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Motion-Compensated Frame Interpolation (MCFI) is one of the common temporal-domain tamper operations, and it is used to
produce faked video frames for improving the visual qualities of video sequences. The instability of temporal symmetry results
in many incorrect Motion Vectors (MVs) for Bidirectional Motion Estimation (BME) in MCFI. The existing Motion Vector
Smoothing (MVS) works often oversmooth or revise correct MVs as wrong ones. To overcome this problem, we propose a
Cellular Automata-based MVS (CA-MVS) algorithm to smooth the Motion Vector Field (MVF) output by BME. In our work, a
cellular automaton is constructed to deduce MV outliers according to a defined local evolution rule. By performing CA-based
evolution in a loop iteration, we gradually expose MV outliers and reduce incorrect MVs resulting from oversmoothing as many
as possible. Experimental results show the proposed algorithm can improve the accuracy of BME and provide better objective
and subjective interpolation qualities when compared with the traditional MVS algorithms.

1. Introduction

Motion-Compensated Frame Interpolation (MCFI) [1] is
one of the common temporal-domain tamper operations,
and it produces several new video frames between two neigh-
boring video frames along motion trajectories of objects. It
can be used to increase the frame rate or temporal resolution
of a video sequence, so it is also called Motion-Compensated
Frame Rate Upconversion (MC-FRUC) [2, 3]. MCFI is a key
step for many video applications, e.g., in the low bit-rate
video coding, it is used to remove the temporal redundancy
[4]; in the slow replay, it is used to improve movement details
in a short time interval [5]; in Liquid Crystal Display (LCD),
it is used to reduce the hold-type motion blur [6], etc. There-
fore, as a fundamental technique, MCFI has been keeping a
high research value since it was born.

Motion Estimation (ME) and Motion-Compensated
Interpolation (MCI) are the main parts in MCFI. ME is for
predicting the Motion Vector Field (MVF) between the
neighboring frames, and MCI is for interpolating a new

frame by using the MVF output of ME. The performance of
MCFI heavily depends on the prediction accuracy of ME,
so many works focus on improving ME performance, and
they can be classified into two types: Unidirectional ME
(UME) [7] and Bidirectional ME (BME) [8]. Block Matching
Algorithm (BMA) [9] is the core of UME and BME, and it is
performed in order to produce block-based MVF according
to the execution mechanisms of UME and BME. UME pre-
dicts the motion trajectory of each block from next frame
and previous frame, then determines the MVs of blocks on
these motion trajectories in the intermediate frame. The
MVs produced by UME are close to reality, but for some
blocks in the intermediate frame, there could be no MV or
multiple MVs, thus introducing holes or overlaps. That is
why many works abandon the use of UME and turn to
BME. BME directly predicts the MVF of intermediate frame
according to the assumption of temporal symmetry of trans-
lational motion, so each block has a unique MV, making the
estimated MVF free from overlaps and holes. BME has been
popular due to its straightforward implementation, though it
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usually produces inevitable MV outliers because the transla-
tional motion cannot describe some complex movements,
e.g., rotation and deformation, and the flat region contains
many structural-similar patches. To reduce MV outliers pro-
duced by BME, Motion Vector Smoothing (MVS) [10]
becomes an essential postprocessing step, and in some works,
the BME combined with MVS is called a true ME [11–13].
From the above, it can be seen that a high-efficiency MVS
is a key to improving the prediction accuracy of BME.

A typical MVS method is Median Filter (MF) [14], which
replaces the MV of a block with the mean of MVs of its adja-
cent blocks. When an MV outlier occurs in a flat region, MF
is not to adjust this outlier along with the major direction of
neighboring MVs but to produce a new MV biased toward
the major direction. That keeps MVF output by MF from
being a high spatial correction in the flat region. A more pop-
ular way is to use Vector-Median Filter (VMF) [15], whose
effectiveness is much more evident in the motion field with
a high spatial correction when compared with MF. Beyond
that, VMF can also reduce impulse noise while preserving
contours. In the fields including edges and textures, spatial
coherence is limited by the fact that the adjacent MVs do
not necessarily align with a direction, so MF and VMF pres-
ent a poor ability to correct MV outliers. To suppress MV
outliers in the nonflat regions, Weighed VMF (WVMF)
[16] is a good way. By adaptively controlling weights, WVMF
relies not only on spatial coherence but also on the measure

of the matching success. Though each MV in MVF can be
smoothed by any one of MF, VMF, and WVMF, not all the
MVs are outliers, thus introducing computation redundancy,
even oversmoothing, i.e., revising the right MV as the wrong
one. To prevent oversmoothing, many works add outlier
detection before filtering MVF, e.g., Yoon et al. [17] regard
an MV as an outlier if its absolute horizontal or vertical com-
ponent value is larger than the average of those of its neigh-
boring MVs; Kim and Sunwoo [18] detect an MV outlier
by comparing the absolute difference of the current MV with
the mean MV of its neighboring MVs. However, these
methods cannot identify outliers accurately, especially that
some obvious outliers are often omitted. Another way of sup-
pressing oversmoothing is to refine MVF by imposing
spatial-temporal smoothness constraint upon BMA, e.g.,
Huang et al. [19] designed a Spatial MVS (S-MVS), which
uses Markov Random Field (MRF) to model spatial smooth-
ness constraint of MVF, and refine each MV by performing
BMA with MRF-based penalty term; Yoo et al. [20] proposed
a Temporal MVS (T-MVS), which selects a reliable MV from
the temporal-neighbor MVs along the forward and backward
directions. With the spatial-temporal smoothness constraint,
these methods make MVF closer to reality but cost lots of
computations. So, both correction capability and computa-
tional complexity being considered, a more effective MVS
can be realized by combining outlier detection and spatial-
temporal smoothing. In this work, we try to provide a

(a) (b)

(c) (d)

Figure 1: Illustrations on the distribution of MV outliers: (a) normal; (b) single outlier; (c) outliers in adjacent MVs; (d) various adjacent
MVs.
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solution to make better use of the advantages of outlier detec-
tion and spatial-temporal smoothing.

In this paper, we first perform BME to generate the initial
MVF of the intermediate frame; then, a Cellular Automata-
(CA-) based MVS (CA-MVS) algorithm is proposed to filter
the MVF output by BME. The proposed CA-MVS algorithm
is a combination of outlier detection and spatial-temporal
smoothing, in which CA is the key to a trade-off between
oversmoothing and computational redundancy. Compared
with the existing works, the main contributions of our work
are summarized as follows:

(i) MV outliers are found in MVF by measuring the
angle between each MV and the mean of its neigh-
boring MVs. A harsh threshold on the angle is set
in order to pick out the evident outliers

(ii) According to the positions of outliers, the outlier map
is generated, and input to CA. By the evolution rule of
CA, some hidden outliers are found. After several
iterations, the distribution of MV outliers tends to
be stable, resulting in a good balance between over-
smoothing and computational redundancy

(iii) Spatial-temporal coherence is exploited to correct
MV outliers. For any MV outlier, VMF is first per-
formed on its neighboring MVs to obtain the spa-
tially predictive MV. Then, we refine this outlier by
using the temporally neighboring MV candidates
along the above-mentioned spatially predictive MV

Experimental results show that the proposed CA-MVS
algorithm can improve the prediction accuracy of BME and
provide better objective and subjective interpolation qualities
than the traditional MVS methods.

2. Background

2.1. Motion Vector Smoothing (MVS). BME suffers from a
limitation concerning the fidelity of the predicted MVF:
MV outliers are introduced for the instability of temporal
symmetry assumption. This drawback can be effectively
overcome by performing Motion Vector Smoothing (MVS)

in the further stage. As shown in Figure 1(a), due to the spa-
tial coherence of MVF, a true MV is similar in value and
direction to its adjacent MVs. An example of an MV outlier
is illustrated in Figure 1(b), an MV is detected as an outlier
once it is different from its adjacent MVs in value or direc-
tion. In this case, MF or VMF can be used to correct this out-
lier. Suppose v0 is an MV outlier, and v1 − v8 are its adjacent
MVs, MF is performed as follows:

�v0 =
1
8〠

8

i=1
vi: ð1Þ

�v0 is the corrected MV of v0, at the geometric center of
v1 − v8. As shown in Figure 1(c), if there are outliers in
v1 − v8, the mean MV cannot align at the main direction.
An alternative solution is VMF, which outputs the median
MV v̂0 of v1 − v8 as the corrected MV, i.e.,

v̂0 =
med v1,h,⋯,vi,h,⋯,v8,h

� �
med v1,v,⋯,vi,v,⋯,v8,v

� �
" #

, ð2Þ

in which medf·g produces the median value of input set,
vi,h is the horizontal component of the ith adjacent MV
vi, and vi,v is the vertical component of the ith adjacent

MV outlier
MV candidate in Cs

Time axis

ft+1ft-1 ft

Figure 2: Illustrations on the spatial-temporal MV candidates.

At time k

At time k+1

At time k

Black block denotes 1

White block denotes 0

At time k+1

Figure 3: One-dimensional cellular automaton with code 76.
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MV vi. The median MV v̂0 satisfies the following prop-
erty:

v̂0 ∈ v1,⋯,vi,⋯,v8f g,

〠
8

i=1
v̂0 − vik k ≤ 〠

8

i=1
v j − vi

�� ��, j = 1, 2,⋯, 8,
ð3Þ

in which k∙k is the norm. Equation (3) indicates that the
sum of distances between the median MV and adjacent
MVs is smaller than the one between any MV in v1 − v8 and
its adjacent MVs. This property forces v̂0 to be biased toward
the main direction of v1 − v8. A drawback of VMF lies in the
lack of turning parameters. As shown in Figure 1(d), if the
adjacent MVs vary in value and direction, the median MV is
unreliable since we are confident in the validity of any MV.
To overcome such a drawback, WVMF has been introduced
based on VMF and is defined as

v̂0 ∈ v1,⋯,vi,⋯,v8f g,

〠
8

i=1
wi v̂0 − vik k ≤ 〠

8

i=1
wi v j − vi
�� ��, j = 1, 2,⋯, 8,

ð4Þ

in which wi is the weight coefficient corresponding to vi. The
fixed weights are first considered; then, the definition is
extended to the case of adaptively varying weights. The more
reliable vi is, the higher the corresponding weightwi is. There-
fore, the weighted-median MV is close to the reliable MVs.

MF, VMF, and WVMF exploit the spatial coherence of
MVF to smooth MV, so their performances degrade when
the spatial coherence is limited. In addition to spatial coher-
ence, temporal coherence can also be used to construct the
smoothness constraint into BMA. As shown in Figure 2, by
assuming that MVs remain stable in a local region along time
axis, the temporally and spatially neighboring MVs are com-
bined in a candidate set CS. MV outlier can be refined by
searching more reliable MV candidates in CS. To measure

the reliability of MV candidates, the Sum of Bidirectional
Absolute Difference (SBAD) is defined by

SBADB vcð Þ = 〠
x,yð Þ∈B

f t−1 x − vc,h, y − vc,vð Þ − f t+1 x + vc,h, y + vc,vð Þ�� ��,
ð5Þ

in which vc is theMV candidate,B is the pixel position set of the
current block in the intermediate frame, vc,h and vc,v arehorizon-
tal and vertical components of vc, respectively, and f t−1ðx, yÞ
and f t+1ðx, yÞ represent the pixel value at the position ðx, yÞ in
the previous frame and next frame, respectively. By the SBAD
criterion, the MV outlier v0 can be smoothed as follows:

~v0 = arg min
vc∈CS

SBADB vcð Þ, ð6Þ

in which ~v0 is the refined MV of v0. Combined with SBAD,
MVS can fully exploit the temporal coherence of MVF. For
the above-mentioned MVS algorithms, an inevitable defect is

(a) (b)

Figure 4: Examples of neighbors set: (a) von Neumann neighborhood; (b) Moore neighborhood.
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Figure 5: Framework of the proposed CA-MVS algorithm.
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oversmoothing, i.e., revising true MV as a wrong one, which
not only reduces the fidelity of MVF but also introduces inva-
lid computations. To overcome oversmoothing which results
from the unstable spatial-temporal coherence, we need a
proper mechanism of outlier detection to correctly recognize
the MV outlier.

2.2. Cellular Automata (CA). Cellular Automata (CA) are
discrete dynamical systems with a simple structure to inves-
tigate self-organization in statistical mechanics, and they
were originally introduced by von Neumann and Ulam as a
possible idealization of biological systems [21]. It is when a
computer game “Life,” an application of a two-dimensional
cellular automaton, became successful that CA began to
attract researchers’ attention [22]. Then, Stephen Wolfram
improved the theory of CA by an in-depth and comprehen-
sive study on the elementary CA [23–25]. It has been widely
used in a variety of fields such as sociology, graphics, and
physics [26].

The construction of a cellular automaton can be repre-
sented by the following formula:

CA = Ω, S,Λ, d, gð Þ, ð7Þ

which shows that each point in a d-dimensional lattice Ω,
called a cell, can take any one from a finite state set S, and
the states of the cells of a lattice are updated according to a
local evolution rule g, i.e.,

Sk+1i = g Ski , Ski±r
� �

, r ∈Λ, ð8Þ

which denotes that the state Sk+1i of a cell at time k + 1 depends
on its own state Ski at time k, and the states Ski±r of cells in its
neighbors set Λ at time k. All cells in the lattice are updated
synchronously, and the state of the lattice advances in discrete
time steps. An example of the one-dimensional cellular
automaton with code 76 is illustrated in Figure 3. All cells
are arranged in a line. Each cell has binary states 1 or 0, and
its left and right cells construct its neighbors set. The eight pos-
sible states of three adjacent cells are given at time k; then, the

central cell of the three takes its state at the next time k + 1 by a
defined rule. The time evolution of the complete cellular
automaton is obtained by simultaneous application of the rule
at each cell for each time step. In a two-dimensional case, dif-
ferent definitions of neighbors set are possible, among which
von Neumann neighborhood and Moore neighborhood are
common. As shown in Figure 4(a), four cells, the cells above
and below each cell and the two on its right and left, are called
von Neumann neighborhood of this cell. Moore neighbor-
hood is illustrated in Figure 4(b), and it is an enlargement of
von Neumann neighborhood containing the diagonal cells.

Adjacent MVs

Current MV

Median MV

Angle 𝜃

𝜈0

𝜈0

𝜈0

𝜈0

𝜈1 𝜈2 𝜈3

𝜈5𝜈4

𝜈6 𝜈7 𝜈8

Figure 6: Illustration on angle computing.

b1 b2
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p = 1
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b5Si
k+1 = 1b4

b6 b7 b8

bp ≥ 3

or

Figure 7: Local evolution rule of the constructed cellular
automaton.

Table 1: Truth table on CA-based evolution.

Ski b1 b2 b3 b4 b5 b6 b7 b8 Sk+1i

1 × × × × × × × × 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0 0

0 Else 1
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By properly modeling objective behaviors as evolution
rules, CA can simulate the running of some physical sys-
tems. Particularly in two dimensions, CA have been exten-
sively used to exploit the statistics and latent features of
images [27, 28]. The MVF of video frame is a two-
dimensional lattice, and there exists inherent coherence
between adjacent MVs, enabling CA to deduce the statistical

mechanics of MV outliers in MVF. Motivated by the rule
evaluation of CA, we attempt to construct a two-
dimensional cellular automaton to model a universal law
analogous to the variation of MV outliers. The cellular
automaton controls the evaluation of the outlier map and
helps MVS to get a good trade-off between oversmoothing
and computational complexity.

VMF

ft-1 ft

w w

Search window

𝜈1 𝜈1

𝜈4 𝜈4

𝜈6 𝜈7 𝜈8 𝜈6 𝜈7 𝜈8

𝜈0

𝜈0

𝜈2 𝜈3 𝜈3

𝜈5𝜈0

W

BM

B

Figure 8: Illustration on spatial-temporal smoothing. Gray blocks denote MV outliers, and white blocks denote correct MVs.

(a)

(b)

(c)

Figure 9: Interpolated frame and the corresponding outlier map at each iteration in the CA-MVS algorithm for the 82-rd frame of Foreman
sequence. In each subfigure, from left to right: results after the first, second, third, and fourth iteration. For the outlier map, the black block
denotes outlier, and the white block denotes nonoutlier. (a) Interpolated results; (b) outlier maps after detecting; (c) outlier maps after CA-
based evolution.
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3. Proposed CA-Based MVS (CA-
MVS) Algorithm

3.1. Framework Overview. Figure 5 shows the framework of
the proposed CA-MVS algorithm. BME is first performed

to produce the initial MVF Vð0Þ
t from the intermediate frame

ft to the previous frame ft−1. According to the assumption of

temporal symmetry, we also get the initial MVF −Vð0Þ
t from

the intermediate frame ft to the next frame ft+1. Then, V
ð0Þ
t

is input into the proposed CA-MVS algorithm, which exe-
cutes a loop of outlier detection, CA-based evolution,
spatial-temporal smoothing, and residual calculation. In the

jth iteration, we detect the MV outliers inVðjÞ
t , and the binary

map EðjÞ
t is generated to reveal the distribution of outliers. To

avoid wrong detection results, outlier detection is limited

strictly, so the outlier map EðjÞ
t only reflects the evident MV

outliers. Based on EðjÞ
t , CA-based evolution is performed to

find the hidden outliers. The constructed cellular automaton
uses the propagation effect of outliers to model the local evolu-

tion rule and deduces ÊðjÞ
t from EðjÞ

t to expose some hidden out-
liers. The spatial-temporal smoothing is used to correct any

outlier pointed by ÊðjÞ
t in VðjÞ

t and outputs the MVF Vðj+1Þ
t of

ft at the ðj + 1Þth iteration. We select the less spatial-temporal
neighboring MVs to smooth MV outliers in order to suppress
oversmoothing. To decide whether to quit the loop, we calcu-

late the residual ɛ between Vðj+1Þ
t and VðjÞ

t as follows:

ε = 1
M ×N

〠
M

m=1
〠
N

n=1
〠
2

l=1
V j+1ð Þ

t m, n, l½ � − V jð Þ
t m, n, l½ �

��� ���, ð9Þ

in whichM ×N denotes the spatial size of VðjÞ
t , ðm, nÞ denotes

the spatial position of each MV in VðjÞ
t , and l denotes the hor-

izontal or vertical component of MV, i.e., l = 1means the hor-

izontal component, and l = 2 means the vertical component.

The similarity between Vðj+1Þ
t and VðjÞ

t is measured by the
residual ɛ, and a threshold Thr is set to determine whether to
perform the next iteration. Once ɛ is less than or equal to

Thr, we make the loop exit and output Vðj+1Þ
t as the final

MVF Vt of ft . After several iterations, by the evolution of CA,
the number of outliers tends to be stable, preventing over-
smoothing introduced by redundant computations. According
to Vt , the Overlapped Block Motion Compensation (OBMC)
[29] is finally performed on ft−1 and ft+1 to interpolate the
intermediate frame f̂t. Outlier detection, CA-based evolution,
and spatial-temporal smoothing are the important parts of
the proposed CA-MVS algorithm, and the following describes
them in detail.

3.2. Outlier Detection. An evident MV outlier shows its large
angle with respect to one of its adjacent MVs, so we use the
angle between every two adjacent MVs to detect the outliers
in MVF. A 3 × 3 window is used to scan all MVs in MVF from
left to right and from top to bottom, and as shown in Figure 6,
in theMVwindow, v0 is theMV to be detected in the red block,
and v1 − v8 are eight adjacent MVs of v0, which are marked in
blue. It costs many computations to compute all angles
between v0 and v1 − v8. In order to reduce computations, we
first get the median MV v̂0 of v1 − v8 according to Equation
(2), then compute the angle θ between v0 and v̂0 as follows:

θ = arccos v̂0 ⋅ v0
v̂0k k2 v0k k2

� 	
, θ ∈ −π, π½ �, ð10Þ

in which arccosð·Þ is the arc-cosine function. v̂0 represents the
main direction of v1 − v8, so a large θmeans that v0 deviates far
from its adjacent MVs. Based on this experience, we regard v0
as an evident outlier if ∣θ ∣ is larger than π/2. After detecting all
MVs in VðjÞ

t , the outlier map EðjÞ
t is generated, in which outlier

and nonoutlier are marked with 1 and 0, respectively. This
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Figure 10: PSNR and residual values per iteration in the CA-MVS algorithm for the 82-rd frame of Foreman sequence: (a) PSNR curve; (b)
residual curve.
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strict criterion makes the exposed outliers more reliable, but it
also excludes some real outliers. These hidden outliers lead to
the trade-off between oversmoothing and computations: if
the hidden outliers are omitted, computations invested to
smooth outlier are not many, but they can mislead the correc-
tion of exposed outliers, resulting in oversmoothing. Therefore,
we add CA-based evolution to keep a good balance between
oversmoothing and computations.

3.3. CA-Based Evolution. To ensure the accuracy of detecting

outliers, the evident outliers are only marked with 1 in EðjÞ
t .

When we use EðjÞ
t to decide whether to smooth any MV in

VðjÞ
t , those hidden outliers cannot be corrected, and the

exposed outliers would also be modified incorrectly once

some outliers hide in its adjacent MVs. It is necessary to find

these hidden outliers in VðjÞ
t in order to solve the above prob-

lem of oversmoothing. Motivated by the CA theory, we con-
struct a cellular automaton to model the interaction between

outliers in EðjÞ
t and deduce the hidden outliers from the

exposed ones according to the defined local evolution rule.

EðjÞ
t is a 2-dimensional lattice, and its element is regarded as

a cell. Each cell has two states 0 and 1, denoting nonoutliers
and outlier, respectively. Due to the locally stationary statistics
of MVF, outliers propagate in its neighborhood. In a 3 × 3
window, this propagation effect can be enhanced when an out-
lier is closer to the center or more outliers occur in the win-
dow. Based on this experience, as shown in Figure 7, we
define a local evolution rule for the constructed cellular

(a) (b)

(c) (d)

(e) (f)

Figure 11: Visual results on the 14th interpolated frame of the Foreman sequence with different MVS algorithms: (a) MF; (b) VMF; (c)
WVMF; (d) S-MVS; (e) T-MVS; (f) CA-MVS.
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automaton. Suppose the state Ski of the current cell is 0, and the
states of its adjacent cells are b1 − b8, which have two possible
values 0 and 1. The state Sk+1i of the current cell at time step
k + 1 is specified as follows:

Sk+1i = g Ski , bp
� �

p=1,2,⋯,8

� �
=

1, 〠
8

p=1
bp ≥ 3,

1, b2 + b4 + b5 + b7 ≠ 0,
0, else:

8>>>>><
>>>>>:

ð11Þ

According to Equation (11), the current MV can be iden-
tified as an outlier if outliers occur in its von Neumann neigh-
borhood or more than three outliers occur in its Moore

neighborhood. The states at each cell in EðjÞ
t are updated

simultaneously, and these updated states form the new outlier

map ÊðjÞ
t . To speed up the CA-based evolution, we summarize

the truth table on the above defined local rule, as shown in
Table 1. According to Table 1, the state of the cell at a given
time is obtained immediately depending on the logical combi-
nation of its neighbors’ states at the previous time step. The
CA-based evolution propagates the outlier in a local region
and deduces the moderate number of hidden outliers.

(a) (b)

(c) (d)

(e) (f)

Figure 12: Visual results on the 58th interpolated frame of theMobile sequence with different MVS algorithms: (a) MF; (b) VMF; (c) WVMF;
(d) S-MVS; (e) T-MVS; (f) CA-MVS.
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Compared with EðjÞ
t , ÊðjÞ

t can smooth more outliers, and at the
same time, the increased computations can achieve some alle-
viation of oversmoothing, bringing a good balance between
oversmoothing and computational complexity.

3.4. Spatial-Temporal Smoothing. Any outlier pointed by ÊðjÞ
t

is corrected by the proposed spatial-temporal smoothing. To
improve the correction capability, the existing works are try-
ing to construct a large-scale candidate set by exploiting the
spatial-temporal coherence of MVF. However, the more can-
didate MVs there are, the more computations are invested,
particularly the higher the probability of outliers occurring
in the candidate set is. We combine VMF into the construc-

tion of candidate MV set in the spatial-temporal neighbor-
hood, which can simplify the set of candidate MVs while
providing a robust capability to correct outliers. The flow of
spatial-temporal smoothing is illustrated in Figure 8. Sup-
pose v0 is the MV outlier to be smoothed, and v1 − v8 are
its adjacent MVs, in which v2 and v5 are MV outliers. First,
we input the correct MVs in v1 − v8 into VMF and generate
their median MV v̂0. For the current block B, we find the
matching block BM in ft−1 along v̂0 and open a search win-
dow W centered BM. We set the radius w of W to be 1 and
collect the relative displacements from B to all search points
in W as the candidate MV set CS. The SBAD value of each
MV candidate is computed according to Equation (5) and

(a) (b)

(c) (d)

(e) (f)

Figure 13: Visual results on the 22-rd interpolated frame of the News sequence with different MVS algorithms: (a) MF; (b) VMF; (c) WVMF;
(d) S-MVS; (e) T-MVS; (f) CA-MVS.
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selects the candidate with the smallest SBAD value as the cor-

rected MV by Equation (6). After scanning all outliers in ÊðjÞ
t ,

VðjÞ
t is updated as Vðj+1Þ

t . Due to a small radius of the search
window, the number of candidates in CS is limited, but these
candidates have a strong spatial-temporal coherence with v0,
and in that way, a good correction capability can be ensured.

4. Experimental Results

In this section, the performance of the proposed CA-MVS
algorithm is evaluated by testing it on different video
sequences and comparing the results with those obtained
by the traditional MVS algorithms including MF [14], VMF

[15], WVMF [16], S-MVS [19], and T-MVS [20]. An MCFI
algorithm is also combined by BME, CA-MVS, and OBMC
and compared with the recent state-of-the-art MCFI algo-
rithms [1, 3, 7, 8] from objective perspectives. All test
sequences used for experiments are in the standard CIF
(352 × 288) formats and 30 frame/s. To evaluate the quality
of the interpolated frames, we remove the first 50 even frames
of each test sequence, then use various MCFI algorithms to
recover these even frames from the 51 first odd frame. In
the proposed CA-MVS algorithm, the block size is set to be
8 × 8, and how to set the threshold Thr will be discussed in
Subsection 4.1. The comparing algorithms keep their original
parameter settings. All experiments are conducted on aWin-
dows machine with an Intel Core i7 3.40GHz CPU and a

(a) (b)

(c) (d)

(e) (f)

Figure 14: Visual results on the 30th interpolated frame of the Stefan sequence with different MVS algorithms: (a) MF; (b) VMF; (c) WVMF;
(d) S-MVS; (e) T-MVS; (f) CA-MVS.
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memory of 8GB. All algorithms are implemented in
MATLAB.

4.1. Effect of CA on Performance.We evaluate the effect of CA
on the performance improvement by presenting the varia-
tions of interpolated frames and outlier maps in the loop iter-
ations as shown in Figure 9. In the first iteration, there are
many outliers in the outlier map after detection, then by
CA-based evolution, many hidden outliers are exposed, and
finally, we smooth these outliers and get the corresponding
interpolated frame as shown in the left of Figure 9(a), from
which it can be seen that obvious mismatches occur around
the mouth region. In the second iteration, by outlier detec-
tion, the outliers are reduced significantly, but outliers
around the mouth cannot be detected. Thanks to the CA-
based evolution, these outliers hidden around the mouth
are exposed again. The interpolated frame after the second
iteration is shown in the second column of Figure 9(a), and
we can see that the mismatches around the mouth are sup-
pressed effectively. In the third iteration, after detecting,
some outliers disappear as a result of the last spatial-
temporal smoothing; then, the CA-based evolution propa-
gates outliers around the detected outliers. After correcting
these outliers, the interpolated frame is shown in the third
column of Figure 9(a), and it can be seen that mismatches
are removed. In the fourth iteration, the distribution of out-
liers tends to be stable, and the quality of the interpolated
frame as shown in the right of Figure 9(a) is a little different
from that after the third iteration. Figure 9 indicates that the
bad effects from outliers in the interpolated frame are
reduced step by step owing to the implementation of CA-
based evolution. Figure 10(a) shows the varying PSNR values
of the interpolated frame as the number of iteration times
increases, and it can be seen that the PSNR value increases
gradually at each iteration and tends to stabilize after the
third one, indicating that CA-based evolution can effectively
improve the interpolated quality. We cannot observe the
quality degradation in both objective and subjective results

due to oversmoothing, which presents that outlier propaga-
tion controlled by CA prevents oversmoothing. From
Figure 10(b), we can find that the PSNR value has little
change when residual value ɛ is smaller than 0.1 for the
82-rd frame of the Foreman sequence. Limited by space, we
cannot present the PSNR and residual curves for other
sequences, but these results are similar to Figure 10, i.e., the
PSNR value tends to be stable when ɛ is smaller than 0.1.
Therefore, in order to remove the invalid iterations, we set
the threshold Thr to be 0.1.

4.2. Subjective Evaluation. Figure 11 shows the visual results
of the 14th interpolated frame of the Foreman sequence with
different MVS algorithms. MF and VMF can produce clear
background, but serious blocking artifacts occur around the
nose. For WVMF, S-MVS, and T-MVS, there are many mis-
matches on the background, and the faces are deformed
severely. The proposed CA-MVS algorithm provides a pleas-
ant result, in which there are no blocking artifacts. Figure 12
shows the visual results on the 58th interpolated frame of the
Mobile sequence using different MVS algorithms. MF, VMF,
and WVMF make the numbers on the calendar blurry and
recover the red ball wrongly. S-MVS and T-MVS produce
more serious distortion: numbers on the calendar disappear,
and the color distortion occurs around the red ball. The CA-
MVS algorithm produces clear numbers, and no deformation
is generated. Figure 13 shows the visual results of the 22-rd
interpolated frame of the News sequence with different
MVS algorithms. WVMF, S-MVS, and T-MVS produce seri-
ous blocking effects around the face of anchorwoman. MF
and VMF generate a clear face, but some mismatches occur
on the background. The CA-MVS algorithm provides a com-
fortable result. Figure 14 shows the visual results of the 30th
interpolated frame of the Stefan sequence with different MVS
algorithms. For the traditional MVS algorithms, there are
serious ghost effects around the sportsman; however, the
CA-MVS algorithm effectively suppresses the blurring and
provides a satisfying result.

Table 2: Average PSNRs (dB) of the interpolated frames recovered by CA-MVS and traditional MVS algorithms.

Test sequence MF [14] VMF [15] WVMF [16] S-MVS [19] T-MVS [20] CA-MVS

Akiyo 40.15 46.09 39.16 37.32 37.34 46.83

Coastguard 26.99 30.77 28.50 27.46 27.52 32.52

Container 35.79 44.49 35.58 38.95 38.93 44.91

Flower 24.80 29.55 26.31 26.22 26.28 31.68

Football 21.35 21.83 21.20 21.42 21.32 22.86

Foreman 29.82 32.11 29.88 28.16 28.17 34.73

Hall 31.19 35.29 30.51 31.76 31.78 35.48

Mobile 19.06 22.54 20.45 19.20 19.35 26.56

Mother & daughter 37.21 41.56 36.48 38.33 38.34 42.53

News 32.34 36.35 31.20 31.78 31.84 37.20

Paris 27.88 31.95 28.63 28.19 28.20 33.52

Stefan 23.45 26.60 23.60 23.72 23.62 28.52

Tennis 25.62 28.17 26.38 26.52 26.43 30.05

Average 28.90 32.87 29.07 29.15 29.16 34.41
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Figure 15: Continued.
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4.3. Objective Evaluation. The proposed CA-MVS and tradi-
tional MVS algorithms are, respectively, combined with BME
and OBMC, and we get some different MCFI algorithms,
which are used to interpolate the absent frames of test
sequences. Table 2 presents the average PSNR values of these
interpolated frames when using different MVS algorithms. It
can be seen that the CA-MVS algorithm has obvious PSNR
gains when compared with any of the other algorithms, e.g.,
for Football with complex motions, the CA-MVS algorithm
is 1.03 dB higher than VMF, and for News with simple
motions, the CA-MVS algorithm obtains, respectively,
6.00 dB, 5.42 dB, and 5.36 dB PSNR gains when compared

with WVMF, S-MVS, and T-MVS. The last row of Table 2
lists the average PSNR values on all test sequences for various
MVS algorithms, and it can be seen that the proposed CA-
MVS algorithm obtains obvious PSNR improvements com-
pared with other MVS algorithms. Figure 15 shows the
PSNRs of individual interpolated frames on Foreman,
Mobile, News, and Stefan. We can see that the proposed
CA-MVS algorithm outperforms the traditional MVS algo-
rithms in most cases, and especially for Mobile and Stefan,
obvious PSNR improvements of the CA-MVS algorithm
can also be obtained. Table 3 lists the average processing time
of various MVS algorithms. It can be seen that the CA-MVS

0 5 10 15 20 25 30 35 40 45 50

Frame number

25

20

30

35

40

45

PS
N

R 
(d

B)

MF
VMF
WVMF

S-MVS
T-MVS
CA-MVS

(c)

15

20

25

30

35

PS
N

R 
(d

B)

0 5 10 15 20 25 30 35 40 45 50

Frame number

MF
VMF
WVMF

S-MVS
T-MVS
CA-MVS

(d)

Figure 15: PSNRs of the interpolated frames constructed by different MVS algorithms: (a) Foreman; (b) Mobile; (c) News; (d) Stefan.
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algorithm does not excessively introduce computations and
only increases by about 0.3 s when compared with MF and
VMF. The CA-MVS algorithm requires fewer computations
than WVMF, S-MVS, and T-MVS. Table 4 presents the
PSNR results of the CA-MVS algorithm and recent state-
of-the-art MCFI algorithms [1, 3, 7, 8]. The results of [1, 3,
7, 8] are directly taken from the original researches. From
Table 4, we can see that the CA-MVS algorithm obtains
PSNR gains for some test sequences, e.g., for Container, the
CA-MVS algorithm outperforms [3, 7, 8], and for Football,
the CA-MVS algorithm obtains 0.88 dB PSNR gains over
[3]. In most cases, the proposed CA-MVS algorithm has
comparable PSNR results to those of the state-of-the-art
MCFI algorithms. From the above, we can see that the CA-
MVS algorithm can provide a good objective interpolation
quality.

5. Conclusion

In this paper, the CA-MVS algorithm is proposed to reduce
the incorrect MVs resulting from BME. To overcome
oversmoothing, according to the CA theory, we construct a
cellular automaton to model the interaction between outliers
and define a logical evolution rule to accurately expose out-
liers step by step. In the CA-MVS algorithm, a loop iteration
is executed. First, by the angles between every two adjacent
MVs, the evident outliers are detected. Second, through
CA-based evolution, we find the hidden outliers based on
the information from the exposed outliers. Third, the
spatial-temporal smoothing corrects each MV outlier by
searching the reliable MV from the spatial-temporal neigh-

boring MVs. Finally, we calculate the residual between the
current and the previous MVFs to decide whether to make
the loop exit. Experimental results show that, compared with
the traditional algorithms, the CA-MVS algorithm can better
improve the accuracy of BME and provide better subjective
and objective interpolation qualities.

As the research in this paper is exploratory, there are many
intriguing questions that future work should consider. First,
the outlier detection is required to make it more accurate. Sec-
ond, we will further improve the CA evolution rule to more
efficiently find hidden outliers. Finally, the color information
will be considered to be mixed into the CA evolution.
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