into the training pipeline, see the pseudo-
code for the training loop in the supplemental materials.

As an example of combined benefits, consider that including
data augmentation in conjunction with Dropout layers may
further reduce over-fitting to the synthetic data distribution by
actively altering the image-level and intermediate-level repre-
sentations during training. Similarly, using data augmentations
with modified training objectives lends the potential to learn
higher quality features of the underlying SAR targets than
just including one of the techniques in isolation. Also, rec-
ognize the intimate relationship between model construction
and training function – where changing the model assuredly
changes the solution to the risk minimization, and changing the
definition of risk certainly changes the final solution in terms
of model weights. Finally, we posit that using a combination
of techniques from all three categories may incur the greatest
benefits (assuming proper configuration).

B. Experimental Setup

Throughout the following experiments, we are primarily
focused on the effect of each training modification individ-
ually, as well as their composition. To obtain a more true
expectation of performance, for each of the tested configu-
rations we perform 100 training runs, each starting from a
random initialization of the 32-bit model parameters. Perfor-
mance is reported as the minimum, maximum, and average
accuracy (with standard deviation) over the 100 iterations.
Since the training data is 100% synthetic, there is no way
to effectively perform early-stopping with a validation spit.
To get an estimate of the impact early-stopping may have if

a measured validation set were available, we also report a
“Perfect Knowledge” accuracy (Perf), which represents a near
upper-limit on the expected accuracy of each method if the
trainer knew exactly when to stop to avoid over-fitting. For the
shared training parameters over all configurations, we closely
follow the setup from [2]. Each model is trained for 60 epochs,
with a random initialization of parameters, fixed learning rate
of 0.001, batch size of 128 and uses the ADAM optimizer.
All SAR chips are in magnitude format and are distributed as
8-bit JPEGs. Before input into the models, we first center crop
to 64× 64 pixels, then normalize to the range of [−1, 1].

Hyper-parameter Selection. Most of the techniques we
introduce involve a single hyper-parameter that may be set
or tuned. During testing, for each parameter we perform a
sweep over a range of reasonable values and report the top
performing result. For the Gaussian noise augmentation, we
search in range σ = [0.1, 0.2, 0.3, 0.4, 0.5], which covers
the spectrum of “barely visible” to “obvious and potentially
destructive.” For the Dropout layers, we consider p_drop =
[0.1, 0.2, 0.3, 0.4, 0.5], which mirrors the primary range and
interval of test values used in [21]. For label smoothing, we test
α = [0.06, 0.08, 0.10, 0.12], which represents a small range
around the suggested value of α = 0.1 that was used exclu-
sively in [25]. For mixup, we search in α = [0.1, 0.4, 1, 4, 16],
all of which are used in [28] (interestingly, we find that our
results are not extremely sensitive to this parameter). For
adversarial training, we search in ε = [2/255, 4/255, 8/255]
which is the suggested range found in [7] that leads to
minimal performance degradation in standard settings and
has significant robustness benefits. Uniquely, for the rotation
augmentation, we use a fixed value of r = 5, which is
considered a “safe” transform as the semantic label will be
preserved [19] (note, rather than sweeping values of r, our
primary interest is simply: does random rotation help or not?).
Finally, when two or more techniques are combined, we
perform a grid search over hyperparameter values to find the
most productive setting of each. It is worth noting that in
most cases the settings do not change when techniques are
combined (e.g., Gaussian noise and Dropout levels are fairly
consistent across experiments). One notable case in which
the settings do change is when using Adversarial Training
with a Gaussian noise augmentation. This is likely because
these techniques have a direct interaction with each-other, as
both additively “perturb” the input data. For reproducibility,
the code used to run these experiments can be found at:
https://github.com/inkawhich/synthetic-to-measured-sar.

C. Experimental Results

Single-Step. The first result of interest is to measure the
impact of each of the proposed methodological modifications,
individually (single-step). The baseline configuration uses
no data augmentations, the SMPL model architecture with
no dropout, and standard cross-entropy with one-hot labels
objective. The results of the “single-step” experiments are
reported in Table II. Notice the average accuracy of the
baseline configuration is about 50%, which matches the K = 0
value in Fig. 4 and serves as the number to compare against

https://github.com/inkawhich/synthetic-to-measured-sar

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE II
SINGLE-STEP CHANGES TO TRAINING ALGORITHM (K = 0)

Model Method Min Max Avg ± std Perf

SMPL

baseline 35.25 69.94 49.95 ± 5.59 77.55
rotation=5 36.73 67.71 49.44 ± 6.63 79.03
gaus=0.3 63.63 86.08 77.44 ± 4.58 87.94
dropout=0.4 45.08 84.41 65.61 ± 9.16 87.38
lblsm=0.1 41.37 79.59 52.14 ± 5.15 83.11
mixup=1 39.88 76.80 59.77 ± 8.18 78.66
cosine loss 41.00 76.80 54.95 ± 7.29 79.40
AT (ε = 8) 67.71 86.08 78.14 ± 3.74 88.31

RN18

baseline 39.70 81.44 66.45 ± 7.26 81.81
rotation=5 42.67 82.93 66.15 ± 7.68 84.78
gaus=0.4 72.35 94.43 85.15 ± 4.81 97.03
dropout=0.4 62.52 89.42 81.10 ± 5.07 90.53
lblsm=0.08 74.39 86.82 81.22 ± 2.55 87.94
mixup=16 64.00 87.01 79.93 ± 4.09 87.57
cosine loss 69.38 87.19 78.15 ± 3.66 87.57
AT (ε = 8) 73.65 88.86 84.63 ± 2.65 93.50

WRN18

baseline 44.89 78.29 65.10 ± 7.69 83.67
rotation=5 48.05 79.22 63.90 ± 7.25 83.85
gaus=0.3 58.62 91.46 82.42 ± 5.59 94.62
dropout=0.4 28.94 87.19 79.56 ± 7.06 89.23
lblsm=0.08 75.51 87.75 82.65 ± 2.44 89.05
mixup=16 69.94 86.82 80.20 ± 3.40 89.79
cosine loss 47.49 87.19 79.28 ± 5.11 87.19
AT (ε = 8) 76.06 88.49 83.49 ± 2.61 92.20

when considering the other methods. Now, consider the impact
of the data augmentation methods, i.e., rotation and Gaussian
noising (gaus), on average accuracy. Rotation by ±5◦ harms
performance by about 1%. However, Gaussian noising has a
tremendously positive impact on generalization, and boosts the
average accuracy by over 21% across the three model types.

Next, consider the implications of changing the model
construction. Recall, such modifications add dropout layers
and/or change the whole DNN architecture. The effect of
adding dropout layers appears quite positive, and when con-
figured with p_drop= 40%, increases average accuracy by
about 15% across the three models. We also notice a sizable
benefit to using a more complex model architecture than
the SMPL model. With no augmentation and the standard
loss function, using RN18 and WRN18 improves accuracy
by 16.5% and 15.1%, respectively. Notice, however, that the
RN18 outperforms WRN18, which suggests that increasing
model complexity does not always improve performance.

Finally, we acknowledge the benefits of training function
choice, between: cross-entropy with one-hot labels (baseline),
label smoothing (lblsm), cosine loss, mixup, and adversarial
training (AT). Importantly, in all cases a modified training
function advances the performance over the baseline. On
average, there is an improvement of 11.5% with label smooth-
ing, 12.8% with mixup, 10.2% with cosine loss, and 21.5%
with adversarial training. Overall, the best average accuracy
reported in Table II is 85.15% from the RN18 model trained
with Gaussian noise, which is a 35% boost over the previous
baseline. Our other takeaways are that RN18 is generally the
top performing architecture, and Gaussian noise augmentation
and adversarial training are the most effective single step
techniques given a fixed architecture.

TABLE III
TWO-STEP CHANGES: GAUSSIAN NOISE + OTHER (K = 0)

Model Method Min Max Avg ± std Perf

SMPL

gaus=0.3 63.63 86.08 77.44 ± 4.58 87.94
gaus=0.3, drop=0.3 70.87 90.72 82.07 ± 4.14 92.02
gaus=0.3, lblsm=0.08 74.95 90.53 83.47 ± 3.38 92.02
gaus=0.3, mixup=0.1 68.46 91.28 80.57 ± 5.02 91.28
gaus=0.3, cosine loss 68.08 92.02 83.15 ± 4.25 92.76
gaus=0.2, AT (ε = 8) 80.89 92.76 87.28 ± 2.74 93.87

RN18

gaus=0.4 72.35 94.43 85.15 ± 4.81 97.03
gaus=0.4, drop=0.4 81.26 95.36 89.83 ± 3.00 96.28
gaus=0.4, lblsm=0.08 67.16 94.06 86.23 ± 4.76 96.84
gaus=0.4, mixup=0.1 74.58 92.02 85.29 ± 3.96 95.73
gaus=0.4, cosine loss 66.97 95.17 84.97 ± 4.59 95.36
gaus=0.3, AT (ε = 4) 82.93 93.13 88.90 ± 2.54 95.54

WRN18

gaus=0.3 58.62 91.46 82.42 ± 5.59 94.62
gaus=0.4, drop=0.4 80.51 94.61 88.79 ± 2.85 96.28
gaus=0.4, lblsm=0.08 76.06 94.99 86.11 ± 3.71 95.54
gaus=0.3, mixup=0.1 54.73 89.79 79.36 ± 7.04 93.87
gaus=0.3, cosine loss 68.27 92.02 83.13 ± 4.78 93.50
gaus=0.3, AT (ε = 4) 79.03 93.50 87.94 ± 3.14 96.84

TABLE IV
THREE-STEP CHANGES: GAUSSIAN NOISE + DROPOUT + OTHER (K = 0)

Model Method Min Max Avg ± std Perf

SMPL

gaus=0.3, drop=0.3 70.87 90.72 82.07 ± 4.14 92.02
gaus=0.3, drop=0.3, lblsm=0.08 76.43 93.50 86.69 ± 3.41 94.62
gaus=0.3, drop=0.3, mixup=0.1 65.86 91.83 84.16 ± 4.31 92.57
gaus=0.3, drop=0.3, cosine loss 61.03 92.20 83.34 ± 5.10 94.62
gaus=0.2, drop=0.2, AT (ε = 8) 81.07 93.69 88.51 ± 2.68 94.80

RN18

gaus=0.4, drop=0.4 81.26 95.36 89.83 ± 3.00 96.28
gaus=0.4, drop=0.4, lblsm=0.1 84.97 95.54 91.87 ± 2.17 96.47
gaus=0.4, drop=0.4, mixup=0.1 84.41 96.84 90.79 ± 2.64 96.84
gaus=0.4, drop=0.4, cosine loss 82.93 95.73 90.41 ± 2.66 96.10
gaus=0.3, drop=0.3, AT (ε = 2) 83.11 94.80 90.22 ± 2.63 96.66

WRN18

gaus=0.4, drop=0.4 80.51 94.61 88.79 ± 2.85 96.28
gaus=0.4, drop=0.4, lblsm=0.08 84.97 95.91 91.05 ± 2.41 97.03
gaus=0.4, drop=0.4, mixup=0.1 79.40 97.21 90.14 ± 3.21 97.40
gaus=0.4, drop=0.4, cosine loss 79.77 95.36 90.01 ± 2.92 96.84
gaus=0.3, drop=0.3, AT (ε = 2) 81.44 95.36 90.43 ± 2.81 96.28

Two-Step. Next, we incrementally compose methods from
two different methodological categories (two-step). Given the
effectiveness of Gaussian noise augmentation alone, in Table
III we provide results for combining it with individual methods
from the model construction and training function categories.
We also remark that there is no increase in training time when
using Gaussian noise augmentation. In fact, of the methods we
consider the only two which yield a discernible training time
increase is using more complex DNN architectures (i.e., RN18
and WRN18) and performing adversarial training.

With two exceptions (cosine loss on RN18 and mixup on
WRN18), composing Gaussian noise augmentation with either
a model construction or training function change is consis-
tently beneficial. The average accuracy improvements across
the model architectures are 5.2% with dropout, 3.6% with
label smoothing, 0.1% with mixup, 2.1% with cosine loss, and
6.4% with adversarial training. The best overall configuration
is the RN18 model with Gaussian noise augmentation and
dropout, which has an average test accuracy of 89.83%. If we
compare to the original baseline accuracy of 50%, this two-
step change produces an improvement of nearly 40%.

Three-Step. Now, we combine methods from all three
methodological categories (three-step). From Table III, Gaus-
sian noising used with dropout layers is the most productive
two-step change. In Table IV we show models with Gaussian

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

noising, dropout layers, and a training function modification.
Similar to previous results, modifying the training function

always improves the average accuracy over the model trained
with cross-entropy with one-hot labels. Across model architec-
tures, the accuracy improvements from each of the different
training methods are: 3% with label smoothing, 1.5% with
mixup, 1% with cosine loss, and 2.8% with adversarial train-
ing. The best performing configuration is the RN18 trained
with Gaussian noise, dropout, and label smoothing, which has
an average test accuracy 91.87%.

Though we have mainly focused on average accuracy, also
notice the evolution of Min and Max values across Tables II,
III and IV. These values have increased significantly, to the
point where the worst performing three-step models are very
competitive with the best performing baseline and one-step
models. Also, the standard deviation of accuracy has decreased
to about 3%, which indicates that the random parameter
initialization is less influential on final accuracy when using
three-step changes. Interestingly, even with perfect knowledge
(Perf) of when to do early-stopping, the best model in Table IV
is only 97.4% accurate, showing that perfect accuracy on the
test set has not been attained even with our methods. Finally,
we do not ignore the fact that adversarial training has always
been a top competing method. Throughout these experiments,
it has consistently produced highly accurate models and is the
best method when using the SMPL architecture.

Ensembles. To this point, we have focused on training
highly accurate individual models. One way to boost accuracy
is to create an ensemble. We leverage a technique called model
“bagging” to achieve less variance (recall the bias-variance
trade-off discussion) by deriving a prediction from a collection
of independently trained models [18]. To produce the final
prediction, we use a soft-voting scheme which averages the
predicted probability distributions from each of the ensemble
components, then chooses the class with the highest average
confidence. In this way, not all models in the ensemble have
to be correct all the time in order for the aggregate prediction
to be correct. To evaluate effectiveness, we incrementally
build up to a 5 model ensemble through greedy selection
of which model to include next (candidates for selection
are all three-step models from Table IV). We start from the
top performing individual model, and end with a 5 model
ensemble composed of: [RN18-lblsm, RN18-mixup, RN18-
AT2, SMPL-AT8, RN18-AT8].

Results of the ensembling experiment are shown in Table
V, where the min/max/avg/std statistics are computed over 50
trials. We see a consistent benefit in both average accuracy

TABLE V
PERFORMANCE OF ENSEMBLING K = 0 MODELS. ALL MODELS ALSO

INCLUDE GAUSSIAN NOISE + DROPOUT.

Models Ensemble Components Min Max Avg ± std

1 RN18-lblsm=0.1 83.48 95.91 91.74 ± 2.23
2 + RN18-mixup=0.1 88.68 96.66 93.26 ± 1.71
3 + RN18-AT (ε = 2) 91.09 96.28 94.02 ± 1.34
4 + SMPL-AT (ε = 8) 93.32 96.66 95.04 ± 0.93
5 + RN18-AT (ε = 8) 93.32 96.66 95.06 ± 0.87

Fig. 5. Confusion matrix of best 5 model ensemble.

and minimum accuracy as we add up to 5 models. The
standard deviation also decreases to below 1%, indicating a
reduced reliance on the random initialization of parameters
(compare this to the error bars shown for K = 0 in Fig. 4).
Finally, notice that with a 4 model ensemble we cross the
95% accuracy threshold on the measured data test set, even
though we are still using exclusively synthetic training data.
We view this as a significant achievement, considering the
baseline accuracy is only 50% under these same conditions.

Fig. 5 shows the average confusion matrix on the (measured)
test dataset for the 5 model ensemble. Note, the patterns of
confusion are a natural consequence of the training procedure,
and not hand-designed in any way. There are a few significant
patterns to note: the BMP2 class is commonly confused with
2S1, the M2 class has confusions with several other classes,
and the ZSU23 class data is often mis-predicted as 2S1.
A future work is to design models for the ensemble that
compensate for these weaknesses.

D. Analysis

Saliency. The first way to analyze how/why our proposed
modifications work well for the SAMPLE K = 0 case is to
examine which parts of the input data each model relies on
to make its prediction. For DL models, we can produce a
saliency map for a given input image using the gradient of the
classification loss w.r.t. the input. Intuitively, the magnitude
of the gradient describes which parts of the input are most
influential in the classification decision [30]. To measure
saliency for a given model and input SAR chip, we use the
SmoothGrad [31] method.

Fig. 6 shows saliency for two (measured, synthetic) test
pairs (4 total input images), for models trained with single-
step improvements using the RN18 architecture. The top pair
corresponds to a 2S1 target chip (label=0), and the bottom
pair corresponds to a ZSU23 target chip (label=9). All models

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 6. Saliency maps of models trained with different techniques.

produced correct predictions and the gradients are computed
w.r.t. the true class labels. First, observe the difference in
saliency across any of the four rows (i.e., across the single-step
improvement methods). The baseline, dropout, label smoothed,
cosine loss, and mixup models all yield scattered non-localized
salient regions that include background and target information.
On the other hand, the Gaussian noise and adversarially
trained models have salient regions focused on the actual target
signatures, and very little on the background clutter regions.
Intuitively, we believe that the ability of the Gaussian noised
and adversarially trained models to predict based almost exclu-
sively on features of the target signatures is a large contributing
factor to why they are the top performing methods.

Next, consider the difference in saliency between each
(measured, synthetic) pair. The models used to generate these
saliency maps have all been trained on synthetic data only,
so saliency w.r.t. the real (measured) data is a generalization
test of learned features. Of all the methods, the baseline and
mixup models appear to have the most significant difference
in saliency across the pairs. Differently, the Gaussian and
adversarially trained models use similarly localized salient
regions for both versions of the data. This indicates that these
models in particular have learned a transferable representation
of the data, and can recognize the same salient features in
either the measured or synthetic version of the chips. Saliency
analysis should be a very important consideration when train-
ing SAMPLE models (especially at K = 0), because it
elucidates if the models are leveraging critical features of
the target signatures, or have memorized characteristics of the
background clutter regions.

Feature Space. Another way to analyze the impacts of
our proposed training modifications is to monitor how the

measured and synthetic data is treated in the feature space
of the DNNs. Intuitively, if the model has learned a robust
and transferable representation of the data, the intermediate
representations should be homogeneous and there will not be
large differences in how the representations are processed. To
analyze the feature space, we start with a pre-trained SMPL
model. Recall, this architecture uses a total of 8 layers, 4
convolutional and 4 fully-connected. We insert probes into the
model to capture the output feature maps from each of these 8
layers. We then input both the real and synthetic versions of the
test dataset through the probed model, save the intermediate
representations for each SAR chip, then perform a t-SNE low-
dimensional embedding [32] of the feature maps to visualize
the structure of each layer’s feature space in 2-dimensions.

Fig. 7 shows the t-SNE plots for five SMPL models trained
with: baseline, Gaussian noise augmentation, dropout, adver-
sarial training, and Gaussian noise augmentation with dropout.
From Tables II and III, the baseline and dropout models are the
lowest performing in terms of average accuracy, and the others
are all quite high performing in comparison. The left-most
column shows the input layer’s feature space (i.e., the first
convolutional layer); moving left to right indicates increasing
in depth by following the forward propagation of the data
through the model; and the rightmost column shows the output
layer’s feature space (i.e., the final fully-connected layer from
which the predictions are derived). Notice the (approximately)
10 clusters in the output layer feature space, which correspond
to the 10 classes in the SAMPLE dataset.

The first core observation from Fig. 7 is that the worst per-
forming models (Baseline and Dropout) keep largely separated
and non-overlapping representations of the real and synthetic
data throughout the feature space. This is an intuitive reason

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Input Layer Output Layer
Ba

se
lin

e
Ga

us
sia

n
Dr

op
ou

t
Ad

v
Tr

ai
n

Ga
us

+
Dr

op

Fig. 7. Low dimensional analysis of sample model’s feature space using t-SNE embeddings.

for why the accuracy is low, because at the output layer the
measured test data does not respect the 10 class clusters that
the model’s decision boundaries separate. The second core
observation is that the high performing models (Gaussian,
Adv Train, Gaus+Drop) integrate the feature space of the real
and synthetic data which explains the accuracy improvement.
In these models, the real and synthetic data share the same
class clusters at the output layer, so the decision boundaries
that were formed for the synthetic data are also valid for
the measured data. The integration of features also alludes to
the learning of a transferable and non-overfit representation
of the synthetic data, which means that the impact of the
distribution gap discussed in Section II-B has been minimized.
An interesting note is how in all models, the feature space at
the input layer is largely separate, which may be due to the
differing image-level statistics of the datasets.

IV. DETECTING OUT-OF-LIBRARY CONFUSERS

The second key performance target within our “open-world”
assumption is to reliably detect and reject test samples that are
not from any of the training classes. This constitutes an out-of-
distribution (OOD) detection problem, and is critical because
the model’s output on such OOD data is inherently misleading.
In the first experiment, we showed methodologies for training
highly accurate models in the K = 0 case, but detecting

OOD test samples may be just as important, especially if the
consequences of making erroneous predictions are severe.

Historically, OOD detection is a very challenging task for
DNN models, as they are wired to indiscriminately provide
outputs for any data that is formatted as input. In our case,
the models will produce a predicted probability distribution
over the SAMPLE classes for any 64× 64 pixel input image
with values in [0, 1]. In this work, we follow Experiment
4.3 from [2], which considers evaluating SAMPLE models
under an open-world assumption while varying the ratio of
synthetic and measured training data with K (note, we are
still focused on K = 0 in this context). To manufacture an
OOD detection problem, [2] considers holding out a random
subset of J classes from the 10 classes worth of training data.
The remaining 10−J classes are used to train the model, and
test data from these classes are considered in-distribution (ID).
During testing, data from the selected J classes are treated as
OOD, and rather than producing a correct classification, the
goal is to detect and reject them.

A. Detection Methodology
A primary hindrance in OOD detection is that we cannot

simply train the model with an additional class to represent
OOD data, as we do not assume access to such data for
training. Rather, we only have training data from the ID

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

2 4 6 8
of Holdout Classes (J)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C
Detect: Softmax-Thresh

AUROC vs J

2 4 6 8
of Holdout Classes (J)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Detect: Mahalanobis
AUROC vs J

2 4 6 8
of Holdout Classes (J)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TN
R@

95
TP

R

Detect: Softmax-Thresh
TNR@95TPR vs J

2 4 6 8
of Holdout Classes (J)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TN
R@

95
TP

R

Detect: Mahalanobis
TNR@95TPR vs J

baseline (k=1) baseline (k=0) gaus (k=0) gaus+drop (k=0) gaus+drop+lblsm (k=0) gaus+drop+AT (k=0)

Fig. 8. Out-of-distribution detection performance.

set, so we must intelligently leverage any signals available
from the ID-only trained classifier to predict if a sample is
OOD. Specifically, the process we consider for detecting OOD
samples at inference-time is as follows. First, a classifier is
trained on the 10−J ID classes. Then, the measured test data
from all 10 SAMPLE classes is input into the model producing
tentative predictions. Leveraging some internal signal from the
classifier, an ”OOD score” is produced for each input sample.
If the score is above some threshold, the data is deemed OOD
and the model abstains from outputting any prediction. If the
score is below the threshold, the sample is deemed ID and the
model outputs its prediction.

We consider two primary methods for producing an “OOD
score.” The first is called the Softmax Thresholding Baseline
(Softmax-Thresh) and derives an OOD prediction based on
the confidence level for the predicted class [33]. The key ob-
servation is that OOD samples tend to have lower confidence
predictions than ID test samples. The second method is called
the Mahalanobis-distance detector (Mahalanobis) [34], which
is slightly more complex and works in two steps. First, after
the ID classifier is trained, the Mahalanobis detector models
the feature space at the penultimate layer of the classifier
with class-conditional Gaussian distributions, estimated over
the training dataset. Then, at test time the OOD score is
computed as the proximity of the test sample’s representation
to the nearest class-conditional distribution, as measured by
Mahalanobis distance. ID test samples tend to be much closer
to these modeled distributions than OOD samples, which is
the primary intuition for this style of detection. Note, both
detectors produce a real-valued OOD score which is then
compared to some threshold. In operation, one would set this
threshold based on the system’s tolerance for error.

B. Detection Results
To quantify the OOD detection performance of our ATR

models, we measure the ability of the detectors to efficiently
separate the “OOD scores” for the ID and OOD test splits
as we sweep J from 1 to 8. We use the Area Under the

Receiver Operating Characteristic Curve (AUROC) and the
True Negative Rate at a threshold computed to achieve a
95% True Positive Rate (TNR@95TPR) [34] as metrics of
performance. AUROC is a threshold independent performance
metric which quantifies the detectors ability to distinguish
ID from OOD data by assessing the trade-off between true
positive rate and false positive rates across threshold values.
TNR@95TPR measures a situation where a fixed OOD score
threshold is selected to achieve a 95% true positive rate to meet
some stated performance criteria, and we are thus interested in
the true negative rate at this threshold value. Note, the possible
values of both metrics lie in the range [0, 1] where the higher
the value, the better the detection ability.

We consider six total classifier models for use with
the detectors, all of which use the SMPL architecture
and whose naming convention is carried over from Sec-
tion III. The first is the baseline model (i.e., no augmen-
tation and cross-entropy with one-hot label loss function)
trained at K = 1 (baseline (k=1)), which represents
an upper-level of performance because there is no distri-
bution gap between the training and test sets. The sec-
ond model is a baseline configuration trained at K =
0 (baseline (k=0)), which represents the lower-level
of performance starting point. The remaining four models,
gaus (k=0), gaus+drop (k=0), gaus+drop+lblsm
(k=0), gaus+drop+AT (k=0), incrementally add Gaus-
sian noise (gaus), dropout layers (drop), label smoothing
(lblsm), and adversarial training (AT), which we previously
showed to improve expected accuracy. For each model, at each
value of J , we perform 100 experiments with randomly chosen
samples of J classes and report average detection performance.

Fig. 8 shows the detection performance of both the Softmax-
Thresh and Mahalanobis detectors versus the number of hold-
out classes. As a general rule, the baseline (k=1) models
have the highest detection performance, which is not surprising
given that they do not have to contend with the distribution gap
between the synthetic and measured data. These models have
inherently learned high-quality features of the measured data

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

during training, which evidently makes them better equipped
to detect measured OOD samples. On the other hand, the
baseline (k=0) models tend to be the lowest performing,
which is also intuitive as these models have quite low accuracy
performance in relation to the others.

Consider the left two subplots, which show the AUROC vs.
J for both detection methods. For all models, the Mahalanobis
detector is superior to the Softmax-Thresh detector in terms
of AUROC. Our top performing gaus+drop+AT (k=0)
model achieves nearly 0.7 AUROC, which is a∼ 10% absolute
improvement over the baseline (k=0) model across all
values of J . However, this same AT model under-performs
the baseline (k=1) model by nearly 20% AUROC. Next,
consider the right two subplots, which show the TNR@95TPR
vs. J for both detection methods. A similar trend appears
where the Mahalanobis detector outperforms the Softmax-
Thresh detector in general. In this metric, our top per-
forming gaus+drop+AT (k=0) and gaus+drop+lblsm
(k=0) models achieve between 0.15 and 0.2 TNR@95TPR,
which is a gain of less than 10% over the baseline
(k=0) model, yet a drop of over 30% from the baseline
(k=1) model. Even more so than in the AUROC tests,
the baseline (k=1) model vastly outperforms all of the
K = 0 models in terms of TNR@95TPR.

Overall, we pose two main take-aways from these OOD
experiments. Firstly, our training enhancements, including
data augmentation, model construction, and training function
choice, do in-fact improve the OOD detection performance
of K = 0 trained models. We attribute this gain to the
sizeable accuracy improvement yielded by our methods, which
is indicative of a more transferable and robust learned repre-
sentation of the ID classes. However, our second take-away is
that despite such a large gain in accuracy, our improved K = 0
models still fall short of models trained with K = 1. This
motivates future work to co-design classification and OOD
detection systems for SAR-ATR.

V. CONCLUSION

The cost and complexity of collecting large training datasets
of real/measured SAR data for every ATR task-of-interest may
be prohibitive in many cases, especially if rapid development
is required. Thus, the goal of training ATR models on purely
simulated SAR data, for use in measured data deployment
environments, is both an important and significant challenge.
To this point, achieving high-performing models with only
synthetic training data has proven difficult, as there exists a
distribution gap between the training (synthetic) and testing
(measured) data distributions due to difficulties in perfectly
simulating SAR targets. Such distributional differences have
caused DL-based ATR models to over-fit to the unique prop-
erties of the synthetic distribution, yielding minimal general-
ization to the measured distribution.

In this work, we develop advanced training procedures for
DL-based SAR-ATR models using 100% synthetic training
datasets, for use in an “open-world” operating environment. To
boost generalization and improve the quality of learned fea-
tures, we consider composing techniques from the categories

of data augmentation, model construction, training function
choice, and model ensembling. Our models ultimately achieve
over 95% accuracy on within-library test data, which is a near
45% improvement over baseline methods. For the problem of
detecting out-of-library confusers, our more accurate models
also lead to a near 10% improvement in detection ability.
To explain these improvements, through analysis we find that
models trained with our methods learn representations that
rely almost exclusively on salient features of the targets,
while also creating a homogeneous mixture of the measured
and synthetic data in feature space. Overall, our methods
have achieved state-of-the-art performance when only using
synthetic training data, while also motivating a co-design for
accuracy and out-of-library detection in future works.

Discussion. As a final discussion, we would like to note that
a key assumption made throughout this work is the availability
of high-quality CAD models for the targets of interest (as
used in the generation of the SAMPLE dataset). Such models
have been developed through significant effort, to reflect the
physical and electrical properties of the corresponding targets
in the MSTAR collection. The SAR response of these targets
has then been simulated with very high quality electromagnetic
modeling. This high degree of knowledge about the targets
to be simulated, and quality of the simulation, increases the
complexity and cost of producing simulated copies of future
targets, but critically enables training on targets that might
otherwise be completely unavailable. As a future work, it
would be prudent to better understand how the overall quality
of the simulation impacts the effectiveness of our proposed
training framework. Along this track, one may consider a
variety of onerous training conditions, where it is specifically
measured how inaccuracies in the synthetic data generation
process affects the ATR results on the measured data. One
way to do this may be to purposely remove/modify details of
the targets (e.g., remove the barrel of the T-72 tank) in the
CAD modeling software and retrain the ATR models on such
a tainted dataset [35]. Another interesting future work is to
purposely modify details of the synthetic targets as a form of
domain-relevant data augmentation, to potentially improve the
performance of the ATR models through creation of a more
diverse training dataset. Finally, we specify that our intention
is for this work to outline a framework of techniques that can
be used when synthetic training data is available, and we do
not intend that our final parameter settings are universal to all
ATR tasks.

Disclaimer. The views expressed in this article are those
of the authors and do not reflect official policy of the United
States Air Force, Department of Defense or the U.S. Govern-
ment. Public release number: 88ABW-2020-3313

REFERENCES

[1] U. K. Majumder, E. P. Blasch, and D. A. Garren, Deep Learning for
Radar and Communications Automatic Target Recognition. Artech
House, 2020.

[2] B. Lewis, T. Scarnati, E. Sudkamp, J. Nehrbass, S. Rosencrantz, and
E. Zelnio, “A SAR dataset for ATR development: the Synthetic and
Measured Paired Labeled Experiment (SAMPLE),” in Algorithms for
Synthetic Aperture Radar Imagery XXVI, vol. 10987, International
Society for Optics and Photonics. SPIE, 2019, pp. 39 – 54.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[3] K. E. Dungan, C. Austin, J. Nehrbass, and L. C. Potter, “Civilian vehicle
radar data domes,” in Algorithms for Synthetic Aperture Radar Imagery
XVII, vol. 7699, International Society for Optics and Photonics. SPIE,
2010, pp. 242 – 253.

[4] R. Deming, M. Best, and S. Farrell, “Polar format algorithm for SAR
imaging with Matlab,” in Algorithms for Synthetic Aperture Radar
Imagery XXI, vol. 9093, International Society for Optics and Photonics.
SPIE, 2014, pp. 47 – 66.

[5] J. Godwin, M. Moore, D. Waagen, D. Hulsey, and R. Conner, “Statis-
tical analysis of SAR signature domains,” in Algorithms for Synthetic
Aperture Radar Imagery XXVII, vol. 11393, International Society for
Optics and Photonics. SPIE, 2020, pp. 125 – 138.

[6] T. Ross, S. Worrell, V. Velten, J. Mossing, and M. Bryant, “Standard sar
atr evaluation experiments using the mstar public release data set,” in
SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery
V, 1998.

[7] N. Inkawhich, E. Davis, U. Majumder, C. Capraro, and Y. Chen,
“Advanced techniques for robust sar atr: Mitigating noise and phase
errors,” in IEEE International Radar Conference (RADAR), 2020, pp.
844–849.

[8] T. Scarnati and B. Lewis, “A deep learning approach to the Synthetic
and Measured Paired and Labeled Experiment (SAMPLE) challenge
problem,” in Algorithms for Synthetic Aperture Radar Imagery XXVI,
vol. 10987, International Society for Optics and Photonics. SPIE, 2019,
pp. 29 – 38.

[9] M. Cha, A. Majumdar, H. T. Kung, and J. Barber, “Improving sar
automatic target recognition using simulated images under deep residual
refinements,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2018, pp. 2606–2610.

[10] B. Lewis, J. Liu, and A. Wong, “Generative adversarial networks for
SAR image realism,” in Algorithms for Synthetic Aperture Radar Im-
agery XXV, vol. 10647, International Society for Optics and Photonics.
SPIE, 2018, pp. 37 – 47.

[11] B. Lewis, O. DeGuchy, J. Sebastian, and J. Kaminski, “Realistic SAR
data augmentation using machine learning techniques,” in Algorithms
for Synthetic Aperture Radar Imagery XXVI, vol. 10987, International
Society for Optics and Photonics. SPIE, 2019, pp. 12 – 28.

[12] D. Malmgren-Hansen, A. Kusk, J. Dall, A. A. Nielsen, R. Engholm, and
H. Skriver, “Improving sar automatic target recognition models with
transfer learning from simulated data,” IEEE Geoscience and Remote
Sensing Letters, vol. 14, no. 9, pp. 1484–1488, 2017.

[13] J. M. Arnold, L. J. Moore, and E. G. Zelnio, “Blending synthetic and
measured data using transfer learning for synthetic aperture radar (SAR)
target classification,” in Algorithms for Synthetic Aperture Radar Im-
agery XXV, vol. 10647, International Society for Optics and Photonics.
SPIE, 2018, pp. 48 – 57.

[14] C. Clum, D. G. Mixon, and T. Scarnati, “Matching component analysis
for transfer learning,” SIAM Journal on Mathematics of Data Science,
vol. 2, no. 2, pp. 309–334, 2020.

[15] S. R. Sellers, P. J. Collins, and J. A. Jackson, “Augmenting simulations
for sar atr neural network training,” in IEEE International Radar
Conference (RADAR), 2020, pp. 309–314.

[16] B. Lewis, K. Cai, and C. Bullard, “Adversarial training on SAR images,”
in Automatic Target Recognition XXX, vol. 11394, International Society
for Optics and Photonics. SPIE, 2020, pp. 83 – 90.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations (ICLR), 2018.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[19] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” J. Big Data, vol. 6, p. 60, 2019.

[20] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in International Conference on
Learning Representations (ICLR), 2018.

[21] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, 2016, pp. 770–778.

[24] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceed-
ings of the British Machine Vision Conference (BMVC). BMVA Press,
2016.

[25] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smooth-
ing help?” in Advances in Neural Information Processing Systems
(NeurIPS), 2019, pp. 4696–4705.

[26] B. Barz and J. Denzler, “Deep learning on small datasets without pre-
training using cosine loss,” in IEEE Winter Conference on Applications
of Computer Vision (WACV), 2020, pp. 1360–1369.

[27] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” in International Conference
on Learning Representations (ICLR), 2019.

[28] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in International Conference on Learning
Representations (ICLR), 2018.

[29] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, “Vicinal risk
minimization,” in Advances in Neural Information Processing Systems
(NeurIPS), 2000.

[30] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
ArXiv, vol. abs/1312.6034, 2014.

[31] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Watten-
berg, “Smoothgrad: removing noise by adding noise,” ArXiv, vol.
abs/1706.03825, 2017.

[32] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 11 2008.

[33] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” in International
Conference on Learning Representations (ICLR), 2017.

[34] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[35] C. Paulson, A. Nolan, S. Goley, S. Nehrbass, and E. Zelnio, “Articulation
study for SAR ATR baseline algorithm,” in Algorithms for Synthetic
Aperture Radar Imagery XXVI, vol. 10987, International Society for
Optics and Photonics. SPIE, 2019, pp. 73 – 89.

http://www.deeplearningbook.org

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3059991, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Nathan A. Inkawhich Nathan Inkawhich is cur-
rently a PhD student in the Electrical and Computer
Engineering Department at Duke University, advised
by Dr. Yiran Chen of the Computational Evolution-
ary Intelligence (CEI) Lab. Nathan’s main areas of
research are in machine learning algorithms and se-
curity, deep learning, anomaly detection, and robust
automatic target recognition. Previously, Nathan re-
ceived a B.S. in Computer Engineering from Clark-
son University in 2016, and worked for the Air
Force Research Laboratory Information Directorate

(AFRL/RI) in Rome, NY. For any questions regarding this work, please
contact Nathan at nathan.inkawhich@duke.edu.

Matthew J. Inkawhich Matthew Inkawhich re-
ceived his B.S. degree in software engineering from
Clarkson University in 2017. He is currently working
towards a Ph.D. in electrical and computer engineer-
ing from Duke University in Durham, NC, USA.
His research focus is building more robust and
accurate convolutional network backbones for object
detection models.

Eric K. Davis Eric K. Davis received his B.S. degree
in electrical engineering from Northeastern Univer-
sity, Boston, MA, USA in 2013 and his M.S. in elec-
trical and computer engineering from the Georgia
Institute of Technology, Atlanta, GA, USA in 2017.
He has been with SRC, Inc. since 2017 where he is
currently a Lead Systems Engineer on the Machine
Learning and Artificial Intelligence team. Prior to
SRC he worked for the General Electric Company
developing embedded sensor systems for scientific
and commercial applications. His current projects

involve applications in machine intelligence, signal processing, and high-
performance embedded computing.

Uttam K. Majumder Dr. Uttam K. Majumder
received Ph.D. in electrical engineering from Purdue
University, M.S. in electrical engineering from Air
Force Institute of Technology, and B.S. in computer
science from the City College of New York, CUNY.
He is a senior electronics engineer at U.S. Air
Force Research Laboratory (AFRL). His research
interests include in artificial intelligence / machine
learning (AI/ML), synthetic aperture radar (SAR) al-
gorithms development for surveillance applications,
radar waveforms design, and high performance com-

puting for SAR based automatic target recognition (ATR). Dr. Majumder
recently published a book on ”Deep Learning for Radar and Communica-
tions Automatic Target Recognition”. Among various awards, Dr. Majumder
received AFOSR ”STAR Team” award, Air Force Distinguished civilian
award, and AFRL Science and Technology achievement award for radar
systems development. Dr. Majumder is a senior member of IEEE. Website:
https://www.majumderfoundation.org/

Erin Tripp Erin Tripp received the B.S. degree
in mathematics from the University of California,
Santa Barbara, in 2013, the M.S. in mathematics
from Syracuse University, Syracuse, New York, in
2017, and the PhD in mathematics from Syracuse
University in 2019. She is currently a research
mathematician at the Air Force Research Labora-
tory Information Directorate in Rome, New York,
working in optimization theory with applications to
signal and image processing and machine learning.

Chris Capraro Mr. Capraro has over 25 years of
experience in radar signal processing research and
software development, and over 15 years of exten-
sive experience in the program management of Gov-
ernment and commercial contracts. His experience
includes neuromorphic computing, Synthetic Aper-
ture Radar (SAR), Space-Time Adaptive Processing
(STAP), waveform design and selection, waveform
diversity, high-performance computing, and soft-
ware development. Mr. Capraro is currently involved
in developing a pod-based high-performance dis-

tributed embedded computer, developing convolutional and deep learning
neural networks, and implementing topological processing algorithms.

Yiran Chen Yiran Chen received B.S and M.S.
from Tsinghua University and Ph.D. from Purdue
University in 2005. After five years in industry, he
joined University of Pittsburgh in 2010 as Assistant
Professor and then promoted to Associate Profes-
sor with tenure in 2014, held Bicentennial Alumni
Faculty Fellow. He now is the Professor of the
Department of Electrical and Computer Engineer-
ing at Duke University and serving as the director
of NSF Industry–University Cooperative Research
Center (IUCRC) for Alternative Sustainable and

Intelligent Computing (ASIC) and co-director of Duke University Center
for Computational Evolutionary Intelligence (CEI), focusing on the research
of new memory and storage systems, machine learning and neuromorphic
computing, and mobile computing systems. Dr. Chen has published one
book and more than 400 technical publications and has been granted 96 US
patents. He serves or served the associate editor of several IEEE and ACM
transactions/journals and served on the technical and organization committees
of more than 50 international conferences. He is now serving as the Editor-
in-Chief of IEEE Circuits and Systems Magazine. He received 7 best paper
awards, 1 best poster award, and 15 best paper nominations from international
conferences and workshops. He is the recipient of NSF CAREER award, ACM
SIGDA outstanding new faculty award, the Humboldt Research Fellowship
for Experienced Researchers, and the IEEE SYSC/CEDA TCCPS Mid-Career
Award. He is the Fellow of IEEE, Distinguished Member of ACM, and a
distinguished lecturer of IEEE CEDA.

