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ABSTRACT Accurate state of charge (SOC) estimation is a fundamental guarantee for effective development
of lithium-ion power battery in electric vehicles. To improve the SOC estimation precision and robustness,
a novel model-based estimation approach has been proposed. Fully giving consideration to the effect
of measurement errors, the dynamic external electrical property of lithium-ion battery is approximated
by a controlled auto-regressive and moving average (controlled ARMA)-based equivalent circuit model.
An improved adaptive extended Kalman filter approach is developed for SOC estimation based on the multi-
innovation principle.Meanwhile, the different weighting factor is added into each innovation to reduce cumu-
lative influence of historical interference. Since the flat characteristic in OCV-SOC fitting curve enlarges
the OCV-based SOC estimation error, a feedforward compensation method is introduced to reduce OCV
identification error to improve OCV-based SOC estimation. The simulation and experimental results verify
the validity of the proposed methodology over other estimation methods. Besides, simulated current noise
is added to the condition data to prove the high precision and strong robustness of the proposed algorithm.

INDEX TERMS Lithium-ion battery, state of charge, Kalman filter, multi-innovation, OCV compensation.

I. INTRODUCTION
As growing serious problems of environmental destruction
and power shortage, the discovery of new renewable power
sources has increasingly become a popular research agenda
recently. Due to the wide spread and development of elec-
tric vehicles (EVs), the lithium-ion battery (LIB) has widely
applied for EVs because of its brilliant characteristics of long
circle life, low self-discharge rate, non-memory effect and
desirable safety [1], [2]. However, its features are limited
due to many influence and constraint factors [3]–[5]. Hence,
the battery energy management system (BMS) has been
designed for its efficient performance in controlling charging
and discharging. An accurate SOC estimation is a core func-
tion of BMS, which provides a fundamental principle of
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the LIB available capacity for maintaining a longer lasting
time [6]. The accurate SOC estimation deeply influences on
the time scale for charging and discharging, otherwise over-
charging and over- discharging will have serious and negative
impact on LIB life time and EVs driving safety [7]. Therefore,
a reliable and high-precision SOC prediction method is an
especially significant part in BMS to provide an effective
energy control strategy [8].

SOC cannot be directly obtained through measurement
by BMS. Many estimation methods have been developed
to obtain SOC with measured current and voltage in recent
years. In general, the SOC estimation methods can be divided
into two broad categories: non-model based method and
model based method.

The primary non-model based approaches are open circuit
voltage (OCV) based lookup table (LUT) method [9] and
Ampere - Hour counting (AH)method [10]. The LUTmethod
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is straightforward, only by OCV-SOC fitting function. This
method, however, the LUT method is not compatible with
rapid SOC estimation since the LIB has to be kept in rest
period for several hours until it reaches new stable state which
considers the output voltage as OCV. The AH method is
a convenient open-loop algorithm through accumulation of
current per unit time, but it will encounter some problems like
accumulative error and rounding error in real measurement,
such as diffusion and drift current, etc. In addition, the non-
model based method also cover artificial intelligence meth-
ods including support vector machine and artificial neural
network [11]–[13]. Although those black-box methods are
applied to estimate SOC with outstanding performance, but
limited by many factors such as heavy training burden and
long time consuming.

The model selection is a prerequisite for the model-based
SOC estimation. Compared with complex electrochemical
model (EM) including the internal polarization and diffusion
reaction in LIB [14], the equivalent circuit model (ECM)
only utilizes groups of resistance and capacitance to represent
external dynamic electrical characteristic of LIB [15]. The
dynamic response of LIB can be simulated by simple one-
order ECM, and themodel parameters are recursive identified
by least squares (LS) method [16]. Although multi-order
ECM can lead to better performance in representing LIB
dynamic behavior than the one-order ECM, the more ECM
parameters need to be identified with the increasing algo-
rithm complexity. Therefore, the effective ECM is largely
dependent on the balance between complexity and precision
of corresponding algorithm.

As model-based estimation methods, the SOC can be
regarded as a part of state observer. The various forms of
system filtering method can be extensively accepted for SOC
estimation [17]. The prevailing non-linear filtering technol-
ogy is extended Kalman filter (EKF) by first order Taylor
series expansion to approximate the nonlinear dynamic obser-
vation in LIB parameters identification [18]. The unscented
Kalman filter (UKF) and unscented particle filter are utilized
to estimate LIB SOC by the recursive unscented transforma-
tion approach without Taylor series expansion [19], and the
estimation results show that the UKF has better robustness
and higher precision than the EKF in SOC estimation. The
cubature Kalman filter (CKF) based on radial - spherical
cubature rule is adopted in SOC estimator to achieve the
goal of higher precision and better stability than EKF and
UKF [20], [21]. Although the UKF and CKF are superior to
EKF in truncation errors and filtering divergence, the com-
plexity of these algorithms are significantly increased.
Considering the shortage of the EKF, several optimization
methods are proposed. In [22], the EKF is combined with
particle swarm algorithm to enhance the estimation precision
of SOC. For the potential impact of inaccuracy or unknown
noise in KF algorithm, a novel adaptive KF method based
on the combination of Sage-Husa filter and strong tracking
filter (STF) is proposed to improve the SOC estimation accu-
racy and robustness [23].

Since LIB OCV shows an instinct relationship with SOC,
how to determine the OCV is a key problem to be firstly
solved in SOC estimation. There are two major researches,
such as OCV test and OCV identification. Four OCV test
methods are compared in [24]. However, these offline OCV
tests are cost much time, which is not suitable for real time
SOC estimation. On the other hand, the OCV can be treated
as sub-parameter of model parameters and identified by a
variety of algorithms. In Ref. [25], the compound model
parameters including OCV are identified by recursive least
squares with forgetting factor (FFRLS) based on n-order RC
ECM. Themodel components andOCVwhich are considered
as parameters vector are identified by adaptive joint extended
KF at different ambient temperatures [26]. Compared with
combined parameters identification method, the OCV is
firstly identified based on known parameters with incremen-
tal RLS, and then KF is added to correct identification error
of OCV [27]. In view of the negative impact on OCV esti-
mation by model uncertainty and variable parameters, the
H-infinity KFwith strong robustness is introduced to estimate
OCV [28]. The OCV estimation capabilities at various oper-
ating conditions are compared by three estimation methods
including least mean square (LMS), recursive least squares
(RLS) and adaptive observer [29]. Certain fitting functions
are used to describe particular relationship between OCV and
SOC. In [30], the fitting function based on electrochemical
principle is used to describe the relevance of OCV and SOC.
In [31], four fitting functions including exponential function,
polynomial function, power series model and electrochemi-
cal function are compared, and a novel sigmoid function is
applied for representing the relationship between OCV and
SOC. In order to reduce the fitting error, the cubic-hermite
interpolation function as OCV model can be interpreted as a
simplified electrochemical model [32]. Although those fitting
functions can represent the nonlinear correlated behaviors of
OCV and SOC, the local flat effect in fitting curve is not
taken into account, consequently, just a little OCV identifica-
tion error will directly cause an increase of SOC estimation
error.

The main contributions of this thesis are summarized as
follows: (1) An improved AEKF approach based on the
multi-innovation with forgetting factors is used to develop
an accurate and reliable SOC estimator, (2) Fully taken into
consideration for the local flat characteristic of fitting curve,
the error compensation strategy for OCV identification is
used to improve the precision of OCV-based SOC estimation
and (3) Compared with the wide usage of AEKF, the pro-
posed method has the features of strong robustness and high
precision.

The remainder of this paper is organized as follows. The
details of LIB ECM based on controlled ARMA analysis
and the ECM parameters identification by variable FFRLS
(VFFRLS) method is presented in Section 2. The improved
AEKF based on multi-innovation with forgetting factors
and OCV compensation strategy is presented in Section 3.
Section 4 compares the experimental results under the DST
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and FUDS conditions. Finally, some concluding remarks are
given in Section 5.

II. BATTERY MODEL AND PARAMETERS IDENTIFICATION
A. BATTERY MODEL
As a balance method between model precise and model com-
plexity, ECMs with different orders are used extensively in
the proposed battery models. In this paper, a simplified ECM
including one-order RC network is utilized for representing
the external electrical characteristics of LIB to make a com-
promise between model precision and complexity. As shown
in Fig.1, the ECM includes a resistor R0 one-order net-
work with RpCp. The resistor R0 is the ohmic resistance
(the resistance R0,chg denotes discharge ohmic resistance,
and the resistance R0,chg denotes charge ohmic resistance),
while RpCp is employed to approximate the over-potential
dynamics of LIB.

FIGURE 1. Schematic diagram of the one-order RC ECM.

According to circuit principle, one-order ECM can be
expressed as:V̇p,t = −

Vp,t
RpCp

+
It
Cp

Vout,t = Voc,t − Vp,t − R0It
(1)

where Voc,t describes OCV which associates with SOC, Vp,t
represents polarization voltage acrossRpCp,It is the charging-
discharging current, and Vout,t represents the output voltage.

SOC indicates the proportional of the remaining capacity
to the rated capacity of LIB. Mathematically, a common
definition of SOC can be expressed as:

SOCt = SOCt−1 +

∫ t
t0
Itdt

QN
(2)

where It and SOCt represent the current and SOC at time t,
respectively. QN is the rated capacity.
The state equation of SOC can be described as a

discrete-time form:

SOCk+1 = SOCk +
ηIk
QN

(3)

B. PARAMETERS IDENTIFICATION
For the one-order ECM shown in Fig.1, the identified
parameters covering R0, Rp and Cp.

The polarization voltageVp can be eliminated from Eq. (1).
The transfer function G(s) of the ECM can be drawn as:

G(s) =
Vout (s)− Voc(s)

I (s)
= R0 +

Rp
1+ RpCps

(4)

The discretization form of Eq. (4) by bilinear transforma-
tion method: s = 2

Ts
1−z−1

1+z−1
( z is the discretization operator) is

given as:

G(z−1) =
Vout (z−1)− Voc(z−1)

I (z−1)
=
b1 + b2z−1

1+ a1z−1
(5)

where

a1 =
(2RpCp − 1)
(1+ 2RpCp)

, b1 =
−(2R0RpCp + R0 + Rp)

(1+ 2RpCp)
,

b2 =
(2R0RpCp − R0 − Rp)

(1+ 2RpCp)
.

According to the time-domain relationship between the
input and the output, G(z−1) can be rewritten in a regression
form after discretization as follows:

Vout,k = a1Vout,k−1 + b1Ik + b2Ik−1 + (1− a1)Voc,k (6)

Given the random noise in current sensor and voltage
sensor, the random noises in Vout,k , Vout,k−1, Ik and Ik−1 are
ignored in Eq. (6). Assumed the random noises are added in
Vout,k , Vout,k−1, Ik , Ik−1, namely:

Vout,k = V out,k + c1ek
Vout,k−1 = V out,k−1 + c1ek−1
Iout,k = Iout,k + c2ek
Iout,k−1 = Iout,k−1 + c2ek−1

(7)

Substituting Eq. (7) into Eq. (6) yields the following
expression.

Vout,k = a1V out,k−1 + b1I k + b2I k−1 + (1− a1)Voc,k
+a1c1ek−1 + b1c2ek + b2c2ek−1 + c1ek (8)

It’s clear from Eq. (8) that expression meets the require-
ment of controlled ARMA characteristics [11]. According to
the definition of controlled ARMA, the designed ECMof LIB
can be rewritten in Eq. (9):

A(z−1)yk = B(z−1)xk + C(z−1)ek (9)

where A(z−1),B(z−1) and C(z−1) are the coefficients of the
controlled ARMA ECM.

Combining Eqs. (7) and (8), the discrete LIB model is
deduced as.

Vout,k = a1Vout,k−1 + b1Ik + b2Ik−1
+(1− a1)Voc,k + c1ek

ek = ek−1 + εk

(10)

In accordance with nonlinear regression mode principle,
the Eq. (10) can be rewritten as least-square form:

Vout,k = φTk θk (11)
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where {
φk =

[
Vout,k−1 Ik Ik−1 1 ek

]T
θk =

[
a1 b1 b2 (1− a1)Voc,kc1

] (12)

In Eqs. (11) and (12), θk is the unknown parameter, φk is
the known coefficient determined by measurement, e0 = 0,
V̂out,k = φTk θ̂k−1 and ek = Vout,k − φTk θ̂k .

In consideration of fact that the model parameters may
change with different rates [33], the VFFRLS [34], [35] algo-
rithm is applied for model parameters identification, which
allows forgetting factors to be decomposed and adjusted
respectively to enhance the parameters identification stability
and contribute to the improvement of SOC estimation.

III. OCV COMPENSATION BASED SOC ESTIMATION
BY MI-AEKF ALGORITHM
A. REVIEW OF AEKF
In consider of a nonlinear system with Gaussian noises, the
corresponding discrete state equation is as follows:{

xk = Akxk−1 + Bkuk−1 + wk−1
yk = Ckxk + Dkuk + vk

(13)

where xk is the system state vector at time k,Ak and Bk
represents the dynamic property of state formula, Ck and Dk
describe the dynamic property of observation formula,yk is
the measured value,uk is the input variable. wk and vk are the
Gaussian white noises, the covariance ofwk and vk is Qk and
Rk , respectively. Qk and Rk can be estimated based on the
principle of covariance-matching method [36]. The process
of AEKF algorithm is listed as follows:

(I) Initialization: {
x̂0, P0, Q0, R0

}
(14)

(II) Prior estimation
Update the step state

x̂k|k−1 = Ak x̂k−1|k−1 + Bkuk−1 (15)

Update the step error covariance

Pk|k−1 = AkPk−1|k−1ATk + Qk−1 (16)

(III) Measurement correction
Single error innovation

ek = yk − Ck x̂k|k−1 − Dkuk (17)

Calculate gain matrix

Kk = Pk|k−1CT
k (CkPk|k−1C

T
k + Rk )

−1 (18)

State measurement update

x̂k|k = x̂k|k−1 + Kkek (19)

Error covariance measurement update

Pk|k = (I − KkCk )Pk|k−1 (20)

(IV) Adaptive covariance-matching of Qk and Rk
Qk = KkFkKT

k

Fk = 1
M

k∑
i=k−M+1

ekeTk

Rk = Fk − CkPk|k−1CT
k

(21)

Eqs. (14-21) compose the process of AEKF algorithm
based on the principle of covariance- matching. However,
the expression of Rk in Eq. (21) cannot guarantee the positive
definiteness of Rk in real time. For the estimation of Rk ,
Eq. (22) replaces the expression of Rk in Eq. (21) to ensure
the positive definiteness of Rk during the covariance updating
process.

Rk = Fk + CkPk|k−1CT
k (22)

B. MULTI-INNOVATION BASED MI-AEKF
The multi-innovation identification method includes multi-
step predictive information in iterative process, which was
brought forward firstly by Ding et al. [37]. From Eq. (17)
only single innovation is used as prediction error, which may
result in a loss of information for posterior measurement cor-
rection. Combined the multi-innovation and EKF (MI-EKF)
is beneficial for improving error correction effect in contrast
with EKF with single innovation (SI-EKF) [23]. Although
the computation quantity of MI-EKF will slightly increase,
the cost ofMI-EKF is acceptable in consideration of improve-
ment of estimation precision.

The traditional EKF can be extended to MI-EKF by
multi-innovation method. Obviously, it is the direct way that
extends a single innovation ek to be an innovation vector Ep,k .

Ep,k =


ek
ek−1
ek−2
...

ek−p+1

 =

yk − Ck x̂k|k−1
yk−1 − Ck−1x̂k−1|k−2
yk−2 − Ck−2x̂k−2|k−3
...

yk−p+1 − Ck−p+1x̂k−p+1|k−p


(23)

Meanwhile, the gain Kk can be expended as gain
matrix Kp,k :

Kp,k = [K1,k , K2,k , · · · Kp,k ] ∈ Rn×p (24)

Consequently, the state measurement update needs to be
revised as following:

x̂k|k = x̂k|k−1 + [K1,k , K2,k , · · · Kp,k ]Ep,k

= x̂k|k−1 +
p∑
i=1

Ki,kek−i+1 (25)

whereKi,k is gain matrix at times k, Ep,k is innovation matrix,
p is the length of innovation, the MI-EKF can be regarded as
SI-EKF when K2,k = K3,k · · · = Kp,k = 0. Not only the
state at time (k-1) is considered but the states at times (k-i)
are taken into accounted by MI-EKF.
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The procedure of MI-EKF which the past multi-states are
combined into EKF to estimate the state of LIB at the current
time (k) is as follow:

x̂k|k−1 = Ak x̂k−1|k−1 + Bkuk−1
Pk|k−1 = AkPk−1|k−1ATk + Qk−1
ek−p+1 = yk−p+1 − Ck−p+1x̂k−p+1|k−p − Dk−p+1uk−p+1
Kk = Pk|k−1CT

k (CkPk|k−1C
T
k + Rk )

−1

x̂k|k = x̂k|k−1 +
p∑
i=1

Ki,kek−i+1

Pk|k = (I − KkCk )Pk|k−1
(26)

When a series of old measurement are introduced as cor-
rection term in the state measurement update, the old data
may results in accumulative interference since the measure-
ment errors are exist in output voltage and current. In addi-
tion, the influence of newmeasurement should be greater than
that of old measurement. From the discussion of KF with
fading factors [38], the adverse effect of old measurement
and new measurement both are equally weighted, which may
result in accumulative interference. In this case, different
weighting factors are introduced into different innovations to
reduce correction effect of old data. The state measurement
update with multi-innovation is as follows:

x̂k|k = x̂k|k−1 +
p∑
i=1

λiKi,kek−i+1 (27)

In order to ensure maximumweight of gain at current time,
the weights at different times can be defined as:

λ1 ≥ (λ2 + λ3 + · · · λp) (28)

Through adding different weighting factors into gains at
different times, the comparative balance between effective
correction and suppression of accumulative interference can
be achieved. For the performance of MI-EKF, it is at least
superior to the EKF, the different weights are as follow:λ1 = 1

λ2 = λ3 = · · · λp =
a

p− 1
, 0 ≤ a ≤ 1

(29)

where p is the length of innovation, adjustable coeffi-
cient a is 0.5.

Although the appropriate multi-innovation coupling EKF
is benefit to improve estimation precision, the more inno-
vations are added, the better performance is not always
obtained. The definitive innovation data is the key player
to ensure effect of MI-AEKF because the innovation length
must be constrained to a certain value.

C. OCV COMPENSATION STRATEGY
1) ANALYSIS ON LIB OCV-SOC FITTING CURVE
In generally, the relationship between SOC and OCV is
considered as known information for SOC estimation and
the OCV is calculated by parameters identification method.

In this paper, the 8th-order polynomial fitted function is used
to describe the relationship between SOC and OCV:

Voc(k) =
N∑
i=0

biSOC(k)i (30)

where Voc is the OCV, bi is the polynomial fitting coefficient,
N is the order of fitting function and N is set to 8.

The OCV − SOC fitting curve of LIB based on Eq. (30)
is illustrated in Fig. 2(a). It should be noted that (1) Because
the LIB OCV is identified as a part of parameters based on
charge/discharge current and output voltage, the precision
of measurements directly impact the identification precision
of OCV and (2) the mapping between OCV and SOC is
sensitive to the health status and depth of discharge/charge
of LIB. More particularly, there exists a local flat region in
the OCV − SOC fitting curve where the SOC ranges from
0.2 to 0.8. Even if the measurement error of voltage and
current is relatively slight, the identification error of OCV
may lead to a relatively large estimation error of SOC.

The curve of dSOC/dOCV in Fig. 2(b) is the variation
of SOC per mV of OCV changing in the OCV − SOC
fitting curve. It’s worth noting that the variation of the
dSOC/dOCV curve obviously increases when the OCV
ranges from 25.5 to 26.5V, correspondingly, the SOC ranges
from 0.2 to 0.8. That is, the SOC estimation is particularly
sensitivity to identified OCV in the special area by consider-
ing the intrinsic OCV variation. Thus, the SOC estimation
based on the basic fitting function may imply greater risk
of interference in the local flat region of OCV − SOC fitting
curve.

From the analysis above, the OCV error may largely
decline the accuracy of SOC estimation. It’s essential to make
an adequate compensation for OCV especially when the SOC
falls into the ranges from 0.2 to 0.8.

2) FEEDFORWARD COMPENSATION FOR OCV
IDENTIFICATION BY OUTPUT VOLTAGE DEVIATION
Since the OCV that has strong correlation with OCV − SOC
fitting function is highly similar to the output voltage when
the LIB is close to stable state, the output voltage is approx-
imately regarded as the OCV because the output voltage
can be directly measured by test system. In the same way,
the residual error of output voltage is employed to approxi-
mately represent the features of deviation of OCV. Because
the improvement of SOC estimation can be implemented
by the deviation of OCV identification, the residual error
of output voltage is used for compensating error of SOC
estimation.

The residual error of output voltage cannot completely
cover the features of the deviation of OCV. Therefore,
a micro-correction term need be adopted for compensating
error of OCV caused by residual error of output voltage. The
simple correction formula is shown as Eq. (16):

1V̂oc(k) = (df (soc)/dsoc)
(
Vout (t)− V̂out (t)

)
(31)
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FIGURE 2. (a) OCV-SOC curve; (b) SOC variation per OCV.

FIGURE 3. The block diagram of OCV compensation algorithm.

where 1V̂oc is used as compensation module at time k,
(df (soc)/dsoc) is the micro-correction term for residual error
of output voltage.

The micro-correction term (df (soc)/dsoc) is determined
by the gradient of LIBOCV−SOC fitting curve as illustrated
in Fig. 2(b). The faster the SOC changes, the OCV error is
greater when the value scope for OCV ranges from 25.5 to
26.5V (SOC ranges from 0.2 to 0.8). To make up the obvious
disadvantage in that sensitivity region, the appropriate correc-
tion term must be adaptively changed along with the change
rate of SOC. The stronger SOC gradient varies, the greater
correction term should configure. Hence, the OCV feedback
compensation term is only applied in defined area which
belongs to local flat area (SOC ranges from 0.2 to 0.8).

The block diagram of feedforward compensation for OCV
identification by output voltage deviation is shown in Fig. 3.

As illustrated in Fig. 3, the premise of compensation method
is that the identification of OCV and output voltage can be
obtained by the combination of ARMA model and VFFRLS
method. The difference of output voltage between estimate
and measurement is used as residual error of output voltage
(1V̂out ). The residual error (1V̂out ) and micro-correction
term (df (soc)/dsoc) are utilized to get corresponding com-
pensation term (1OCV ) to correct the OCV identification
by the feedforward method. To some degree, the feedforward
compensation method not only balances out the OCV identi-
fication error due to the local flat effect ofOCV−SOC fitting
curve, but also improves the estimation precision of SOC.

D. SOC ESTIMATOR BY COMBINING MI-AEKF
AND OCV COMPENSATION
According to the above discussion, the VFFRLS algorithm
and one-order ECM with ARMA model analysis can be used
for ECM parameters identification. Meanwhile the combi-
nation of MI-AEKF and OCV compensation is applied for
SOC estimation. Based on the characteristic of one-order
ECM, polarization voltage Vp and SOC are chosen as the
state, corresponding to the discrete equation of state and
measurement is shown as:

Vout,k = Voc,k − Vp,k − R0,k ik

Vp,k = e
−

1
Rp,k−1Cp,k−1 Vp,k−1

+(1− e
−

1
Rp,k−1Cp,k−1 )Rp,k−1ik−1

SOCk = SOCk−1 −
ηTik−1
Ccap

(32)

where Vout,k , Voc,k , Vp,k are the OCV, output voltage and
polarization voltage at the sample time k, respectively, and
the Ccap is the capacity which is considered as a known state.
From the discrete ECM expression shown in Eq. (32), the

state-space equation of SOC can be described in Eq. (33).
xk = f (xk−1, uk−1)+ wk−1 = Ak−1xk−1

+Bk−1ik−1 + wk−1
yk = h(xk , uk )+ vk = Ckxk + Dk ik + vk

(33)

where

Ak−1 =
df (xk−1, ϕ̂k|k−1, uk−1)

dxk−1

∣∣∣x̂k|k−1 =
[
1 0

0 e
−1

Rp,k−1Cp,k−1

]
,

Bk−1 =
[
−
ηi1t
Ccap

(1− e
−1

Rp,k−1Cp,k−1 )Rp,k−1

]T
,

Dk =
[
−R0,k

]
, Ck =

dh(xk , ϕ̂k|k−1, uk )
dxk

∣∣∣x̂k|k−1
=

[
∂Voc,k (SOCk ,Ccap,k )

∂SOCk

∣∣SOCk=SOCk|k−1−1 ]T , xk
=
[
SOCk Vp,k

]T
, yk =

[
Vout,k

]
,

the symbol wk−1 represents the state noise of the xk , the
symbol vk is the measurement noise.

With the equations of state and observation above,
the LIB SOC is estimated by the improved AEKF. The pro-
cess of the MI-AEKF for the SOC estimation can be
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FIGURE 4. Schematic diagram of SOC estimator.

seen in Eqs. (26-29), and the feedfoward compensation for
OCV identification by output voltage deviation is given
in Eqs. (30-31). The whole iterative process is illustrated
in Fig. (4).

IV. EXPERIMENTS RESULTS AND ANALYSIS
A high precise battery test platform is established to check
and validate the proposed parameters identification and SOC
estimation. The 20Ah/24V lithium-ion phosphate battery is
selected as the test objects based on a high precise battery test
platform, in which consists of a programmable temperature
chamber, a connected computer and a power battery test
system (Arbin EVTS) with current (0 to 300A) and voltage
(0 to 400V), while the voltage and current measurement
errors limits are both within 0.1%. The computer connecting
with Arbin EVTS is used to collect and store experimental
data such as charge/discharge current, output voltage at a time
interval of 1s. The LIB is fully charged by constant-current-
constant-voltage (CCCV)method, and then it is left to rest for
two hours before being discharged. The data of DST and
FUDS cycles is employed to evaluate the improved method
for SOC estimation. The load current and output voltage of

two conditions are shown in Figs. 5-6, where Fig. 5 (b) and
Fig. 6 (b) are expanded current configuration for DST cycle
and expanded current configuration for FUDS cycle, respec-
tively. With the data flows of collected discharge current and
output voltage, the VFFRLS algorithm is used to identify
the ECM parameters. The identified ECM parameters versus
time is shown in Fig. 5 (d) and Fig. 6 (d), the identifica-
tion values of ECM parameters are able to converge to stable
values rapidly from the unreliable initial value. The refer-
ence SOC should be pre-determined accurately as assess-
ment criteria to compare with SOC estimation. The coulomb
counting (CC) method with high reliability through Arbin
EVTS is used to calculate the reference SOC under certain
conditionwhen initial SOC is considered to be a known value.
In addition, the statistical index, such as maximum absolute
error (MAE) and average absolute error (AAE), represents
quantization performance of estimation algorithms.

A. PRE-DETERMINATION OF MULTI-INNOVATION LENGTH
As a matter of fact, the multi-innovation length affects the
MI-AEKF algorithm performance. If the multi-innovation
length is 1, the proposed MI-AEKF algorithm degrades into
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FIGURE 5. (a) Current under DST cycle; (b) enlarged current under DST cycle; (c) output voltage under DST cycle; (d) Identification value of R0, Rp, Cp
under DST cycle.

general AEKF algorithm. The multi-innovation length is
the crucial factor need to be determined for keeping effec-
tiveness of MI-AEKF. In this paper, we use fitness func-
tion f (k) to express the degree that estimation effect by
MI-AEKF being approximate to the true value. There are
manyways to define the fitness function. Themost direct way
is through the deviation between the estimated output voltage
and experimental output voltage. Normally, the larger error
of output voltage means the current multi-innovation length
could not suitable for MI-AEKF. To validate the accuracy of
the SOC estimation, the fitness function can be defined as
follows:

f (k) =
∥∥vterm(k)− v̂term(k)∥∥22 (34)

where vterm(k) is the measured output voltage, and v̂term(k) is
the estimated output voltage.

For this research, the multi-innovation length L is selected
from 1 to 10 with the step length 1. The assessment process is
performed at each value of multi-innovation length, and the
results are shown in Fig. 7. As can be seen from Fig. 7, the fit-
ness function value typically changes when the value of the
multi-innovation length L varies. It should be mentioned here
that when the multi-innovation length are chosen from 5 to
10, the values of the fitness function are significantly beyond

the range compared with other selected multi- innovation
length. Hence, the range of length is chosen from 1 to 4.
When the length is chosen as L = 3, the fitness function has
the smallest value, which leads to the most accurate estima-
tion of MI-AEKF. Therefore, the optimized length L = 3 is
chosen for the estimation process by MI-AEKF to validate
SOC estimation performance throughout this paper.

B. COMPARISON OF THE SOC ESTIMATION
1) ANALYSIS ON SOC ESTIMATION BY MI-AEKF
The simulation results by two algorithms under the DST and
FUDS cycles are shown in Fig. 8. Of these, the estimation
results of SOC is plotted in Fig. 8 (a and c). The reference
SOC by CC method is formed by a black solid line, the red
solid line represents the estimation results of SOC by AEKF
and the blue solid line denotes the corresponding estimation
results by MI-AEKF. According to the estimation results
presented in Fig. 8 (a and c), the two algorithms based SOC
estimation can both effectively track the SOC reference value.
Tomake comparisonmore intuitive, the SOC estimation error
by two algorithms under the DST and FUDS cycles are
plotted in Fig. 8 (b and d). Among of them, it’s obvious that
the estimation error of SOC by the AEKF method with red
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FIGURE 6. (a) Current under FUDS cycle; (b) enlarged current under FUDS cycle; (c) output voltage under FUDS cycle; (d) Identification value of R0,
Rp, Cp under FUDS cycle.

TABLE 1. Comparison for the SOC estimation results without OCV compensation.

FIGURE 7. Fitness function of multi-innovation length.

solid line is larger than that of MI-AEKF method with blue
solid line. It is observed that the maximum SOC error by
AEKF is close to 2%, meanwhile the maximum SOC error

by MI-AEKF is approximate to 1.6%. The MAE and AAE
of AEKF and MI-AEKF are summarized in table 1. Accord-
ing to analysis above, the proposed MI-AEKF method has
better performance for SOC estimation than AEKF method.
Although the overall results of MI-AEKF and AEKF seem to
be acceptable, there is scope for improvement. More specifi-
cally, the estimation error of two algorithm is relatively large
when the SOC near to 20%.

2) ANALYSIS ON OCV COMPENSATION
BASED SOC ESTIMATION
Since the local flat feature exists in the OCV − SOC fitting
curve, the OCV based SOC estimation is easily affected
by OCV identification error in that special area. To further
reduce the SOC estimation error in that local flat district,
a novel OCV compensation strategy based on the output volt-
age deviation is incorporated into OCV calculation to assist
MI-AEKF based SOC estimation. The simulation results by
two algorithms with OCV compensation under the DST and
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FIGURE 8. Comparison of SOC estimation under two cycles: (a) SOC estimation result under DST cycle; (b) SOC estimation errors under DST cycle;
(c) SOC estimation result under FUDS cycle; (d) SOC estimation errors under FUDS cycle.

TABLE 2. Comparison for the SOC estimation results with OCV compensation.

FUDS cycles are shown in Fig. 9. Among them, the esti-
mation result of SOC is plotted in Fig. 9 (a, c). The black
solid line presents the reference SOC, the red dotted line
denotes the estimation of SOC by AEKF, the red solid line
represents the estimation of SOC by AEKF with OCV com-
pensation, the blue dotted line shows the estimation of SOC
by MI-AEKF and the blue solid line expresses the estimation
of SOC byMI-AEKFwith OCV compensation. According to
the estimation results presented in Fig. 9 (a, c), the OCV com-
pensation based strategy is good for effectively improving the
tracking performance of SOC estimation.

Besides, the Fig. 9 (b, d) illustrates the SOC estimation
error by the MI-AEKF with OCV compensation is minimal.
That means the OCV compensation is beneficial to improve
filtering effect of MI-AEKF and help for weakening effect of
OCV identification error. Correspondingly, the SOC estima-
tion error with red solid line is lower than that of red dotted
line, that is, the OCV compensation also helps to reduce SOC
estimation error by AEKF. It is observed that the maximum

SOC error by AEKF is close to 1.8%, meanwhile the maxi-
mum SOC error by MI-AEKF is approximate to 1.3%. The
MAE and AAE of AEKF and MI-AEKF are summarized in
table 2. And, more remarkable, the SOC estimation error by
MI-AEKF with OCV compensation is dramatically inhibited
in those flat areas. Therefore, the combination of OCV com-
pensation in MI-AEKF has evident advantage over AEKF for
SOC estimation.

C. ANALYSIS ON INITIAL SOC ERRORS
BASED SOC ESTIMATION
As the SOC estimation is presented in Section B, the pre-
condition is that assumed initial value of SOC is reliable
and equivalent to true initial value of SOC. However, due
to the adverse impact of available capacity recovery or self-
discharge effect, the initial errors of SOCmay have a negative
influence on the SOC estimation. To evaluate the possible
negative influence by initial SOC errors, there are three
levels of initialization errors on SOC: 10%, 20% and 30%

VOLUME 7, 2019 49441



Z. Liu et al.: Novel Open Circuit Voltage-Based SOC Estimation

FIGURE 9. Comparison of SOC estimation with OCV compensation under two cycles: (a) SOC estimation result under DST cycle; (b) SOC estimation
errors under DST cycle; (c) SOC estimation result under FUDS cycle; (d) SOC estimation errors under FUDS cycle.

TABLE 3. Comparison for the SOC estimation results with current noise.

respectively to apply for the OCV compensation based SOC
estimator. The estimation results and errors of SOC are shown
in Fig. 10, in which the black solid line presents the reference
SOC, the blue solid line, red solid line and green solid line
indicate the OCV compensation based SOC estimation with
initial SOC errors of 10%, 20% and 30%, respectively, corre-
sponding to initial SOC values of 90%, 80% and 70%, respec-
tively. It is clear that the global SOC estimation errors with
three levels of initialization errors are increased throughout
the whole discharge process. However, the estimation errors
are still within reasonable range, and the convergence and
accuracy have not been markedly weakened. Although the
differences of three estimation errors are relatively large at the
beginning of discharging process, the three estimated SOC
all can track to reference SOC rapidly and approximately in
agreement with each other until the end of discharging.

D. ROBUSTNESS AGAINST NOISES
In the previous section of SOC estimation, the measure-
ment is assumed as accurate data, which could be col-
lected by power battery test system (Arbin EVTS). However,
the actual measured value is not fully equivalent to true
value in the process of practical operation, since the mea-
sured data is inevitably mixed with coupling noises, such as
errors in sampling transducers. Therefore, it’s necessary that
BMS in EVs is capable of having strong robustness against
coupling noises. To further assess the estimation effect of
the MI-AEKF algorithm under measurement noise condi-
tion, a sequence of noise with characteristics of stochas-
tic normal distribution is added to the measured current
which can simulate actual current under two cycles. The
mean value of the noise is zero and its standard deviation
is 10−4. The current with noise under DST cycle is shown
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FIGURE 10. Comparison of SOC estimation with the initial SOC error under two cycle: (a) SOC estimation result under DST cycle; (b) SOC estimation
errors under DST cycle; (c) SOC estimation result under FUDS cycle; (d) SOC estimation errors under FUDS cycle.

FIGURE 11. (a) Current with noise under DST cycle; (b) Current with noise under FUDS cycle.

in Fig. 11(a), the current with noise under FUDS cycle is
shown in Fig. 11(b).

The SOC estimation results and errors influenced by cur-
rent noise under two conditions are displayed in Fig. 12.

Among of them, the black line represents the reference
SOC by CC method in Arbin EVTS. The red line denotes
the estimation results and errors by AEKF with OCV com-
pensation. The blue line represents the corresponding results
and errors by MI-AEKF with OCV compensation. The MAE

and AAE of SOC estimation by two methods are summarized
in Table 3. As shown in Fig. 12 and Table 3, it is clear that
SOC estimation errors of two algorithms based on OCV com-
pensation fluctuate significantly due to the introduction of the
current noise. The maximum SOC error by AEKF goes up
over 2.3%,meanwhile themaximumSOC error byMI-AEKF
increases over 1.7%. Although the MAE and AAE of two
methods are both increased certain degree, the convergence
speed and estimation performance of MI-AEKF is better than
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FIGURE 12. Comparison of SOC estimation against current noise under two cycle: (a) SOC estimation result under DST cycle; (b) SOC estimation
errors under DST cycle; (c) SOC estimation result under FUDS cycle; (d) SOC estimation errors under FUDS cycle.

that of AEKF. The fast convergence and high precision also
verify the robustness of the proposed MI-AEKF with OCV
compensation method.

V. CONCLUSION
To achieve precise SOC estimation, a novel model- based
SOC estimation method for LIB is proposed as the following
items: (1) The one-order Thevenin ECM based on ARMA
model analysis is utilized to represent external electrical spec-
ification of LIB and the VFFRLS-based method is applied
to identify ECM parameters, which can weaken the impact
of measurement with inevitable noises. (2) An improved
AEKF approach is applied to develop an accurate and reliable
SOC estimator based on the multi-innovation principle, and
forgetting factors are added into each innovation to reduce
cumulative influence of historical interference. (3) Because
of the strong nonlinear characteristics in OCV-SOC fitting
curve, especially the significant defect - the local flat effect
in the curve induces extra errors of SOC estimation based on
identifiedOCV. Therefore, an improvedmethod for SOC esti-
mation is designed based on the combination of MI-AEKF
algorithm and feedforward compensation strategy. The
MI-AEKF is used as SOC estimator for BMS.Meanwhile, the
feedforward compensation is used to reform OCV prediction
in real time. To evaluate the performance of the proposed

algorithm, two working conditions are adopted to verify the
SOC estimation, and added current noises to the working
conditions are used to evaluate the robustness of the pro-
posed method. Experimental results verified that presented
methodology can obviously enhance the precision and anti-
interference of SOC estimation for BMS.

APPENDIX
In this section, a convergence analysis based on MI-EKF is
presented [37], [38].

In order to derive the convergence properties of the
MI-AEKF algorithm, the following lemmas are required.
Lemma 1: Let a, x and y be non-negative real sequences

satisfying

(x + y)2 ≤ (1+ a) x2 +
(
1+

1
a

)
y2, a > 0 (1)

Lemma 2: Assume that measurement noise γk is a stochastic
noise with zero mean and variance σ 2: E(‖γk‖2) = σ 2. And
assume the gain vector K (k) is persistently exciting, that is,
there exist constants 0 < α ≤ β < ∞ and an integer N ≥ n
such that the following persistent excitation condition holds:

αI ≤
1
N

N∑
i=1

K (k − i+ 1)KT (k − i+ 1) ≤ βI (2)
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Define the estimation error: x̃k = x̂k − xk .

x̃k = x̂k − xk

= x̂k|k−1 + Kp,kEp,k − xk

= x̂k|k−1 + Kp,k
(
Zp,k − Hp,k x̂k|k−1

)
− xk

= x̂k|k−1 − xk + Kp,k
(
Hp,kxk + Vp,k − Hp,k x̂k|k−1

)
= x̂k|k−1 − xk − Kp,kHp,k

(
x̂k|k−1 − xk

)
+ Kp,kVp,k

=
[
I − Kp,kHp,k

]
x̃k|k−1 + Kp,kVp,k (3)

By taking the 2-norm of both sides in the eq. (3) and using
Lemma 1, it follows that:

‖x̃k‖
2
≤ (1+ a)

∥∥[I − Kp,kHp,k] x̃k|k−1∥∥2
+

(
1+

1
a

)∥∥Kp,kVp,k∥∥2
≤ (1+ a)

∥∥[I − Kp,kHp,k]∥∥2 ∥∥x̃k|k−1∥∥2
+

(
1+

1
a

)∥∥Kp,k∥∥2 ∥∥Vp,k∥∥2
≤ (1+ a)

∥∥[I − Kp,kHp,k]∥∥2 ∥∥x̃k|k−1∥∥2
+

(
1+

1
a

)
pσ 2 ∥∥Kp,k∥∥2

≤ (1+ a)
∥∥∥ I + ∥∥Kp,k∥∥ 2 ∥∥Hp,k∥∥2∥∥∥ ∥∥x̃k|k−1∥∥2

+

(
1+

1
a

)
pσ 2 ∥∥Kp,k∥∥2

≤ (1+ a)
∥∥x̃k|k−1∥∥2

+ (1+ a)
∥∥x̃k|k−1∥∥2 ∥∥Kp,k∥∥ 2 ∥∥Hp,k∥∥2

+

(
1+

1
a

)
pσ 2 ∥∥Kp,k∥∥2 (4)

Taking the expectation of both sides in the eq. (4), we have:

E ‖x̃k‖
2
≤ E

(
(1+ a)

∥∥x̃k|k−1∥∥2)
+E

(
(1+ a)

∥∥x̃k|k−1∥∥2 ∥∥Kp,k∥∥ 2
∥∥∥Hp,k∥∥2 )

+E
((

1+
1
a

)
pσ 2 ∥∥Kp,k∥∥2)

≤ (1+ a)E
(∥∥x̃k|k−1∥∥2)

+ (1+ a)E
(∥∥x̃k|k−1∥∥2 ∥∥Kp,k∥∥ 2

∥∥∥Hp,k∥∥2 )
+

(
1+

1
a

)
pσ 2E

(∥∥Kp,k∥∥2)
≤ (1+ a)E

(∥∥x̃k|k−1∥∥2)
+E

(∥∥Kp,k∥∥2) [(1+ 1
a

)
pσ 2
+ (1+ a)

×E
(∥∥x̃k|k−1∥∥2 ∥∥∥Hp,k∥∥2 )] (5)

Introducing the concept of greatest eigenvalue and assum-
ing λmax[x] represents the maximum eigenvalue of the gain
vector Kp,k , we can get:E

(∥∥Kp,k∥∥ 2
)
≤ E

[
λmax

(
Kp,k · KT

p,k

)]
≤ pβ1

E
(∥∥Hp,k∥∥ 2

)
≤ E

[
λmax

(
Hp,k · HT

p,k

)]
≤ pβ2

(6)

Substituting Eq. (6) into Eq. (5), we can obtain Eq. (7) as
follows.

E
(
‖x̃k‖

2
)
≤ (1+ a)E

(∥∥x̃k|k−1∥∥2)
+pβ1 (1+ a) pβ2E

(∥∥x̃k|k−1∥∥2)
+pβ1

(
1+

1
a

)
pσ 2

≤ [(1+ a)+ pβ1 (1+ a) pβ2]E
(∥∥x̃k|k−1∥∥2)

+ pβ1

(
1+

1
a

)
pσ 2 (7)

Define 
(1+ a)+ pβ1 (1+ a) pβ2 = M

pβ1

(
1+

1
a

)
pσ 2
= N

(8)

Then, we have

lim
k→∞

E
(
‖x̃k‖

2
)
≤ lim

k→∞
ME

(∥∥x̃k|k−1∥∥2)+ N

≤ lim
k→∞

M k−1E
(
‖x̃1‖

2
)
+

1−M k−1

1−M
N

(9)

Based on the above analysis, the bounded convergence of x̃k
based on MI-EKF is proved.
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