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Behavior of Lévy-driven Stochastic
Differential Equations

Dissertation

zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Mathematik und Wirtschaftswissenschaften

der Universität Ulm

vorgelegt von

Jana Katharina Reker

aus Braunschweig

2020



Amtierender Dekan: Prof. Dr. Martin Müller

Erstgutachter: Prof. Dr. Alexander Lindner

Zweitgutachter: Prof. Dr. Mladen Savov

Abgabe der Arbeit: 12. September 2020

Tag der Promotion: 15. Januar 2021

II



For the mind does not require
filling like a bottle, but rather, like
wood, it only requires kindling to
create in it an impulse to think
independently and an ardent desire
for the truth.

Plutarch

III



Abstract
This thesis covers different properties of solutions to Lévy-driven stochastic differential
equations and can be divided into two main parts.
In Chapter 2, we consider various distributional properties of killed exponential func-
tionals of Lévy processes. For two independent Lévy processes ξ and η and an exponen-
tially distributed random variable τ with parameter q > 0, independent of ξ and η, the
killed exponential functional is given by Vq,ξ,η :=

∫ τ
0 e−ξs− dηs. Interpreting the case q = 0

as τ = ∞ almost surely, the random variable Vq,ξ,η is a natural generalization of the ex-
ponential functional

∫∞
0 e−ξs− dηs, the law of which describes the stationary distribution

of a generalized Ornstein-Uhlenbeck process. Similar to the case without killing, there are
two ways to view the distribution of Vq,ξ,η, leading to two main approaches to studying
its properties. In the first part of the chapter, we consider the random variable Vq,ξ,η as a
stopped stochastic integral and, using tools from probability theory and infinitely divisible
distributions, the support and continuity of the law of the killed exponential functional
are characterized, and many sufficient conditions for absolute continuity are given. As an
intermediate step, sufficient conditions for absolute continuity of

∫ t
0 e−ξs−dηs for fixed t ≥ 0

as well as for integrals of the form
∫∞

0 f(s) dηs for deterministic functions f are obtained.
Applying the same techniques to the case q = 0 further yields results on the absolute
continuity of the improper integral

∫∞
0 e−ξs− dηs.

As in the case without killing, it can be shown that the law of the killed exponential
functional arises as the stationary distribution of a solution to a stochastic differential
equation. Since the solution is closely related to the generalized Ornstein-Uhlenbeck pro-
cess and, in particular, a Markov process, tools from functional analysis become applicable
to study the distribution of Vq,ξ,η. This is the content of the second part of Chapter 2.
Here, the infinitesimal generator of the process is calculated and used to derive different
distributional equations describing the law of Vq,ξ,η, as well as functional equations for
its Lebesgue density in the absolutely continuous case. We then consider different special
cases and examples to obtain more explicit information on the law of the killed exponen-
tial functional and to illustrate some applications of the equations. As in the first part
of the chapter, considering q = 0 allows to extend the results to the classical exponential
functional

∫∞
0 e−ξs− dηs.

In Chapter 3, we consider solutions to general Lévy-driven stochastic differential equa-
tions of the form dXt = σ(Xt−)dLt, X0 = x where the function σ is twice continuously
differentiable and maximal of linear growth, and the driving Lévy process L = (Lt)t≥0 is
either vector or matrix-valued. While the almost sure short-time behavior of Lévy pro-
cesses is well-known and can be characterized in terms of the generating triplet, there is no
complete characterization of the behavior of the process X. Using methods from stochastic
calculus, we derive limiting results for stochastic integrals of the from t−p

∫ t
0+ σ(Xt−)dLt

to show that the behavior of the quantity t−p(Xt − X0) for t ↓ 0 almost surely mirrors
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the behavior of t−pLt. Generalizing tp to a suitable function f : [0,∞)→ R then yields a
tool to derive explicit law of the iterated logarithm-type results for the solution from the
behavior of the driving Lévy process and also allows to give statements for convergence
in probability or in distribution.

V



Zusammenfassung
Die vorliegende Arbeit thematisiert verschiedene Eigenschaften der Lösungen von Lévy-
getriebenen stochatstischen Differentialgleichungen und ist inhaltlich in zwei Teile unter-
gliedert.
In Kapitel 2 werden Verteilungseigenschaften von gestoppten exponentiellen Funktio-
nalen (”killed exponential functionals”) charakterisiert. Diese sind für zwei unabhängige
Lévy-Prozesse ξ und η sowie eine von beiden Prozessen unabhängige, exponentialverteilte
Zufallsvariable τ mit Parameter q > 0 durch das Integral Vq,ξ,η :=

∫ τ
0 e−ξs− dηs gegeben.

Wird der Fall q = 0 als τ = ∞ fast sicher interpretiert, ergibt sich das uneigentliche
Integral

∫∞
0 e−ξs− dηs, dessen Verteilung die stationäre Verteilung eines verallgemeinerten

Ornstein-Uhlenbeck-Prozesses beschreibt. Ähnlich wie im Fall q = 0 gibt es zwei Mög-
lichkeiten, die Verteilung von Vq,ξ,η zu betrachten, was zu zwei verschiedenen Ansätzen
zur Untersuchung ihrer Eigenschaften führt. Im ersten Teil des Kapitels wird die Zu-
fallsvariable Vq,ξ,η als gestopptes stochastisches Integral betrachtet. Unter Verwendung
von wahrscheinlichkeitstheoretischen Hilfsmitteln ergibt sich so eine vollständige Charak-
terisierung des Trägers und der Stetigkeit der Verteilung sowie verschiedene hinreichende
Bedingungen für Absolutstetigkeit. Als Zwischenschritt werden zudem hinreichende Be-
dingungen für die Absolutstetigkeit von

∫ t
0 e−ξs−dηs für feste t ≥ 0 sowie für Integrale

der Form
∫∞

0 f(s) dηs für deterministische Funktionen f hergeleitet. Die Anwendung der
Methoden auf den Fall q = 0 liefert außerdem neue Ergebnisse für die Absolutstetigkeit
des uneigentlichen Integrals

∫∞
0 e−ξs− dηs.

Ähnlich wie für das uneigentliche Integral
∫∞

0 e−ξs− dηs kann gezeigt werden, dass die
Verteilung von Vq,ξ,η als stationäre Verteilung der Lösung einer geeigneten stochastischen
Differentialgleichung auftritt. Da diese Lösung eng mit dem verallgemeinerten Ornstein-
Uhlenbeck-Prozess verwandt und insbesondere ein Markov-Prozess ist, können Werkzeuge
aus der Funktionalanalysis verwendet werden, um die Verteilung von Vq,ξ,η weiter zu un-
tersuchen. Dies ist der Inhalt des zweiten Teils von Kapitel 2. Die Berechnung des in-
finitesimalen Generators des Prozesses stellt hier ein wichtiges Hilfsmittel dar, um ver-
schiedene Gleichungen, die die Verteilung von Vq,ξ,η direkt oder ihre Lebesgue-Dichte im
absolutstetigen Fall beschreiben, herzuleiten. Durch die anschließende Betrachtung ver-
schiedener Spezialfälle und Beispiele wird im Anschluss die Anwendung der Gleichungen
illustriert. Wie im ersten Teil des Kapitels erlaubt die Wahl q = 0 das uneigentliche
Integral

∫∞
0 e−ξs− dηs in die Formulierung der Ergebnisse mit einzubeziehen.

In Kapitel 3 werden schließlich Lösungen von allgemeinen Lévy-getriebenen stochas-
tischen Differentialgleichungen der Form dXt = σ(Xt−)dLt, X0 = x betrachtet, wobei
die Funktion σ als zweimal stetig differenzierbar und maximal linear wachsend gewählt
wird und der treibende Lévy-Prozess L = (Lt)t≥0 entweder vektor- oder matrixwertig ist.
Während das fast sichere Kurzzeitverhalten von Lévy-Prozessen bekannt ist und auf Ba-
sis des charakteristischen Tripletts angegeben werden kann, gibt es keine solche Charak-
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terisierung des Verhaltens des Prozesses X. Unter Verwendung von Methoden aus der
stochastischen Analysis werden in Kapitel 3 zunächst Konvergenzresultate für stochas-
tische Integrale der Form t−p

∫ t
0+ σ(Xt−)dLt hergeleitet und gezeigt, dass t−p(Xt − X0)

für t ↓ 0 fast sicher das Verhalten von t−pLt, d.h. des treibenden Lévy-Prozesses, wider-
spiegelt. Die Verallgemeinerung von tp auf geeignete Funktionen f : [0,∞)→ R liefert
außerdem ein Werkzeug, um explizite Resultate im Stil des Gesetzes vom iterierten Lo-
garithmus für die Lösung der stochastischen Differentialgleichung aus dem Verhalten des
treibenden Lévy-Prozesses abzuleiten und ermöglicht ebenfalls Aussagen für Konvergenz
in Wahrscheinlichkeit und in Verteilung.
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1. Introduction
Lévy processes naturally arise as the continuous-time analog of discrete random
walks Y = (Yn)n∈N with Yn = ∑n

k=1Xk, where (Xk)k∈N is a sequence of independent and
identically distributed random variables. Due to the variety of examples that fit the def-
inition, from continuous Brownian motion to pure-jump processes such as Gamma or
compound Poisson processes, they are used in modeling random phenomena in a wide
range of disciplines. On the other hand, Lévy processes exhibit connections to different
probabilistic and analytic subfields of mathematics, making the analysis of their proper-
ties as well as the quantities defined from them relevant from a theoretical point of view
as well.
The topics covered in this thesis are connected to Lévy-driven stochastic differential equa-
tions and showcase some of the variety of questions that can be posed in this context.
On the one hand, we consider killed exponential functionals of Lévy processes, which,
although of interest in their own in the context of Lévy integrals and infinitely divisible
distributions, are mainly considered due to their law arising as the stationary distribution
of the solution of a specific Lévy-driven stochastic differential equation. Here, the equation
is univariate and driven by two independent real-valued Lévy processes, one of which may
include killing. On the other hand, we consider the short-time behavior of solutions to
general Lévy-driven stochastic differential equations, which includes a multivariate setting
and does not require the components of the driving process to be independent.
In the following Section 1.1, we give a brief overview of the key concepts used through-
out the thesis, as well as the notation. The main results of Chapters 2 and 3 are then
summarized in Section 1.2.

1.1. Preliminaries and Notation
Throughout the thesis, we consider real-valued, Rd-valued or Rd×n-valued stochastic pro-
cesses defined on a probability space (Ω,F , P ), where we write ”a.s.” and ”a.e.” to abbre-
viate ”almost surely” and ”almost every(where)”, respectively. In addition, we are given a
filtration (Ft)t≥0, which is always assumed to satisfy the usual hypotheses (see [50, p. 3]),
i.e. F0 contains all P -nullsets and the filtration is right-continuous.
By the usual convention, the space Rd is identified with Rd×1, i.e. the elements are in-
terpreted as column vectors. The transpose of a vector or matrix x is denoted by xT .
Further, 〈·, ·〉, and ‖ · ‖ denote the Euclidean scalar product and Euclidean norm on Rd,
respectively, unless otherwise specified. For a matrix m, we denote its Frobenius norm
by ‖m‖ and for some calculations, m is vectorized by writing its entries column-wise into
a vector mvec. We further note the subsets R∗ = R\{0}, R+ = [0,∞) and R− = (−∞, 0],
which are mainly used in characterizing the support of killed exponential functionals in
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1. Introduction

Section 2.1. The topological closure of a set A ⊆ R is denoted by A, the indicator function
of A by 1A, and the Borel σ-algebras on Rd and R∗ are denoted by Bd and B∗1, respectively.
The law of a random variable Y is denoted by either L(Y ) or PY and to specify it we
write d= for equality in distribution. The (one-dimensional) Lebesgue measure is denoted
by λ and (absolute) continuity, as well as densities, are always assumed to be with respect
to λ unless stated otherwise. We say that a random variable Y is (absolutely) continuous
if its distribution L(Y ) has this property. The Dirac measure at x ∈ R is denoted by δx
and the image measure of a general measure µ under a mapping g is denoted by g(µ).
When given two measures µ1, µ2, their convolution is denoted by µ1 ∗µ2. We use the same
notation for the convolution of a measure µ with an integrable function g in Section 2.4,
by which we mean the function with value (µ ∗ g)(x) =

∫
R g(x− y)µ(dy) at x ∈ R.

A stochastic process having right continuous paths with finite left limits is referred to
as càdlàg. For any càdlàg process X, we denote by Xs− the left-hand limit of X at
time s ∈ (0,∞) and by ∆Xs = Xs −Xs− its jumps. The process Xs− is càglàd, i.e. left-
continuous with finite right limits. The space of real-valued càdlàg functions on [0,∞) is
denoted by D([0,∞),R) and for f ∈ D([0,∞),R), the quantities f(s−) and ∆f(s) are
defined analogously. For the analysis in Section 2.4, we further need to introduce some
function spaces. The space of continuous functions R→ R is denoted by C(R) while the
subspaces of bounded functions, functions vanishing at infinity and compactly supported
functions are referred to as Cb(R), C0(R) and Cc(R), respectively. For a number n ∈ N,
we denote by Cn(R) the space of functions R → R that are n times continuously dif-
ferentiable with C∞(R) denoting that the property holds for every n. Functions in the
subspaces Cn

0 (R) are n times continuously differentiable with the function itself, as well
as the first n derivatives vanishing at infinity. The spaces Cn

c (R) are defined analogously
and C∞c (R) is also referred to as the space of test functions. A similar notation is used
for functions mapping Rd into R.

1.1.1. Lévy Processes
In this section, the general definition of a Lévy process is given along with some important
properties that are used in the later chapters.

Definition 1.1 (Lévy Process). An Rd-valued stochastic process L = (Lt)t≥0 is called a
Lévy process if

(i) L0 = 0 a.s.,

(ii) the process has independent increments, i.e. for every n ∈ N and 0 < t1 < · · · < tn,
the random variables L0, Lt1 − L0,. . . , Ltn − Ltn−1 are independent,

(iii) the process has stationary increments, i.e. for any s < t it holds that Lt−Ls d=Lt−s,

(iv) the process is stochastically continuous, i.e. for any t ≥ 0 and ε > 0 it holds that
lims→t P (|Ls − Lt| > ε) = 0,

(v) the paths of the process are a.s. càdlàg.

An incresing Lévy process is referred to as a subordinator.

2



1. Introduction

Note that any Rd×n-valued Lévy process can be identified with an Rnd-valued one by
vectorization. A key property of any Lévy process L is the fact that for every t ≥ 0, the
distribution of Lt is infinitely divisible, i.e. it has an nth convolution root for any n ∈ N.
More precisely, if t ≥ 0 and µ = L(Lt), then, for all n ∈ N, there exists a probability
measure µn on Rd such that

µ = (µn)n = µn ∗ · · · ∗ µn︸ ︷︷ ︸
n times

.

The property of infinite divisibility implies a very specific form of the characteristic func-
tion which is given by the Lévy-Khintchine formula (see e.g. [58, Thm. 8.1]).

Theorem 1.2 (Lévy-Khintchine Formula). Let D := {x ∈ Rd : ‖x‖ ≤ 1} denote the
closed unit ball.

(i) If µ is an infinitely divisible distribution on Rd, then the characteristic function µ̂
of µ satisfies

µ̂(z) = exp
(
− 1

2〈z, Az〉+ i〈γ, z〉+
∫
Rd

(
exp(i〈z, s〉)− 1− i〈z, s〉1D(x)

)
ν(ds)

)
,

(1.1)

for all z ∈ Rd, where A ∈ Rd×d is a symmetric nonnegative definite matrix, ν is a
measure on Rd satisfying ν({0}) = 0 and

∫
Rd min{‖x‖2, 1}ν(dx) <∞, and γ ∈ Rd.

(ii) The representation of µ̂ in (i) by A, ν and γ is unique.

(iii) Conversely, if A is a symmetric nonnegative-definite d × d matrix, ν is a measure
satisfying ν({0}) = 0 and

∫
Rd min{‖x‖2, 1}ν(dx) <∞, and γ ∈ Rd, then there exists

an infinitely divisible distribution µ whose characteristic function is given by (1.1).

Considering an Rd-valued Lévy process L = (Lt)t≥0, we obtain that its characteristic
function is given by

ϕL(z) = EeizLt = exp(tψL(z)), z ∈ Rd,

where the ψL is of the same form as the exponent on the right-hand side of (1.1). Hence, all
information on the distribution of the Lévy process L can be encoded in the triplet (A, ν, γ)
corresponding to the infinitely divisible distribution µ = L(L1).

Definition 1.3 (Characteristic Triplet of a Lévy Process). The triplet (A, ν, γ) in (1.1)
is called generating or characteristic triplet of the infinitely divisible distribution µ
or, if µ = L(L1), of the Lévy process L. In the latter case, we often write (AL, νL, γL) to
emphasize the correspondence. The individual components of the characteristic triplet are
referred to as the Gaussian covariance matrix, the Lévy measure and the location
parameter, respectively. If the Lévy process is real-valued, we replace the 1×1 matrix AL
by σ2

L ≥ 0.

From the form of the characteristic function in (1.1), it readily follows that any Lévy
process can be decomposed into an independent sum

Lt = Wt + γt+ Jt

3



1. Introduction

where W = (Wt)t≥0 is a Brownian motion and J = (Jt)t≥0 includes the jumps of the
process. Further analysis of the jump structure of the paths of L reveals that the Lévy
measure νL satisfies

(λ⊗ νL)([s, t]×B) = E(#{s ≤ u ≤ t,∆Lu ∈ B}), 0 ≤ s < t, B ∈ Bd,

where #{s ≤ u ≤ t,∆Lu ∈ B} denotes the number of jumps of (Lu)u≥0 for u ∈ [s, t]
with jump height in B, and is thus directly connected to the height and intensity of the
jumps of L. By the Lévy-Ito-decomposition (see e.g. [58, Thm. 19.2] and [58, Thm. 19.3]),
it follows that the process J can, therefore, be decomposed further according to the
desired jump height of the individual parts. Although an independent sum is obtained
whenever the sets representing the jump heights of the individual parts are disjoint, only
the decomposition

Jt = J
(1)
t + J

(2)
t

with |∆J (1)
t | ≤ 1 and |∆J (2)

t | > 1 for all t ≥ 0 is used in the later sections. In this
representation, J (1) is a pure-jump zero-mean martingale with Lévy measure νJ(1) = νL|D
and J (2) is a compound Poisson process with Lévy measure νJ(1) = νL|Rd\D. Besides the
jump structure, many distributional and path properties of a Lévy process can be deduced
from its characteristic triplet. A selection is presented in Theorem 1.4 below. The results
are given in Theorem 21.9, Example 25.12 and Theorem 19.3 of [58].

Theorem 1.4 (Properties of Lévy processes). Let L be an Rd-valued Lévy process with
characteristic triplet (AL, νL, γL).

(i) Whenever AL = 0 and
∫
D ‖x‖νL(dx) < ∞, the sample paths of L are a.s. of finite

variation, i.e. there is a set Ω0 with P (Ω0) = 1 such that

v((0, t], Lj(ω)) = sup
π

n∑
k=1
|(Lj)sk−1(ω)− (Lj)sk(ω)| <∞

for all j = 1, . . . , d, ω ∈ Ω0, and t ≥ 0, where the supremum is taken over all
partitions π of (0, t] and 0 = s0 < s1 < · · · < sn = t.

(ii) Whenever either AL 6= 0 or
∫
D ‖x‖νL(dx) = ∞, the sample paths of L are a.s. of

infinite variation.

(iii) If
∫
R\D ‖x‖νL(dx) <∞, then E‖L1‖ <∞ and the expected value is given by

E(Lt) = t
( ∫

R\D
xνL(dx) + γL

)
.

(iv) Whenever νL = 0, the paths of L are a.s. continuous.

Properties of νL in dimension one are sometimes also given in terms of its tail function,
in which case we write Π(+)

L (x) = νL((x,∞)) and Π(−)
L (x) = νL((−∞,−x)) for the right

and left tail, respectively, as well as ΠL(x) = Π(+)
L (x) + Π(−)

L (x) for x > 0. In higher
dimensions, the intervals (x,∞) and (−∞,−x) are replaced by the set {y : ‖y‖ > x} to
define ΠL. The setting of Theorem 1.4 (i) gives rise to another important quantity.

4



1. Introduction

Definition 1.5 (Drift). Whenever the Lévy measure νL satisfies
∫
‖x‖≤1 ‖x‖νL(dx) <∞,

the characteristic exponent of L can be rewritten in the form

ψL(z) = −1
2〈z, ALz〉+ i〈γ0

L, z〉+
∫
R

(ei〈z,x〉 − 1)νL(dx), z ∈ Rd,

where γ0
L = γL −

∫
D xνL(dx) is called the drift of L. Whenever γ0

L is well-defined, we
use γ0

L instead of γL to describe the distribution of Lt and give the characteristic triplet
as (AL, νL, γ0

L).
A further consequence of the stationary and independent increments of a Lévy process
is the Markov property. More precisely, Lévy processes are characterized by a transition
function that is both temporally and spacially homogenous (see e.g. [58, Thm. 10.5]).
Definition 1.6. A mapping Ps,t(x,B) of x ∈ Rd and B ∈ Bd with 0 ≤ s ≤ t < ∞ is
called a transition function on Rd if

(i) B 7→ Ps,t(x,B) is a probability measure for any fixed x,

(ii) x 7→ Ps,t(x,B) is measurable for any fixed B,

(iii) Ps,s(x,B) = δx(B) for s ≥ 0,

(iv) Ps,t satisfies the Chapman-Kolmogorov identity∫
Rd
Ps,t(x, dy)Pt,u(y,B) = Ps,u(x,B), 0 ≤ s ≤ t ≤ u.

If, in addition, Ps+h,t+h(x,B) does not depend on h, then Ps,t is called temporally ho-
mogeneous. A transition function is called spacially homogenous or translation in-
variant if it satisfies Ps,t(x,B) = Ps,t(0, B − x) for any s, t, x, and B, where the set B−x
is given by {y − x : y ∈ B}.
The transition function corresponding to an Rd-valued Lévy process L is given by

Ps,t(x,B) = P (Lt − Ls ∈ B − x) = L(Lt−s)(B − x) = Pt−s(x,B), 0 ≤ s ≤ t.

From this definition, one readily obtains corresponding linear operators through

Pt : C0 → C0, (Ptf)(x) =
∫
Rd
Pt(x, dy)f(y) = Ex[f(Xt)], t ≥ 0. (1.2)

The family {Pt : t ≥ 0} is a (strongly continuous) semigroup on C0(Rd) with norm ‖Pt‖ = 1,
as is e.g. shown in [58, Thm. 31.5]. By considering its infinitesimal generator, one obtains
another quantity directly linked to the Lévy process L. The domain of a linear operator A
is denoted by dom(A) below.
Definition 1.7. For a strongly continuous semigroup {Pt : t ≥ 0} of operators on C0(Rd),
the infinitesimal generator is the linear operator defined by

Af(x) = lim
t↓0

1
t
(Ptf(x)− f(x))

on the set of functions f ∈ C0(Rd) for which the limit exists uniformly.

5



1. Introduction

We can now give the infinitesimal generator for the semigroup of operators given in (1.2),
which is revisited in Section 2.4. The result can e.g. be found in [58, Thm. 31.5]. Recall
that D denotes the closed unit disk in Rd.

Theorem 1.8 (Infinitesimal Generator of a Lévy Process). Let L be an Rd-valued Lévy
process with characteristic triplet (AL, νL, γL), the semigroup {Pt : t ≥ 0} as defined as
in (1.2) and let AL be its infinitesimal generator. Then C2

0(Rd) ⊆ dom(L) and AL acts
on f ∈ C2

0 by

ALf(x) = 1
2∇

TAL∇f(x) + γTL∇f(x) +
∫
Rd

(
f(x+ s)− f(x)−∇Tf(x)s1D(x)

)
νL(ds),

where ∇ = ( ∂
∂x1
, . . . , ∂

∂xd
)T .

1.1.2. Stochastic Integration
Stochastic integration is a key concept used in Chapters 2 and 3. In this section, the main
ingredients are briefly summarized, starting with the definition of a semimartingale. A
full construction of the stochastic integral is e.g. carried out in the books [45] and [50].

Definition 1.9 (Finite-Variation Process). Let f : [0,∞) → R and t ≥ 0. Then the
quantity

v((0, t], f) = sup
π

n∑
k=1
|f(sk−1)− f(sk)|,

where the supremum is taken over all partitions π of (0, t] and 0 = s0 < s1 < · · · < sn = t,
is called the total variation of f over (0, t]. Whenever v((0, t], f) < ∞ for all t ≥ 0,
we say that f is of finite variation on compacts. A real-valued stochastic process Y
defined on a filtered probability space (Ω,F , (Ft)t≥0, P ) is called finite-variation pro-
cess, if it is adapted to the filtration, has a.s. càdlàg paths and a.e. path of Y is of finite
variation on compacts.

Definition 1.10 ((Local) Martingale). Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space.
A stochastic process M = (Mt)t≥0 is called a martingale, if

(i) M is adapted to the filtration (Ft)t≥0,

(ii) E|Mt| <∞ for all t ≥ 0,

(iii) E[Mt|Fs] = Ms P -a.s. for all s, t ≥ 0 with s ≤ t.

The process M is called a local martingale, if it is adapted to (Ft)t≥0 and there exists
a sequence (τn)n∈N of stopping times with limn→∞ τn = ∞ a.s. such that the stopped
process M τn is a uniformly integrable martingale for any n ∈ N.

Definition 1.11 (Semimartingale). Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space.
A real-valued stochastic process X = (Xt)t≥0 is called a semimartingale, if there exists
a decomposition of the form

Xt = X0 +Mt + Yt, t ≥ 0,

6



1. Introduction

where M = (Mt)t≥0 is a local martingale and Y = (Yt)t≥0 is a finite-variation process.
Further, a vector or matrix-valued stochastic process is called a semimartingale if every
component has this property.

The Lévy-Ito decomposition introduced in Section 1.1.1 directly implies that every Lévy
process is a semimartingale (see also [50, p. 55]) such that integration with respect to a
real-valued Lévy process is well-defined. To extend the terminology to the multivariate
setting considered in Chapter 3, we use the following definitions (see e.g. [32] or [50]).

Definition 1.12 (Multivariate Stochastic Integrals). Let H be an Rn×d-valued adapted
càglàd process, X and Y be two semimartingales taking values in Rd×m and Rm×n, respec-
tively, and a, b ∈ R with a < b. Then the multivariate stochastic integral is defined
through its components by

( ∫ b

a+
HsdXs

)
i,j

=
d∑

k=1

∫ b

a+
(Hi,k)s−d(Xk,j)s, i = 1, . . . , n, j = 1, . . . ,m,

( ∫ b

a+
dYsHs

)
i,j

=
n∑
k=1

∫ b

a+
(Hk,j)s−d(Yi,k)s, i = 1, . . . ,m, j = 1, . . . , d.

Note that the properties of one type of the multivariate stochastic integral readily carry
over to the other by transposition of the matrix-valued semimartingales. Similar to the
univariate case, the integral is associative and linear in both integrand and integrator.

Definition 1.13 (Multivariate Quadratic Covariation). Let X and Y be an Rn×d-valued
and an Rd×m-valued semimartingale, respectively and a, b ∈ R with a < b. Then the
quadratic covariation of X and Y takes the form

[X, Y ]ba+ = X(b)Y (b)−X(a)Y (a)−
∫ b

a+
Xs−dYs −

∫ b

a+
dXsYs−

and its individual components are given by
(

[X, Y ]ba+

)
i,j

=
d∑

k=1
[Xi,k, Yk,j]ba+, i = 1, . . . , n, j = 1, . . . ,m.

By considering the quadratic covariation component-wise it readily follows that it is bi-
linear and again a semimartingale. For the compatibility with the multivariate stochastic
integral, we further note the following properties (see e.g. [32]).

Theorem 1.14. Let G and H be two adapted càglàd processes taking values in Rn×k

and Rl×m, respectively, and let X and Y be two matrix-valued semimartingales taking
values in Rk×d and Rd×l, respectively. Then[∫ ·

0+
GsdXs,

∫ ·
0+

dYsHs

]t
0+

=
∫ t

0+
d
(∫ s

0+
Grd([X, Y ]r0+)

)
Hs

and the multivariate integration by parts formula takes the form∫
(0,t]

Xs−dYs = XtYt −X0Y0 −
∫

(0,t]
dXsYs− − [X, Y ]t0+.

7



1. Introduction

Remark 1.15. In [52], Rajput and Rosinski introduced integration of a deterministic
function with respect to a Lévy process based on the spectral decomposition of the in-
tegrator. Although the definition of the integral is quite different to the semimartingale
integral given above, both integrals agree in particular for bounded measurable func-
tions. If a function f : [0, t] → R is integrable in the sense of Rajput and Rosinski,
then the distribution of the integral

∫ t
0 f(s) dηs is infinitely divisible with characteristic

exponent ψf (z) =
∫ t

0 ψη(f(s)z) ds, z ∈ R, and characteristic triplet (σ2
f , νf , γf ) given by

σ2
f = σ2

η

∫ t

0
f(s)2 ds, (1.3)

νf (B) =
∫ t

0

∫
R
1B\{0}(f(s)x) νη(dx) ds, B ∈ B1, (1.4)

γf =
∫ t

0

[
f(s)γη +

∫
R
f(s)x

(
1{|f(s)x|≤1} − 1{|x|≤1}

)
νη(dx)

]
ds, (1.5)

see [52, Prop. 2.6, Thm. 2.7] or [58, Prop. 57.10].

1.1.3. Stochastic Differential Equations
Using the notion of the stochastic integral from the previous Section 1.1.2, we give some
key concepts related to the solution of stochastic differential equations that are used
throughout Chapters 2 and 3. First, a general definition is presented to introduce the
assumptions made throughout the thesis. Unless specified otherwise, the term stochastic
differential equation (SDE) refers to an expression of the form

dXt = σ(Xt−)dLt, t ≥ 0, (1.6)

with some starting random variable X0, where L denotes an Rd-valued semimartingale or
Lévy process and σ : Rn → Rn×d. In the context of this thesis, σ is chosen to satisfy the
linear growth condition

‖σ(x)‖2 ≤ c(1 + ‖x‖2)

for some c > 0 and all x ∈ Rn and to be twice continously differentiable. Note that the
latter in particular implies that σ(X) is again a semimartingale by the Ito formula (see
e.g. [50, p. 78]). The differential notation in (1.6) is to be understood as

Xt = X0 +
∫ t

0+
σ(Xt−)dLt, t ≥ 0, (1.7)

since the processes involved are usually neither differentiable nor continuous.
Definition 1.16 (Solution to an SDE). An adapted càdlàg process X = (Xt)t≥0 is called
a (strong) solution to (1.6) if it satisfies (1.7) for any t ≥ 0.
To answer the question of existence and uniqueness, we note the following result (see [50,
Thm. 7, p. 259]).
Theorem 1.17. Let Z be an Rd-valued semimartingale with Z0 = 0 and J be an adapted
càdlàg process taking values in Rn. Assume further that σ : Rn 7→ Rn×d satisfies the
following two conditions for all i = 1, . . . , d, j = 1, . . . , n and any Rn-valued, adapted
càdlàg processes X, Y .

8



1. Introduction

(i) For any stopping time τ , Xτ− = Y τ− implies σi,j(X)τ− = σi,j(Y )τ−.

(ii) There exists an increasing (finite) process K = (Kt)t>0 such that the condition
|σi,j(X)t − σi,j(Y )t| ≤ Kt sup0<s≤t ‖Xs − Ys‖ holds a.s. for any t ≥ 0.

Then the stochastic differential equation

Xt = Jt +
∫ t

0+
σ(Xs−)dZs

has a unique (strong) solution that is also adapted and càdlàg. Moreover, if J is a semi-
martingale, so is the solution X.

Note that σ being twice continuously differentiable and maximal of linear growth ensures
that Theorem 1.17 is applicable such that we always work with a unique strong solution
to the SDE (1.6) in the following chapters.

Remark 1.18. If the SDE (1.6) is driven by a real-valued Lévy process or an Rd-valued
Lévy process with independent components, the independent increments of the process
imply that the solution X, whenever existent, is a (strong) Markov process (see [50,
Thm. 32, p. 300]). Under additional assumptions on the Lévy measure of the driving
process, the solution to (1.6) can further be shown to be a so-called Lévy type Feller
process (see [37]) which is characterized by a representation similar to (1.1), but with a
triplet of the form (A(x), ν(x), γ(x)) that depends on the initial condition X0 = x ∈ Rn,
as well as the function σ and the characteristic exponent of the driving Lévy process.

1.1.4. (Killed) Exponential Functionals of Lévy Processes
Lastly, we note two important stochastic differential equations that are referenced through-
out the thesis and introduce the killed exponential functional studied in Chapter 2.

Definition 1.19 ((Multivariate) Stochastic Exponential). Let L = (Lt)t≥0 be an Rd×d-
valued Lévy process or semimartingale and Id ∈ Rd×d denote the identity matrix. Then
the unique (strong) solution X = (Xt)t≥0 to the SDE

dXt = Xt−dLt, t > 0, X0 = Id

is referred to as (left) stochastic exponential of L and denoted by
←
E (L). Similarly,

the unique (strong) solution Y to the SDE

dYt = dLtYt−, t > 0, Y0 = Id

is called right stochastic exponential of L and denoted by
→
E (L). Unless specified

otherwise, the term ”stochastic exponential” refers to the left stochastic exponential and
we omit the arrow.

Note that the solutions X and Y in Definition 1.19 generally do not coincide unless d = 1,
but can be related to one another through transposition of the matrix-valued semimartin-
gales. In the univariate case, the stochastic exponential can be given explicitly using the

9
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Doléans-Dade formula (see e.g. [50, Thm. 37, p. 84]). In particular, the stochastic expo-
nential of a real-valued Lévy process L with characteristic triplet (σ2

L, νL, γL) is given by

E(L)t = eLt−tσ2
L/2

∏
0<s≤t

(1 + ∆Ls)e−∆Ls , t ≥ 0. (1.8)

Definition 1.20 (Generalized Ornstein-Uhlenbeck Process). Let ξ and η be two indepen-
dent real-valued Lévy processes and define another Lévy process U through

E(U)t = e−ξt . (1.9)

Then the unique (strong) solution to the SDE

dXt = Xt− dUt + dηt, t ≥ 0,

with starting random variable X0 independent of ξ and η is called the generalized
Ornstein-Uhlenbeck (GOU) process driven by ξ and η.

Similar to the univariate stochastic exponential, the GOU process X = (Xt)t≥0 can also
be given in a closed form (see [44, p.428])

Xt = e−ξt
(∫ t

0
eξs−dηs +X0

)
, t ≥ 0, (1.10)

in which the driving processes are more visible. As the driving Lévy processes are assumed
to be independent, the GOU process is a Markov process. Observe that the exponen-
tial function on the righ-hand side of (1.9) is strictly positive, such that (1.8) directly
implies that U cannot have jumps of size −1 or less, i.e. its Lévy measure νU satis-
fies νU((−∞,−1]) = 0. The absence of jumps of size −1 in U further implies that X is
a Feller process, i.e. that the semigroup (Pt)t≥0 of linear operators corresponding to the
process satisfies Pt(C0(R)) ⊆ C0(R) and limt↓0 Ptf = f for all f ∈ C0(R) with the con-
vergence holding with respect to the supremum norm on C0(R) (see [5, Thm. 3.1] or [37,
Ex. 4.3]). Noting that

Ut = −ξt + tσ2
ξ/2 +

∑
0<s≤t

(
e−∆ξs − 1 + ∆ξs

)
, t ≥ 0, (1.11)

ξt = −Ut + tσ2
U/2−

∑
0<s≤t

(
ln(1 + ∆Us)−∆Us

)
, t ≥ 0, (1.12)

it follows that (1.11) defines a bijection from the class of all Lévy processes ξ to the
class of Lévy processes U with νU((−∞,−1]) = 0, with its inverse given by (1.12). The
characteristic triplet of ξ in terms of the one of U has been derived in [7, Lem 3.4] and is
given by

σ2
ξ = σ2

U , νξ = g(νU),

γξ = −γU + σ2
U/2 +

∫
(−1,∞)

(
x1{|x|≤1} − (ln(1 + x))1{x∈[e−1−1,e−1]}

)
νU(dx),

where g : (−1,∞) → R is defined by g(x) = − ln(1 + x). Similarly, the characteristic

10
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triplet of U in terms of the one of ξ is expressed by

σ2
U = σ2

ξ , νU = h(νξ), γU = −γξ − σ2
ξ/2 +

∫
[− log 2,∞)

[(
e−x − 1

)
+ x1{|x|≤1}

]
νξ(dx),

where h : R → (−1,∞) is given by h(x) = e−x − 1. It further follows from (1.11)
and (1.12) that U is of finite variation if and only if ξ is, in which case the drifts are related
by γ0

U = −γ0
ξ . A quantity that is closely related to the generalized Ornstein-Uhlenbeck

process is the (possibly killed) exponential functional defined from the driving processes ξ
and η.

Definition 1.21 ((Killed) Exponential Functional). Let ξ and η be two independent Lévy
processes and let τ be an exponentially distributed random variable with parameter q > 0
that is independent of ξ and η. Then

V0,ξ,η =
∫ ∞

0
e−ξs−dηs

is called exponential functional of ξ and η or exponential functional without
killing, whenever the integral converges a.s. to a finite random variable and

Vq,ξ,η =
∫ τ

0
e−ξs−dηs

is called killed exponential functional of ξ and η with parameter q.

Observe that by interpreting the case q = 0 as τ = ∞ a.s., the definition of the killed
exponential functional includes the improper integral V0,ξ,η and is thus a natural gener-
alization. Using (1.9) from the previous section, the random variable Vq,ξ,η can also be
expressed in terms of the Lévy process U . The law of the exponential functional V0,ξ,η is
naturally obtained as the invariant probability distribution of the GOU process driven
by ξ and η provided the processes are not both deterministic and the stochastic inte-
gral

∫ t
0 e−ξs− dηs converges a.s. to a finite limit as t → ∞ (see [41, Thm. 2.1]). Necessary

and sufficient conditions for the convergence are given in [27]. We show in Section 2.3 that
the law of Vq,ξ,η, too, arises as the stationary distribution of a Markov process.

11
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1.2. Main Results
In this section, we give an overview of the main results included in the thesis. Chapter 2
is based on the preprints [9] and [8], which cover various distributional properties of killed
exponential functionals of Lévy processes. The results on the support and the continuity
properties (cf. [9]) are collected in Sections 2.1 and 2.2, respectively. Here, the main result
of Section 2.1 is Theorem 2.3, which gives a complete characterization of the support of the
killed exponential functional for all possible combinations of the driving Lévy processes ξ
and η, also showing that the support of the killed exponential functional, as opposed to
the case without killing, is not necessarily an interval if η is a compound Poisson process.
In Section 2.2, the main results are Theorem 2.23, which gives different sufficient condi-
tions for absolute contnuity of Vq,ξ,η, and Corollary 2.26, which completely characterizes
continuity of the distribution. Further, Theorem 2.29 gives different sufficient conditions
for the absolute continuity of the improper integral V0,ξ,η. Since many of the conditions
in Theorems 2.23 and 2.29 are derived using conditioning techniques such as

P
(∫ τ

0
e−ξs− dηs ∈ B

)
=
∫ ∞

0
P
(∫ t

0
e−ξs dηs ∈ B

∣∣∣∣τ = t
)
Pτ (dt)

for the killed exponential functional, the conditions for absolute continuity of
∫ t

0+ e−ξs−dηs
for t ≥ 0 (Theorem 2.18), as well as for Lévy integrals of the form

∫ t
0+ f(s−)dηs for deter-

ministic functions f (Corollary 2.14) shown as intermediate steps may be of independent
interest. The preprint [9] is joint work with Anita Behme (TU Dresden), Alexander Lind-
ner (Ulm University) and Victor Rivero (CIMAT, Mexico).
The results on the connection between killed exponential functionals and Markov pro-
cesses, as well as different distributional equations describing the law of the killed expo-
nential functional directly (cf. [8]) are given in Sections 2.3 and 2.4, respectively. Here, the
main results of Section 2.3 are Theorem 2.31, which establishes the law of the killed expo-
nential functional as the stationary distribution of a Markov process, and Theorem 2.34
in which the infinitesimal generator of this Markov process is calculated. They yield the
key ingredients for deriving different distributional equations for the law of the killed ex-
ponential functional, as well as its Lebesgue density in the absolutely continuous case, in
Section 2.4.
Here, the equations derived in the first part of the section are based on the techniques
developed in [5] and extend the results obtained by Behme and Lindner for the character-
istic function (Corollary 2.37) and the density (Proposition 2.39) to include killing. The
later parts of Section 2.4 focus on the approach developed in [38] with the main result
being Theorem 2.43, which gives a distributional equation for the law of the killed expo-
nential functional under general conditions, as well as the corollaries adding a moment
condition (Corollary 2.46) and a finite variation condition (Corollary 2.47) to the theorem,
respectively. Further, Corollary 2.48 characterizes continuity and differentiability of the
density in the absolutely continuous case, which is an important tool in giving the law of
the killed exponential functional explicitly in special cases, as can be seen in Section 2.4.4.
Another important result is the content of Remark 2.50 in which a small oversight in [38] is
discussed. The preprint [8] is joint work with Anita Behme (TU Dresden) and Alexander
Lindner (Ulm University).
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Chapter 3 is based on the preprint [53] and treats the short-time behavior of solutions
to Lévy-driven SDEs of the form (1.6). Here, the main results are Lemma 3.1, which
establishes the short-time behavior of a semimartingale integral based on the convergence
of the integrand, and Theorem 3.10, which yields that, under suitable conditions,

lim
t↓0

(
Xt − x
tp

− σ(Xt)Lt
tp

)
= lim

t↓0

(
Xt − x
tp

− σ(x)Lt
tp

)
= 0

with probability one, showing that the the quantity t−p(Xt −X0) for t ↓ 0 almost surely
mirrors the behavior of t−pLt. Hence, the a.s. short-time behavior of the solution X can be
derived directly from the behavior of the driving Lévy process. Related results for SDEs
driven by general semimartingales are derived in Propositions 3.3 and 3.5. Further, Corol-
lary 3.12 allows to identify an a.s. cluster set AX = C({Xt/f(t) : t ↓ 0}) for the solution
based on the one of the driving Lévy process for suitable scaling functions f : [0,∞)→ R.
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2. Distributional Properties of Killed
Exponential Functionals

This chapter aims to study various distributional properties of the (possibly killed) ex-
ponential functional introduced in Definition 1.21. While generalized Ornstein-Uhlenbeck
processes and the law of V0,ξ,η are well studied in the literature, see e.g. the survey pa-
per [14], or [5], [6], [13], [19], [23], [38], [48], killed exponential functionals have so far
mainly been considered when ηt = t, cf. [46], [48], [49], or [66, Thm. 2]. In this chapter,
the support (Section 2.1) and continuity of the law of Vq,ξ,η are characterized and different
sufficient conditions for absolute continuity are given (Section 2.2). These two sections are
based on the preprint [9]. We further establish the law of the killed exponential functional
as the unique invariant probability distribution of a Markov process and calculate the cor-
responding infinitesimal generator (Section 2.3), from which different equations describing
the law of Vq,ξ,η can be derived (Section 2.4). More precisely, we give functional equations
for the characteristic function and the Lebesgue density in the absolutely continuous case
as well as different distributional equations that describe the law of the killed exponential
functional directly. The analysis carried out in these sections is based on the preprint [8].
We start the discussion of the distributional properties with two examples in which the
law of the killed exponential functional can be given explicitly.

Example 2.1. [66, Thm. 2] Let q > 0, ηt = t and ξt = 2Bt + bt, t ≥ 0, for some standard
Brownian motion (Bt)t≥0 and b ∈ R, then

Vq,ξ,η
d= B1,β

2Gα

,

where B1,β ∼ Beta(1, β) and Gα ∼ Γ(α, 1) are independent, and

α = γ + b

2 , β = γ − b
2 , γ =

√
2q + b2.

Example 2.2. [46, Sect. 2] Fix α ∈ (0, 1), set q = Γ(1−α)−1, ηt = t and let ξt, t ≥ 0, be
a drift-free subordinator with Lévy measure

νξ(dx) = 1
Γ(1− α)

e−x/α
(1− e−x/α)α+11(0,∞)(x)dx.

Then Vq,ξ,η has a Mittag-Leffler distribution with parameter α, i.e. its Laplace transform
is a Mittag-Leffler function

E[e−tVq,ξ,η ] = Eα(−t) =
∑
k≥0

(−t)k
Γ(1 + αk) ,
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and the distribution of Vq,ξ,η has a Lebesgue density fML given by

fML(s) = 1
πα

∑
k≥0

(−1)k+1

k! Γ(αk + 1)sk−1 sin(παk), s > 0.

Another important special case of the killed exponential functional is when ξt = 0, in
which case Vq,0,η = ητ , which can be interpreted as the Lévy process η subordinated by
a gamma process with parameters 1 and q > 0, evaluated at time 1. The law of Vq,0,η is
then q times the potential measure of η, cf. [58, Def. 30.9]. This and other examples are
considered in more detail in Section 2.4.4. Some additional remarks on the results in this
chapter and possible extensions are collected in Appendix A.

2.1. Support
In this section, we give the support of the distribution of the killed exponential func-
tional Vq,ξ,η =

∫ τ
0 e−ξs−dηs for independent Lévy processes ξ and η and an independent

exponentially distributed random variable τ with parameter q ∈ (0,∞). In [6, Thm. 1]
the support of the exponential functional V0,ξ,η without killing was completely character-
ized and, in particular, it was shown that it is always an interval. This is no longer true
when considering q ∈ (0,∞), as can be seen from the results in this section. We will give
a general characterization of the support of Vq,ξ,η in Theorem 2.3 and then study the case
where both ξ and η are pure compound Poisson processes more closely in Proposition 2.10.
Note that in case of a deterministic process η, the support of a possibly killed exponential
functional has been characterized in [49, Thm. 2.4(2)] in terms of the Wiener-Hopf factor-
ization of ξ, showing that it is always an interval. The special case q = 0 (corresponding
to τ =∞) of [49, Thm. 2.4(2)] was already proven by different means in [6]. Both results
are included in the following theorem. We will, however, present an alternative proof that
does not use the Wiener-Hopf factorization. Observe that Theorem 2.3 covers all possible
combinations of ξ and η and, therefore, provides a complete characterization of the sup-
port of the exponential functional in the killed case. Below, we refer to a Lévy process as
spectrally positive if νL((−∞, 0)) = 0, and spectrally negative if νL((0,∞)) = 0.

Theorem 2.3 (Support of killed exponential functionals). Consider the killed exponential
functional V := Vq,ξ,η =

∫ τ
0 e−ξs− dηs for q > 0 and two independent Lévy processes ξ

and η with characteristics (σ2
ξ , νξ, γξ) and (σ2

η, νη, γη), respectively. As in the introduction
we denote by γ0

ξ , γ0
η the drift of ξ or η whenever it exists.

(i) If η ≡ 0, then supp(V ) = {0}.

(ii) Assume that η is deterministic with γ0
η > 0, then

supp(V ) =

[0, γ
0
η

γ0
ξ
], if ξ is a subordinator with γ0

ξ > 0,
[0,∞), otherwise,
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and if γ0
η < 0, then

supp(V ) =

[γ
0
η

γ0
ξ
, 0], if ξ is a subordinator with γ0

ξ > 0,
(−∞, 0], otherwise.

(iii) Assume that one of the following cases holds
(a) η is of infinite variation,
(b) η is of finite variation with 0 ∈ supp(νη) and νη((−∞, 0)) > 0, νη((0,∞)) > 0,
(c) η is of finite variation with γ0

η 6= 0 and νη((−∞, 0)) > 0, νη((0,∞)) > 0,
then supp(V ) = R.

(iv) Assume that η is non-deterministic, of finite variation and spectrally positive/negative,
as well as 0 ∈ supp(νη) or γ0

η 6= 0, then

supp(V ) =

[0,∞), if η is a subordinator,
(−∞, 0], if − η is a subordinator.

If under these assumptions neither η nor −η is a subordinator, we have that

supp(V ) =


(−∞, γ

0
η

γ0
ξ
], if γ0

η > 0 and ξ is a subordinator with γ0
ξ > 0,

[γ
0
η

γ0
ξ
,∞), if γ0

η < 0 and ξ is a subordinator with γ0
ξ > 0,

R, otherwise.

(v) Assume that η is a compound Poisson process with 0 /∈ supp(νη), then

supp(V ) =


n∑
j=1

 j∏
k=1

ak

 bj, ak > 0, ln ak ∈ Ξ, bj ∈ supp(νη), n ∈ N0

, (2.1)

where
Ξ = supp(−ξT ) with T ∼ Exp(νη(R)), independent of ξ. (2.2)

In particular, if −ξ is a subordinator with 0 ∈ supp(νξ) or nonzero drift, we have
that

supp(V ) =


{0} ∪ [inf supp(νη),∞), if η is a subordinator,
(−∞, sup supp(νη)] ∪ {0}, if − η is a subordinator,
R, otherwise,

and if ξ ≡ 0, then supp(V ) =
{∑n

j=1 bj : bj ∈ supp(νη), n ∈ N0
}

.
In the remaining cases, except when ξ is a compound Poisson process with 0 /∈ supp(νξ)
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2. Distributional Properties of Killed Exponential Functionals

and only negative jumps, (2.1) simplifies to

supp(V ) =


[0,∞), if η is a subordinator,
(−∞, 0], if − η is a subordinator,
R, otherwise.

In the proof of Theorem 2.3, we will frequently make use of the following three lemmas.

Lemma 2.4. Let ξ and η be two independent Lévy processes such that V0,ξ,η :=
∫∞

0 e−ξs−dηs
exists a.s. Let q > 0 be arbitrary. Then

supp(V0,ξ,η) ⊆ supp(Vq,ξ,η).

Proof. This is clear as for any q > 0 the random variable τ may become arbitrarily
large.

Lemma 2.5. Let ξ and η be two independent Lévy processes with characteristics (σ2
ξ , νξ, γξ)

and (σ2
η, νη, γη), respectively, q > 0 fixed and let Bξ, Bη ⊂ R be two Borel sets that are

bounded away from zero. Define ν̂ξ := νξ|Bc
ξ

and ν̂η := νη|Bcη as the restrictions of νξ and νη
on R \Bξ and R \Bη, respectively, and denote by ξ̂ and η̂ the independent Lévy processes

ξ̂t = ξt −
∑

0<s≤t
∆ξs∈Bξ

∆ξs, η̂t = ηt −
∑

0<s≤t
∆ηs∈Bη

∆ηs

with Lévy measures ν̂ξ and ν̂η, respectively. Then

supp(Vq,ξ̂,η̂) ⊆ supp(Vq,ξ,η).

Proof. With positive probability we have {ξt, ηt, 0 ≤ t ≤ τ} = {ξ̂t, η̂t, 0 ≤ t ≤ τ} for any
realization of τ . Hence the claim follows.

Recall from Remark 1.15 that for a Lévy process η with characteristic triplet (σ2
η, νη, γη)

and a function f : [0, t] → R which is integrable in the sense of Rajput and Rosin-
ski [52, p. 460], the random variable

∫ t
0 f(s) dηs is infinitely divisible with characteristic

triplet (σ2
f , νf , γf ) given by (1.3) – (1.5). From this we derive the following:

Lemma 2.6. Let η be a Lévy process with characteristic triplet (σ2
η, νη, γη) and f :[0, t]→ R

be bounded and Borel measurable such that f is not Lebesgue almost everywhere equal to
zero. Denote the characteristic triplet of

∫ t
0 f(s) dηs by (σ2

f , νf , γf ). Then the following are
true:

(i) The Lévy process with characteristic triplet (σ2
f , νf , γf ) is of finite variation if and

only if η is of finite variation. In that case, the corresponding drifts γ0
f and γ0

η are
related by γ0

f = γ0
η

∫ t
0 f(s)ds.

(ii) If 0 ∈ supp(νη), then 0 ∈ supp(νf ).

(iii) νf is infinite if and only if νη is infinite.

17



2. Distributional Properties of Killed Exponential Functionals

If, additionally, f is strictly positive on [0, t], then

(iv) νf ((0,∞)) > 0 if and only if νη((0,∞)) > 0, and similarly for (−∞, 0).

Proof. Parts (ii), (iii) and (iv) follow directly from (1.4). For the proof of (i), by measure
theoretic induction it follows from (1.4) that∫

R
g(x) νf (dx) =

∫ t

0

∫
R
g(f(s)x) νη(dx) ds (2.3)

for any Borel measurable function g : R → [0,∞) satisfying g(0) = 0, and similarly for
any Borel measurable function g : R → R with g(0) = 0 for which the integrals exist.
Applying (2.3) to g(x) = |x|1[−1,1](x) then gives

∫ 1

−1
|y|νf (dy) =

∫ t

0
|f(s)|

∫ 1/|f(s)|

−1/|f(s)|
|x| νη(dx) ds,

from which, in combination with (1.3), the “only if” part readily follows. For the converse,
observe that the right-hand side of the above equation can be bounded by∫ t

0
|f(s)|ds

∫ 1

−1
|x| νη(dx) +

∫ t

0
|f(s)|1{|f(s)|<1}

1
|f(s)|νη(R \ [−1, 1]) ds,

which is finite if η is of finite variation since we assumed boundedness of f . Finally, the
expression for the drift γ0

f follows from (1.5), (2.3) and the fact that γ0
f = γf −

∫ 1
−1 y νf (dy)

and similarly for γ0
η . Observe that (i) could have similarly been derived by a direct appli-

cation of Theorem 2.10 and Equation (2.16) in [57].

We can now prove Theorem 2.3.

Proof of Theorem 2.3. (i) In the case η ≡ 0, the integrator induces the zero measure,
yielding V = 0 and thus supp(V ) = {0}.
(iii) (a,b) First, assume that η is of infinite variation. By conditioning on τ and ξ, as
mentioned in the preliminaries, we find

P (V ∈ B) =
∫ ∞

0

∫
D([0,∞),R)

P
( ∫ t

0
e−f(s−) dηs ∈ B

)
Pξ(df)Pτ (dt), (2.4)

for all B ∈ B1. It follows from Lemma 2.6 that
∫ t

0 e−f(s−)dηs is infinitely divisible with∫ 1
−1 |x|νf (dx) =∞ or σ2

f > 0. Thus, [58, Thm. 24.10(i)] implies P (
∫ t

0 e−f(s−)dηs ∈ B) > 0
for all open B ⊆ R. Together with (2.4), this yields supp(V ) = R.
If η is of finite variation with 0 ∈ supp(νη) and νη(R+), νη(R−) > 0, a similar argument is
applicable. Conditioning as in (2.4), we find by Lemma 2.6 that in this case 0 ∈ supp(νf ),
as well as νf (R+), νf (R−) > 0. Therefore, P (

∫ t
0 e−f(s−)dηs ∈ B) > 0 for all open B ⊆ R

by [58, Thm. 24.10(ii)] and thus supp(V ) = R as claimed.
(iv) when 0 ∈ supp(νη):
Let η be as in (iv) and assume additionally that 0 is in the support of νη. Assume further
that supp(νη) ⊆ [0,∞), the case supp(νη) ⊆ (−∞, 0] following by symmetry. Condition-
ing as in (2.4), Lemma 2.6 yields that

∫ t
0 e−f(s−)dηs (more precisely, the Lévy process
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2. Distributional Properties of Killed Exponential Functionals

corresponding to it) is of finite variation with 0 ∈ supp(νf ), νf (R+) > 0 = νf (R−) and
drift γ0

η

∫ t
0 e−f(s−) ds. By [58, Thm. 24.10(iii)] we find that

supp
( ∫ t

0
e−f(s−)dηs

)
=
[
γ0
η

∫ t

0
e−f(s−)ds,∞

)
. (2.5)

As zero is included in the support of τ , Equation (2.4) shows that supp(V ) ⊇ [0,∞).
Since V ≥ 0 a.s. when η is a subordinator, we also get the reverse inequality, so that
supp(V ) = [0,∞) when η is a subordinator.
If η is not a subordinator, by assumption we necessarily have γ0

η < 0. If then ξ is a
subordinator with strictly positive drift γ0

ξ , then 1/γ0
ξ ∈ supp(

∫∞
0 e−ξs− ds) by [6, Lem. 1]

and (2.4) and (2.5) show supp(V ) ⊇ [γ0
η/γ

0
ξ ,∞), as τ may become arbitrary large. On the

other hand,
Vq,ξ,η ≥ γ0

η

∫ τ

0
e−ξs− ds ≥ γ0

η

∫ ∞
0

e−γ0
ξ s ds = γ0

η/γ
0
ξ , (2.6)

showing the converse inequality when ξ is a subordinator with strictly positive drift.
Finally, assume that η is not a subordinator (hence γ0

η < 0) and ξ is not a subordinator
with strictly positive drift. If ξ does not drift to infinity a.s., then

∫∞
0 e−ξs− ds = +∞

by [27, Thm. 2], and if ξ drifts to infinity a.s., then
∫∞

0 e−ξs− ds is finite but unbounded
by [6, Lem. 1]. As τ may become arbitrarily large, we conclude in both cases from (2.4)
and (2.5) that supp(V ) = R in this case.
(ii), (iii) (c), (iv) when γ0

η 6= 0:
Let η be of finite variation with non-zero drift γ0

η . By the cases already proved we can
additionally assume that 0 6∈ supp(νη), in particular νη(R) < ∞. By symmetry, we can
further assume without loss of generality that γ0

η > 0. We distinguish in the following
whether ξ is a subordinator with strictly positive drift or not.
Case 1: Assume ξ is a subordinator with strictly positive drift γ0

ξ .
If νη(R+) = 0, then Vq,ξ,η ≤ γ0

η/γ
0
ξ by the same estimates that lead to (2.6), so that

supp(V ) ⊆ (−∞, γ0
η/γ

0
ξ ] in this case. If additionally νη(R−) > 0, choose a constant K > 0

such that νη([−K, 0)) > 0 and construct η̂ from η by subtracting the jumps that are less
than −K of η. Then V0,ξ,η̂ exists by [27, Thm. 2] and from [6, Thm. 1(iii)] together with
Lemmas 2.4 and 2.5 we obtain

supp(Vq,ξ,η) ⊇ supp(Vq,ξ,η̂) ⊇ supp(V0,ξ,η̂) = (−∞, γ0
η/γ

0
ξ ],

which together with the estimate above gives the desired supp(V ) = (−∞, γ0
η/γ

0
ξ ], so that

parts of (iv) are proved.
If νη(R+) = νη(R−) = 0 (as in (ii)), then η is deterministic, V0,ξ,η converges and, unless
also ξ is deterministic,

supp(Vq,ξ,η) ⊇ supp(V0,ξ,η) = [0, γ0
η/γ

0
ξ ]

by [6, Lem. 1] and Lemma 2.4, so that together with the previous upper bound we obtain
supp(V ) = [0, γ0

η/γ
0
ξ ]. If also ξt = γ0

ξ t is deterministic, then γ0
η

∫ τ
0 e−γ0

ξ s ds = (1− e−τγ0
ξ )γ0

η/γ
0
ξ ,

giving the same support also in this case.
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2. Distributional Properties of Killed Exponential Functionals

If νη(R+) > 0 = νη(R−) (as in parts of (iv)), then η is a subordinator and hence V ≥ 0.
Choose K > 0 such that νη((0, K]) > 0 and construct η̂ from η by subtracting the
jumps from η that are greater than K. Again, V0,ξ,η̂ exists and its support is [0,∞) by [6,
Thm. 1(ii)] unless ξ is deterministic, so that supp(V ) = [0,∞) in this case. If ξt = γ0

ξ t is
deterministic, then supp(V ) ⊇ supp(V0,ξ,η) = [γ0

η/γ
0
ξ ,∞) by [6, Thm. 1(ii)]. On the other

hand, the assumption 0 6∈ supp(νη) implies νη(R) <∞, so that with positive probability, η
does not jump before time τ . This implies supp(Vq,γ0

ξ
t,η) ⊇ supp(Vq,γ0

ξ
t,γ0
ηt

) = [0, γ0
η/γ

0
ξ ], so

that altogether, supp(V ) = [0,∞) also when ξ is deterministic.
If νη(R+), νη(R−) > 0 (as in (iii) (c)), choose K > 0 such that νη([−K, 0)), νη([0, K]) > 0
and construct η̂ from η by subtracting the jumps of absolute size greater than K. Then
supp(V0,ξ,η̂) = R by [6, Thm. 1(i)] and supp(V ) = R follows as before using Lemmas 2.4
and 2.5.
Case 2: Assume ξ is not a subordinator with strictly positive drift.
If ξt does not drift a.s. to ∞, then

∫∞
0 e−ξs− ds = ∞ a.s. (cf. [27, Thm. 2]), and if ξt

drifts a.s. to∞, then
∫∞

0 e−ξs− ds is finite a.s., but has unbounded support by [6, Lem. 1].
In both cases, for any C > 0 there is some t(C) ≥ 0 such that

∫ t(C)
0 e−ξs− ds ≥ C on a

set ΩC with positive probability. Since t 7→
∫ t

0 e−ξs− ds is pathwise continuous and increas-
ing, on the set ΩC it takes all values in [0, C] when t runs through [0, t(C)]. Since τ
is independent of (ξ, η) and has a strictly positive density on [0,∞), it follows that
supp(

∫ τ
0 e−ξs− ds) ⊃ [0, C] for each C > 0 and hence supp(

∫ τ
0 e−ξs− ds) = [0,∞). This

finishes the proof of (ii).
If νη(R−) > 0 = νη(R+) (as in parts of (iv)), choose a < 0 such that νη((2a, a)) > 0.
Choose ε ∈ (0, 1) such that sups∈[0,ε] |ξs| ≤ 1 has positive probability (possible since ξ
has càdlàg paths). Then for each n ∈ N, the probability that sups∈[0,ε] |ξs| ≤ 1 and that
simultaneously η has exactly n jumps of size in (2a, a) on (0, ε) and no other jumps in
this interval is strictly positive. On the corresponding set we have

2nae + εγ0
η/e ≤

∫ ε

0
e−ξs− dηs ≤ nae−1 + eγ0

ηε.

In particular, by choosing n sufficiently large, we see that for any given L < 0, the
probability that

∫ ε
0 e−ξs− dηs < L is strictly positive. Using as before that

∫∞
ε e−ξs− ds is

unbounded or a.s. equal to +∞, together with the fact that the probability of η having
no jumps in the interval [ε, τ ] is strictly positive, an application of the intermediate value
theorem as before shows that supp(Vq,ξ,η) = R in this case.
Finally, if νη(R+) > 0 = νη(R−) (as in parts of (iv)) or ν(R+), ν(R−) > 0 (as in (iii) (c)),
construct η̂ from η by omitting the positive jumps of η. Then supp(Vq,ξ,η) ⊇ supp(Vq,ξ,η̂)
by Lemma 2.5 and the claim follows from the cases above.
(v) Assume that η is a compound Poisson process with 0 /∈ supp(νη). Let T1, T2, . . .
denote the jump times of η and (Mt)t≥0 denote the underlying Poisson process, such
that ηt = ∑Mt

j=1Bj with the i.i.d. random variables B1, B2, . . . following the jump distri-
bution of η. Consider now the random variables Xk = ξTk−ξTk−1 for k ∈ N, setting T0 = 0.
Then X1, X2, . . . are i.i.d. and, by the strong Markov property, have the same distribution
as ξT1 . Note that T1 is exponentially distributed with parameter νη(R). With probability
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2. Distributional Properties of Killed Exponential Functionals

one it now holds that
∫ τ

0
e−ξs−dηs =

∫ τ

0
e−ξsdηs =

Mτ∑
j=1

e−ξTjBj =
Mτ∑
j=1

e−
∑j

k=1 XkBj =
Mτ∑
j=1

( j∏
k=1

e−Xk
)
Bj.

Considering the i.i.d. random variables Ak = e−Xk , k ∈ N, we can thus write

V =
Mτ∑
j=1

( j∏
k=1

Ak
)
Bj a.s.

where the random variables A1, A2, . . . and B1, B2, . . . are mutually independent. Condi-
tioning on {Mτ = n} now leads to (2.1), where Ak d= e−ξT1 implies (2.2).
Finally, it remains to deduce the explicit form of the set depending on the process ξ.
Writing ξT1 =

∫ T1
0 e0dξs, we see from the cases (ii)–(iv) already proved that, provided ξ

is not a compound Poisson process with 0 6∈ supp(νξ), then supp(−ξT1) = {0} if ξ is the
zero-process, supp(−ξT1) = (−∞, 0] if ξ is a non-zero subordinator, supp(−ξT1) = [0,∞)
if −ξ is a non-zero subordinator, and supp(−ξT1) = R otherwise.
If supp(ξT1) = R, it follows immediately from (2.1) that supp(V ) = [0,∞), (−∞, 0] or R
whenever η is a subordinator, the negative of a subordinator, or has two-sided jumps,
respectively. Similarly, the simplification when ξ ≡ 0 is immediate. Whenever −ξ is a
subordinator with 0 ∈ supp(νξ) or non-zero drift, we clearly have supp(e−ξT1 ) = [1,∞).
The corresponding formulas for supp(V ) whenever η or −η is a subordinator then follow
immediately from (2.1). If η has jumps of both signs, define z+ = inf(supp(νη)∩R+) > 0
and z− = sup(supp(νη) ∩ R−) < 0. For a given number x ∈ R, choose n ∈ N such
that x− (n− 1)z− ≥ z+, as well as

b1 = · · · = bn−1 = z−, a1 = · · · = an−1 = 1, bn = z+, an = x− (n− 1)z−
z+

. (2.7)

Then b1, . . . , bn ∈ supp(νη), an ≥ 1 and ln(a1), . . . , ln(an) ∈ Ξ such that we obtain∑n
j=1

(∏j
k=1 ak

)
bj = x, i.e. x ∈ supp(V ) by (2.1) and thus supp(V ) = R as claimed.

Finally, assume that ξ is a non-zero subordinator or that it is a compound Poisson process
with νξ(R+) > 0. Construct η̂ from η by deleting all jumps whose absolute size is greater
than some constant K but such that η̂ still has positive and/or negative jumps if η does,
and construct ξ̂ from ξ by deleting all its negative jumps. Then V0,ξ̂,η̂ exists by [27, Thm. 2],
and by [6, Thm. 1] its support is [0,∞), (−∞, 0] or R, respectively, depending if η or −η
or neither of them is a subordinator. The claim then follows from Lemmas 2.4 and 2.5
using supp(Vq,ξ,η) ⊇ supp(V

q,ξ̂,η̂
) ⊇ supp(V0,ξ̂,η̂).

Remark 2.7. An alternative proof of some of the cases considered in Theorem 2.3
can be based on a general result regarding the support of solutions of certain ran-
dom fixed point equations. Namely, as shown in [17, Thm. 2.5.5(1)], if the random
variable Z is a solution to the random fixed point equation Z

d= AZ +B for two real-
valued random variables A,B, where Z is independent of (A,B), and A and B are
such that P (Ax+B = x) < 1 for every x ∈ R, A ≥ 0 a.s., P (0 < A < 1) > 0
and P (A > 1) > 0, then supp(X) is either a half-line or R. Using Theorem 2.31 in
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Section 2.3, this result can be applied in our situation whenever neither ξ nor −ξ are
subordinators, in which case it is then enough to determine the left and right endpoints
of the support.
After obtaining the general result for the support of the killed exponential functional
in Theorem 2.3, we will now study the case where both ξ and η are compound Poisson
processes more closely. Consider the following two motivating examples.
Example 2.8. LetM andN be two independent Poisson processes. Then

∫ t
0 2Ms− dNs, t > 0,

and
∫ τ

0 2Ms− dNs have support N0. More generally, we have for a > 1 that

supp
( ∫ τ

0
aMs− dNs

)
=
{ N∑
k=0

nka
k, N, nk ∈ N0

}
,

which is neither an interval nor the union of an interval and {0}.
Example 2.9. Let η be a Poisson process and let ξ be a compound Poisson process
whose Lévy measure is supported on the set −S = −1−C, where C denotes the classical
middle third Cantor set. Thus, both supp(νη) = {1} and supp(νξ) are bounded away
from zero and do not contain an interval. Further, νξ(R+) = 0. By [18, Cor. 3.4], we
have that C + C = [0, 2] such that in particular [2, 4] ⊆ Ξ. By iteration we further see
that Ξ = {0} ∪ S ∪ [2,∞) from which we derive by (2.1) that

supp(V ) =


n∑
j=1

cj, cj ∈ {1} ∪ eS ∪ [e2,∞), n ∈ N0


as η always jumps by 1. In particular supp(V ) contains the unbounded interval [e2,∞).
The following proposition collects sufficient conditions for supp(V ) to contain an un-
bounded interval. In particular, we see that if supp(νξ) or supp(νη) contains an inter-
val, then supp(V ) contains an unbounded interval. Recalling the results of Theorem 2.3,
it suffices to consider the case when both ξ and η are compound Poisson processes
with 0 /∈ supp(νξ) and 0 /∈ supp(νη), respectively, as well as νξ(R+) = 0. Denote
by bxc = max{z ∈ Z : z ≤ x} the floor function of x ∈ R.
Proposition 2.10. Consider the killed exponential functional V := Vq,ξ,η =

∫ τ
0 e−ξs− dηs

for q > 0 and two independent compound Poisson processes ξ and η with Lévy measures νξ
and νη, respectively, such that 0 6∈ supp(νη), 0 6∈ supp(νξ), and νξ(R+) = 0. Recall that

supp(ητ ) =


n∑
j=1

bj : bj ∈ supp(νη), n ∈ N0


from Theorem 2.3 (v).

(i) Assume there are β < α < 0 such that [β, α] ⊆ supp(νξ) and set k := b α
β−αc + 1,

then

supp(V ) ⊇


supp(ητ ) ∪ [e−kα inf supp(νη),∞), if η is a subordinator,
supp(ητ ) ∪ (−∞, e−kα sup supp(νη)], if − η is a subordinator,
R otherwise.
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(ii) Assume η is a subordinator and there are 0 < α < β such that [α, β] ⊆ supp(νη).
Set k := b α

β−αc+ 1, then

supp(V ) ⊇

{0} ∪ [α,∞), if ln(β)− ln(α) ≥ − sup supp(νξ),
{0} ∪ ⋃k−1

`=1 [`α, `β] ∪ [kα,∞), otherwise.

(iii) Assume −η is a subordinator and there are β < α < 0 such that [β, α] ⊆ supp(νη).
Set k := b α

β−αc+ 1, then

supp(V ) ⊇

(−∞, α] ∪ {0}, if ln(−β)− ln(−α) ≥ − sup supp(νξ),
(−∞, kα] ∪ ⋃k−1

`=1 [`β, `α] ∪ {0}, otherwise.

(iv) Assume νη(R−) 6= 0 6= νη(R+), and there are 0 < α < β such that [α, β] ⊆ supp(νη)
or β < α < 0 such that [β, α] ⊆ supp(νη). Then

supp(V ) = R.

(v) Assume νη(R−) 6= 0 6= νη(R+) and that there are numbers z1 < 0, z2 > 0 in supp(νη)
such that z2

z1
is irrational. Then

supp(V ) = R.

Proof. (i) First, let supp(νη) ⊆ R+, i.e. η is a subordinator. As, by assumption, the probabi-
lity that the killing occurs before the first jump of ξ is positive, we have supp(ητ )⊂ supp(V ).
Recalling the structure of supp(V ) from Theorem 2.3 (v), ξ being a compound Poisson
process implies that

Ξ =
{ N∑
j=1
−xj, xj ∈ supp(νξ), N ∈ N0

}
⊆ R+.

As, by assumption, [β, α] ⊆ supp(νξ), it follows directly that [−α,−β] ⊆ Ξ here, as
well as [−nα,−nβ] ⊆ Ξ for n ∈ N. In particular, if we have n ≥ k = b α

β−αc+ 1, it fol-
lows that −(n+ 1)α < −nβ, implying that individual intervals intersect and that, there-
fore, [−kα,∞) ⊆ Ξ. Choosing n = 1, b1 = inf supp(νη) and letting a1 run through [−kα,∞),
we find from (2.1) that [e−kα inf supp(νη),∞) ⊆ supp(V ). If −η is a subordinator instead,
the claim follows by symmetry.
If η has jumps of both signs, denote z+ = inf(supp(νη)∩R+) and z−= sup(supp(νη) ∩R−)
as in the proof of Theorem 2.3 and, for a given x ∈ R, choose a1, . . . , an, b1, . . . , bn as
in (2.7). Then ln(a1), . . . , ln(an−1) ∈ Ξ and also ln(an) ∈ Ξ if n ∈ N is chosen sufficiently
large. From (2.1) we can thus conclude that x ∈ supp(V ) and, therefore, supp(V ) = R as
claimed.
(ii) Note that the probability that the killing occurs before the first jump of ξ is positive
and so is the probability that, additionally, η jumps n times for some n ∈ N in the time
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2. Distributional Properties of Killed Exponential Functionals

interval [0, τ ]. As supp(νη) contains the interval [α, β], it follows that

supp(V ) ⊇
{ n∑
j=1

bj

∣∣∣∣n ∈ N0, bj ∈ supp(νη)
}

⊇
{ n∑
j=1

bj

∣∣∣∣n ∈ N0, bj ∈ [α, β]
}

= {0} ∪
( k−1⋃
`=1

[`α, `β]
)
∪ [kα,∞),

where we set again k = b α
β−αc+ 1. To show that the interval contained in supp(V ) is con-

siderably larger whenever ln(β)− ln(α) ≥ − sup supp(νξ) =: −y− is satisfied, choose n = 1,
as well as a1 = e−my− for m ∈ N and b1 ∈ [α, β]. From (2.1) it now follows di-
rectly that {e−my− [α, β], m ∈ N} ⊆ supp(V ). Since ln(β) − ln(α) ≥ −y−, we find
that e−my−α ≤ e−(m−1)y−β such that the intervals e−(m−1)y− [α, β] and e−my− [α, β] overlap.
In particular, we obtain that [α,∞) ∩ supp(V ) = [α,∞), yielding the claim. Part (iii)
follows by symmetry.
(v) Without loss of generality, assume that z1 = −1 such that z2 > 0 is irrational and
let x mod 1 denote the quantity x− bxc for a real number x. Then z2 mod 1 is also irra-
tional and the orbit of z2 under the corresponding rotation in the circle group ([0, 1),+),
where x1 + x2 = (x1 + x2) mod 1, is dense (see e.g. [33, Prop. 1.3.3]), i.e.

{nz2 mod 1, n ∈ N0} = [0, 1].

Recalling that the killing may occur before the first jump of the process ξ, it follows
from (2.1) that

supp(V ) ⊇
{ n∑
j=1

bn

∣∣∣∣n ∈ N0, bn ∈ supp(νη)
}
⊇ {n1z1 + n2z2|n1, n2 ∈ N0}.

Observe that z1 = −1 implies z2 mod 1 = z2 +n0z1 for some n0 ∈ N0, yielding that the set
on the right-hand side must include the interval [0, 1]. Further, it includes all translations
of [0, 1] by numbers z = ñ1z1 + ñ2z2 with fixed ñ1, ñ2 ∈ N0, as can be seen from specifying
the first ñ1 + ñ2 jumps. Thus, it follows that supp(V ) = R.
As the existence of z1 < 0 and z2 > 0 with z2

z1
∈ R\Q is guaranteed if νη(R−) 6= 0 6= νη(R+)

and either supp(νη)∩R+ or supp(νη)∩R− contains an interval, Part (iv) follows immea-
diately from the preceding argument.

Example 2.11. Let ξ be a Poisson process and let η be a compound Poison process with
Lévy measure νη = δ−1 + δ√2, where δx denotes the Dirac measure supported at x ∈ R.
Thus, both supp(νξ) = {1} and supp(νη) = {−1,

√
2} are bounded away from zero and

do not contain an interval. However,
√

2
−1 ∈ R \ Q and thus supp(V ) = R by Part (v) of

Proposition 2.10.
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2.2. Continuity Properties
The following section is concerned with continuity properties of Vq,ξ,η and the absolute
continuity of V0,ξ,η. Since many of the results are derived by conditioning on the paths
of ξ, we first treat the case of integrals of the form

∫∞
0 f(s) dηs with a deterministic

function f in Section 2.2.1 below. Here, we characterize continuity of its law and give
various sufficient conditions for absolute continuity. In Section 2.2.2, we use some of the
results to study the law of

∫ t
0 e−ξs− dηs for fixed t ≥ 0 arising from conditioning Vq,ξ,η

on τ = t, which can be thought of as deterministic killing. The results are then applied
to Vq,ξ,η in Section 2.2.3, yielding a characterization of the continuity of its law, as well
as various sufficient conditions for absolute continuity. Further, sufficient conditions for
absolute continuity of the law of V0,ξ,η are given in Section 2.2.4. We start with some
remarks on the conditioned integrals considered.
Since throughout this chapter we always restrict to independent Lévy processes ξ and η,
the stochastic (semimartingale) integral

∫ t
0 e−ξs− dηs given the path ξ = f coincides with

the semimartingale integral
∫ t

0 e−f(s−) dηs of the deterministic function f with respect
to η, which follows from the definition of the semimartingale integral as in Protter [50,
Sect. II.4], e.g. when realising ξ and η on a product space. The semimartingale inte-
gral

∫ t
0 e−f(s−) dηs then agrees with the corresponding stochastic integral in the sense of

Rajput and Rosinski [52, p. 460] as both are limits in probability of integrals of simple
functions, for which the corresponding integrals trivially agree.
Let η be a one-dimensional Lévy process with characteristic triplet (σ2

η, νη, γη) and
f : [0,∞)→ R a deterministic Borel measurable function. We say that f is locally in-
tegrable, or more precisely, locally integrable with respect to the independently scattered
random measure induced by η, if f1[0,t] is integrable with respect to η in the sense of
Rajput and Rosinski (cf. [52, p. 460], or also Sato [58, Def. 57.8]) for every t ∈ (0,∞).
The corresponding integral over [0, t] is denoted by

∫ t
0 f(s) dηs. Since t 7→

∫ t
0 f(s) dηs de-

fines an additive process, a version of the integral exists that has càdlàg paths (e.g. [58,
Thm. 11.5]), and we shall always assume that such a version is chosen. We say that the
improper integral

∫∞
0 f(s) dηs exists, if f is locally integrable and

∫ t
0 f(s) dηs converges

in probability to a finite random variable as t → ∞, equivalently by the independent
increments property and the càdlàg paths, if it converges a.s. to a finite random vari-
able as t → ∞ and we denote the limit by

∫∞
0 f(s) dηs. A characterization of functions

for which the improper integral
∫∞

0 f(s) dηs exists can be found in Sato [56, Prop. 5.5]
or [58, Prop. 57.13]. In particular, every locally bounded measurable function is locally
integrable, and for functions with bounded support, integrability as defined in Rajput and
Rosinski [52, p. 460] is equivalent to the existence of the improper integral.

2.2.1. Absolute Continuity of ∫∞0 f(s) dηs
Recall that for two independent Lévy processes ξ and η, the integral

∫ t
0 e−ξs− dηs con-

ditional on a path ξ = f is equal to the integral
∫ t

0 e−f(s−) dηs. Hence, the improper
integral V0,ξ,η =

∫∞
0 e−ξs− dηs conditional on ξ = f is equal to

∫∞
0 e−f(s−) dηs, such that

the results in this section yield an important tool in studying the law of the exponential
functional without killing. Whenever the improper integral

∫∞
0 f(s) dηs exists, its distribu-

tion is infinitely divisible with characteristic triplet (σ2
f , νf , γf ), where σ2

f = σ2
η

∫∞
0 f(s)2 ds
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2. Distributional Properties of Killed Exponential Functionals

and νf is given by (1.4) with t =∞, i.e.

νf (B) =
∫ ∞

0

∫
R
1B\{0}(f(s)x) νη(dx) ds, B ∈ B1. (2.8)

Further, the characteristic exponent Ψf of
∫∞

0 f(s) dηs is given by

Ψf (z) = lim
t→∞

∫ t

0
Ψη(f(s)z) ds, (2.9)

cf. [58, Prop. 57.13]. We can hence apply continuity results for infinitely divisible distri-
butions starting with a simple result characterizing continuity of

∫∞
0 f(s) dηs, i.e. when

the distribution has no atoms.

Proposition 2.12 (Continuity of
∫
f(s) dηs). Let η = (ηt)t≥0 be a one-dimensional Lévy

process with characteristic triplet (σ2
η, νη, γη) and f : [0,∞)→ R be a deterministic Borel

measurable function such that the improper integral
∫∞
0 f(s) dηs exists and such that f 6= 0

on a set of positive Lebesgue measure. Then
∫∞

0 f(s) dηs is continuous (i.e. has no atoms)
if and only if

σ2
η > 0, or λ({s ∈ [0,∞) : f(s) 6= 0}) · νη(R) =∞.

Proof. By [58, Thm. 27.4],
∫∞

0 f(s) dηs is continuous if and only if σ2
f > 0 or νf (R) =∞.

Since f is not Lebesgue almost everywhere equal to zero, the claim follows by observing
that σ2

f = σ2
η

∫∞
0 f(s)2 ds and νf (R) = λ({s ∈ [0,∞) : f(s) 6= 0}) νη(R) by (2.8).

In the following proposition, we collect some known results ensuring absolute continuity
of infinitely divisible distributions. Here, we denote by <(z) the real part of a complex
number z.

Lemma 2.13 (Absolute continuity of infinitely divisible distributions). Let µ be an in-
finitely divisible distribution with characteristic triplet (σ2, ν, γ) and characteristic expo-
nent Ψ.

(i) If Kallenberg’s condition ([31, pp. 794–795])

lim
ε↓0

ε−2| ln ε|−1
(
σ2 +

∫ ε

−ε
x2 ν(dx)

)
=∞, (2.10)

or more generally the Hartman-Wintner condition ([29, pp. 287–288])

lim
|z|→∞

−<(Ψ(z))
ln(1 + |z|) =∞ (2.11)

is satisfied, then µ is absolutely continuous with infinitely often differentiable density
with all derivatives vanishing at infinity.

(ii) If
lim
ε↓0

ε−2| ln ε|−1
(
σ2 +

∫ ε

−ε
x2 ν(dx)

)
> 1/4, (2.12)
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2. Distributional Properties of Killed Exponential Functionals

or more generally
lim inf
|z|→∞

−<(Ψ(z))
ln(1 + |z|) > 1/2, (2.13)

then µ is absolutely continuous with square integrable density ([10, Cor. 3.6]).

(iii) If the absolutely continuous part νac in the Lebesgue decomposition of ν is infinite,
then µ is absolutely continuous ([58, Thm. 27.7]).

Kallenberg’s condition is classical and his proof ([31, pp. 794–795]) shows that it implies
the Hartman-Wintner condition (2.11), which in turn implies that the Fourier transform µ̂
of µ satisfies

∫
R |x|k |µ̂(x)| dx < ∞ for all k ∈ N, giving (i). It has been noted by several

authors that if the right-hand sides of (2.12) and (2.13) are replaced by > 1 (e.g. [20,
p. 853], [36, p. 127] for (2.12) and Hartman and Wintner [29, pp. 794-795] themselves
for (2.13)), then µ has a continuous and bounded density vanishing at infinity. The fact
that the constant 1 can even be replaced by 1/4 and 1/2 (as done in (2.12) and (2.13)
in (ii)) to ensure absolute continuity has been shown by Berger [10, Cor. 3.6]. In fact,
Berger’s proof shows that (2.12) implies (2.13), which in turn implies square integrability
of the Fourier transform of µ, thus giving absolute continuity of µ with square integrable
density (cf. [34, Thm. 11.6.1]). Part (iii) is an easy consequence of Sato [58, Thm. 27.7],
by observing that the convolution of an absolutely continuous distribution with another
distribution is again absolutely continuous.
An interesting feature of integrals of the form

∫∞
0 f(s) dηs is that their distribution is

often smoother than the original distribution. A well known example is
∫∞

0 e−as dηs when-
ever a > 0 and η is a non-deterministic Lévy process such that the integral converges,
which always gives a self-decomposable and hence absolutely continuous distribution.
That this phenomenon can happen also with functions with compact support was exem-
plified by Nourdin and Simon [47, Thm. A], who showed that

∫ t
0 e−as dηs will always be

absolutely continuous whenever a 6= 0 and η is such that σ2
η > 0 or νη(R) = ∞. See also

Bodnarchuk and Kulik [16, Prop. 2, Thm. 1], who even characterized when
∫ t
0 e−as dηs has

a bounded density for all t > 0. Berger [10, Lem. 4.1] showed that when η has infinite
Lévy measure and f : [0, t]→ R is a C1-diffeomorphism onto its range, then

∫ t
0 f(s) dηs

is absolutely continuous. Part (iii) below, which essentially is Remark 4.2 in Berger [10],
generalizes this result. For the reader’s convenience, we include his short proof.

Corollary 2.14 (Absolute continuity of
∫
f(s) dηs). Let η = (ηt)t≥0 be a one-dimensional

Lévy process with characteristic triplet (σ2
η, νη, γη). Let f : [0,∞)→ R be a determinis-

tic Borel measurable function such that the improper integral
∫∞
0 f(s) dηs exists. Assume

that f 6= 0 on a set of positive Lebesgue measure. Denote by νη = νη,ac+νη,sing the Lebesgue
decomposition of νη in absolutely continuous part νη,ac and singular part νη,sing. Then each
of the following conditions implies that

∫∞
0 f(s) dηs is absolutely continuous with respect

to Lebesgue measure:

(i) The characteristic triplet of η satisfies

λ({s ∈ [0,∞) : f(s) 6= 0}) · lim inf
ε↓0

ε−2| ln ε|−1
(
σ2
η +

∫ ε

−ε
x2 νη(dx)

)
>

1
4 , (2.14)
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or more generally, the characteristic exponent Ψη satisfies

λ({s ∈ [0,∞) : f(s) 6= 0}) · lim inf
|z|→∞

−<(Ψη(z))
ln(1 + |z|) >

1
2 . (2.15)

(ii) The absolutely continuous part νη,ac of νη satisfies

λ({s ∈ [0,∞) : f(s) 6= 0}) · νη,ac(R) =∞.

(iii) Preimages of Lebesgue nullsets B ∈ B∗1 under the mapping f are again Lebesgue
nullsets (i.e. λ(f−1(B)) = 0 for every B ∈ B∗1 with λ(B) = 0), and

λ({s ∈ [0,∞) : f(s) 6= 0}) · νη(R) =∞.

(iv) There is b > 0 such that ηb is absolutely continuous and the function f is constant
and different from zero on an interval of length b.

The condition that preimages of Lebesgue nullsets under a mapping are again Lebesgue
nullsets is called the Lusin(N−1) condition in the literature. The first condition in Corol-
lary 2.14 (iii) therefore means that f|f−1(R∗) : f−1(R∗) → R∗ satisfies the Lusin(N−1)
condition. In probability theory, this is usually expressed in terms of absolute continuity
of occupation measures. Namely, defining the measure %f on (R∗,B∗1) by

%f (B) =
∫ ∞

0
1B(f(t)) dt = λ(f−1(B)) = (f|f−1(R∗)(λ))(B), B ∈ B∗1,

this is equivalent to saying that %f is absolutely continuous. Observe that the Lusin(N−1)-
condition is trivially satisfied if there is a countable decomposition of [0,∞) into intervals
of the form [ai, bi) such that each f|(ai,bi) is a C1-diffeomorphism onto its range.

Proof of Corollary 2.14. (i) That (2.14) implies (2.15) follows by standard arguments:
if σ2

η > 0, then this is clear, and if σ2
η = 0 use sin(x) ≥ 2x/π for x ∈ [0, π/2] so

that 1− cos(u) = 2(sin(u/2))2 ≥ 2u2/π2 for |u| ≤ π and hence

−<(Ψη(z))
ln(1 + |z|) =

∫
R(1− cos(xz)) νη(dx)

ln(1 + |z|) ≥ 2
(z/π)2 ∫ π/z

−π/z u
2 νη(du)

ln(|z|/π)
ln(|z|/π)

ln(1 + |z|)

for |z| ≥ π. Now assume (2.15). Since e<Ψη(z) =
∣∣∣eΨη(z)

∣∣∣ ≤ 1 we have <Ψη(z) ≤ 0 for
each z ∈ R. Let T > 0 be arbitrary. An application of Fatou’s lemma and (2.9) then shows

lim inf
|z|→∞

−<(Ψf (z))
ln(1 + |z|) ≥ lim inf

|z|→∞

∫ T

0

−<(Ψη(f(t)z))
ln(1 + |z|) dt

≥
∫ T

0
lim inf
|z|→∞

−<(Ψη(f(t)z))
ln(1 + |z|) dt

=
∫ T

0
1{f(t)6=0} dt · lim inf

|z|→∞

−<(Ψη(z))
ln(1 + |z|) .
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Letting T →∞ we conclude

lim inf
|z|→∞

−<(Ψf (z))
ln(1 + |z|) ≥ λ({s ∈ [0,∞) : f(s) 6= 0}) · lim inf

|z|→∞

−<(Ψη(z))
ln(1 + |z|) >

1
2

by (2.15). Hence Ψf satisfies (2.13) showing that
∫∞

0 f(s) dηs has a square integrable
density.
(ii) Denoting

νf,1(B) :=
∫ ∞

0

∫
R
1B\{0}(f(t)x) νη,ac(dx) dt and

νf,2(B) :=
∫ ∞

0

∫
R
1B\{0}(f(t)x) νη,sing(dx) dt

for B ∈ B1 we have νf = νf,1 + νf,2 by (2.8). Now if B ∈ B1 has Lebesgue measure zero,
then so has B/f(s) for f(s) 6= 0, and it follows

∫
R
1B\{0}(f(s)x)νη,ac (dx) =

νη,ac(B/f(s)) = 0, if f(s) 6= 0,∫
R 1B\{0}(0) νη,ac(dx) = 0, if f(s) = 0,

showing that νf,1 is absolutely continuous. Since

νf,1(R) = λ({s ∈ [0,∞) : f(s) 6= 0}) νη,ac(R) =∞

by (2.8) and assumption, it follows from Lemma 2.13 (iii) that each infinitely divisible
distribution with Lévy measure νf,1 is absolutely continuous. Since νf = νf,1 + νf,2, each
such distribution (with Gaussian variance zero) is a convolution factor of L(

∫∞
0 f(s) dηs),

showing that also
∫∞
0 f(s) dηs is absolutely continuous.

(iii) For each B ∈ B∗1 with λ(B) = 0, and each x 6= 0, the set B/x is also a Lebesgue nullset
and hence so is f−1(B/x) by the stated condition. Using Fubini’s theorem and (2.8) we
then obtain that

νf (B) =
∫
R

∫ ∞
0
1B\{0}(f(t)x) dt νη(dx) =

∫
R
λ(f−1(B/x)) νη(dx) = 0,

showing that νf is absolutely continuous. Using νf (R) =∞ by assumption the claim then
follows again from Lemma 2.13 (iii).
(iv) Let f(x) = c 6= 0 for x ∈ (a, a+ b). Then∫ ∞

0
f(s) dηs =

∫ a

0
f(s) dηs + c(ηa+b − ηa) +

∫ ∞
b

f(s) dηs.

The result then follows by observing that c(ηa+b − ηa) d= cηb is absolutely continuous by
assumption and independent from

∫ a
0 f(s) dηs and

∫∞
a+b f(s) dηs.

We are also interested in continuity and absolute continuity of randomly stopped function-
als such as

∫ R
0 f(s) dηs, where R is an independent time taking values in (0,∞). Observe

that since we have chosen a càdlàg version of (
∫ t

0 f(s) dηs)t≥0,
∫ R

0 f(s) dηs is a random
variable.
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Corollary 2.15 (Absolute continuity of
∫ R

0 f(s) dηs). Let η = (ηt)t≥0 be a one-dimensional
Lévy process with characteristic triplet (σ2

η, νη, γη) and denote by νη = νη,ac + νη,sing the
Lebesgue decomposition of νη. Let f : [0,∞) → R be a Borel measurable deterministic
function that is locally integrable with respect to η with λ({s ∈ [0, t] : f(s) 6= 0}) > 0 for
all t > 0. Let R be a random variable with values in (0,∞) that is independent of η and
consider the random variable

∫ R
0 f(s) dηs. Then each of the following conditions implies

that
∫ R

0 f(s) dηs is absolutely continuous:
(i) The characteristic triplet of η satisfies Kallenberg’s condition (2.10), or more gener-

ally, the characteristic exponent Ψη satisfies the Hartman–Wintner condition (2.11).

(ii) νη,ac(R) =∞.

(iii) Preimages of Lebesgue nullsets B ∈ B∗1 under the mapping f are again Lebesgue
nullsets and νη(R) =∞.

(iv) The function f is constant and different from zero in a neighbourhood of zero and ηt
is absolutely continuous for each t > 0.

(v) η is of finite variation with non-zero drift, f is Lebesgue almost everywhere different
from zero, and R is absolutely continuous with respect to Lebesgue measure.

Proof. Under each of the conditions (i) – (iv), it follows from Corollary 2.14 that
∫ t

0 f(s) dηs
is absolutely continuous for each t > 0. Conditioning on R = t then gives for each B ∈ B1
with λ(B) = 0 that

P

(∫ R

0
f(s) dηs ∈ B

)
=
∫ ∞

0
P
(∫ t

0
f(s) dηs ∈ B

)
PR(dt) = 0,

showing absolute continuity of
∫ R
0 f(s) dηs.

Now assume condition (v) and denote by γ0
η the drift of η. By interpreting the integral as

a pathwise Lebesgue–Stieltjes integral, we can condition on the paths (ηt)t≥0 = (g(t))t≥0.
Since f 6= 0 Lebesgue almost everywhere and since the paths of η are of the form
g(t) = γ0

ηt+∑
0<s≤t ∆g(s) with λ(s ∈ (0, t] : ∆g(s) 6= 0) = 0, the functions

Hg : (0,∞)→ R, t 7→
∫ t

0
f(s) dg(s) = γ0

η

∫ t

0
f(s) ds+

∑
0<s≤t

f(s)∆g(s)

are Lebesgue almost everywhere differentiable with derivatives f(t)γ0
η 6= 0. Theorem 4.2 in

Davydov et al. [22] shows that the image measure Hg(λ) is absolutely continuous, for Pη
almost every path g of η. For a Borel set B with λ(B) = 0 we then have λ(H−1

g (B)) = 0
and by absolute continuity of R that P (Hg(R) ∈ B) = P (R ∈ H−1

g (B)) = 0. Absolute
continuity of

∫ R
0 f(t) dηt then follows from

P

(∫ R

0
f(s) dηs ∈ B

)
=

∫
D([0,∞),R)

P

(∫ R

0
f(s) dηs ∈ B

∣∣∣∣η = g

)
Pη(dg)

=
∫
D([0,∞),R)

P (Hg(R) ∈ B)Pη(dg) = 0

for all B ∈ B1 with λ(B) = 0.
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2.2.2. Conditions for (Absolute) Continuity of ∫ t0 e−ξs− dηs
In this section, we give sufficient conditions for absolute continuity of Vξ,η(t) :=

∫ t
0 e−ξs− dηs

for fixed t > 0 and characterize continuity of its law. Recall that throughout Chap-
ter 2, ξ and η denote independent Lévy processes with characteristic triplets (σ2

ξ , νξ, γξ)
and (σ2

η, νη, γη), and characteristic exponents Ψξ and Ψη, respectively. Further, we denote
the Lebesgue decompositions of νξ and νη by

νξ = νξ,ac + νξ,sing and νη = νη,ac + νη,sing,

respectively, where “ac” marks the absolutely continuous and “sing” the singular part. In
this context, the integral Vξ,η(t) can be thought of as exponential functional subject to
deterministic killing at t > 0, but also occurs when conditioning Vq,ξ,η on τ = t, yielding an
important tool for studying the continuity properties of the killed exponential functional
in Section 2.2.3. We start with an example which is due to Lifshits [39].

Example 2.16. Let ξ be a Brownian motion with variance σ2
ξ > 0 and drift γ0

ξ ∈ R.
Then

∫ t
0 e−ξs ds is absolutely continuous for each t > 0. This is stated in Problem 9.1

of [22, p. 53], but can also be deduced from Theorem 1 in [39], which shows that random
variables of the form

∫ t
0 g(ξs) ds are absolutely continuous, provided g is locally Lipschitz

with derivative g′ that is non-zero and continuous on some set of full Lebesgue measure,
and the autocovariance function k(s, s′) = Cov(ξs, ξs′) satisfies the non-degeneracy con-
dition

∫ t
0
∫ t

0 k(s, s′)h(s)h(s′) ds ds′ > 0 for any Lebesgue integrable function h : [0, t]→ R

that is not almost everywhere equal to zero. The condition on g is satisfied for g(x) = e−x,
and the non-degeneracy condition is equivalent to the fact that

∫ t
0 ξsh(s) ds is not constant

for each integrable h that is not almost everywhere equal to zero. To see that the latter
condition is satisfied, we can assume without loss of generality that σ2

ξ = 1 and γ0
ξ = 0. If

then
∫ t

0 ξsh(s) ds is constant for some integrable function h, it must necessarily be equal
to its expectation which is zero. Denoting H(s) =

∫ s
0 h(u) du and using partial integration

we conclude

0 =
∫ t

0
ξs dH(s) = ξtH(t)−

∫ t

0
H(s) dξs =

∫ t

0
(H(t)−H(s)) dξs,

where we used that the quadratic covariation of H and ξ is zero (H being of finite varia-
tion). Taking the variance of this we see that

∫ t
0(H(t)−H(s))2 ds = 0, showing that H is

constant, which in turn implies that h is almost everywhere equal to zero. Hence the non-
degeneracy condition is satisfied and [39, Thm. 1] gives absolute continuity of

∫ t
0 e−ξs ds.

Although we will not be able to characterize absolute continuity of Vξ,η(t) completely, we
will give various sufficient conditions that cover many cases of interest. A key condition
below will be that ∫

R
<
(

1
1−Ψξ(z)

)
dz <∞, (2.16)

where again <(z) denotes the real part of a complex number z. To see the importance
of (2.16) in connection with Corollary 2.14 (iii), for each path f of ξ, define the occupation
measure %f,t on B1 by

%f,t(B) =
∫ t

0
1B(f(s)) ds, B ∈ B1.
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As shown by Hawkes [30] (cf. Bertoin [11, Thm. V.1]), condition (2.16) is equivalent to
the fact that Pξ(f)-a.s., the occupation measure %f,t is absolutely continuous. This in
turn is equivalent to saying that Pξ(f)-a.s., preimages of Lebesgue nullsets under the
mapping f : [0, t]→ R are again Lebesgue nullsets, i.e. that f : [0, t] → R satisfies the
Lusin(N−1)-condition. A further equivalent condition can be expressed in terms of poten-
tial measures: For each p ∈ [0,∞), the p-potential measure W p

ξ of ξ is defined by

W p
ξ (B) =

∫ ∞
0

e−ptP (ξt ∈ B) dt = E
(∫ ∞

0
e−pt1B(ξt) dt

)
, B ∈ B1, (2.17)

e.g. [58, Def. 30.9]; in other literature such as [11] this appears also under the name of
resolvent kernel when p > 0. Condition (2.16) is then equivalent to the fact that W p

ξ has
a bounded Lebesgue density for some, equivalently all, p > 0, cf. [11, Thm. II.16] or [58,
Thm. 43.3, Rem. 43.6]. Finally, condition (2.16) is further equivalent to the fact that single
points are not essentially polar under ξ, equivalently that the p-capacity Cp({0}) of ξ is
strictly positive for some, equivalently all, p > 0, see [11, Sect. II.3] or [58, Def. 41.14, 42.6]
for the definitions of essentially polar sets and the p-capacity and [11, Thm. II.16] or [58,
Prop. 43.2, Thm. 43.3] for the corresponding results. We collect some known examples
when condition (2.16) is satisfied.
Example 2.17 (Sufficient conditions for (2.16)). Let ξ be a Lévy process. If ξ is of finite
variation, then (2.16) holds if and only if the drift γ0

ξ of ξ is different from zero ([11,
Cor. II.20 (ii)], [58, Thm. 43.13]). Condition (2.16) also holds if σ2

ξ > 0 ([58, Thm. 43.21
Case 6]) or more generally if ξ is α-stable with index α ∈ (1, 2] ([58, Ex. 43.22]). A non-
deterministic 1-stable process ξ satisfies (2.16) if and only if it is not strictly 1-stable,
cf. [58, Ex. 43.7]. Condition (2.16) is further satisfied, when∫ 1

0
x νξ(dx) <∞ =

∫ 0

−1
|x| νξ(dx) or

∫ 0

−1
|x| νξ(dx) <∞ =

∫ 1

0
xνξ(dx), (2.18)

cf. [58, Thm. 43.24].
We can now give sufficient conditions for Vξ,η(t) =

∫ t
0 e−ξs− dηs to be absolutely continuous.

Theorem 2.18 (Sufficient conditions for absolute continuity of Vξ,η(t)). Let ξ and η be as
above. Let t ∈ (0,∞) be fixed and assume that one of the following conditions is satisfied:

(i) The characteristic triplet of η satisfies

lim inf
ε↓0

ε−2| ln ε|−1
(
σ2
η +

∫ ε

−ε
x2 νη(dx)

)
>

1
4t , (2.19)

or more generally
lim inf
|z|→∞

−<(Ψη(z))
ln(1 + |z|) >

1
2t . (2.20)

In particular, this is satisfied when σ2
η > 0.

(ii) The absolutely continuous part of νη is infinite: νη,ac(R) = +∞.

(iii) The characteristic exponent Ψξ of ξ satisfies Condition (2.16) and νη(R) =∞ (recall
from Example 2.17 that (2.16) is in particular satisfied when σ2

ξ > 0, when ξ is of
finite variation with non-zero drift, or when ξ satisfies (2.18)).
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(iv) νξ,ac(R) = νη(R) =∞.

(v) η is of finite variation with non-zero drift and ξ is such that σ2
ξ > 0 or νξ(R) =∞.

(vi) ξ is a compound Poisson process and ηs is absolutely continuous for all s > 0.

Then
∫ t
0 e−ξs− dηs is absolutely continuous.

Proof. (i) – (iii), (vi): Conditioning on the paths ξ = f , we obtain for any Borel set B
with λ(B) = 0 that

P
(∫ t

0
e−ξs− dηs ∈ B

)
=
∫
D([0,∞),R)

P
(∫ t

0
e−f(s−) dηs ∈ B

)
Pξ(df). (2.21)

Hence absolute continuity of Vξ,η(t) will follow if one can show that Pξ(f)-a.s.,
∫ t

0 e−f(s−) dηs
is absolutely continuous. But since λ({s ∈ [0, t] : e−f(s−) 6= 0}) = t, this follows from
Corollary 2.14 (i)–(iv) and the discussion preceeding Example 2.17 regarding the Condi-
tion (2.16) for (iii). For (vi), observe that each path of a compound Poisson process is
constant in a neighbourhood of zero.
(v) Assume first that νξ(R) =∞. The proof is similar to the proof given in [13, Thm. 3.9b)],
but we give the argument here since that theorem is not directly applicable to our sit-
uation. For given ε > 0, denote the time of the i’th jump of ξ with absolute jump size
greater than ε by Ti(ε), i ∈ N. Define the process ξ′ by ξ′s = ξs −

∑
0<u≤s,|∆ξu|>ε ∆ξu.

Then η, ξ′, (Ti(ε))i∈N and (∆ξTi(ε))i∈N are all independent by the Lévy-Itô decomposi-
tion. Now condition first on the set {T2(ε) ≤ t} and then on all quantities present apart
the time T1(ε) of the first jump of ξ (i.e. condition on η = g, ξ′ = f , Ti(ε) = ti, i ≥ 2
and ∆ξTi = yi, i ∈ N). Conditional on this set and these quantities, we have

∫ t

0
e−ξs− dηs =

∫ T1(ε)

0
e−f(s−)dg(s) +

∫ T2(ε)

T1(ε)+
e−y1−f(s−) dg(s) +

∫ t

T2(ε)+
e−h(s−) dg(s),

where the function h corresponds (on {s > T2(ε)}) to the path of (ξs)s>T2(ε), which is
known under this conditioning. Then

∫ t
T2(ε)+ e−h(s−) dg(s) is constant and since g is of the

form g(s) = γ0
ηs+∑

0<u≤s ∆g(u), where γ0
η denotes the drift of η, the function

H : (0, T2(ε)] 3 u 7→
∫ u

0
e−f(s−) dg(s) +

∫ T2(ε)

u+
e−y1−f(s−) dg(s)

is Lebesgue almost everywhere differentiable in u with derivative e−f(u−)γ0
η−e−y1−f(u−)γ0

η .
Since y1 6= 0 6= γ0

η , this derivative is Lebesgue almost everywhere different from 0. By
Theorem 4.2 in Davydov et al. [22], the image measure under H of the Lebesgue mea-
sure on (0, T2(ε)] is absolutely continuous, hence so is H(T1(ε)) since T1(ε) is uniformly
distributed on (0, T2(ε)) (e.g. [58, Prop. 3.4]). But this shows that

P
(∫ t

0
e−ξs− dηs ∈ B

∣∣∣∣T2(ε) ≤ t, η = g, ξ′ = f, Ti = ti (i ≥ 2), ∆ξTi = yi (i ∈ N)
)

= 0

for all Borel sets B with λ(B) = 0. Integrating all conditions out apart from {T2(ε) ≤ t},
we conclude that P (

∫ t
0 e−ξs− dηs ∈ B|T2(ε) ≤ t) = 0. Letting ε ↓ 0 and observing
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that P (T2(ε) ≤ t) → 1 as ε ↓ 0 as a consequence of νξ(R) = +∞, we conclude
P (
∫ t

0 e−ξs− dηs ∈ B) = 0 and hence absolute continuity of Vξ,η(t).
Now assume that νξ(R) < ∞ and σ2

ξ > 0. Since ξ satisfies Condition (2.16), by (iii) we
can additionally assume that νη(R) <∞. Denote by M the time of the last jump of ξ or η
before time t, i.e. the last time such that neither ξ nor η jumps in (M, t] (if no jump occurs,
then M = 0). Then M < t a.s., and conditional on M = m, (ξs)s∈[0,m] = (f(s))s∈[0,m]
and (ηs)s∈[0,m] = (g(s))s∈[0,m], we have∫ t

0
e−ξs− dηs =

∫ m

0
e−f(s−) dg(s) + γ0

ηe−f(m)
∫ t

m+
e−(ξs−−ξm) ds.

But the first term is constant and (ξs− − ξm)s∈(m,t] is a Brownian motion with drift γ0
ξ

under this conditioning, hence the second term is absolutely continuous by Example 2.16.
Hence, Vξ,η(t) is absolutely continuous under this conditioning, and integrating the con-
ditions out we see that Vξ,η(t) is absolutely continuous.
(iv) Choose a set D ∈ B1 with νξ,sing(D) = νξ,ac(R \D) = 0. For each ε ∈ (0, 1), denote
by Rε the time of the first jump of ξ with jump size in D ∩ ((−1,−ε)∪ (ε, 1)), and by Yε
its jump size. On the set {Rε < t} we can write∫ t

0
e−ξs− dηs =

∫ Rε

0
e−ξs− dηs + e−Yε

(
e−ξRε−

∫ t

Rε+
e−(ξs−−ξRε ) dηs

)
.

Observe that e−Yε is independent from (
∫ Rε

0 e−ξs− dηs, e−ξRε−
∫ t
Rε+ e−(ξs−−ξRε ) dηs). Further,

conditioning on ξ = f and Rε, we see from Proposition 2.12 that
∫ t
Rε+ e−(f(s−)−f(Rε)) dηs

has no atoms, i.e.
P
(∫ t

Rε+
e−(f(s−)−f(Rε)) dηs = b

∣∣∣∣Rε = r
)

= 0

for all b ∈ R and r ∈ (0, t). Integrating out the condition we see similarly to (2.21)
that also

∫ t
Rε+ e−(ξs−−ξRε ) dηs has no atoms when conditioned on the set {Rε < t}. In

particular, e−ξRε−
∫ t
Rε+ e−(ξs−−ξRε ) dηs 6= 0 a.s. on {Rε < t}. Conditioning on (

∫ Rε
0 e−ξs− dηs,

e−ξRε−
∫ t
Rε+ e−(ξs−−ξRε ) dηs) = (h1, h2) and observing that e−Yε is absolutely continuous, we

see that h1 + e−Yεh2 is absolutely continuous. Integrating out h1 and h2, it follows that∫ t
0 e−ξs− dηs is absolutely continuous on {Rε < t} (similar to the proof of (v)). Letting
ε ↓ 0 it follows that

∫ t
0 e−ξs− dηs is absolutely continuous since P ({Rε < t}) → 1, again

similar to the proof of (v).

When σ2
ξ > 0, we obtain in particular:

Corollary 2.19. Let η and ξ be two independent Lévy processes such that σ2
ξ > 0.

Then Vξ,η(t) is absolutely continuous if and only if η is neither the zero process nor a
compound Poisson process.

Proof. If η is a compound Poisson process, the probability that η does not jump before
time t is positive, and on this set Vξ,η(t) = 0, hence Vξ,η(t) has an atom at zero and
hence is not absolutely continuous. Similarly, if η is the zero process, then Vξ,η(t) = 0.
Otherwise, η is of finite variation with non-zero drift, or satisfies νη(R) = ∞ or σ2

η > 0.
It then follows from Theorem 2.18 (v),(iii),(i) that Vξ,η(t) is absolutely continuous.
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Remark 2.20. Conditions (i)-(iii) and (vi) of Theorem 2.18 ensure absolute continuity
for functionals of the form

∫ t
0 g(ξs−) dηs for more general functions g than the exponential

function. To be more precise, let g : [0, t] → R be continuous, such that s 7→ g(ξs−) is
càglàd.
(i) Assume that g(0) 6= 0 and that Condition (vi) of Theorem 2.18 is satisfied. Then∫ t

0 g(ξs−) dηs is absolutely continuous by the same proof.
(ii) Assume that one of the conditions (i) - (iii) of Theorem 2.18 is satisfied, denote by N
the zero set of g, and assume further that∫ t

0
P (ξs ∈ N) ds = 0. (2.22)

Using Fubini’s theorem, we conclude that E
∫ t

0 1N(ξs) ds = 0, showing that

λ({s ∈ [0, t] : ξs ∈ N}) = λ({s ∈ [0, t] : g(ξs) = 0}) = 0

almost surely. The result then follows by the same proof as in Theorem 2.18 (i)–(iii) and
observing that

∫ t
0 g(ξs−) dηs and

∫ t
0 g(ξs) dηs are a.s. equal.

When N is countable, sufficient conditions for (2.22) are that σ2
ξ > 0 or νξ(R) =∞ (by [58,

Thm. 27.4]), or that ξ is of finite variation with non-zero drift since then (2.16) is satisfied
which gives absolute continuity of the potential measure W 1

ξ and hence of W 0
ξ . Another

sufficient condition obviously is that g 6= 0 on [0, t].

We can now characterize continuity of Vξ,η(t).

Corollary 2.21 (Continuity of Vξ,η(t)). Let ξ and η be two independent Lévy processes
and let t > 0. Then Vξ,η(t) has atoms (i.e. is not continuous) if and only if η is the zero
process, or η is a compound Poisson process, or

σ2
η = σ2

ξ = 0, νη(R) <∞ and νξ(R) <∞. (2.23)

Proof. As seen in the proof of Corollary 2.19, if η is the zero process or a compound
Poisson process, then Vξ,η(t) has an atom at zero and hence is not continuous. If (2.23)
holds but η is neither a compound Poisson process nor the zero process, then η has
drift γ0

η 6= 0 and ξ is of finite variation and finite jump activity with drift γ0
ξ ∈ R. The

probability that both η and ξ do not jump before time t is positive, and on this set we
have Vξ,η(t) = γ0

η

∫ t
0 e−γ0

ξ s ds, so that Vξ,η(t) has an atom.
Now assume that neither (2.23) is satisfied nor that η is a compound Poisson process nor
the zero process. If σ2

η > 0 or νη(R) =∞, conditioning on ξ = f we see that
∫ t

0 e−f(s−) dηs
is continuous by Proposition 2.12. Hence

P (Vξ,η(t) = b) =
∫
D([0,∞),R)

P (Vξ,η(t) = b|ξ = f)Pξ(df) = 0

for each b ∈ R, so that Vξ,η(t) is continuous. If νη(R) <∞ and σ2
η = 0, we must have γ0

η 6= 0
since η is neither a compound Poisson process nor the zero process. Since (2.23) is vio-
lated, necessarily σ2

ξ > 0 or νξ(R) = ∞. Then Vξ,η(t) is absolutely continuous and hence
continuous by Theorem 2.18 (v).
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Remark 2.22. (i) It is clear that a pure types theorem does not hold for the law
of
∫ t

0 e−ξs− dηs. The simplest counterexample is when ξ = 0 and η is a compound Poisson
process with absolutely continuous jump distribution. Then Vξ,η(t) = ηt whose distribu-
tion has an atom at zero, but restricted to R∗ has a density. Similar examples can be
constructed when both ξ and η are compound Poisson processes.
(ii) An example when

∫ t
0 e−ξs− dηs is continuous singular is easily constructed by choos-

ing ξ = 0 and for η a process for which ηt is continuous singular, examples of which are
given in [58, Thms. 27.19, 27.23].

2.2.3. Conditions for (Absolute) Continuity of ∫ τ0 e−ξs− dηs
In this section we obtain sufficient conditions (Theorem 2.23) for absolute continuity and
a characterization of continuity of Vq,ξ,η =

∫ τ
0 e−ξs− dηs (Corollary 2.26). In part (vii) of

Theorem 2.23, we need the so called ACP-condition for η. Recall the p-potential measure
from Equation (2.17). We say that η satisfies the ACP condition if

the potential measure W p
η is absolutely continuous for some p ∈ [0,∞). (2.24)

This is equivalent to saying that W p
η is absolutely continuous for all p ∈ [0,∞), cf. [58,

Rem. 41.12]. If p ∈ (0,∞) and T is an exponentially distributed time with parameter p,
independent of η, then by conditioning on T = t we have

P (ηT ∈ B) =
∫ ∞

0
P (ηt ∈ B)PT (dt) = p

∫ ∞
0

e−ptP (ηt ∈ B) dt = pW p
η (B), B ∈ B1.

Hence (2.24) means nothing else than that ηT is absolutely continuous for any (equiv-
alently: some) exponentially distributed independent time T with parameter in (0,∞).
Obviously, (2.24) is satisfied when ηt is absolutely continuous for each t > 0, but the
converse is not true in general, see e.g. [58, Rem. 41.13]. Recall also from Section 2.2.2
that

∫
R<( 1

1−Ψη(z)) dz <∞ if and only if W 1
η has a bounded density, so that (2.16) for η

implies (2.24) for η. In particular, η satisfies (2.24) if η is of finite variation with non-zero
drift, if σ2

η > 0, or if η satisfies (2.18) (with νη replacing νξ). Examples exist when η
satisfies (2.24) but not (2.16), see [58, Thm. 43.21]; one such example is when η is a
non-deterministic strictly α-stable process of index α ∈ (0, 1).

Theorem 2.23 (Sufficient conditions for absolute continuity of Vq,ξ,η). Let ξ, η and τ as
above with q ∈ (0,∞). Suppose that one of the following conditions is satisfied:

(i) The characteristic triplet of η satisfies Kallenberg’s condition (2.10), or more gener-
ally the Hartman–Wintner condition (2.11). In particular, this is satisfied
when σ2

η > 0.

(ii) The absolutely continuous part of νη is infinite: νη,ac(R) =∞.

(iii) The characteristic exponent Ψξ of ξ satisfies Condition (2.16) and νη(R) =∞ (recall
from Example 2.17 that (2.16) is in particular satisfied when σ2

ξ > 0, when ξ is finite
variation with non-zero drift, or when ξ satisfies (2.18)).

(iv) νξ,ac(R) = νη(R) =∞.
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(v) η is of finite variation with non-zero drift.

(vi) ξ is a compound Poisson process and η satisfies the ACP condition (2.24).

Then Vq,ξ,η =
∫ τ

0 e−ξs− dηs is absolutely continuous.

Proof. (i) – (iv): By Theorem 2.18, any of the given conditions (i) to (iv) implies absolute
continuity of Vξ,η(t) =

∫ t
0 e−ξs− dηs for all t > 0. Let B ∈ B1 be a Lebesgue-null set.

Conditioning on τ = t we obtain

P
(∫ τ

0
e−ξs− dηs ∈ B

)
=
∫ ∞

0
P
(∫ t

0
e−ξs dηs ∈ B

∣∣∣∣τ = t
)
Pτ (dt) =

∫ ∞
0

0Pτ (dt) = 0,

showing that
∫ τ
0 e
−ξs− dηs is absolutely continuous.

(v) If η is of finite variation with non-zero drift, we can condition on the path ξ = f . By
Corollary 2.15 (v),

∫ τ
0 e−f(s−)dηs will be absolutely continuous for each path f . Integrating

the condition out we see as in (2.21) that
∫ τ

0 e−ξs− dηs is absolutely continuous.
(vi) Denote by T the time of the first jump of ξ. This is exponentially distributed with
parameter νξ(R) ∈ (0,∞) and independent from τ . Then, conditional on {τ > T}, the
random variables τ−T and T are conditionally independent and (conditionally) exponen-
tially distributed with parameters q and q + νξ(R), respectively. Conditional on {τ > T}
we have

Vq,ξ,η =
∫ T

0
dηs +

∫ τ

T+
e−ξs− dηs = ηT +

∫ T+(τ−T )

T+
e−ξs− dηs.

Since the two summands are conditionally independent and the first is absolutely contin-
uous by (2.24) as T is conditionally exponentially distributed with parameter q + νξ(R),
the distribution of Vq,ξ,η conditional on {τ > T} is absolutely continuous. On the other
hand, conditional on {τ < T} we have Vq,ξ,η = ητ with τ being conditionally exponentially
distributed with parameter q+νξ(R), so that (2.24) gives absolute continuity of Vq,ξ,η also
under this conditioning. Adding up the two cases shows absolute continuity of Vq,ξ,η.

When η is deterministic but not the zero-process, Pardo et al. [48, Thm. 2.1] showed
that Vq,ξ,η has a density and they also obtained various properties of it. Observe that
the existence of the density in this case can also be seen from Theorem 2.23 (v). We also
remark that similar to Remark 2.20, many of the results of Theorem 2.23 can be extended
to functionals of the form

∫ τ
0 g(ξs−) dηs for sufficiently nice functions g. For example,

if g : [0,∞)→ R is continuous, ξ satisfies
∫∞

0 P (ξs ∈ N) ds = 0 for the zero set N of g,
and one of the conditions (i) – (iii) of Theorem 2.23 is satisfied, then also

∫ τ
0 g(ξs−) dηs

will be absolutely continuous by the same proof. Similar to Corollary 2.19 we now obtain:

Corollary 2.24. Assume that σ2
ξ > 0 and q ∈ (0,∞). Then Vq,ξ,η is absolutely continuous

if and only if η is neither a compound Poisson process nor the zero process.

Proof. If η is a compound Poisson process, then the probability that η does not jump
before time τ is positive, hence Vq,ξ,η has an atom at zero and is hence not continuous,
and similarly when η is the zero process. If η is neither a compound Poisson process nor the
zero process, it is of finite variation with non-zero drift, or satisfies νη(R) =∞ or σ2

η > 0,
in which case Vq,ξ,η is absolutely continuous by Theorem 2.23 (v),(iii), or (i).
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When ξ is a compound Poisson process, it is easy to show that the sufficient Condition (vi)
of Theorem 2.23 is actually also necessary:

Corollary 2.25. Let ξ be a compound Poisson process and q ∈ (0,∞). Then Vq,ξ,η is
absolutely continuous if and only if η satisfies the ACP condition (2.24).

Proof. Sufficiency of the ACP condition follows from Theorem 2.23 (vi). For the converse,
assume that Vq,ξ,η is absolutely continuous and denote by T the time of the first jump
of ξ. Then also conditional on {τ < T}, Vq,ξ,η = ητ is absolutely continuous. But τ is
conditional exponentially distributed with parameter q + νξ(R), showing that η satisfies
the ACP condition.

Continuity of Vq,ξ,η can be characterized as follows:

Corollary 2.26 (Continuity of Vq,ξ,η). Let ξ and η be as above and let q ∈ (0,∞).
Then Vq,ξ,η is continuous if and only if η is neither a compound Poisson process nor the
zero process. If η is a compound Poisson process or the zero process, then Vq,ξ,η has an
atom at 0.

Proof. We have already seen in the proof of Corollary 2.24 that if η is a compound Poisson
process or the zero process, then Vq,ξ,η has an atom at 0 and is hence not continuous.
If η is neither a compound Poisson process nor the zero process and does not satisfy
Condition (2.23), then P (Vξ,η(t) = b) = 0 for any t > 0 and b ∈ R by Corollary 2.21.
Continuity of Vq,ξ,η then follows by conditioning on τ = t via

P (Vq,ξ,η = b) =
∫ ∞

0
P
(
Vξ,η(t) = b

∣∣∣τ = t
)
Pτ (dt) =

∫ ∞
0

0Pτ (dt) = 0.

Finally, if η is neither a compound Poisson process nor the zero process but satisfies
Condition (2.23), then it must be of finite variation with non-zero drift, so that Vq,ξ,η is
absolutely continuous by Theorem 2.23 (v).

Example 2.27. If η is a compound Poisson process, then Vq,ξ,η has an atom at zero and
hence trivially cannot be absolutely continuous. But its distribution restricted to R∗ can
be absolutely continuous, as we show now. Denote the time of the first jump of η by R.
Conditional on {τ > R}, we can write

Vq,ξ,η = e−ξR ∆ηR +
∫ τ

R+
e−ξs− dηs = e−ξR

(
∆ηR +

∫ R+(τ−R)

R+
e−(ξs−−ξR) dηs

)
,

with e−ξR , ∆ηR and
∫ R+(τ−R)
R+ e−(ξs−−ξR) dηs being conditionally independent, similar to the

proof of Theorem 2.23 (vi). If now ξ satisfies the ACP condition, or the jump distribution
of η is absolutely continuous, we conclude that Vq,ξ,η conditional on {τ > R} is absolutely
continuous. In particular, the law of Vq,ξ,η is not of pure type.

We end this section with an example where Vq,ξ,η is continuous but not absolutely contin-
uous.

Example 2.28. Let 0 < α < 1, c be an integer such that c > 1/(1 − α), let an = 2−cn

for n ∈ N and define the Lévy measure νη by νη := ∑∞
n=1 a

−α
n δan . Then νη is infinite
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with
∫
|x|≤1 |x| νη(dx) <∞. Let η be the subordinator with Lévy measure νη and drift 0.

According to the final part of Example 41.23 in Sato [58], the potential measure W q
η of η

is continuous singular for any q > 0. Now let τ be an exponentially distributed random
variable with parameter q > 0 and let ξ be the zero process. Then Vq,ξ,η = ητ which has
the same distribution as qW q

η as seen in the discussion preceeding Theorem 2.23 and is
hence continuous singular.
Further, to obtain an example with non-deterministic integrand, let ξ′ be a compound
Poisson process and denote by T the time of its first jump. With positive probability, ξ′
does not jump before time τ , i.e. {T > τ} has positive probability, and on this set we
have Vq,ξ′,η = ητ . Since conditionally on {T > τ}, τ is exponentially distributed with
parameter q + νξ(R), also the conditional distribution of ητ given {T > τ} is continuous
singular. We conclude that Vq,ξ′,η has a non-trivial singular part.

2.2.4. Conditions for Absolute Continuity of ∫∞0 e−ξs− dηs
Finally, we consider the exponential functional without killing. Let ξ and η be two inde-
pendent Lévy processes such that V0,ξ,η :=

∫∞
0 e−ξs− dηs converges a.s. and η is not the

zero process. A characterization when the integral converges in terms of the characteristic
triplet of ξ and η is given by Erickson and Maller [27, Thm. 2]. In particular, ξ has to
drift to ∞ a.s., which implies that it is transient.
Although much more attention has been paid to V0,ξ,η rather than Vq,ξ,η when q > 0,
not too many sufficient conditions for absolute continuity of V0,ξ,η are known. Bertoin et
al. [13, Thm. 3.9 (a)] show that if η is of finite variation with non-zero drift and νξ(R) > 0,
then V0,ξ,η will be absolutely continuous. They also characterize continuity of V0,ξ,η and
show that it is always continuous unless both ξ and η are deterministic, cf. [13, Thm. 2.2].
Kuznetsov et al. [38, Cor. 2.5] find that V0,ξ,η has a density whenever σ2

η + σ2
ξ > 0 and η

and ξ both have finite expectation. Also, it is known that when ξ is spectrally negative,
then V0,ξ,η is self-decomposable ([13, Rem. (i) in Sect. 2]), and hence absolutely continuous
unless it is constant (e.g. [58, Ex. 27.8]), i.e. unless both ξ and η are deterministic.
It is also known that the law of V0,ξ,η is of pure type, and even that it is either de-
generate, continuous singular, or absolutely continuous, e.g. [7, Sect. 5]. In [42] the law
of
∫∞

0 e−(ln c)Nt− dηt is studied when η and N are two independent Poisson processes
and c > 1. It is shown that the distribution in that case may be continuous singular or
absolutely continuous, depending intrinsically on algebraic properties of c and the ratio of
the rates of the two Poisson processes N and η (cf. [42, Thms. 3.1, 3.2]). The question of
whether V0,ξ,η will always be absolutely continuous for general Lévy processes ξ and η that
have both infinite Lévy measure (or only one of them) is still open. Still, in the following
theorem, we collect various sufficient conditions for absolute continuity of V0,ξ,η, many of
which are new.
Theorem 2.29 (Sufficient conditions for absolute continuity of V0,ξ,η). Let ξ and η be
independent such that η is not the zero process and such that V0,ξ,η = limt→∞

∫ t
0 e−ξs− dηs

converges almost surely. Suppose that one of the following conditions is satisfied:
(i) The characteristic triplet of η satisfies Condition (2.19) with t :=∞, or more gen-

erally, Condition (2.20) with t := ∞, i.e. the right-hand sides of these inequalities
are replaced by zero. In particular, the conditions are satisfied when σ2

η > 0.
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(ii) The absolutely continuous part of νη is non-trivial: νη,ac(R) > 0.

(iii) The characteristic exponent Ψξ of ξ satisfies Condition (2.16) (recall from Exam-
ple 2.17 that (2.16) is in particular satisfied when σ2

ξ > 0, when ξ is finite variation
with non-zero drift, or when ξ satisfies (2.18)), and at least one of ξ and η is non-
deterministic.

(iv) The absolutely continuous part of νξ is non-trivial: νξ,ac(R) > 0.

(v) η is of finite variation with non-zero drift, and at least one of ξ and η is non-
deterministic.

(vi) ξ is a compound Poisson process and η satisfies the ACP condition (2.24).

(vii) η is a compound Poisson process and ξ satisfies the ACP condition (2.24).

(viii) ξ is spectrally negative, and at least one of ξ and η is non-deterministic.

Then V0,ξ,η =
∫∞

0 e−ξs− dηs is absolutely continuous.

Proof. (viii) As mentioned before, V0,ξ,η is self-decomposable when ξ is spectrally negative.
Since additionally it is not constant a.s. if additionally at least one of ξ and η is non-
deterministic by [13, Thm. 2.2], it is absolutely continuous in this case ([58, Ex. 27.8]).
(v) Let η be of finite variation with non-zero drift. Since

∫∞
0 e−ξs− dηs converges, ξ must

be transient. It then follows from [13, Thm. 3.9(a)] that V0,η,ξ is absolutely continuous
when νξ(R) > 0. If νξ(R) = 0, then ξ is spectrally negative, and absolute continuity
of V0,ξ,η follows from (viii).
(i) – (iii): As long as νη(R) > 0 in (iii), this follows in complete analogy to the corre-
sponding proof of Theorem 2.18 (i)–(iii) by conditioning on the paths ξ = f and observing
that λ({s ∈ [0,∞) : e−f(s−) 6= 0}) = ∞. If νη(R) = 0 in (iii), either σ2

η > 0 or η is deter-
ministic and hence of finite variation. The claim then follows from the previously shown
cases (i) and (v).
(iv) Choose a set D ∈ B1 that is bounded away from zero with νξ,ac(D) > 0 and
νξ,sing(D) = 0. Denote by R the time of the first jump of ξ with jumping size in D and
by Y its jump size (which has a density by assumption). Observe that R is a stopping
time with respect to the augmented filtration. Writing∫ ∞

0
e−ξs− dηs =

∫ R

0
e−ξs− dηs + e−Y

(
e−ξR−

∫ ∞
R+

e−(ξs−−ξR) dηs
)
,

observing that Y is independent from (
∫ R

0 e−ξs− dηs, e−ξR−
∫∞
R+ e−(ξs−−ξR) dηs) and that∫∞

R+ e−(ξs−−ξR) dηs d=
∫∞

0 e−ξs− dηs is continuous (hence 6= 0 a.s.) by Theorem 2.2 in [13], it
follows as in the proof of Theorem 2.18 (iv) that

∫∞
0 e−ξs− dηs is absolutely continuous.

(vi) Denote by T the time of the first jump of ξ, which is exponentially distributed with
parameter νξ(R) ∈ (0,∞). Then

V0,ξ,η =
∫ T

0
dηs +

∫ ∞
T+

e−ξs− dηs = ηT + e−ξT
∫ ∞
T+

e−(ξs−−ξT ) dηs
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with ηT , ξT = ∆ξT and
∫∞
T+ e−(ξs−−ξT ) dηs being independent by the strong Markov prop-

erty. Since ηT is absolutely continuous by the ACP condition, absolute continuity of V0,ξ,η
follows.
(vii) Denote by Ri the time of the i’th jump of η and by Zi its jump size. Since ξ and η
do not jump together a.s., we have

V0,ξ,η =
∫ ∞

0
e−ξs− dηs =

∞∑
i=1

e−ξRi−Zi a.s.= e−ξR1

( ∞∑
i=1

e−(ξRi−ξR1 )Zi

)
.

But ξR1 and ∑∞
i=1 e−(ξRi−ξR1 )Zi are independent by the strong Markov property, and

since V0,ξ,η is different from zero a.s. (as it has no atom as η is non-deterministic), also∑∞
i=1 e−(ξRi−ξR1 )Zi is different from zero almost surely. The claim then follows by observ-

ing that e−ξR1 is absolutely continuous by the (ACP) condition, since R1 is exponentially
distributed with parameter νη(R) ∈ (0,∞).

Observe that part (viii) above is already covered by parts (i), (iii) and (v), for if ξ is
spectrally negative and drifts to infinity, then it is either of finite variation with strictly
positive drift, or it is of infinite variation with νξ((0,∞)) = 0, so that in both cases Ψξ sat-
isfies Condition (2.16) and (viii) follows from (iii) when νη(R) > 0. When νη(R) = 0, (viii)
follows from (i) and (v).
The following result generalizes Corollary 2.5 of Kuznetsov et al. [38] in the sense that
it shows that the assumption in [38] that both ξ and η have finite expectation can be
omitted for the existence of a density.

Corollary 2.30. Let ξ and η be independent Lévy processes such that V0,ξ,η converges a.s.
and such that η is not the zero process. Suppose that σ2

η +σ2
ξ > 0. Then V0,ξ,η is absolutely

continuous.

Proof. If σ2
η > 0, this follows from Theorem 2.29 (i). If σ2

ξ > 0 = σ2
η, then νη(R) > 0

or η is deterministic but non-zero. The claim then follows from parts (iii) and (v) of
Theorem 2.29, respectively.

A result similar to Corollary 2.25 does not hold when q = 0. This follows by observing
that

∫∞
0 e− ln(c)Nt− dηt can be absolutely continuous for suitable constants c > 1 and Pois-

son processes N and η by [42, Thm. 3.2]; obviously, a Poisson process does not satisfy
the ACP condition.
Let us finally mention that similar to Remark 2.20, some of the results of Theorem 2.29
can be easily extended to functionals of the form

∫∞
0 g(ξs−) dηs, assuming the convergence

of the integral. In particular, when g : [0,∞) → R is continuous with zero set N , if
the integral converges, if

∫∞
0 P (ξs ∈ N) ds = 0 and if one of the conditions (i)–(iii) of

Theorem 2.29 is satisfied, then
∫∞

0 g(ξs−) dηs will be absolutely continuous. Sufficient
conditions for

∫∞
0 P (ξs ∈ N) ds = 0 have been discussed in Remark 2.20.
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2.3. Connection to Markov Processes
As noted in Section 1.1.4 of the introduction, the exponential functional V0,ξ,η, provided
the improper integral converges, describes the stationary distribution of a generalized
Ornstein-Uhlenbeck process. This section aims to show that the law of the killed expo-
nential functional Vq,ξ,η, too, arises as the stationary distribution of a Markov process. By
calculating the infinitesimal generator of the process, we obtain a key tool for the analysis
in Section 2.4.

Theorem 2.31. Let ξ and η be two independent Lévy processes and q ∈ (0,∞). Define
the Lévy process U by (1.11) such that E(U) = e−ξ and let N be a Poisson process with
parameter q, which is independent of U . Define

Ũ := U −N.

Then Ũ is a Lévy process with Lévy measure ν
Ũ

such that ν
Ũ

({−1}) = q. Further

Vq,ξ,η
d=
∫ ∞

0
E(Ũ)s− dηs (2.25)

and L(Vq,ξ,η) is the unique invariant probability measure of the Markov process Ṽ = (Ṽt)t≥0
satisfying the stochastic differential equation

dṼt = Ṽt− dŨt + dηt, t ≥ 0, (2.26)

with starting random variable Ṽ0 independent of Ũ and η. The solution of (2.26) is given by

Ṽt = e−ξt1{N(t)=0}Ṽ0 + e−ξt
∫ t

T (t)+
eξs− dηs, (2.27)

where T (t) denotes the time of the last jump of N before t, with the convention that T (t) = 0
if no jump of N occurs before time t. In particular, if Z is a random variable, independent
of (ξ, η,N) and with the same distribution as Vq,ξ,η, then Z satisfies the random fixed point
equation

Z
d= e−ξt1{N(t)=0}Z + e−ξt

∫ t

T (t)+
eξs− dηs

for each t > 0.

Proof. Observe that ∆Ũt = −1 if and only if ∆Nt = 1, i.e. N counts the jumps of size −1
of Ũ , and that the Lévy measure ν

Ũ
of Ũ is concentrated on [−1,∞) with ν

Ũ
({−1}) = q.

Since E(Ũ)t = 0 whenever Nt ≥ 1 and E(Ũ)t = E(U)t = e−ξt on {Nt = 0}, and
since the time of the first jump of N is exponentially distributed with parameter q,
we obtain Equation (2.25). By [7, Thm. 2.2] and [7, Prop. 3.2], the differential equa-
tion dṼt = Ṽt−dŨt + dηt has a strictly stationary solution, unique in distribution, and the
corresponding marginal distribution is given by E(U)τ

∫ τ
0 E(U)−1

s− dηs, where τ is Exp(q)-
distributed, independent from (U, η). Further, the process (Ṽt)t≥0 defined in (2.26) is a
time-homogeneous Markov process (cf. [7, Lem. 3.3]), so that the marginal strictly sta-
tionary distribution is the unique invariant probability measure of the Markov process.
Since E(U)t

∫
(0,t] E(U)−1

s− dηs
d=
∫ t

0 E(U)s− dηs for every fixed t > 0 by [7, Lem. 3.1], we
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obtain that
E(U)τ

∫ τ

0
E(U)−1

s− dηs
d=
∫ τ

0
E(U)s− dηs d= Vq,ξ,η

by conditioning on τ . This shows that L(Vq,ξ,η) is the unique invariant probability measure
of the Markov process Ṽ .
To see the specific form (2.27) of the solution of (2.26), denote for 0 ≤ s ≤ t

E(Ũ)s,t = exp
(

(Ũt − Ũs)− σ2
Ũ

(t− s)/2
) ∏
s<u≤t

(1 + ∆Ũu)e−∆Ũu .

By [7, Prop. 3.2, Eq. (2.7)], the solution Ṽ = (Ṽt)t≥0 of (2.26) is given by

Ṽt = E(Ũ)t
(
Ṽ0 +

∫ t

0+

[
E(Ũ)s−

]−1
dηs

)
1{N(t)=0}

+E(Ũ)T (t),t

∫ t

T (t)+

[
E(Ũ)T (t),s−

]−1
dηs 1{N(t)≥1}.

Since Ũs− ŨT (t) = Us−UT (t) for s ∈ (T (t), t) we see from the Doléans-Dade formula that

E(Ũ)T (t),s = e−(ξs−ξT (t)) for s ∈ (T (t), t).

Hence, the above can be rewritten (a.s. for fixed t) as

Ṽt = e−ξtṼ01{N(t)=0} + e−(ξt−ξT (t))
∫ t

T (t)+
eξs−−ξT (t) dηs.

Since ξ and T (t) are independent of η, we can pull out e−ξT (t) from the last integral
leading to (2.27). The desired fixed point equation is now immediate, since L(Vq,ξ,η) is the
invariant probability measure of Ṽ with independent starting value Ṽ0.

Remark 2.32. In the setting of Theorem 2.31, define the killed Lévy process ξ̃ with
killing rate q and cemetery ∞ by

ξ̃t =

ξt, t < τ,

+∞, t ≥ τ,

where τ is Exp(q)-distributed, independent of (ξ, η). Then

Vq,ξ,η =
∫ ∞

0
e−ξ̃s− dηs,

so that Vq,ξ,η can be seen as an exponential functional with respect to ξ̃ and η. The killed
Lévy process ξ̃ and Ũ are related by E(Ũ) = e−ξ̃.

Remark 2.33. Since in the situation of Theorem 2.31, the characteristic triplet of −N
is given by (0, qδ−1,−q), where δ−1 denotes the Dirac measure at −1, the characteristic
triplet of Ũ can be expressed in terms of the characteristic triplet of U via

σ2
Ũ

= σ2
U , ν

Ũ
= νU + qδ−1, γ

Ũ
= γU − q.
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Additionally, if U is of finite variation, then so is Ũ , and the drifts of Ũ and U are equal.
The key difference between the describing stochastic differential equations for the expo-
nential functional without killing and the killed exponential functional can then be seen in
the Lévy measure of U and Ũ , respectively, since νU((−∞,−1]) = 0 while ν

Ũ
({−1}) = q.

Recall from Section 1.1.1 that the infinitesimal generator AṼ of (Ṽt)t≥0 is the linear
operator defined by

AṼ f(x) = lim
t→0

Ex[f(Ṽ x
t )]− f(x)
t

, x ∈ R,

on the set of functions f ∈ Cb(R) for which this limit exists uniformly in x. Here, Ṽ x
t

denotes the solution of (2.26) with initial value Ṽ x
0 = x and Ex denotes the correspond-

ing expectation. As a starting point of the analysis, consider the generalized Ornstein–
Uhlenbeck process, i.e. the Markov process given by

V x
t = x+

∫ t

0
V x
s− dUt + ηt,

which is the solution of the differential equation dVt = Vt− dUt+dηt with starting random
variable V x

0 = x. As shown in [5, Thm. 3.1, Cor. 3.2, Cor. 3.3], (V x
t )t≥0 is a (rich) Feller

process and the domain of its infinitesimal generator AV contains the space

C2
0,pl(R) :=

{
f ∈ C2

0(R) : lim
|x|→∞

(
|xf ′(x)|+ |x2f ′′(x)|

)
= 0

}
,

where the added subscript pl refers to the power law decay of the derivatives, on which AV
acts by

AV f(x) = Aηf(x)− f ′(x)xγξ + 1
2(f ′′(x)x2 + f ′(x)x)σ2

ξ

+
∫
R

(
f(xe−y)− f(x) + f ′(x)xy1{|y|≤1}

)
νξ(dy)

= Aηf(x) + xf ′(x)γU + 1
2x

2f ′′(x)σ2
U

+
∫
R

(
f(x+ xy)− f(x)− xyf ′(x)1{|y|≤1}

)
νU(dy), (2.28)

where Aη denotes the infinitesimal generator of the Lévy process η, which is by Theo-
rem 1.8 of the introduction given by

Aηf(x) = γηf
′(x) + 1

2σ
2
ηf
′′(x) +

∫
R

(
f(x+ y)− f(x)− f ′(x)y1|y|≤1

)
νη(dy)

for f ∈ C2
0,pl(R). From this we can derive the generator of Ṽ as follows.

Theorem 2.34. Let q ∈ [0,∞), (Ṽt)t≥0 as defined in (2.26) and assume that V0,ξ,η con-
verges a.s. whenever q = 0 is considered. Then the set C2

0,pl(R) is contained in dom(AṼ ),
and for f ∈ C2

0,pl(R) we have

AṼ f(x) = AV f(x) + q (f(0)− f(x)) ,
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with AV as given in (2.28).

Proof. The case q = 0 was shown in [5]. Let q > 0 and f ∈ C2
0,pl(R). Then for each t > 0,

Ex[f(Ṽ x
t )]− f(x)
t

= Ex[f(Ṽ x
t )|Nt = 0]P(Nt = 0)− f(x)

t

+Ex[f(Ṽ x
t )|Nt = 1]P(Nt = 1)

t

+Ex[f(Ṽ x
t )|Nt ≥ 2]P(Nt ≥ 2)

t
. (2.29)

Since f is bounded and P(Nt ≥ 2) = o(t) as t → 0, the last term tends to 0, uniformly
in x ∈ R, as t→ 0. Denote the time of the last jump of N before t by T (t). Then

Ṽt = e−ξt
(
x+

∫ t

0
eξs− dηs

)
1{N(t)=0} +

(
e−(ξt−ξT (t))

∫
(T (t),t]

eξs−ξT (t) dηs
)
1{N(t)≥1}

by [7, Prop. 3.2]. Since P(Nt = 1) = qte−qt, we conclude that

lim
t→0

Ex[f(Ṽ x
t )|Nt = 1]P(Nt = 1)

t
= f(0)q,

uniformly in x. Finally, since P(Nt = 0) = e−qt we can write

Ex[f(Ṽ x
t |Nt = 0)]P (Nt = 0)− f(x)

t
= Ex[f(V x

t )]− f(x)
t

+ e−qt − 1
t

Ex[f(V x
t )].

The first of these terms converges uniformly in x to AV f(x) as t → 0, and the second
uniformly to −qf(x) since Ex[f(V x

t )] converges uniformly to f(x) since (V x
t )t≥0 is a Feller

process ([5, Thm. 3.1]). Together with (2.29) this gives the claim.

Remark 2.35. (i) Alternatively, the above theorem could be shown following the proof of
Theorem 3.1 and Corollary 3.2 in [5] and replacing U by Ũ to allow for jumps of size −1.
Observing that the characteristics γU and γ

Ũ
differ by q = −

∫
{−1} yνŨ(dy) then leads to

the same result.
(ii) Aside from the expression in Theorem 2.34, the operator AṼ can also be given in
terms of the characteristics of Ũ . As ν

Ũ
({−1}) = q we have forf ∈ C2

0,pl(R) that

AṼ f(x) = Aηf(x) + xf ′(x)γ
Ũ

+ 1
2x

2f ′′(x)σ2
Ũ

+
∫
R

(
f(x+ xy)− f(x)− xyf ′(x)1[−1,1](y)

)
ν
Ũ

(dy) (2.30)

which is (2.28) with U replaced by Ũ .

The key to deriving the equations describing L(Vq,ξ,η) in the following sections lies in the
fact that the law of the killed exponential functional is the unique invariant probability
law of the Markov process in (2.26) and thus the equation∫

R
AṼ f(x)L(Vq,ξ,η)(dx) = 0 (2.31)
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holds for every function f in the domain of the operator AṼ (see e.g. [40, Thm. 3.37];
although the proof is given for Feller processes only, one can see from the argument
given that this must hold true also for invariant probability measures of general Markov
processes). In view of Theorem 2.34, this is in particular satisfied for f ∈ C2

0,pl(R). We
also note the following special case as a key tool for Section 2.4.2.

Corollary 2.36. The space C∞c (R) is a subset of dom(AṼ ) and (2.31) holds for every
test function f .
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2.4. Distributional Equations for Killed Exponential
Functionals

2.4.1. Equations Derived by Fourier and Laplace Methods
In this section, we use the infinitesimal generator obtained in Theorem 2.34 to derive dis-
tributional equations for the law of the killed exponential functional, as well as a functional
equation to describe its density, using the method developed in [5] for the case without
killing. Throughout the analysis, we set L(Vq,ξ,η) = µ and denote its characteristic func-
tion by ϕq,ξ,η. The following conclusion now follows in complete analogy to Theorem 4.1
and Corollary 4.3 in [5], using Lemma 4.2 of [5]. For convenience, the following corollary is
given in the characteristics of the original Lévy process ξ, as well as in the characteristics
of Ũ with ν

Ũ
({−1}) = q.

Corollary 2.37. Let q ≥ 0 and assume that the exponential functional converges a.s.
whenever q = 0 is considered. Further, let h ∈ C∞c (R) such that h(x) = 1 for |x| ≤ 1
and h(x) = 0 for |x| ≥ 2. Set hn(x) := h(x/n) and fu,n(x) = eiuxhn(x) for u ∈ R, n ∈ N,
and x ∈ R. Then

ψη(u)ϕVq,ξ,η(u) = q(ϕVq,ξ,η(u)− 1)

+ lim
n→∞

(
γξ

∫
R
xf ′u,n(x)µ(dx)−

σ2
ξ

2

∫
R

(x2f ′′u,n(x) + xf ′u,n(x))µ(dx)

−
∫
R

∫
R

(fu,n(xe−y)− fu,n(x) + xyf ′u,n(x)1{|y|≤1}) νξ(dy)µ(dx)
)

= − lim
n→∞

(
γ
Ũ

∫
R
xf ′u,n(x)µ(dx) +

σ2
Ũ

2

∫
R
x2f ′′u,n(x)µ(dx) (2.32)

+
∫
R

∫
[−1,∞)

(fu,n(x+ xy)− fu,n(x)− xyf ′u,n(x)1{|y|≤1}) νŨ(dy)µ(dx)
)

for all u ∈ R. If additionally EV 2
q,ξ,η <∞, then, for all u ∈ R,

ψη(u)ϕVq,ξ,η(u) = q(ϕVq,ξ,η(u)− 1) + γξuϕ
′
Vq,ξ,η

(u)−
σ2
ξ

2
(
u2ϕ′′Vq,ξ,η(u) + uϕ′Vq,ξ,η(u)

)
−
∫
R

(
ϕVq,ξ,η(ue−y)− ϕVq,ξ,η(u) + uyϕ′Vq,ξ,η(u)1|y|≤1

)
νξ(dy)

= −γ
Ũ
uϕ′Vq,ξ,η(u)−

σ2
Ũ

2 u2ϕ′′Vq,ξ,η(u)

−
∫

[−1,∞)

(
ϕVq,ξ,η(u+ uy)− ϕVq,ξ,η(u)− uyϕ′Vq,ξ,η(u)1{|y|≤1}

)
ν
Ũ

(dy)

= −E
[
eiuVq,ξηψ

Ũ
(uVq,ξη)

]
. (2.33)

Remark 2.38. Observe that the integral with respect to ν
Ũ

does not vanish even if ξ (and
hence U) is a Brownian motion with drift due to the added point mass at −1.

Equation (2.33) can be solved in special cases, some of which are discussed in Section 2.4.4.
Note that it has been shown in [2, Thm. 3.1], that the precondition EV 2

q,ξ,η < ∞ is
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2. Distributional Properties of Killed Exponential Functionals

fulfilled if
E[U2

1 ] <∞, E[η2
1] <∞, 2E[U1] + Var(U1) < q, (2.34)

and limt→∞ E(Ũ)t = 0 a.s., the latter obviously being satisfied whenever q > 0. If η is a
subordinator, an equation similar to (2.33) also holds for the Laplace transforms without
any moment condition. Let LY (u) denote the Laplace transform of the law of a random
variable Y , e.g. LVq,ξ,η(u) = E[e−uVq,ξ,η ], u ≥ 0. Similar to Remark 4.5 in [5] we obtain(

lnLη1(u)
)
LVq,ξ,η(u) =q(LVq,ξ,η(u)− 1)− γξuE[Vq,ξ,ηe−uVq,ξ,η ]

−
σ2
ξ

2
(
u2E[V 2

q,ξ,ηe−uVq,ξ,η ]− uE[Vq,ξ,ηe−uVq,ξ,η ]
)

−
∫
R

(
LVq,ξ,η(ue−y)− LVq,ξ,η(u)− uyE[Vq,ξ,ηe−uVq,ξ,η ]1|y|≤1

)
νξ(dy),

for u > 0, rearranging which yields

lnLη1(u)
u

LVq,ξ,η(u) =q
LVq,ξ,η(u)− 1

u
+
(
γξ −

σ2
ξ

2

)
L′Vq,ξ,η(u)−

σ2
ξ

2 uL
′′
Vq,ξ,η

(u)

−
∫
R

(
LVq,ξ,η(ue−y)

u
−

LVq,ξ,η(u)
u

+ yL′Vq,ξ,η(u)1|y|≤1

)
νξ(dy). (2.35)

Restricting the jump part of ξ to be of finite variation, (2.35) reduces to

lnLη1(u)
u

LVq,ξ,η(u) =q
LVq,ξ,η(u)− 1

u
+
(
γ0
ξ −

σ2
ξ

2

)
L′Vq,ξ,η(u)−

σ2
ξ

2 uL
′′
Vq,ξ,η

(u)

−
∫
R

(
LVq,ξ,η(ue−y)

u
−

LVq,ξ,η(u)
u

)
νξ(dy)

and we can derive a functional equation for the density of Vq,ξ,η in the absolutely continuous
case by Laplace inversion. The proof is in complete analogy to the proof for the case q = 0
given in Theorem 2.1 in [3] and hence omitted. For q ≥ 0 we obtain the following result.
Proposition 2.39. Assume that the jump part of ξ is of finite variation and η is a
subordinator, i.e. lnLη1(u) = −γ0

ηu −
∫

(0,∞)(1− e−uy)νη(dy) for u ≥ 0. Further assume
that L(Vq,ξ,η) = µ is absolutely continuous with density fµ and, whenever σ2

ξ 6= 0, the
function z 7→ z2fµ(z) is absolutely continuous on [0, z] for all z > 0. Then fµ(z) fulfills
for λ-a.e. z > 0

γ0
ηfµ(z)−

(
γ0
ξ +

σ2
ξ

2

)
zfµ(z)−

σ2
ξ

2 z
2f ′µ(z)− q

∫ ∞
z

fµ(s)ds (2.36)

=
∫ ∞
z

νξ((ln s
z
,∞))fµ(s)ds−

∫ z

0

(
νξ((−∞, ln s

z
)) + νη((z − s,∞))

)
fµ(s)ds.

Recall that various sufficient conditions for absolute continuity of µ were given in Theo-
rems 2.23 and 2.29. Nevertheless, there are cases where Proposition 2.39 is not applicable,
e.g. if η is not a subordinator, if

∫ 1
−1 |x|νξ(dx) = ∞, or if µ is not absolutely continuous.

In the next section, we derive a general equation for the law of Vq,ξ,η without a priori as-
sumptions from which Proposition 2.39 is reobtained as a special case (see Remark 2.49).
The proof given in this section, however, is comparably shorter and less technical.
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2. Distributional Properties of Killed Exponential Functionals

Remark 2.40. Observe that we obtain the functional equation given in (2.3) of [48] in the
special case of ηt = t and ξ being a subordinator, as Vq,ξ,t is always absolutely continuous
by [49].

2.4.2. Equations Derived by Schwartz Theory of Distributions
In this section, we give distributional equations for the law of the killed exponential
functional using Schwartz theory of distributions, where we follow a similar approach
as used in [38, Thm. 2.2] for the exponential functional without killing. While studying
the method, we found a small oversight in the proof of said theorem which results in
the distributional equation not being applicable in all claimed cases. This is discussed in
Remark 2.50. However, we also found that the method works when killing is included and
that the moment condition E|ξ1|,E|η1| <∞ of [38] is not needed to arrive at the desired
conclusion in both cases. Compared to Section 2.4.1, we now rely more on technical
auxiliary results. As a consequence, many a priori assumptions needed in the previous
section can be dropped. The main result of this section is Theorem 2.43, which establishes
a connection between the characteristic triplets of the processes η and Ũ , and the law of
the corresponding killed exponential functional Vq,ξ,η. From this, we directly obtain a
functional equation for the density in the absolutely continuous case as well as, similar
to [38, Cor. 2.3], a criterion for absolute continuity and continuity or smoothness of the
density that extends the one given in Corollary 2.30 in Section 2.2 for the exponential
functional without killing to the case q > 0. Further, we discuss different special cases.
Recall that the process U is constructed from ξ via e−ξ = E(U) and that Ũ is obtained
from adding a point mass of q > 0 at −1 to the Lévy measure of U . To alleviate some
of the notation, we characterize the functions involved in Theorem 2.43 in the following
lemma.

Lemma 2.41. Let ξ, η be two independent Lévy processes such that η is not the zero
process and q ≥ 0. Further, define the functions Bη, BŨ

, Sη, SŨ by

Bη : R→ R, Bη(z) =


−νη(−∞,min{z,−1}), if z < 0,
0, if z = 0,
νη((max{z, 1},∞)), if z > 0,

(2.37)

B
Ũ

: [1,∞)→ [0,∞), B
Ũ

(z) =

0, if z = 1,
ν
Ũ

((max{z − 1, 1},∞)), if z > 1,
(2.38)

Sη : R→ [0,∞), Sη(z) =


∫ z
−∞(z − y)νη|[−1,1](dy), if z < 0,

0, if z = 0,∫∞
z (y − z)νη|[−1,1](dy), if z > 0,

(2.39)

S
Ũ

: [0,∞)→ [0,∞), S
Ũ

(z) =


∫ z−1
−∞ (z − 1− y)ν

Ũ

∣∣∣
[−1,1]

(dy), if z ∈ [0, 1),
0, if z = 1,∫∞
z−1(y − z + 1)ν

Ũ

∣∣∣
[−1,1]

(dy), if z > 1.
(2.40)
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Then both B
Ũ

and Bη are bounded and hence locally integrable with respect to λ and
both Sη and z 7→ S

Ũ
(z + 1), z ∈ R are integrable with respect to λ. In particular, the

convolution Bη ∗µ is defined everywhere and bounded and the convolution Sη ∗µ is defined
everywhere, is λ-a.e. finite and integrable. Further, the functions z 7→

∫ z
0+(Bη ∗ µ)(x)dx

and z 7→
∫ z

0+
∫ t
0+ BŨ

( t
x
)µ(dx)dt are locally integrable with respect to λ.

Proof. First, note that |Bη(z)| ≤ νη(R \ [−1, 1]) < ∞ and |B
Ũ

(z)| ≤ ν
Ũ

([1,∞)) < ∞
implies that Bη and B

Ũ
are bounded, respectively. For Sη, an application of Fubini’s

theorem yields for z > 0 that∫ ∞
0+
|Sη(t)|dt ≤

∫ ∞
0+

∫ ∞
z
|y − z|νη|[−1,1](dy)dz

=
∫ ∞

0+

∫ y

0+
|y − z|dzνη|[−1,1](dy)

=
∫ ∞

0+

y2

2 νη|[−1,1](dy) <∞,

and similarly for z < 0, showing that Sη is indeed integrable. The same argument applies
to z 7→ S

Ũ
(z + 1). The remaining assertions now follow from standard results on the

convolution of bounded or measurable functions and finite measures.

The term involving S
Ũ

in the distributional equation (2.41) below is considered in the
following lemma.

Lemma 2.42. Let q ≥ 0 and S
Ũ

as defined in (2.40). Then

%(dz) =
(
1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)µ(dx) + 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)µ(dx)

)
dz,

defines a locally finite measure on B1(R).

Proof. Let B ⊂ R be compact. We first consider B ∈ [0,∞), i.e. B ⊆ [0, R] for sufficiently
large R ∈ R. As S

Ũ
is nonnegative by definition, we obtain

∫
B
%(dz) ≤

∫ R

0+

∫ z−

0
xS

Ũ
( z
x
)µ(dx)dz +

∫ R

0+

∫ ∞
z+

xS
Ũ

( z
x
)µ(dx)dz,

in which we can insert the cases given in (2.40). Applying Fubini’s theorem now yields∫ R

0+

∫ z−

0
xS

Ũ
( z
x
)µ(dx)dz ≤

∫ 1

0+

∫ R

0+

∫ x+xy

x
(xy − z + x)dzµ(dx)ν

Ũ
|[−1,1](dy)

≤ R2

2

∫ 1

0+
y2ν

Ũ
(dy) <∞

for the first term. For the second term, write∫ R

0+

∫ ∞
z+

xS
Ũ

( z
x
)µ(dx)dz =

∫ 0−

−1

∫ ∞
0+

∫ min{x,R}

min{x(1+y),R}
(z − x− xy)dzµ(dx)ν

Ũ
(dy).

Whenever y is bounded away from zero, e.g. considering y ∈ [−1,−1/2], the inner integral
can again be estimated by

∫ R
0 zdz = R2/2, thus yielding finiteness of the triple integral as
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before. For y ∈ (−1/2, 0), observe that the inner integral vanishes whenever x > 2R and
if x ≤ 2R, it can be bounded by

∫ x
x(1+y)(z − x− xy)dz = x2y2/2 ≤ 2y2R2. Thus, the triple

integral is also finite in the last case. Since the same arguments apply for B ⊂ (−∞, 0],
it follows that % is locally finite.

The following theorem is the main result of this section. As before, we set L(Vq,ξ,η) = µ.

Theorem 2.43. Let ξ, η be two independent Lévy processes such that η is not the zero
process and q ≥ 0 such that V0,ξ,η converges a.s. whenever q = 0 is considered. Further,
let the functions Bη, BŨ

, Sη, SŨ be as in Lemma 2.41. Then there exists a constant K ∈ R
such that

Kdz =
(1

2σ
2
η + 1

2z
2σ2

Ũ

)
µ(dz) + (Sη ∗ µ)(z)dz

+
(
1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)µ(dx) + 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)µ(dx)

)
dz

−
∫ z

0+

(
γη + xγ

Ũ

)
µ(dx)dz −

∫ z

0+
(Bη ∗ µ)(x)dxdz

−
∫ z

0+

∫ t

0+
B
Ũ

( t
x
)µ(dx)dtdz. (2.41)

The proof of Theorem 2.43 is based on the proof of Theorem 2.2 in [38] and the individ-
ual steps are carried out in Section 2.4.3 below. We sketch the argument briefly. First,
taking f ∈ C∞c (R), the explicit form of AṼ f(x) is inserted into (2.31), allowing to rewrite
the left-hand side to the form∫

R
AṼ f(x)µ(dx) =

∫
R
f ′′(z)G1(dz) +

∫
R
f ′(z)G2(dz)

for suitable G1 and G2. We can then use partial integration to rewrite the above integrals
to all include the same function, namely f ′′, yielding the form∫

R
f ′′(z)G1(dz) +

∫
R
f ′(z)G2(dz) =

∫
R
f ′′(z)G(dz),

where G can be identified with a distribution in the sense of Schwartz. Using (2.31) and the
definition of the distributional derivative, it follows that this distribution satisfies G′′ = 0.
By solving this ordinary differential equation (ODE) over the distribution space, one can
find an equivalent expression for G. Identifying the remaining constants then yields (2.41).
Alternatively, one can derive a distributional equation for the law of the killed exponential
functional from the corresponding equation in the case without killing. This approach is
further discussed in Appendix A.1.
Whenever µ is absolutely continuous with respect to the Lebesgue measure, (2.41) directly
yields a functional equation for the density. Recall that various sufficient conditions for
absolute continuity were given in Theorems 2.23 and 2.29 in Section 2.2. Note in particular
that whenever µ is continuous, the existence of a density is equivalent to the existence
of a density of µ|R\{0}. If η is not the zero process, µ is continuous if and only if q > 0
and η is not a compound Poisson process (see Corollary 2.26) or if q = 0 and ξ and η are
not simultaneously deterministic (cf. [13, Thm. 2.2]). In the case that q > 0 and η is a
compound Poisson process, it is µ({0}) > 0 such that the measure cannot be absolutely
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continuous, however, it is still possible for µ|R\{0} to have a density (see Corollary 2.45
below). We thus formulate the following result in the slightly more general setting that
only µ|R\{0} has a density. The proof is immediate from Theorem 2.43 and is, therefore,
omitted.
Corollary 2.44. Under the conditions of Theorem 2.43, assume that µ|R\{0} has a den-
sity fµ with respect to the Lebesue measure. Then there exists a constant K ∈ R such that(1

2σ
2
η + 1

2z
2σ2

Ũ

)
fµ(z) + (Sη ∗ fµ)(z) + Sη(z)µ({0})

+ 1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)fµ(x)dx+ 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)fµ(x)dx

= K +
∫ z

0

(
γη + xγ

Ũ

)
fµ(x)dx− 1{z<0}γηµ({0})

+
∫ z

0
(Bη ∗ fµ)(x)dx+

∫ z

0

∫ t

0
B
Ũ

( t
x
)fµ(x)dxdt (2.42)

for λ-a.e. z ∈ R.
It was shown in [38, Cor. 2.5] that the law of the exponential functional V0,ξ,η admits a
continuous density on R\{0} if σ2

ξ +σ2
η > 0, as well as E|ξ1| <∞, E|η1| <∞ and Eξ1 < 0.

The following corollary generalizes this to general q ≥ 0. As in Theorem 2.43, we do not
require a moment condition. The proof is given in Section 2.4.3. Observe that σ2

Ũ
= σ2

ξ .
Corollary 2.45. In addition to the assumptions of Theorem 2.43, let σ

Ũ
2 + σ2

η > 0.
(i) If σ2

η > 0, then µ has a continuous density fµ on R.

(ii) If σ2
Ũ
> 0, then µ|R\{0} has a continuous density fµ on R \ {0}.

(iii) In both cases, there exist constants M1,M2 > 0 such that for all z 6= 0 it holds

(σ2
η + z2σ2

Ũ
)fµ(z) ≤M1 +M2|z|.

Note that the above results, in particular (2.41) and (2.42), are derived under very weak
assumptions. Thus, the equations can be simplified further whenever more properties of
the processes ξ and η are known. We discuss some special cases in the following corollaries,
the proofs of which are also given in Section 2.4.3.
Corollary 2.46 (Finite First Moments). Under the assumptions of Theorem 2.43 let
further E|η1| <∞ and E|Ũ1| < ∞. Denote the expectation of η1 and Ũ1 by γ1

η and γ1
Ũ

,
respectively, and define the functions

SFMη : R→ [0,∞), SFMη (z) =


∫ z
−∞(z − y)νη(dy), if z < 0,

0, if z = 0,∫∞
z (y − z)νη(dy), if z > 0,

SFM
Ũ

: [0,∞)→ [0,∞), SFM
Ũ

(z) =


∫ z−1
−∞ (z − 1− y)ν

Ũ
(dy), if z ∈ [0, 1),

0, if z = 1,∫∞
z−1(y − z + 1)ν

Ũ
(dy), if z > 1.
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Then the following hold true:

(i) There exists a constant K ∈ R such that

Kdz =
(1

2σ
2
η + 1

2z
2σ2

Ũ

)
µ(dz) + (SFMη ∗ µ)(z)dz

+
(
1{z>0}

∫ ∞
0

xSFM
Ũ

( z
x
)µ(dx) + 1{z<0}

∫ 0

−∞
|x|SFM

Ũ
( z
x
)µ(dx)

)
dz

−
∫ z

0+

(
γ1
η + xγ1

Ũ

)
µ(dx)dz, (2.43)

where the right-hand side of the equation defines a locally finite measure on B1(R).

(ii) If additionally E|E(U)1| < eq or, equivalently, γ1
Ũ
< 0, then E|Vq,ξ,η| =

∫
|x|µ(dx) <∞

and the constant K in (2.43) takes the form

K = −
∫ ∞

0+

(
γ1
η + xγ1

Ũ

)
µ(dx) =

∫ 0

−∞

(
γ1
η + xγ1

Ũ

)
µ(dx).

Moreover, if additionally σ2
η + σ2

Ũ
> 0, then the density fµ of µ|R\{0} is bounded.

Corollary 2.47 (Finite Variation). Under the assumptions of Theorem 2.43 let further η
and Ũ be of finite variation, i.e. σ2

η = σ2
Ũ

= 0 and
∫

[−1,1] |x|νη(dx),
∫

[−1,1] |x|νU(dx) < ∞.
Denote by γ0

η and γ0
Ũ

the drifts of η and Ũ , respectively, and define the functions

BFV
η : R→ R, BFV

η (z) =


−νη((−∞, z)), if z < 0,
0, if z = 0,
νη((z,∞)), if z > 0,

(2.44)

BFV
Ũ

: [0,∞)→ R, BFV
Ũ

(z) =


−ν

Ũ
((−∞, z − 1)), if z ∈ [0, 1),

0, if z = 1,
ν
Ũ

((z − 1,∞)), if z > 1.
(2.45)

Then the equation

0 =
(
γ0
η + zγ0

Ũ

)
µ(dz) + (BFV

η ∗ µ)(z)dz

+
(
1{z>0}

∫ ∞
0

BFV
Ũ

( z
x
)µ(dx)− 1{z<0}

∫ 0

−∞
BFV
Ũ

( z
x
)µ(dx)

)
dz (2.46)

holds and the quantities on the right-hand side define a locally finite measure.

Assuming finite variation only of the jump parts of the processes η and Ũ , Corollary 2.45
can be extended to differentiability.

Corollary 2.48 (Differentiable Density). Under the assumptions of Theorem 2.43, let
the jump parts of Ũ and η be of finite variation. Further, let σ2

η +σ2
Ũ
> 0 and γ0

η , γ0
Ũ

, BFV
η

and BFV
Ũ

as in Corollary 2.47.

(i) If σ2
η > 0, then the density fµ of µ is continuously differentiable on R \ {0}.
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(ii) If σ2
Ũ
> 0 = σ2

η and q = 0, or η is not a compound Poisson process, then µ has a
density fµ on R which is continuously differentiable on R \ {0}.

(iii) The density fµ satisfies the equation(1
2σ

2
η + 1

2z
2σ2

Ũ

)
f ′µ(z) + zσ2

Ũ
fµ(z)−

(
γ0
η + zγ0

Ũ

)
fµ(z)−BFV

η (z)µ({0}) (2.47)

= (BFV
η ∗ fµ)(z) + 1{z>0}

∫ ∞
0

BFV
Ũ

( z
x
)fµ(x)dx− 1{z<0}

∫ 0

−∞
BFV
Ũ

( z
x
)fµ(x)dx,

which under the conditions (i) and (ii) is valid for all z ∈ R \ {0} and still holds λ-
a.e. whenever σ2

Ũ
> 0 = σ2

η, but the additional assumptions of (ii) are not satisfied.
In the latter case, fµ is λ-a.e. differentiable.

Observe that µ({0}) = 0 when σ2
η > 0, or σ2

η + σ2
Ũ
> 0 and q = 0, or q > 0, σ2

Ũ
> 0 and η

is neither a compound Poisson process nor the zero process.

Remark 2.49. Using the relation between the characteristic triplets of ξ, U , and Ũ es-
tablished in Section 2.3 and Theorem 2.31, as well as the fact that γ0

Ũ
= γ0

U = −γ0
ξ + 1

2σ
2
ξ

whenever
∫

[−1,1] |y|νξ(dy) <∞, one finds that Proposition 2.39 is a special case of Corol-
laries 2.47 and 2.48. In particular, Equation (2.36) is reobtained from (2.46) and (2.47)
for z > 0. If η is a subordinator, similar formulas are obtained from (2.46) and (2.47)
for z < 0, which are readily seen to be satisfied by fµ(z) = 0 for z < 0. Note, however,
that neither of the corollaries requires ξ or η to be a subordinator.

Remark 2.50. While studying the method, we found that the distributional equation
given in (2.3) of [38] for the case q = 0 and E|ξ1|,E|η1| < ∞ does not hold in general.
The cause of this lies in equation (2.6) of the paper, where it is stated that for func-
tions f ∈ C∞c ((0,∞)) the left-hand side of the equation

∫
RA

V f(x)µ(dx) = 0 simplifies to
an integral over the positive real line, i.e.

∫∞
0 AV f(x)µ(dx) = 0. Evaluating the generator

for such a function f leads to∫
R
AV f(x)µ(dx) =

∫ ∞
0
AV f(x)µ(dx)

+
∫ 0

−∞

σ2
η

2 f
′′(x) + (γη − xγξ)f ′(x) +

σ2
ξ

2 (x2f ′′(x) + xf ′(x))µ(dx)

+
∫ 0

−∞

∫ 0

−∞

(
f(x+ y)− f(x)− yf ′(x)1{|y|≤1}

)
νη(dy)µ(dx)

+
∫ 0

−∞

∫ ∞
0

(
f(x+ y)− f(x)− yf ′(x)1{|y|≤1}

)
νη(dy)µ(dx)

+
∫ 0

−∞

∫
R

(
f(xe−y)− f(x) + f ′(x)xy1{|y|≤1}

)
νξ(dy)µ(dx). (2.48)

Observe that the second, third and last term are zero as f(x) = 0 for x ≤ 0. However,
the fourth term may not, e.g. in the case ξt = t and η being a pure-jump process with
Lévy measure νη = δ2 + δ−2. For this example, one can construct a nonnegative test
function supported on the interval [1

2 ,
3
2 ] for which the term in question is nonzero. Nev-

ertheless, whenever η is a subordinator, and thus V0,ξ,η ≥ 0 a.s., or η does not have any
positive jumps, the fourth term of (2.48) vanishes such that all conclusions drawn from
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equation (2.6) in [38], in particular the distributional equation (2.3), remain valid. Other-
wise, the equation does not necessarily hold, as can be seen from the following example.
Let ξt = t and η be a pure-jump process with the Lévy measure given by νη(dx) = e−|x|dx.
We can derive the distribution of V0,ξ,η explicitly from [28, Thm. 2.1(f)], yielding that the
exponential functional has the same distribution as the difference of two independent
Exp(1)-distributed random variables, i.e. a Laplace distribution with parameters 0 and 1.
As µ is known, one can readily check that Equation (2.3) of [38] does not hold for this
example. The tail function and the integrated tails for x > 0 are given by

νη((x,∞)) =
∫ ∞
x

e−tdt = e−x, Π
(+)
η (x) :=

∫ ∞
x

νη((t,∞))dt = e−x,

and similarly
Π

(−)
η (x) :=

∫ ∞
x

νη((−∞,−t))dt = e−x, x > 0.

Therefore, Equation (2.3) in [38] reads

−
∫ ∞
v

µ(dx)dv +
(1
v

∫ v

0
e−(v−x)µ(dx)

)
dv +

(1
v

∫ ∞
v

e−(x−v)µ(dx)
)

dv

−
∫ ∞
v

1
w2

(∫ w

0
e−(w−x)µ(dx) +

∫ ∞
w

e−(x−w)µ(dx)
)

dwdv = 0, v > 0 (2.49)

for this specific example. Note that due to the choice of the processes the remaining pa-
rameters (in the notation of [38]) are given by bξ = −1, σ2

ξ = σ2
η = 0 and Π

(+)
ξ = Π

(−)
ξ = 0.

Inserting µ(dx) = 1
2e−|x|dx into the left-hand side of (2.49), we obtain

− e−v
2 dv + e−v

2 dv + e−v
4v dv − 1

4

( ∫ ∞
v

2e−w
w

dw + e−v
v
−
∫ ∞
v

e−w
w

dw
)

dv

=
(
− 1

4

∫ ∞
v

e−w
w

dw
)

dv,

which is not the zero measure, contradicting (2.49). However, one can check that the
equation given in (2.46) is satisfied for this example. Observing that Ut = Ũt = −t here
and verifying that η and Ũ are of finite variation, Corollary 2.47 is applicable. Hence, it
holds

0 = −zµ(dz) + (BFV
η ∗ µ)(z)dz, (2.50)

by (2.46), where BFV
η can be calculated explicitly as

BFV
η (z) =

e−z, z > 0
−ez, z < 0

 = sign(z)e−|z|.

Therefore, (2.50) now reads

zµ(dz) =
( ∫ z

−∞
e−z+sµ(ds)−

∫ ∞
z

ez−sµ(ds)
)

dz

and it is readily checked that the equation indeed holds for µ(dx) = 1
2e−|x|dx. Instead of

using the results from [28], one could also solve (2.50) directly. Since BFV
η ∗µ is integrable,
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so is zµ(dz) by (2.50), such that taking Fourier transforms leads to

−iϕ′V0,ξ,η
(x) = − 2x

x2 + 1ϕV0,ξ,η(x).

This yields ϕV0,ξ,η(x) = (x2 + 1)−1, from which the exact distribution of V0,ξ,η is readily
obtained by Fourier inversion. Alternatively, one could also observe that EV 2

0,ξ,η < ∞
by (2.34) and find the distribution of V0,ξ,η from solving (2.33), or equivalently (4.8) in [5],
for the given characteristics and performing a Fourier inversion of the solution.

2.4.3. Proofs for Section 2.4.2
The proof of Theorem 2.43 consists of several steps which are shown as separate lemmas.
First, the left-hand side of (2.31) is rewritten to a suitable form.

Lemma 2.51. Under the assumptions of Theorem 2.43 we have for every f ∈ C∞c (R)
that ∫

R
AṼ f(x)µ(dx) =

∫
R
f ′′(z)G1(dz) +

∫
R
f ′(z)G2(dz),

where the individual contributions are given by

G1(dz) =
(1

2σ
2
η + 1

2z
2σ2

Ũ

)
µ(dz) + (Sη ∗ µ)(z)dz

+
(
1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)µ(dx) + 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)µ(dx)

)
dz

G2(dz) =
(
γη + zγ

Ũ

)
µ(dz) + (Bη ∗ µ)(z)dz

+
∫ z

0+
B
Ũ

( z
x
)µ(dx)dz

with the functions Bη, BŨ
, Sη, and S

Ũ
given as in Equations (2.37) to (2.40).

Proof. By linearity, we can split AṼ f(x) according to (2.30) and rewrite the correspond-
ing integrals separately. Firstly, for the terms originating from the Gaussian and drift
components it follows that∫

R

(1
2σ

2
ηf
′′(x) + γηf

′(x) + 1
2x

2f ′′(x)σ2
Ũ

+ xf ′(x)γ
Ũ

)
µ(dx)

=
∫
R
f ′′(x)

(1
2σ

2
η + 1

2x
2σ2

Ũ

)
µ(dx) +

∫
R
f ′(x)

(
γη + xγ

Ũ

)
µ(dx)

such that their contributions to G1 and G2 are readily identified. For the terms correspond-
ing to the jump parts of the processes, the integrals with respect to the Lévy measure are
split according to the value of the indicator function in the integrand. Starting with the
contribution of the big jumps of η, we find for y > 1 that∫

R

∫ ∞
1+

(
f(x+ y)− f(x)

)
νη(dy)µ(dx) =

∫
R

∫ ∞
1+

∫ x+y

x
f ′(t)dtνη(dy)µ(dx)

=
∫
R
f ′(t)

∫ t

−∞
νη
(
(max{t− x, 1},∞)

)
µ(dx)dt,

56



2. Distributional Properties of Killed Exponential Functionals

where interchanging the order of integration is allowed due to the compact support of f ′
and the involved measures being finite. A similar calculation applies if y < −1. Using the
function Bη defined in (2.37), the term reads as∫

R

∫
R\[−1,1]

(
f(x+ y)− f(x)

)
νη(dy)µ(dx) =

∫
R
f ′(t)

∫
R
Bη(t− x)µ(dx)dt

=
∫
R
f ′(t)(Bη ∗ µ)(t)dt.

The big jumps of Ũ are treated in the same way, although the result cannot be interpreted
as a linear convolution here. For x > 0 it follows that∫ ∞

0+

∫ ∞
1+

(
f(x+ xy)− f(x)

)
ν
Ũ

(dy)µ(dx) =
∫ ∞

0
f ′(t)

∫ t

0+
ν
Ũ

(
(max{ t

x
− 1, 1},∞)

)
µ(dx)dt,

and the calculation for x < 0 is again similar. Using the function B
Ũ

introduced in (2.38)
now yields the desired form as∫

R

∫ ∞
1+

(
f(x+ xy)− f(x)

)
ν
Ũ

(dy)µ(dx) =
∫
R
f ′(t)

∫ t

0+
B
Ũ

( t
x
)µ(dx)dt.

Note that the argument of B
Ũ

is always greater or equal to one due to t and x being of
the same sign with |x| ≤ |t|. The approach to the terms corresponding to the small jumps
of η and Ũ , respectively, is similar. However, we obtain a contribution to G1 instead of G2
here. For η, using the Taylor formula, this leads to∫

R

∫
[−1,1]

(
f(x+ y)− f(x)− yf ′(x)

)
νη(dy)µ(dx)

=
∫
R

∫
[−1,1]

∫ x+y

x
f ′′(t)(x+ y − t)dtνη(dy)µ(dx).

A direct computation similar to Lemma 2.41 shows, since |f ′′| is compactly supported
and thus bounded by a constant, that∣∣∣∣ ∫ x+y

x
|f ′′(t)(x+ y − t)|dt

∣∣∣∣ ≤ Cy2

2 .

Thus, Fubini’s theorem is applicable and we find for y > 0 that∫
R

∫
(0,1]

(
f(x+ y)− f(x)− yf ′(x)

)
νη(dy)µ(dx)

=
∫
R
f ′′(t)

∫ t

−∞

∫ ∞
t−x

(
y − (t− x)

)
νη
∣∣∣
[−1,1]

(dy)µ(dx)dt,

with a similar calculation holding for y < 0. Adding both terms, one obtains∫
R

∫
[−1,1]

(
f(x+ y)− f(x)− yf ′(x)

)
νη(dy)µ(dx) =

∫
R
f ′′(t)(Sη ∗ µ)(t)dt,

where the function Sη is taken from (2.39). For the last term involving the small jumps
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of Ũ , it follows similarly that∫
R

∫
[−1,1]

(
f(x+ xy)− f(x)− xyf ′(x)

)
ν
Ũ

(dy)µ(dx)

=
∫
R

∫
[−1,1]

∫ x+xy

x
f ′′(t)(x+ xy − t)dtν

Ũ
(dy)µ(dx).

As f has compact support, there is some R > 0 such that supp(f) ⊆ [−R,R]. Let
now x, y > 0 and denote the set supp(f) ∩ [x, x+ xy] by M = Mx,y. As M = ∅ if x > R
and |f ′′| is bounded by some constant C, it follows that

∫ 1

0+

∫ ∞
0

∫ x+xy

x
|f ′′(t)(x+ xy − t)|dtµ(dx)ν

Ũ
(dy) ≤ CR2

2

∫
(0,1]

y2ν
Ũ

(dy) <∞

with a similar calculation as in Lemma 2.42. When considering x < 0, R is replaced
by −R. If y < 0 and x > 0, we can split the interval [−1, 0) at some intermediate
point y0, say y0 = 1

2 , and estimate the respective integrals separately. For y ∈ (−1
2 , 0),

observe that M = supp(f) ∩ [x + xy, x] = ∅ if x > 2R as x + xy > x
2 for the given

values of y. Thus, we can use similar estimates as for y > 0. For y ∈ [−1,−1
2 ], note

that M ⊆ [0, R] and that, therefore, x(1 + y) ∈M only if x(1 + y) ≤ R. This yields

C
∫

[−1,− 1
2 ]

∫ ∞
0

∫
M

(t− x− xy)dtµ(dx)ν
Ũ

(dy) ≤ CR2

2 ν
Ũ

([−1,−1
2 ]) <∞,

due to [−1,−1
2 ] being bounded away from zero. Again, similar arguments are applicable

for negative values of x, i.e. when y < 0 and x < 0 yielding integrability in the last case.
Interchanging the order of integration and rewriting the term to include S

Ũ
as defined

in (2.40) now leads to∫ ∞
0

∫ 1

0

∫ x+xy

x
f ′′(t)(x+ xy − t)dtν

Ũ
(dy)µ(dx)

+
∫ ∞

0

∫ 0

−1

∫ x

x+xy
f ′′(t)(t− x− xy)dtν

Ũ
(dy)µ(dx)

=
∫ ∞

0
f ′′(t)

∫ ∞
0

xS
Ũ

( t
x
)µ(dx)dt.

As the remaining two terms yield a similar result with the opposite sign, the complete
term can be rewritten as∫

R

∫
[−1,1]

(
f(x+ xy)− f(x)− xyf ′(x)

)
ν
Ũ

(dy)µ(dx)

=
∫
R
f ′′(t)

(
1{t>0}

∫ ∞
0

xS
Ũ

( t
x
)µ(dx)− 1{t<0}

∫ 0

−∞
xS

Ũ
( t
x
)µ(dx)

)
dt.

Summing up the individual contributions now yields G1 and G2 as claimed.

Lemma 2.52. Under the assumptions of Theorem 2.43 we have for all f ∈ C∞c (R) that∫
R
f ′′(z)G1(dz) +

∫
R
f ′(z)G2(dz) =

∫
R
f ′′(z)G(dz),
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where G can be identified with a distribution in the sense of Schwartz and is given by

G(dz) =
(1

2σ
2
η + 1

2z
2σ2

Ũ

)
µ(dz) + (Sη ∗ µ)(z)dz

+
(
1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)µ(dx) + 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)µ(dx)

)
dz

−
∫ z

0+

(
γη + xγ

Ũ

)
µ(dx)dz −

∫ z

0+
(Bη ∗ µ)(x)dxdz

−
∫ z

0+

∫ t

0+
B
Ũ

( t
x
)µ(dx)dtdz,

with the functions Sη, SŨ , Bη and B
Ũ

as defined in Equations (2.37) to (2.40).

Proof. The term involving G1(dz) in Lemma 2.51 is already of the desired form, and, by
Lemmas 2.41 and 2.42, it follows that G1(dz) yields finite values when evaluated over
compact subsets of R. For the terms included in G2, observe that z 7→

∫ z
0+G2(dw) is

càdlàg on R and locally of bounded variation. Partial integration then shows∫
R
f ′(z)G2(dz) = −

∫
R
f ′′(z)

∫ z

0+
G2(dw)dz

= −
∫
R
f ′′(z)

( ∫ z

0+

(
γη + xγ

Ũ

)
µ(dx) +

∫ z

0+
(Bη ∗ µ)(x)dx

+
∫ z

0+

∫ t

0+
B
Ũ

( t
x
)µ(dx)dtdz

)
dz.

This contribution to G also yields finite values when evaluated over compact subsets of R
by Lemma 2.41. Summing up the terms, we find that G is of the claimed form and locally
finite, which allows to interpret the measure as a distribution in the sense of Schwartz.

The following lemma now allows us to identify the distribution G through solving an
ordinary differential equation.

Lemma 2.53. The distribution G(dz) in Lemma 2.52 is of the form C1zdz + C2dz for
some constants C1, C2 ∈ R.

Proof. By Equation (2.31) and Lemma 2.52 it holds for all f ∈ C∞c (R) that∫
R
AṼ f(x)µ(dx) =

∫
R
f ′′(z)G(dz) = 〈f ′′, G〉 = 0,

where 〈·, ·〉 denotes dual pairing. From the definition of the distributional derivative it
now follows that

〈f ′′, G〉 = −〈f ′, G′〉 = 〈f,G′′〉 = 0.

As the above holds for all test functions f and R is an open set, we can conclude that G′′
must be the zero distribution. Using results on the antiderivative of distributions, e.g.
from [25, Thm. 4.3], we find that the solution is given by G(dz) = C1zdz + C2dz and is
unique up to the choice of constants.

Lastly, we note the following lemma to identify one of the constants.
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Lemma 2.54. The distribution G(dz) in Lemma 2.52 satisfies

1
ln(t)

∫ t

1

1
z2G(dz)→ 0, t→∞. (2.51)

Proof. Using linearity, we can once more treat every summand of G separately. First, we
find for the contribution of the Gaussian parts of η and Ũ that

1
ln(t)

∫ t

1

( 1
z2

1
2σ

2
η + 1

2σ
2
Ũ

)
µ(dx) ≤ 1

ln(t)

(1
2σ

2
η + 1

2σ
2
Ũ

)
µ([1, t])→ 0, t→∞,

yielding the desired value of the limit as µ is a finite measure. For the contribution of the
drift first observe that

lim
z→∞

1
z

∫ z

0
xµ(dx) = 0,

i.e. for every ε > 0 we can find a value Rε such that 1
z

∫ z
0 xµ(dx) ≤ ε if z > Rε. This yields∣∣∣∣ ∫ t

1

1
z2

∫ z

0
γ
Ũ
xµ(dx)dz

∣∣∣∣ ≤ |γŨ |
( ∫ Rε

1

1
z2

∫ z

0
xµ(dx)dz + ε

∫ t

Rε

1
z

dz
)

which implies that

0 ≤ lim sup
t→∞

∣∣∣∣ 1
ln(t)

∫ t

1

1
z2

∫ z

0

(
γη + xγ

Ũ

)
µ(dx)

∣∣∣∣ ≤ |γŨ |ε.
Since the above statement holds for every ε > 0, we can conclude that the limit is zero.
For the contribution of the small jumps of η, recall that Sη ∗ µ is integrable with respect
to λ by Lemma 2.41. Therefore, we find that

0 ≤ lim
t→∞

1
ln(t)

∫ t

1

1
z2 (Sη ∗ µ)(z)dz ≤ lim

t→∞

1
ln(t)

∫
R

(Sη ∗ µ)(z)dz = 0.

For the summand involving S
Ũ

, splitting up the inner integral leads to
∫ t

1

1
z2

∫ ∞
0

xS
Ũ

( z
x
)µ(dx)dz =

∫ t

1

1
z2

∫ 2z

z
2

xS
Ũ

( z
x
)µ(dx)dz +

∫ t

1

1
z2

∫ ∞
2z

xS
Ũ

( z
x
)µ(dx)dz,

as x < z
2 implies that z

x
−1 > 1 and, therefore, we have S

Ũ
( z
x
) = 0 in this case. Since S

Ũ
( z
x
)

is nonnegative by (2.40), a direct calculation leads to
∫ ∞

2z
xS

Ũ
( z
x
)µ(dx) =

∫ ∞
2z

∫ z
x
−1

−1

(
z − x(y + 1)

)
ν
Ũ

(dy)µ(dx)

=
∫ − 1

2

−1

∫ z
y+1

2z

(
z − x(y + 1)

)
µ(dx)ν

Ũ
(dy)

≤
∫ − 1

2

−1

(
z − 2z(y + 1)

) ∫ z
y+1

2z
µ(dx)ν

Ũ
(dy)

≤ zµ([2z,∞))ν
Ũ

([−1,−1
2 ]),
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which, since µ([2z,∞)) → 0 as z → ∞, implies that the term is in o(z). We can thus
apply the same reasoning as for the contribution of the drift terms and conclude that

lim
t→∞

1
ln(t)

∫ t

1

1
z2

∫ ∞
2z

xS
Ũ

( z
x
)µ(dx)dz = 0.

If z/2 ≤ x ≤ 2z, consider
∫ t

1

∫ 2z

z
2

x

z2SŨ( z
x
)µ(dx)dz =

∫ 2t

1
2

∫ min{t,2x}

max{x2 ,1}

x

z2SŨ( z
x
)dzµ(dx)

≤
∫ 2t

1
2

∫ x(1−ε)

x
2

x

z2SŨ( z
x
)dzµ(dx) +

∫ 2t

1
2

∫ x(1+ε)

x(1−ε)

x

z2SŨ( z
x
)dzµ(dx)

+
∫ 2t

1
2

∫ 2x

x(1+ε)

x

z2SŨ( z
x
)dzµ(dx)

for some ε ∈ (0, 1/2). In the case that the values of z are bounded away from z = x, we
can use (2.40) to estimate S

Ũ
( z
x
) by a constant Cε > 0, implying that

∫ 2x

x(1+ε)

1
z2SŨ( z

x
)dz ≤ Cε

∫ 2x

x(1+ε)

1
z2 dz = Cε

( 1
x(1 + ε) −

1
2x

)

with a similar estimate also holding for z ∈ [x/2, x(1− ε)]. If the values of z are close to
the singularity at z = x, we find that∫ x(1+ε)

x(1−ε)

1
z2SŨ( z

x
)dz ≤ 1

x2(1− ε)2

∫ x

x(1−ε)
S
Ũ

( z
x
)dz + 1

x2

∫ x(1+ε)

x
S
Ũ

( z
x
)dz

= 1
x(1− ε)2

∫ 0

−ε
S
Ũ

(t+ 1)dt+ 1
x

∫ ε

0
S
Ũ

(t+ 1)dt (2.52)

by a suitable substitution. Note that both integrals are finite by the definition of ν
Ũ

, since
∫ ε

0
S
Ũ

(t+ 1)dt =
∫ ε

0

∫ 1

t
(y − t)ν

Ũ
(dy)dt

=
∫ 1

0

∫ min{ε,y}

0
(y − t)dtν

Ũ
(dy) ≤

∫ 1

0
y2ν

Ũ
(dy), (2.53)

and a similar estimate holds for t ∈ [−ε, 0). Therefore, one obtains an estimate in terms
of 1

x
in all cases, implying

0 ≤ lim
t→∞

1
ln(t)

∫ t

1

1
z2

∫ 2z

z
2

xS
Ũ

( z
x
)µ(dx)dz ≤ lim

t→∞

1
ln(t)

∫ t

1
2

x
C̃

x
µ(dx)

= C̃ lim
t→∞

1
ln(t)µ([1

2 , t]) = 0

with a suitable constant C̃. For the term corresponding to the big jumps of η, observe
that the function Bη is bounded and satisfies lim|z|→∞Bη(z) = 0 by (2.37). This implies
that also (Bη ∗ µ)(z)→ 0, as can be seen by partitioning the domain of integration of the
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convolution with respect to the values of the function Bη. Thus, we also find that

lim
|z|→∞

1
z

∫ z

0
(Bη ∗ µ)(x)dx = 0,

i.e. the corresponding summand in G is in o(z), which, in combination with the above
arguments is enough to conclude that this term also does not contribute to the limit
in (2.51). Similarly, we observe that also B

Ũ
is bounded and satisfies lim|t|→∞BŨ

(t) = 0
as ν

Ũ
((1,∞)) <∞, which, together with µ being a finite measure implies that

lim
z→∞

∫ z

0
B
Ũ

( z
x
)µ(dx) = 0

by dominated convergence. Therefore, the corresponding antiderivative appearing in G is
in o(z) as desired.

Using the above lemmas, we can now prove Theorem 2.43.

Proof of Theorem 2.43. Starting from (2.31), we first rewrite the left-hand side according
to Lemmas 2.51 and 2.52 to arrive at∫

R
AṼ f(x)µ(dx) =

∫
R
f ′′(z)G(dz) = 0.

Recall that this equation holds for every f ∈ C∞c (R) by Corollary 2.36. Using the results
from Lemma 2.53, we find thatG′′ equals the zero distribution and thusG = C1zdz + C2dz
for some constants C1, C2 ∈ R. Identifying the equivalent expressions for G from Lem-
mas 2.52 and 2.53 now yields

C1zdz + C2dz =
(1

2σ
2
η + 1

2z
2σ2

Ũ

)
µ(dz) + (Sη ∗ µ)(z)dz

+
(
1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)µ(dx) + 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)µ(dx)

)
dz

−
∫ z

0+

(
γη + xγ

Ũ

)
µ(dx)dz −

∫ z

0+
(Bη ∗ µ)(x)dxdz

−
∫ z

0+

∫ t

0+
B
Ũ

( t
x
)µ(dx)dtdz. (2.54)

In order to arrive at (2.41), the values of C1 and C2 have to be identified. To determine C1,
observe that

1
ln(t)

∫ t

1

1
z2 (C1z + C2)dz = C1 + C2

1− 1
t

ln(t) → C1, t→∞,

such that we can give its value by applying the above transformations to both sides
of (2.54) and letting t → ∞. From Lemma 2.54, this limit is equal to zero. Renam-
ing K = C2, we arrive at (2.41).

Proof of Corollary 2.45. (i) and (ii), Existence: From the form of (2.41), we see that(1
2σ

2
η + 1

2z
2σ2

Ũ

)
µ(dz) = H(z)dz
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for some locally integrable function H. It follows that µ has a density fµ on R when-
ever σ2

η > 0 and that µ|R\{0} has a density fµ on R \ {0} whenever σ2
Ũ
> 0 = σ2

η. In both
cases, Corollary 2.44 implies that fµ must satisfy (2.42) for λ-a.e. z ∈ R.
(iii) Since Sη ≥ 0 and S

Ũ
≥ 0, the term (1

2σ
2
η + 1

2z
2σ2

Ũ
)fµ can be bounded by the right-

hand side of (2.42). Observe that all quantities in this bound, apart from 1{z<0}γηµ({0})
if γηµ({0}) 6= 0, are continuous functions in z. In particular, the right-hand side of (2.42)
is locally bounded in z ∈ R, continuous on R \ {0} and, whenever µ({0}) = 0 (which is
in particular satisfied if σ2

η > 0), also continuous on R. Observing further that Bη ∗ fµ is
integrable and B

Ũ
is bounded by definition (cf. Lemma 2.41), we see that the right-hand

side of (2.42) can be bounded by M1+M2|z| for z ∈ R and suitable constants M1,M2 ≥ 0,
yielding the desired bound(1

2σ
2
η + 1

2z
2σ2

Ũ

)
fµ(z) ≤M1 +M2|z|, ∀z 6= 0.

(ii), Continuity: Let σ2
Ũ
> 0 and σ2

η ≥ 0. As the right-hand side of (2.42) is continuous
on R \ {0}, it suffices to show that Sη, Sη ∗ fµ, as well as z 7→ 1{z>0}

∫∞
0 S

Ũ
( z
x
)fµ(x)dx

and z 7→ 1{z<0}
∫ 0
−∞ |x|SŨ( z

x
)fµ(x)dx are continuous on R \ {0}. Write

Sη(z) =
∫ ∞
ε

(y − z)1[z,∞)(y)νη|[−1,1](dy)

for z > ε > 0, and observe that the function z 7→ (y − z)1[z,∞)(y) is continuous at z0 > ε
for all values of y. Thus, an application of Lebesgue’s dominated convergence theorem
yields that Sη is continuous at z0 > ε. Since ε > 0 was arbitrary and we can apply
a similar argument for z0 < 0, it follows that Sη is continuous on R \ {0}. To show
that Sη ∗ fµ is continuous at z0 > 0, let ε ∈ (0, z0) as well as δ ∈ (0, 1) and decompose

Sη(z) = Sδ,1η (z) + Sδ,2η (z), (2.55)

where the functions on the right-hand side are defined similar to (2.39) with νη|[−1,1]
replaced by νη|[−δ,δ] or νη|[−1,1]\[−δ,δ] for Sδ,1η or Sδ,2η , respectively. Then Sδ,1η and Sδ,2η are
continuous on R \ {0} and Sδ,2η is bounded by νη([−1, 1] \ [−δ, δ]) < ∞ by definition.
The latter implies that Sδ,2η ∗ fµ is continuous on R for every δ ∈ (0, 1) (see e.g. [61,
Thm. 14.8]). For the treatment of Sδ,1η ∗ fµ, recall from Lemma 2.41 that Sη is integrable
with respect to λ. Since Sδ,1η converges (point-wise) to zero as δ ↓ 0 and Sδ,1η ≤ Sη, it
follows that

lim
δ↓0

∫ z0
4

− z0
4

Sδ,1η (z)dz = 0

by dominated convergence. By part (iii) of the corollary, we can bound fµ by a con-
stant M3 > 0 on [z0/4, 7z0/4]. For z ∈ (z0/2, 3z0/2) and 0 < δ < z0/4 we have Sδ,1η = 0
for |y| > z0/4 and hence

(
Sδ,1η ∗ fµ

)
(z) =

∫ z0
4

− z0
4

fµ(z − x)Sδ,1η (x)dx ≤M3

∫ z0
4

− z0
4

Sδ,1η (x)dx.

Choosing δ small enough, the above estimate on the right-hand side becomes arbitrarily
small. Together with the previously established continuity of Sδ,2η and (2.55), this shows
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continuity of Sη ∗ fµ at z0 > 0. Applying a similar argument for z0 < 0, we can conclude
that Sη ∗ fµ is continuous on R \ {0}.
It remains to consider the terms involving S

Ũ
. First, we establish continuity of the map-

ping z 7→
∫∞

0 xS
Ũ

( z
x
)fµ(x)dx in z0 > 0. As for (2.55), let δ ∈ (0, 1) and decompose

S
Ũ

(z) = Sδ,1
Ũ

(z) + Sδ,2
Ũ

(z), (2.56)

where the quantities Sδ,1
Ũ

and Sδ,2
Ũ

are defined similar to (2.40) with ν
Ũ
|[−1,1] replaced

by ν
Ũ
|[−δ,δ] or ν

Ũ
|[−1,1]\[−δ,δ], respectively. As in the treatment of Sη, a bound for Sδ,2

Ũ
is

readily obtained from the definition since

Sδ,2
Ũ

(z) ≤
∫ z−1

−1
(z − 1− (−1))ν

Ũ
|[−1,1]\[−δ,δ](dy) ≤ zν

Ũ
([−1, 1] \ [−δ, δ])

for z ∈ [0, 1] and, setting M δ
4 = ν

Ũ
([−1, 1] \ [−δ, δ]),

Sδ,2
Ũ

(z) ≤
∫ 1

0
yν

Ũ
|[−1,1]\[−δ,δ](dy) ≤M δ

4

for z > 1. Further, Sδ,2
Ũ

is continuous on [0,∞) \ {1}, as can be seen from applying a
similar argument as for Sδ,2η . Writing∫ ∞

0
xSδ,2

Ũ
( z
x
)fµ(x)dx =

∫ ∞
0

x1(0,z)(x)Sδ,2
Ũ

( z
x
)fµ(x)dx+

∫ ∞
0

x1(z,∞)(x)Sδ,2
Ũ

( z
x
)fµ(x)dx,

the integrand can be bounded by (x1(0,z)(x)M δ
4 + z1(z,∞)(x)M δ

4 )fµ(x) such that the conti-
nuity of the mapping z 7→

∫∞
0 xSδ,2

Ũ
( z
x
)fµ(x)dx in z0 > 0 follows by dominated convergence.

Since we can apply a similar argument for the continuity in z0 < 0 of the corresponding
function on the negative real numbers and we have for z0 = 0 that

lim
z↓0

∫ ∞
0

xSδ,2
Ũ

( z
x
)fµ(x)dx =

∫ ∞
0

xSδ,2
Ũ

(0)fµ(x)dx = 0,

it follows that the mapping

z 7→ 1{z>0}

∫ ∞
0

xSδ,2
Ũ

( z
x
)fµ(x)dx+ 1{z<0}

∫ 0

−∞
|x|Sδ,2

Ũ
( z
x
)fµ(x)dx

is continuous on R. Therefore, it only remains to consider the term involving Sδ,1
Ũ

. In
order to do so, observe that the support of Sδ,1

Ũ
is contained in the interval [1− δ, 1 + δ],

that Sδ,1
Ũ
≤ S

Ũ
by definition and that, as a consequence of the integrability of S

Ũ
(cf.

Lemma 2.41) we have that

0 ≤ lim
δ↓0

∫
R
Sδ,1
Ũ

(x)dx ≤ lim
δ↓0

∫ 1+δ

1−δ
S
Ũ

(x)dx = 0.

Using the substitution v = z/x for z > 0, it follows that
∫ ∞

0
xSδ,1

Ũ
( z
x
)fµ(x)dx =

∫ z
1−δ

z
1+δ

xSδ,1
Ũ

( z
x
)fµ(x)dx =

∫ 1+δ

1−δ

z2

v3S
δ,1
Ũ

(v)fµ( z
v
)dv.
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Since fµ is locally bounded on R \ {0} by part (iii) of the corollary, the above quantity
becomes arbitrarily small for sufficiently small δ > 0 when z ∈ (z0/2, 3z0/2) for z0 > 0.
Together with (2.56) and the already established continuity of the terms involving Sδ,2η ,
it follows that the mapping

z 7→ 1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)fµ(x)dx+ 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)fµ(x)dx

is continuous on R\{0}. The desired continuity of fµ on R\{0} hence follows from (2.42).
(i), Continuity: Now assume that σ2

η > 0. As µ has a density onR, it follows that µ({0}) = 0
and using the same argument as in the proof of part (ii), it is sufficient to show that the
mappings z 7→ (Sη ∗ fµ)(z) and

z 7→ 1{z>0}

∫ ∞
0

xS
Ũ

( z
x
)fµ(x)dx+ 1{z<0}

∫ 0

−∞
|x|S

Ũ
( z
x
)fµ(x)dx

are continuous at z = 0. Observe that by (iii), fµ is not only locally bounded on R \ {0},
but on R whenever σ2

η > 0, such that we can use the methods from part (ii) also for z = 0
in this case. Note that fµ is in particular bounded on [−1, 1], and that

lim
δ↓0

∫ 1

−1
Sδ,1η (z)dz = lim

δ↓0

∫ 1

−1
Sδ,1
Ũ

(z)dz = 0.

The terms including Sδ,1
Ũ

and Sδ,1η thus become arbitrarily small in a neighborhood of
zero. Since the terms involving Sδ,2

Ũ
and Sδ,2η are again continuous, we find that fµ is also

continuous at z = 0. This finishes the proof.

Remark 2.55. It seems tempting to iterate the proof of Corollary 2.45 to obtain fur-
ther smoothness properties of fµ. Such an argument would require being able to show
that fµ ∈ C(R) implies Sη ∗ fµ ∈ C1(R) or at least Sη ∗ fµ ∈ C1(R \ {0}), as well as
similar statements for the other quantities on the right-hand side of (2.42). This claim
is, however, not true in general. A counterexample is given by νη(dx) = x−5/21(0,1)(x)dx
and f ∈ Cc(R) being a density that satisfies f(x) = c((x − 2)1/3 + 2) for x ∈ [2, 3]
and f(x) = c(2 − (2 − x)1/3) for x ∈ [1, 2], where c > 0 is a suitable norming constant.
Since Sη(x) ∼ 4/3x−1/2 as x ↓ 0 and f ′(x) = c

3 |x− 2|−2/3 for x ∈ [1, 3], an application of
Fatou’s lemma shows that

lim inf
x↓2

(Sη ∗ f)(x)− (Sη ∗ f)(2)
x− 2 =∞

such that Sη ∗f is not differentiable in x = 2. Hence, an easy iterative argument seems not
to be possible in the general case considered in Theorem 2.43 and Corollary 2.45. Observe,
however, that Corollary 2.48 gives conditions for fµ ∈ C1(R \ {0}) and Example 2.56
below gives a concrete example when σ2

η > 0 and fµ ∈ C1(R \ {0}) \ C1(R). Furthermore,
note that restricting the characteristics of the Lévy processes involved may yield much
stronger smoothness properties than the general case, e.g. if ηt = t, where the density of
the law of the killed exponential functional with q ≥ 0 is infinitely often differentiable
on R \ {0} for most choices of ξ (see [49, Thm. 2.4(3)]).
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Proof of Corollary 2.46. (i) Observe first that Sbη = SFMη − Sη and Sb
Ũ

= SFM
Ũ
− S

Ũ
are

bounded functions vanishing at infinity and that Sb
Ũ

= 0 for z ≤ 1. Thus, the convolu-
tion SFMη ∗ µ can be written as a sum of an integrable and a bounded function and hence is
locally integrable with respect to λ. The analog of Lemma 2.42 involves the measure %FM ,
which takes the form

%FM(dz) = %(dz) +
(
1{z>0}

∫ z

0
Sb
Ũ

( z
x
)µ(dx)− 1{z<0}

∫ 0

z
xS

Ũ
( z
x
)µ(dx)

)
dz,

from which it is visible that the right-hand side of (2.43) defines a locally finite measure.
As the moment condition implies that both

∫
R\[−1,1] |x|νη(dy) and

∫
(1,∞) |x|νŨ(dy) are

finite, it follows that∫
R

(
f(x+ y)− f(x)− yf ′(x)1|y|≤1(y)

)
νη(dy) + γηf

′(x)

=
∫
R

(
f(x+ y)− f(x)− yf ′(x)

)
νη(dy) + γ1

ηf
′(x) (2.57)

with a similar relation also holding true for Ũ . One now follows the proofs of Lemmas 2.51
and 2.52, i.e. considers the integral with respect to µ, shows that Fubini’s Theorem is
applicable for the terms involving multiple integrals and thus recovers a similar distribu-
tion GFM(dz). To show e.g. that∫ ∞

1+

∫ ∞
0

∫ x+xy

x
|f ′′(t)(x+ xy − t)|dtµ(dx)ν

Ũ
(dy) <∞

for f ∈ C∞c (R) with supp(f) ⊂ [−R,R], observe that the inner integral can be estimated
by RC(x + xy) ≤ R2C(1 + y) for a suitable constant C ≥ 0 such that |f ′′(t)| ≤ C
for t ∈ [−R,R]. Together with the moment condition, this yields that the triple integral,
too, is finite. Following the remaining steps of the proof of Theorem 2.43, we also obtain
that

lim
t→∞

1
ln(t)

∫ z

1

1
z2

(
Sbη(z) +

∫ z

0
xSb

Ũ
( z
x
)µ(dx)

)
dz = 0,

which yields Equation (2.43) as claimed.
(ii) Since E|E(U)1| = EE(U)1 = eEU1 (see [2, Prop. 3.1]) and γ1

Ũ
= EŨ1 = EU1 − q by def-

inition, the condition E|E(U)1| < eq is equivalent to γ1
Ũ
< 0. Further, E|E(U)1| < eq

implies
∫
R |x|µ(dx) <∞, as is shown in [2, Thm. 3.1]. Let GFM(dz) denote the right-

hand side of (2.43). To determine the value of the constant, we use a similar approach as
in Lemma 2.54, showing that

lim
t→∞

t
∫ ∞
t

1
z2G

FM(dz) = −
∫ ∞

0+

(
γ1
η + xγ1

Ũ

)
µ(dx). (2.58)

To see that (2.58) holds, observe first that limt→∞ tµ((t,∞)) = 0 as a consequence
of tµ((t,∞)) ≤

∫
(t,∞) |x|µ(dx) <∞. This implies

lim
t→∞

t
∫ ∞
t

( σ2
η

2z2 +
σ2
Ũ

2

)
µ(dz) = 0.
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Further, note that SFMη ∗ µ = Sη ∗ µ+ Sbη ∗ µ. Here, Sη ∗ µ is integrable with respect to λ,
from which we obtain

lim
t→∞

t
∫ ∞
t

1
z2

(
Sη ∗ µ

)
(z)dz ≤ lim

t→∞

∫ ∞
t

(Sη ∗ µ)(z)dz = 0,

and Sbη ∗ µ is bounded with limt→∞ S
b
η ∗ µ(z) = 0. Hence, the integral involving SFMη also

vanishes. Next, observe that S
Ũ

is bounded on [0,∞) \ [1/2, 2] and that limz→∞ SŨ(z) = 0.
Since

∫
|x|µ(dx) <∞, an application of Lebesgue’s dominated convergence theorem yields

lim
z→∞

∫
(0, z2 )∪(2z,∞)

xSFM
Ũ

( z
x
)µ(dx) = 0

and hence
lim
t→∞

t
∫ ∞
t

1
z2

∫
(0, z2 )∪(2z,∞)

xSFM
Ũ

( z
x
)µ(dx)dz = 0.

For z/2 ≤ x ≤ z we find, similar to (2.52) and (2.53), that for some constant C > 0

t
∫ ∞
t

1
z2

∫ 2z

z
2

xSFM
Ũ

( z
x
)µ(dx)dz ≤ t

∫ ∞
t
2

x
∫ ∞
x
2

1
z2S

FM
Ũ

( z
x
)dzµ(dx) ≤ t

∫ ∞
t
2

x
C

x
µ(dx),

where the right-hand side converges to zero as t→∞. Lastly, observe that

lim
t→∞

t
∫ ∞
t

1
z2

∫ z

0+

(
γ1
η + xγ1

Ũ

)
µ(dx)dz =

∫ ∞
0+

(
γ1
η + xγ1

Ũ

)
µ(dx),

which yields the value of K and thus finishes the proof of (2.58). That the constant
can also be written as

∫ 0
−∞

(
γ1
η + xγ1

Ũ

)
µ(dx) follows by a similar argument consider-

ing |t|
∫ t
−∞ z

−2GFM(dz) for t→ −∞, or alternatively from E(Vq,ξ,η)E(Ũ1) = −E(η1) (cf. [2,
Thm. 3.3a]). Now assume that σ2

η + σ2
Ũ
> 0. By Corollary 2.45, µ|R\{0} has a density fµ.

Note, however, that rearranging the terms in (2.43) and using the positivity of SFMη
and SFM

Ũ
as in the proof of Corollary 2.45 leads to(1

2σ
2
η + 1

2z
2σ2

Ũ

)
fµ(z) ≤ K +

∫ z

0+

(
γ1
η + γ1

Ũ

)
µ(dx) ≤ |K|+ |γ1

η |+ |γ1
Ũ
|
∫
R
|x|µ(dx) <∞

here due to the moment condition. Thus, fµ is bounded.

Proof of Corollary 2.47. Observe first that BI
η = BFV

η −Bη and BI
Ũ

= BFV
Ũ
−B

Ũ
are in-

tegrable with respect to λ due to the finite variation condition. In particular, we have
that BFV

η ∗ µ = Bη ∗ µ + BI
η ∗ µ is the sum of a bounded and an integrable function and

hence locally integrable. In order to obtain the analog of Lemma 2.41 in the finite varia-
tion case, one needs to show that the mapping z 7→

∫∞
0+BŨ

( z
x
)µ(dx) is locally integrable

with respect to λ. Since B
Ũ

is bounded, it is sufficient to consider BI
Ũ

for which we find
∫ R

0+

∫ z−

0
BI
Ũ

( z
x
)µ(dx)dz =

∫ R

0+

∫ R

x+

∫ 1

z
x
−1
ν
Ũ

(dy)dzµ(dx)

≤
∫ R

0+

∫ 1

0+

∫ x+xy

x
dzν

Ũ
(dy)µ(dx) ≤ Rµ([0, R])

∫ 1

0+
yν

Ũ
(dy),
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showing that the triple integral is finite due to the finite variation condition. The other
quantities can be estimated similarly. Thus, the right-hand side of (2.46) defines a locally
finite measure, which we denote by GFV (dz). With the jump part of Ũ and η being of
finite variation, it follows that

∫
[−1,1] |y|νη(dy) and

∫
[−1,1] |y|νŨ(dy) are finite, in particular∫

R

(
f(x+ y)− f(x)− yf ′(x)1|y|≤1(y)

)
νη(dy) + γηf

′(x)

=
∫
R

(
f(x+ y)− f(x)

)
νη(dy) + γ0

ηf
′(x) (2.59)

with a similar relation also holding true for Ũ . As in the proof of Corollary 2.46, there
is no need to split the integrals with respect to Lévy measures when rewriting as in
Lemma 2.51 such that the jumps of η and Ũ , respectively, only yield a single term. Since
also σ2

η = σ2
Ũ

= 0 by assumption, all terms can be rewritten to only include f ′ and there is
no need to consider antiderivatives when following the argument of Lemma 2.52. This im-
plies that the distribution GFV obtained satisfies

∫
R f
′(z)GFV (dz) = 0 for all f ∈ C∞c (R),

hence (GFV )′ = 0, giving the form GFV (dz) = Cdz for a single real constant C. We have
thus obtained an equivalent to (2.41) in the finite variation case. In order for the constant
to vanish, we need, similar to (2.51), that

C = lim
t→∞

1
ln(t)

∫ t

1

1
z
GFV (dz) = 0. (2.60)

Using the results obtained in the proof of Lemma 2.54, one can directly conclude that
the drift term, as well as the terms involving Bη and B

Ũ
as defined in (2.37) and (2.38),

respectively, satisfy the desired asymptotics, leaving only BI
η and BI

Ũ
to be considered.

Since BI
η ∗ µ is integrable with respect to λ, it readily follows that

0 ≤ lim
t→∞

1
ln(t)

∫ t

1

1
z

(
BI
η ∗ µ

)
(z)dz ≤ lim

t→∞

1
ln(t)

∫ ∞
1

1
z

(
BI
η ∗ µ

)
(z)dz = 0

Further, treating BI
Ũ

similar to S
Ũ

in Lemma 2.54, we find for x > 2z that

∫ ∞
2z

BI
Ũ

( z
x
)µ(dx) =

∫ ∞
2z

∫ z
x
−1

−1
ν
Ũ

(dy)µ(dx) =
∫ − 1

2

−1

∫ z
y+1

2z
µ(dx)ν

Ũ
(dy)

≤ ν
Ũ

(
[−1,−1

2 ]
)
µ
(
[2z,∞]

)
,

which converges to zero as z →∞, and for x ≤ 2z that∫ t

1

1
z

∫ 2z

z
2

BI
Ũ

( z
x
)µ(dx)dz =

∫ t

1
2

∫ min{t,2x}

max{x2 ,1}

1
z
BI
Ũ

( z
x
)dzµ(dx).

Here, note that BFV
Ũ

can be estimated by a constant if the argument is bounded away
from the singularity at z = x and that a suitable substitution implies∫ x(1+ε)

x(1−ε)

1
z
BI
Ũ

( z
x
)dz ≤

( 1
1− ε

∫ 0

−ε
ν
Ũ

(
[−1, s)

)
ds+

∫ ε

0
ν
Ũ

(
(s,∞)

)
ds
)1
x
.
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As Ũ is of finite variation by assumption, it follows that the above term is finite and thus

lim
t→∞

1
ln(t)

∫ t

1

1
z

∫ ∞
0

BI
Ũ

( z
x
)µ(dx)dz = 0,

yielding (2.60) as claimed.

Proof of Corollary 2.48. With the jump parts of the processes η and Ũ being of finite
variation, we can follow the proof of Corollary 2.47 and rewrite their contribution to the
distribution G in terms of BFV

η and BFV
Ũ

. However, as σ2
η+σ2

Ũ
> 0, an argument similar to

Lemmas 2.52 to 2.54 is needed to find the equivalent to (2.41) for the case considered. Note
in particular that the desired asymptotics for BFV

η and BFV
Ũ

follow directly from (2.60) in
the proof of Corollary 2.47. Since µ has density fµ on R \ {0} by Corollary 2.45, we also
find an equivalent to Equation (2.42) which is given for a suitable constant K ∈ R by(1

2σ
2
η + 1

2z
2σ2

Ũ

)
fµ(z) = −K +

∫ z

0+

(
γ0
η + xγ0

Ũ

)
fµ(x)dx+ 1{z<0}γ

0
ηµ({0})

+
∫ z

0+
(BFV

η ∗ fµ)(x)dx+
∫ z

0+
BFV
η (x)dxµ({0}) (2.61)

+
∫ z

0+

(
1{t>0}

∫ ∞
0

BFV
Ũ

( t
x
)fµ(x)dx− 1{t<0}

∫ 0

−∞
BFV
Ũ

( t
x
)fµ(x)dx

)
dt.

Here, the terms involving γ0
η , γ0

Ũ
, BFV

η and BFV
Ũ

are locally integrable with respect to the
Lebesgue measure as a result of calculations similar to Lemma 2.41. This implies that
the respective integrals are differentiable λ-a.e. (see e.g. [21, Thm. 6.3.6]) such that the
right-hand side of (2.61) and thus (1

2σ
2
η + 1

2z
2σ2

Ũ
)fµ(z) is differentiable λ-a.e., implying

that this must hold for fµ as well. Equation (2.47) now follows by differentiation.
Further, observe that fµ ∈ C0(R \ {0}) by Corollary 2.45. Hence, differentiability of fµ
follows by showing that the terms on the right-hand side of (2.61) are in C1(R \ {0}),
or equivalently, by the fundamental theorem of calculus, that the functions that are in-
tegrated over (0, z] are continuous on R \ {0}. As this is trivially satisfied for the map-
ping x 7→ (γ0

η + xγ0
Ũ

)fµ(x) and the assumptions of both (i) and (ii) imply that µ({0}) = 0
by Corollary 2.26, it remains to consider the terms involving BFV

η and BFV
Ũ

. Similar to
the treatment of Sη in Corollary 2.45, let x0 > 0, choose 0 < ε < x0/2 and define Bε

η by
replacing νη by νη|R\[−ε,ε] in (2.44). Then Bε

η is bounded and continuous at all but count-
ably many points such that x 7→ (Bε

η ∗ fµ)(x) =
∫
RB

ε
η(x− t)fµ(t)dt is continuous at x0

by dominated convergence. Next, observe that the remainder BFV
η −Bε

η is only supported
on a subset of [−ε, ε] and integrable due to the finite variation condition. Therefore, the
mapping

x 7→
((
BFV
η −Bε

η

)
∗ fµ

)
(x) =

∫ ε

−ε
fµ(x− t)

(
BFV
η −Bε

η

)
(t)dt

is continuous by another application of Lebesgue’s dominated convergence theorem as
fµ(x− t) is uniformly bounded in x ∈ [x0 − ε, x0 + ε] and t ∈ [−ε, ε]. Applying a similar
argument for x0 < 0, it follows that x 7→ (BFV

η ∗fµ)(x) is continuous on R\{0} as desired.
The terms involving BFV

Ũ
can be treated similarly to the ones involving S

Ũ
in Corol-
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lary 2.45. First, decompose
∫ ∞

0
BFV
Ũ

( t
x
)fµ(x)dx =

∫
(0, t2 )∪( 3

2 t,∞)
BFV
Ũ

( t
x
)fµ(x)dx+

∫ 3
2 t

t
2

BFV
Ũ

( t
x
)fµ(x)dx (2.62)

and fix t0 > 0. Observe that BFV
Ũ

is bounded on R \ [2/3, 2] and that the mapping
t 7→ 1(0, t2 )∪( 3

2 t,∞)(x)BFV
Ũ

( t
x
) is continuous at t0 for all but countably many x > 0. There-

fore, continuity of the mapping t 7→
∫
R 1(0, t2 )∪( 3

2 t,∞)(x)BFV
Ũ

( t
x
)fµ(x)dx in t0 > 0 follows by

dominated convergence. Further, the second term on the right-hand side of (2.62) can be
rewritten using a suitable substitution, yielding

∫ 3
2 t

t
2

BFV
Ũ

( t
x
)fµ(x)dx =

∫ t

t
2

ν
Ũ

(( t
x
− 1,∞))fµ(x)dx−

∫ 3
2 t

t
ν
Ũ

((−∞, t
x
− 1))fµ(x)dx

=
∫ 1

0
ν
Ũ

((w,∞))fµ( t
w+1) t

(w + 1)2 dw

−
∫ 0

− 1
3

ν
Ũ

((−∞, w))fµ( t
w+1) t

(w + 1)2 dw,

where choosing 0 < ε < t0/2 implies that fµ(t/(w + 1)) can be uniformly bounded
in t ∈ [t0 − ε, t0 + ε] and w ∈ [−1/3, 1]. Since∫ 1

0
ν
Ũ

((w,∞)) 1
(w + 1)2 dw +

∫ 0

− 1
3

ν
Ũ

((−∞, w)) 1
(w + 1)2 dw <∞,

the right-hand side of (2.62) is continuous at t0 > 0 by dominated convergence. Since a
similar argument can be applied for t0 < 0, the term is continuous on R \ {0}. Therefore,
the right-hand side of (2.61) and hence the left-hand side of (2.61) are in C1(R \ {0}),
which shows that fµ ∈ C1(R \ {0}). In particular, Equation (2.47) holds for all z ∈ R\{0}
if the assumptions of part (i) or (ii) of the corollary are satisfied.

2.4.4. Applications and Examples
In this section, we consider various applications of the equations in Sections 2.4.1 and 2.4.2,
respectively, deriving explicit information on the law of the killed exponential functional
in special cases. The first example is concerned with the special case ξ ≡ 0, which is the
Lévy process η subordinated by a gamma process with parameters 1 and q > 0, evaluated
at time 1. The law of Vq,0,η is q times the potential measure of η, cf. [58, Def. 30.9].

Example 2.56. Let q > 0 and ξ ≡ 0, i.e. Vq,0,η = ητ . Since σξ = γξ = 0 and νξ is the zero
measure, the limit term in (2.32) vanishes, yielding

ψη(u)ϕVq,ξ,η(u) = q(ϕVq,ξ,η(u)− 1)

such that we recover the known formula for the characteristic function of the potential
measure from [58, Prop. 37.4]. One can also use the results in Section 2.4.2 to give a
distributional equation for µ = L(ητ ), and hence for the potential measure, by observing
that the characteristics of Ũ are given by (0, qδ−1,−q) whenever ξ ≡ 0. For example, if η
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is of finite variation, one obtains from (2.46) that

γ0
ηµ(dz) +

(
BFV
η ∗ µ

)
(z)dz + q

(
1{z<0}µ((−∞, z])− 1{z>0}µ([z,∞))

)
dz = 0,

and if σ2
η > 0, but the jump part of η is still of finite variation, it follows from Corollar-

ies 2.45 and 2.48 that µ has a density fµ ∈ C0(R) ∩ C1(R \ {0}) that satisfies

1
2σ

2
ηf
′
µ(z)− γ0

ηfµ(z) =
(
BFV
η ∗ fµ

)
(z) + q

(
1{z<0}

∫ z

−∞
fµ(x)dx− 1{z>0}

∫ ∞
z

fµ(x)dx
)
.

In the special case of η being a standard Brownian motion, we have σ2
η = 1, γ0

η = 0
and BFV

η =0 and one readily checks that the solution of the differential equation is given by

fµ(z) =
√
q

2e−
√

2q|z| = q
( 1√

2q e−
√

2q|z|
)
,

which is q times the potential density given in [58, Ex. 30.11].

The following example collects some cases in which the solution of Equation (2.33) can
be given explicitly.

Example 2.57. (i) Assume that q > 0 and that (ξt)t≥0 is deterministic and not the zero
process, i.e. ξt = γξt with γξ 6= 0. We need to assure −2γξ < q and Eη2

1 < ∞ in order to
have (2.34). Under this assumption, setting ϕ := ϕVq,ξ,η , Equation (2.33) reduces to

γξuϕ
′(u) + (q − ψη(u))ϕ(u) = q.

For any u > c > 0 the solution to this inhomogeneous first-order ODE is given by

ϕ(u) = exp
( ∫ u

c

ψη(s)− q
γξs

ds
)[
ϕ(c) +

∫ u

c

q

γξt
exp

(
−
∫ t

c

ψη(s)− q
γξs

ds
)

dt
]
. (2.63)

Now assume that γξ > 0 and that ψη(s) ∼ αsβ near zero for some α ∈ C \ {0} and β > 0.
Then

∫ u
0
ψη(s)
γξs

ds exists and letting c ↓ 0 in (2.63) leads to

ϕ(u) = exp
( ∫ u

0

ψη(s)
γξs

ds
)
u−q/γξ

∫ u

0

q

γξ
tq/γξ−1 exp

(
−
∫ t

0

ψη(s)
γξs

ds
)

dt (2.64)

for u > 0. In the trivial case of ψη(u) = iu where

Vq,ξ,η =
∫ τ

0
e−γξtdt = 1

γξ
(1− e−γξτ ), (2.65)

Equation (2.64) simplifies to

ϕ(u) = exp
(
i

γξ
u
)
u−q/γξ

∫ u

0

q

γξ
tq/γξ−1 exp

(
− it

γξ

)
dt
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for u > 0, which in the special case q = γξ can be further simplified to

ϕ(u) = qi

u

(
1− exp

(
u

q
i
))
, u > 0, (2.66)

as characteristic function of (2.65) with γξ = q. Observe from the explicit form of ϕ that
the characteristic function has zeroes such that the law of the killed exponential functional
cannot be infinitely divisible in this case. If we assume η to be a Brownian motion without
drift instead, i.e. ψη(u) = −σ2

η

2 u
2, then (2.34) holds, and whenever γξ > 0, Equation (2.64)

reduces to
ϕ(u) = exp

(
−
σ2
η

γξ
u2
)
u−q/γξ

∫ u

0

q

γξ
tq/γξ−1 exp

(σ2
η

γξ
t2
)

dt.

This can be further simplified for various values of q/γξ, e.g. if q = 2γξ, we have

ϕ(u) = q

2σ2
η

u−2
(

1− exp
(
−

2σ2
ηu

2

q

))
, u > 0,

and if q = 4γξ we have

ϕ(u) = u−4 q
2

8σ4
η

[(4σ2
ηu

2

q
− 1

)
+ exp

(
−

4u2σ2
η

q

)]
, u > 0,

as characteristic function of the killed exponential functional. Finally, if we assume η to
be a compound Poisson process with intensity k and exponentially distributed jumps with
parameter a > 0 such that ψη(u) = k iu

a−iu , then we derive from (2.64) for u > 0 that

ϕ(u) = (u+ ia)−k/γξu−q/γξ
∫ u

0

q

γξ
tq/γξ−1(t+ ia)k/γξdt

=
(
a− iu
a

)−k/γξ
2F1

(
q

γξ
,− k

γξ
; 1 + q

γξ
; iu
a

)
,

where 2F1(·, ·; ·; ·) denotes the hypergeometric function (see e.g. Formulas 15.3.1 and 15.1.1
in [1]) and z−k/γξ for z ∈ C is interpreted as exp(− k

γξ
log(z)) with log denoting the prin-

cipal branch of the complex logarithm. Setting formally q = 0 in the above expression,
we obtain ϕ(u) = (a−iu

a
)−k/γξ , which is the characteristic function of the Gamma(k/γξ, a)-

distribution. Indeed, V0,ξ,η is Gamma(k/γξ, a)-distributed, cf. [28, Thm. 2.1(f)]. Note that
we can also obtain this fact from setting q = 0 and considering c ↓ 0 in (2.63).
(ii) Let (ξt)t≥0 be a Brownian motion with drift γξ. In order to have (2.34), we need to
assume that 2(σ2

ξ − γξ) < q and Eη2
1 <∞. Under this assumption, Equation (2.33) leads

to the following inhomogeneous second-order ODE (again setting ϕ := ϕVq,ξ,η)

σ2
ξ

2 u
2ϕ′′(u) +

(σ2
ξ

2 − γξ
)
uϕ′(u) + (ψη(u)− q)ϕ(u) = −q,
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which for γξ = σ2
ξ

2 < q
2 reduces to

σ2
ξ

2 u
2ϕ′′(u) + (ψη(u)− q)ϕ(u) = −q.

In particular, assuming (ηt)t≥0 to be a Brownian motion without drift, the resulting ODE

u2ϕ′′(u)−
(σ2

η

σ2
ξ

u2 + 2q
σ2
ξ

)
ϕ(u) = −2q

σ2
ξ

, (2.67)

is a Bessel-type equation. Using the substitution ϕhom(u) =
√
u ghom

(
ση
σξ
u
)

for u > 0, it
is easily checked that a function ϕhom satisfies the homogeneous equation corresponding
to (2.67) on (0,∞) if and only if ghom satisfies the homogeneous modified Bessel equation

v2g′′(v) + vg′(v)−
(
v2 + 2q

σ2
ξ

+ 1
4

)
g(v) = 0

for v ∈ (0,∞). Denoting α := (2q/σ2
ξ + 1/4)1/2 > 0, two linear independent solutions of

this modified Bessel equation are given by the modified Bessel functions Iα and Kα of
first and second kind, respectively (cf. [65, pp. 77-78]), hence the general solution of the
homogeneous equation corresponding to (2.67) is given by

ϕhom(u) = c1
√
uIα

(
ση
σξ
u
)

+ c2
√
uKα

(
ση
σξ
u
)
, u > 0

with complex constants c1, c2. Whenever 3σ2
ξ = q, one easily verifies that a particular

solution of (2.67) is given by

ϕpart(u) = 2 q
σ2
η

u−2 = 6
σ2
ξ

σ2
η

u−2,

and hence in this case

ϕ(u) = 6
σ2
ξ

σ2
η

u−2 + c1
√
uI5/2

(
ση
σξ
u
)

+ c2
√
uK5/2

(
ση
σξ
u
)
, u > 0.

Observe that
K5/2(z) =

√
π

2z e−z
(

1 + 3
z

+ 3
z2

)
and that I5/2(z) ∼ ez/

√
2πz as z →∞ (cf. [65, p. 80 Eqs. (10),(12)]). Since ϕ is bounded as

a characteristic function, we obtain c1 = 0 when letting u→∞, and using limu↓0 ϕ(u) = 1
we obtain c2 = −

√
8ση/(πσξ). Altogether we obtain

ϕ(u) = 6
σ2
ξ

σ2
η

u−2 − 2e−σηu/σξ
(

1 + 3σξ
σηu

+
3σ2

ξ

σ2
ηu

2

)

for u > 0 whenever γξ = σ2
ξ/2 = q/6 > 0 and η is a Brownian motion without drift

and variance σ2
η. Replacing u by |u| in the right-hand side the above formula also holds
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for u ∈ R \ {0} by symmetry of ϕ.

The next example illustrates some of the results of Section 2.4.2.

Example 2.58. Let q ≥ 0 and assume that both ξ and η are Brownian motions with or
without drift, i.e. ηt = σηBt + γ0

ηt and ξt = σξWt + γ0
ξ t where (Bt)t≥0 and (Wt)t≥0 denote

two independent standard Brownian motions, γ0
η , γ

0
ξ ∈ R, σ2

η+σ2
ξ > 0 and η is not the zero

process. It follows from Corollaries 2.45 and 2.48 that the law of the killed exponential
functional is absolutely continuous and that the density fµ is continously differentiable
on R \ {0}. Observing that the characteristics of the process Ũ are given by (σ2

ξ , qδ−1, γŨ)
with drift γ0

Ũ
= −γ0

ξ + σ2
ξ/2, we find from (2.47) that fµ satisfies

1
2
(
σ2
η + z2σ2

Ũ

)
f ′µ(z)−

(
γ0
η + z(γ0

Ũ
− σ2

Ũ
)
)
fµ(z) (2.68)

+ q1{z>0}

∫ ∞
z

fµ(x)dx− q1{z<0}

∫ z

−∞
fµ(x)dx = 0

for z 6= 0. Note that the integral terms vanish whenever q = 0 such that (2.68) reduces to
an ordinary differential equation. In this case, we obtain

f ′µ(z)
fµ(z) =

γ0
η + (γ0

Ũ
− σ2

Ũ
)z

1
2σ

2
η + 1

2σ
2
Ũ
z2

for z 6= 0, from which the explicit solution can be derived by logarithmic integration.
Assuming that σ2

η, σ
2
ξ 6= 0, it follows that

fµ(z) = C
(
σ2
η + z2σ2

Ũ

)−1+γ0
Ũ
/σ2
Ũ exp

( 2γ0
η

σησŨ
arctan

(σ
Ũ

ση
z
))

where C > 0 is a norming constant. Note that even though the equation is solved for z > 0
and z < 0 separately, the continuity of fµ implies that the same norming constant can
be used on both sides. In particular, the result obtained for fµ above coincides with the
density of the exponential functional given in [28, Thm. 2.1(d)]. Let now q 6= 0. In this
case, the integro-differential equation (2.68) yields an ordinary differential equation for
the distribution function Fµ(z) =

∫ z
−∞ fµ(x)dx of the killed exponential functional, which

is given by

1
2
(
σ2
η + z2σ2

Ũ

)
F ′′µ (z)−

(
γ0
η + z(γ0

Ũ
− σ2

Ũ
)
)
F ′µ(z)− qFµ(z) = −q, z > 0,

1
2
(
σ2
η + z2σ2

Ũ

)
F ′′µ (z)−

(
γ0
η + z(γ0

Ũ
− σ2

Ũ
)
)
F ′µ(z)− qFµ(z) = 0, z < 0.

Exemplarily, we choose q = 2, σ2
ξ = 4, γ0

η = 1 and σ2
η = γ0

ξ = 0. In this case it is Vq,ξ,η ≥ 0
a.s. due to η being a deterministic subordinator. Hence, (2.68) reduces to

2z2f ′µ(z) + (2z − 1)fµ(z) + 2
∫ ∞
z

fµdx = 0, z > 0
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and we find that the tail function Tµ(z) = 1− Fµ(z) satisfies

2z2T ′′µ (z) + (2z − 1)T ′µ(z)− 2Tµ(z) = 0, z > 0. (2.69)

The general solution of (2.69) is given by

Tµ(z) = c1ze−1/(2z) + c2(2z − 1) = z(c1e−1/(2z) + 2c2)− c2

and it is readily checked that the constants must satisfy c1 = 2 and c2 = −1 in order
to obtain a tail function that satisfies limz↓0 Tµ(z) = 1 and limz→∞ Tµ(z) = 0. Deriv-
ing Tµ(z) = 1− 2z(1− exp(− 1

2z )), it follows that the density is given by

fµ(z) = −T ′µ(z) = 2−
(1
z

+ 2
)

exp
(
− 1

2z

)

for z > 0. Observe in particular that Vq,ξ,η d= Z1/2Z2, where Z1 is uniformly distributed
on [0, 1] and Z2

d= Exp(1) is independent of Z1. This coincides with the results from [66,
Thm. 2] given in Example 2.1 at the beginning of the section.

Observe that, so far, both processes ξ and η were assumed to be continuous in the examples
considered. We conclude this section by discussing two examples in which ξ, and hence U ,
is a pure-jump process.

Example 2.59. Let ξ be a Poisson process with intensity c > 0 and ηt = σηBt, where σ2
η > 0

and (Bt)t≥0 is a standard Brownian motion. Using the connection between ξ and U es-
tablished in Section 1.1.4, it is readily checked that σ2

Ũ
= 0, ν

Ũ
= cδe−1−1 + qδ−1, as well

as γ0
Ũ

= −γ0
ξ = 0, and it follows that

BFV
Ũ

=


−q, if z ∈ (0, 1

e ],
−(c+ q), if z ∈ (1

e
, 1),

0, if z ≥ 1 or z = 0,

for the function BFV
Ũ

as defined in Corollary 2.47. By Corollaries 2.45 and 2.48, µ has a
density fµ ∈ C0(R) ∩ C1(R \ {0}) that satisfies

σ2
η

2 f
′
µ(z) = −1{z>0}

(
q
∫ ∞
z

fµ(x)dx+ c
∫ ez

z
fµ(x)dx

)
+ 1{z<0}

(
q
∫ z

−∞
fµ(x)dx+ c

∫ z

ez
fµ(x)dx

)
(2.70)

for z 6= 0. Observe that in particular µ({0}) = 0 as a consequence of σ2
η > 0. Since

the right-hand side of (2.70) is differentiable, so is the left-hand side, such that we ob-
tain fµ ∈ C2(R \ {0}), as well as

σ2
η

2 f
′′
µ(z) = qfµ(z) + c

(
fµ(z)− fµ(ez)

)
for z 6= 0 by differentiating (2.70).
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Example 2.60. Assume now that ξ is a compound Poisson process with Lévy mea-
sure νξ(dx) = e−x1(0,∞)dx, ηt = σηBt + γηt, where σ2

η > 0 and (Bt)t≥0 again denotes a
standard Brownian motion, as well as q > 0. As in Example 2.59, it follows from Corollar-
ies 2.45 and 2.48 that µ is absolutely continuous with density fµ ∈ C0(R) ∩ C1(R \ {0}).
Using the relation between νξ and ν

Ũ
, we can give the function BFV

Ũ
as

BFV
Ũ

(z) =

0, z > 1,
−(z + q), z ∈ [0, 1),

such that Equation (2.47) reads

1
2σ

2
ηf
′
µ(z) = γηfµ(z)− 1{z>0}

∫ ∞
z

(
z

x
+ q

)
fµ(x)dx+ 1{z<0}

∫ z

−∞

(
z

x
+ q

)
fµ(x)dx.

Since fµ ∈ C0(R) ∩ C1(R \ {0}), the integral terms are differentiable in z 6= 0 and it
follows that f ′µ ∈ C1(R \ {0}). Thus, fµ ∈ C2(R \ {0}) and differentiating the equation
leads to

1
2σ

2
ηf
′′
µ(z) = γηf

′
µ(z)− 1{z>0}

( ∫ ∞
z

1
x
fµ(x)dx− (1 + q)fµ(z)

)
+ 1{z<0}

( ∫ z

−∞

1
x
fµ(x)dx+ (1 + q)fµ(z)

)
for z 6= 0. This shows that f ′′µ ∈ C1(R\{0}) and hence fµ ∈ C3(R\{0}). Differentiating the
equation once more finally eliminates the integrals and leads to the third-order linear ODE

1
2σ

2
ηf
′′′
µ (z) = γηf

′′
µ(z) + (1 + q)f ′µ(z) + 1

z
fµ(z),

which is satisfied for all z 6= 0.
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3. Short-time Behavior of Solutions to
Lévy-driven SDEs

The aim of this chapter is a characterization of the a.s. short-time behavior of the stochas-
tic process X = (Xt)t≥0 which is the solution of an SDE of the form

dXt = σ(Xt−)dLt, X0 = x ∈ Rn, (3.1)

where L = (Lt)t≥0 is an Rd-valued Lévy process and the function σ : Rn → Rn×d is
twice continuously differentiable and maximal of linear growth. We describe the short-
time behavior of X by comparing it to the behavior of suitable functions based on the
analysis given in the preprint [53].
For real-valued Lévy processes, results by Shtatland [64] and Rogozin [54] characterize the
almost sure convergence of the quotient Lt/t for t ↓ 0 in terms of the total variation of the
paths of the process, which was generalized to determining the behavior of the quotient for
arbitrary positive powers of t in [15], [51] and [12] from the characteristic triplet. The exact
scaling function f for law of the iterated logarithm-type (LIL-type) results of the form
lim supt↓0 Lt/f(t) = c a.s. for a deterministic constant c was determined by Khinchine
for Lévy processes that include a Gaussian component (see e.g. [58, Prop. 47.11]) and in
e.g. [59] and [60] for more general types of Lévy processes. A multivariate counterpart to
these LIL-type results was derived in the recent paper [26], showing that the short-time
behavior of the driving process in (1.6) is already well-understood. For the solution X,
the situation becomes more difficult. It was shown in [62] and [37] that X is, under
suitable conditions, a so-called Lévy-type Feller process, i.e. the characteristic function
of Xt can be expressed using a characteristic triplet similar to the driving Lévy process
with the triplet (A(x), ν(x), γ(x)) additionally depending on the initial condition x ∈ Rn

and the function σ. The short and long-time behavior of such Feller processes can be
characterized in terms of power-law functions using a generalization of Blumenthal-Getoor
indices (see [63]), where the symbol of the process plays the role of the characteristic
exponent. Using similar methods, an explicit short-time LIL in one dimension was derived
in [35].
The definition of a Lévy-type Feller process suggests that one can think of X as ”locally
Lévy” and, since the short-time behavior of the process is determined by the path be-
havior in an arbitrarily small neighborhood of zero, the process X thus should directly
mirror the short-time behavior of the driving Lévy process. We confirm this hypothesis
in terms of power-law functions in Proposition 3.3 and Theorem 3.10 below by show-
ing that the almost sure finiteness of limt↓0 t

−pLt implies the almost sure convergence of
the quantity t−p(Xt −X0) and that similar results hold for lim supt↓0 t−p(Xt −X0) and
lim inft↓0 t−p(Xt −X0) with probability one whenever limt↓0 t

−p/2Lt exists almost surely.
Using knowledge on the form of the scaling function for the driving Lévy process, the limit
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3. Short-time Behavior of Solutions to Lévy-driven SDEs

theorems can be generalized to suitable functions f : [0,∞) → R to derive explicit LIL-
type results for the solution of (3.1). As another application, we will also briefly study
convergence in distribution and in probability, showing that results on the short-time
behavior of the driving process translate here as well. Note that the results given be-
low partially overlap with characterizations obtained from other approaches such as the
generalization of Blumenthal-Getoor indices for Lévy-type Feller processes discussed e.g.
in [63] while also covering new cases such as a.s. limits for t ↓ 0. Whenever possible, we
work with general semimartingales and include converse results to reobtain the limiting
behavior of the driving process from the solution. As a first step, we give a lemma that
characterizes the a.s. short-time behavior of a stochastic integral when the behavior of
the integrand is known.

Lemma 3.1. Let X = (Xt)t≥0 be a real-valued semimartingale, p > 0 and ϕ = (ϕt)t≥0
an adapted càglàd process such that limt↓0 t

−pϕt exists and is finite with probability one.
Then

1
tp

∫ t

0+
ϕsdXs → 0 a.s. for t ↓ 0. (3.2)

Proof. Define the process ψ (ω-wise) by

ψt :=

t−pϕt, t > 0,
lims↓0 s

−pϕs, t = 0,

possibly setting ψ0(ω) = 0 on the null set where the limit does not exist. By definition, ψ
is càglàd, and, as limt↓ t

−pϕt exists a.s. in R, F0 contains all null sets by assumption and
the filtration is right-continuous, ψ0 is F0-measurable. Therefore, ψ is also adapted. This
implies that the semimartingale

Yt :=
∫ t

0+
ψsdXs

is indeed well-defined, allowing to rewrite the process considered in (3.2) using the asso-
ciativity of the stochastic integral. This leads to∫ t

0+
ϕsdXs =

∫ t

0+
spψsdXs =

∫ t

0+
spdYs,

which implies

1
tp

∫ t

0+
ϕsdXs = 1

tp

(
tpYt −

∫ t

0+
Ysd(sp)

)
= Yt −

1
tp

∫ t

0+
Ysd(sp)

by partial integration. As Y is a semimartingale which has a.s. càdlàg paths additionally
satisfying Y0 = 0 by definition, we have limt↓0 Yt = 0 with probability one. The term
remaining on the right-hand side is a path-by-path Lebesgue-Stieltjes integral. Note that,
as p > 0, the integrator is increasing, thus implying the monotonicity of the corresponding
integral. This leads to

inf
0<s≤t

Ys ≤
1
tp

∫ t

0+
Ysd(sp) ≤ sup

0<s≤t
Ys.

Recalling limt↓0 Yt = 0 a.s., we can conclude that the above terms vanish with probability
one as t ↓ 0, which yields the claim.
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Remark 3.2. (i) By defining the process ψs = (ψi,j)i,j component-wise and considering Yt
as either (Yt)i,j = ∑d

k=1
∫ t

0+(ψs)i,kd(Xs)k,j or (Yt)i,j = ∑d
k=1

∫ t
0+(ψs)k,jd(Xs)i,k, the lemma

naturally extends to multivariate stochastic integrals with ψ and X being Rn×d-valued
and Rd×m-valued semimartingales, respectively.
(ii) The function tp in the denominator may be replaced by an arbitrary continuous
function f : [0,∞)→ R that is increasing and satisfies f(0) = 0 and f(t) > 0 for all t > 0.
Lemma 3.1 is the key tool to deriving a.s. short-time limiting results for the solution of a
stochastic differential equation.
Proposition 3.3. Let L be an Rd-valued semimartingale satisfying L0 = 0, v ∈ Rd,
p > 0, and σ : Rd → Rn×d twice continuously differentiable and maximal of linear growth.
Define X = (Xt)t≥0 as the solution of (3.1). Then

lim
t↓0

Lt
tp

= v a.s.⇒ lim
t↓0

Xt − x
tp

= σ(x)v a.s.

Proof. Let limt↓0 t
−pLt = v with probability one. By definition, X satisfies the equation

Xt = x+
∫ t

0+
σ(Xs−)dLs.

Applying partial integration to the individual components yields
(
Xt − x
tp

)
i

= 1
tp

d∑
k=0

∫ t

0+
σi,k(Xs−)d(Lk)s

= 1
tp

d∑
k=0

(
σi,k(Xt)(Lk)t − σi,k(x)(Lk)0 −

∫ t

0+
(Lk)s−dσi,k(Xs)

−
[
σi,k(X), Lk

]
t

)
(3.3)

As t−pLt → v a.s. by assumption and Xt → x = X0 a.s. by definition of X, the first
term on the right-hand side of (3.3) converges a.s. to the desired limit as t ↓ 0. Thus, the
claim follows if we can show that the remaining terms vanish when the limit is considered.
Since L0 = 0 a.s., this is true for the second term and, as σ(X) is again a semimartingale,
Lemma 3.1 is applicable for the third term of (3.3), showing that it converges a.s. to zero.
Since σ is twice continuously differentiable, applying Ito’s formula for X in the quadratic
covariation appearing in the last term yields

[
σi,k(X), Lk

]
t

=
[
σi,k(x) +

n∑
j=1

∫ ·
0+

∂σi,k
∂xj

(Xs−)d(Xj)s

+ 1
2

n∑
j1,j2=1

∫ ·
0+

∂2σi,k
∂xj1∂xj2

(Xs−)d
[
Xj1 , Xj2

]c
s

+
∑

0<s≤·

(
σi,k(Xs)− σi,k(Xs−)−

n∑
j=1

∂σi,k
∂xj

(Xs−)∆(Xj)s
)
, Lk

]
t
. (3.4)

By linearity of the quadratic covariation, the right-hand side of (3.4) is split into seperate
terms that can be treated individually. Further, using the associativity of the stochas-
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3. Short-time Behavior of Solutions to Lévy-driven SDEs

tic integral and the fact that continuous finite variation terms do not contribute to the
quadratic covariation, it follows that many of the terms vanish, leaving

[
σi,k(X), L

]
t

=
n∑
j=1

∫ t

0+

∂σi,k
∂xj

(Xs−)d[Xj, Lk]s (3.5)

+
[ ∑

0<s≤·

(
σi,k(Xs)− σi,k(Xs−)−

n∑
j=1

∂σi,k
∂xj

(Xs−)∆(Xj)s
)
, Lk

]
t
.

For the first term observe that the quadratic variation process is of finite variation, such
that the integral is given by a path-by-path Lebesgue-Stieltjes integral. By the definition
of X, it follows that

[Xj, Lk]t =
d∑
l=1

∫ t

0+
σj,l(Xs−)d[Ll, Lk]s.

Denoting integration with respect to the total variation measure of a process Y as dTVY ,
the individual integrals can be estimated by∣∣∣∣ ∫ t

0+
σj,l(Xs−)d[Ll, Lk]s

∣∣∣∣ ≤ ∫ t

0+

∣∣∣σj,l(Xs−)|dTV[Ll,Lk](s)

≤
(∫ t

0+

∣∣∣σj,l(Xs−)
∣∣∣d[Ll, Ll]s

) 1
2
(∫ t

0+

∣∣∣σj,l(Xs−)
∣∣∣d[Lk, Lk]s

) 1
2

≤ sup
0<s≤t

∣∣∣σj,l(Xs−)
∣∣∣√[Ll, Ll]t

√
[Lk, Lk]t,

using the Kunita-Watanabe inequality (see e.g. [50, Th. II.25]) and the fact that the
resulting integrals have increasing integrators. Further, the above estimates also show
that the total variation of

∫ t
0+ σj,l(Xs−)d[Ll, Lk] satisfies this estimate. For the quadratic

variation terms note that since (L0)k,l = 0 a.s. and

[Lk, Lk]t = (Lk)2
t − 2

∫ t

0+
(Lk)s−d(Lk)s,

it follows from the assumption and the one-dimensional version of Lemma 3.1 that

lim
t↓0

1
tp

[Lk, Lk]t = lim
t↓0

1
tp

√
[Ll, Ll]t

√
[Lk, Lk]t = 0

with probability one. Thus,

0 ≤ lim
t↓0

sup
∣∣∣∣ 1
tp

∫ t

0+
σj,l(Xs−)d[Ll, Lk]s

∣∣∣∣ = 0 a.s.,

and a similar estimate holds true for the total variation of
∫ t

0+ σj,l(Xs−)d[Ll, Lk]s. Denoting
the total variation process of Y at t by TV (Y )t, we obtain the bound

1
tp

∣∣∣∣ n∑
j=1

∫ t

0+

∂σi,k
∂xj

(Xs−)d[Xj, Lk]s
∣∣∣∣ ≤ n∑

j=1
sup

0<s≤t

∣∣∣∣∂σi,k∂xj
(Xs−)

∣∣∣∣ 1
tp
TV

(
[Xj, Lk]

)
t

for the first term on the right-hand side of (3.5), showing that it vanishes a.s. when the
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limit t ↓ 0 is considered. Lastly, denote[ ∑
0<s≤t

(
σi,k(Xs)− σi,k(Xs−)−

n∑
j=1

∂σi,k
∂xj

(Xs−)∆(Xj)s
)
, Lk

]
t

=: [J, Lk]t

for the jump term remaining in (3.5). Using the Kunita-Watanabe inequality and recall-
ing that [Lk, Lk] = o(tp) by the previous estimate, it remains to consider the quadratic
variation of the process J . Evaluating

[J, J ]t =
∑

0<s≤t
(∆Js)2 =

∑
0<s≤t

(
σi,k(Xs)− σi,k(Xs−)−

n∑
j=1

∂σi,k
∂xj

(Xs−)∆(Xj)s
)2
,

and noting that
sup

0<s≤t

∣∣∣∣ ∂2σi,k
∂xj1∂xj2

(Xs−)
∣∣∣∣ <∞

for all j1, j2 = 1, . . . , n and a fixed t ≥ 0 as σ ∈ C2 and X is a càdlàg process, we can
conclude that

[J, J ]t ≤ C
∑

0<s≤t
‖∆Xs‖2 = C

∑
0<s≤t

‖σ(Xs−)∆Ls‖2 ≤ C ′
∑

0<s≤t
‖∆Ls‖2 ≤ C ′

d∑
k=1

[Lk, Lk]t

for some finite (random) constants C,C ′. This shows that both terms in (3.5) are in-
deed o(tp) and do not contribute when the limit t ↓ 0 in (3.3) is considered. Hence, the
limit is equal to σ(X0)v a.s., which is the claim.

Remark 3.4. (i) Observe that limt↓0 t
−pLt = v implies [L,L] = o(tp) here. Whenever L

is a Lévy process, the same assumption yields [L,L]t = o(t2p) (see Lemma 3.9 below).
(ii) Similar to Lemma 3.1, one can replace tp by any other continuous, increasing func-
tion f : [0,∞)→ R that satisfies f(0) = 0 and f(t) > 0 for all t > 0.
(iii) Since the short-time behavior of the process is determined by its behavior in an ar-
bitrarily small neighborhood of zero, Proposition 3.3 and many of the results below are
also applicable when the solution of the SDE is only well-defined on some interval [0, ε]
with ε > 0. Thus, the linear growth condition can be omitted if one replaces t by min{t, ε}
in the calculations.

Whenever one can assure that σ(Xs−) is invertible, the implication in Proposition 3.3 is
indeed an equivalence. This yields the following counterpart to [63, Thm. 4.4] for almost
sure limits at zero.

Proposition 3.5. Let L be an Rd-valued semimartingale, v ∈ Rd and p > 0 and X the
solution to (3.1). Let further σ : Rd → Rd×d be twice continuously differentiable, maximal
of linear growth and such that σ(Xt−) has a.s. full rank for t ≥ 0, where we set X0− = x.
Then

lim
t↓0

Lt
tp

= v a.s.⇔ lim
t↓0

Xt − x
tp

= σ(x)v a.s. (3.6)
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Proof. As Proposition 3.3 yields the first implication, let limt↓0 t
−p(Xt−x) = σ(X0)v with

probability one. Using that σ(Xs−) has a.s. full rank, we can recover L from X via

Lt =
∫ t

0+

(
σ(Xs−)

)−1
dXs.

Since limt↓0Xt = x a.s., it is ‖σ(Xt) − σ(x)‖ < 1 a.s. for sufficiently small t > 0. This
implies

σ(x)σ(Xt)−1 =
(
Id− (Id− σ(Xt)σ(x)−1)

)−1
=
∞∑
k=0

(
Id− σ(Xt)σ(x)−1

)k
= Id +

(
Id− σ(Xt)σ(x)−1

)
+Rt,

where the Neumann series converges a.s. in norm. Observe that we have by Taylor’s
formula

1
tp

(σ(Xt)− σ(x))i,j = 1
tp

n∑
k=1

∂σi,j
∂xk

(x)(Xt − x)i,j + 1
tp
ri,j(t)

where the remainder term satisfies ri,j(t) = O((Xt − x)2) = o(tp). Thus,

lim
t↓0

1
tp

(Id− σ(Xt)σ(x)−1
)

= lim
t↓0

1
tp

(σ(x)− σ(Xt)
)
σ(x)−1

exists a.s. from which it follows that also Rt = o(tp) with probability one. Hence,

σ(x) 1
tp
Lt = 1

tp

∫ t

0+

(
σ(x)(σ(Xs−))−1 − Id

)
dXs + 1

tp

∫ t

0+
Id dXs

= 1
tp

∫ t

0+

(
σ(x)(σ(Xs−))−1 − Id

)
dXs + t−p

(
Xt − x

)
.

and we find that the limit for t ↓ 0 exists a.s. and is equal to σ(X0)v by Lemma 3.1 and
the assumption. This yields the claim since σ(X0) has full rank with probability one.

Proposition 3.5 is in particular applicable for the stochastic exponential by vectorization
of the matrix-valued stochastic processes. Here, the condition det(Id + ∆Ls) 6= 0 for
all s ≥ 0 ensures that the inverse E(L)−1 is well defined (see e.g. [32]).

Corollary 3.6. Let L be an Rd×d-valued semimartingale satisfying det(Id+∆Ls) 6= 0 for
all s ≥ 0, v ∈ Rd×d and p > 0. Then

lim
t↓0

Lt
tp

= v a.s.⇔ lim
t↓0

E(L)− Id
tp

= v a.s. (3.7)

Remark 3.7. In the case that L is a Lévy process, the a.s. limit v appearing for p = 1
in Corollary 3.6 is the drift of L. A result by Shtatland and Rogozin (see [64] and [54])
directly links the existence of this limit to the process having sample paths of bounded
variation. Since the stochastic exponential E(L) has paths of bounded variation iff this
holds true for the paths of L, a similar connection can be made for E(L). Denote by BV the
set of stochastic processes having sample paths of bounded variation, then Corollary 3.6
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implies

lim
t↓0

E(L)− Id
t

exists a.s.⇔ lim
t↓0

Lt
t

exists a.s.⇔ L ∈ BV ⇔ E(L) ∈ BV.

Considering Proposition 3.3 in the context of Lévy processes yields the following result.
Proposition 3.8. Let L be an Rd×m-valued Lévy process satisfying limt↓0 t

−pLt = v a.s.
for some v ∈ Rd×m, p > 0 and let X = (Xt)t≥0 be an Rn×d-valued semimartingale. Then

1
tp

∫ t

0+
Xs−dLs → X0v a.s., t ↓ 0.

If additionally limt↓0 t
−pXt = w for some matrix w ∈ Rn×d such that wv = 0, then

1
t2p

∫ t

0+
Xs−dLs → 0 a.s., t ↓ 0.

Note that the above proposition holds in particular when Xt = σ(Lt) for a suitable
function σ, but the dependence on the driving process is not needed to conclude the
convergence. This is due to the following property of the quadratic variation of a Lévy
process.
Lemma 3.9. Let L be given as in Proposition 3.8, then, a.s., [L,L]t = o(t2p) as t ↓ 0.
Proof. Using the Kunita-Watanabe inequality to estimate the individual components in
the multivariate case, we may restrict the argument to d = 1. Here, the quadratic varia-
tion [L,L]t of L is a Lévy process of bounded variation given by

[L,L]t = σ2t+
∑

0<s≤t
(∆Ls)2,

with the constant σ being the variance of the Gaussian part of L (if present). In the
case that p < 1/2, applying Khintchine’s LIL (see e.g. [58, Prop. 47.11]) implies that
limt↓0 t

−pLt = 0 a.s. holds for any Lévy process. Since we also have 2p < 1, Theorem 1
in [64] yields, regardless of the value of σ2, that

1
t2p

[L,L]t = 1
t
[L,L]t · t1−2p → 0 a.s., t ↓ 0.

In the case that p = 1/2, Khinchine’s LIL yields lim supt↓0 Lt/
√
t =∞ a.s. if the Gaussian

part of L is nonzero. As the limit exists and is finite by assumption, the process L must sat-
isfy σ = 0. This implies that the quadratic variation process has no drift, so [L,L]t = o(t)
a.s. by [64, Thm. 1]. In the case that p > 1/2, consider L with its drift (if present) sub-
tracted from the process. This neither changes the structure of the quadratic variation
nor the assumption on the a.s. convergence, but ensures that [12, Thm. 2.1] is applica-
ble. Note that whenever p > 1 and L is of finite variation with non-zero drift, we have
limt↓0 t

−p|Lt| =∞ by [54], showing that this case is excluded by the assumption. The a.s.
existence of limt↓0 t

−pLt further implies that the Lévy measure νL of L satisfies (cf. [12])∫
[−1,1]

|x|1/pνL(dx) <∞.
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Noting that ∆[L,L]t = f(∆Lt) for f(x) = x2, it follows that ν[L,L](B) = νL(f−1(B)) for
all sets B ⊆ [−1, 1]. As we can now treat ν[L,L] as an image measure, it is∫

[−1,1]
|x|1/2pν[L,L](dx) =

∫
[0,1]
|x|1/2pν[L,L](dx) =

∫
[−1,1]

|x|1/pνL(dx) <∞.

Thus, the quadratic variation satisfies the same integral condition with 2p instead of p.
As [L,L]t is a bounded variation Lévy process without drift, part (i) of [12, Thm. 2.1]
yields the claim in the last case.

Proof of Proposition 3.8. First, let X be a general semimartingale. Without loss of gen-
erality, we can assume X0 = 0 a.s., since

1
tp

∫ t

0+
Xs−dLs = 1

tp

∫ t

0+
(Xs− −X0)dLs + 1

tp
X0Lt

and t−pX0Lt → X0v a.s. for t ↓ 0 by assumption. As X is a semimartingale, we have

1
tp

∫ t

0+
Xs−dLs = 1

tp
XtLt −

1
tp
X0L0 −

1
tp

∫ t

0+
dXsLs− −

1
tp

[X,L]t0+

by partial integration. Applying X0 = 0 for the first two summands and Lemma 3.1 for
the integral on the right-hand side, it follows that the terms vanish with probability one
as t ↓ 0. For the covariation, we have

∣∣∣∣( 1
tp

[X,L]t
)
i,j

∣∣∣∣ ≤ d∑
k=1

∣∣∣∣ 1
tp

[Xi,k, Lk,j]t
∣∣∣∣ ≤ d∑

k=1

1
tp

√
[Xi,k, Xi,k]t

√
[Lk,j, Lk,j]t

by the Kunita-Watanabe inequality. As each component Lk,j of L is again a Lévy pro-
cess satisfying limt↓0 t

−p(Lk,j)t = vk,j a.s., one can conclude that [Lk,j, Lk,j]t = o(t2p) by
Lemma 3.9. Therefore, it follows that t−p[X,L]t → 0 a.s. for t ↓ 0, yielding the first part
of the proposition. Assume next that additionally limt↓0 t

−pXt = w for some w ∈ Rn×d

with wv = 0. One can argue similar to the proof of Lemma 3.1 and define an adapted
stochastic process ψ (ω-wise) by

ψt :=

t−pXt, t > 0,
lims↓0 s

−pXs, t = 0,

possibly setting ψ0(ω) = 0 on the null set where the limit does not exist. Using the
associativity of the stochastic integral, rewrite∫ t

0+
Xs−dLs =

∫ t

0+
spψs−dLs =

∫ t

0+
spdYs,

where Yt =
∫ t

0+ ψs−dLs is a well-defined semimartingale, and use integration by parts to
obtain

1
t2p

∫ t

0+
Xs−dLs = 1

t2p

(
tpYt −

∫ t

0+
Ysd(sp)

)
= 1
tp
Yt −

1
t2p

∫ t

0+
Ysd(sp). (3.8)
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By the first part of the proposition, it is

lim
t↓0

1
tp
Yt = lim

t↓0

1
tp

∫ t

0+
ψs−dLs = ψ0v = wv = 0

with probability one, while the path-wise Lebesgue-Stieltjes integral can be estimated by

1
tp

inf
0<s≤t

(Ys)i,j ≤
1
t2p

∫ t

0+
(Ys)i,jd(sp) ≤ 1

tp
sup

0<s≤t
(Ys)i,j, i = 1, . . . ,m, j = 1, . . . , n,

due to the integrand being an increasing function. As wv = 0, both bounds converge to
zero with probability one, hence

lim
t↓0

1
t2p

∫ t

0+
Ysd(sp) = 0

almost surely. Thus, the limit for t ↓ 0 of (3.8) exists with probability one and is equal to
zero.

The above proposition is in particular applicable for solutions of Lévy-driven SDEs. An
inspection of the proof of Proposition 3.3 shows that, a.s.,

[σi,k(X), Lk]t = O([L1, L1]t + · · ·+ [Ld, Ld]t).

Since [Lk, Lk]t = o(t2p) for any k = 1, . . . , d by Lemma 3.9, it follows that

[σ(X), L]t = o(t2p)

with probability one whenever L is a Lévy process satisfying limt↓0 t
−pLt = 0 a.s. and X

is the solution of (3.1). We use this fact to consider the almost sure lim sup and lim inf
behavior of the quotient t−p(Xt−x) including the divergent case. Note that the condition
limt↓0 t

−p/2Lt = 0 a.s. is satisfied whenever p/2 > 1/2 and
∫ 1

0 x
2/pνL(dx) <∞ by [12,

Thm. 2.1].

Theorem 3.10. Let L be an Rd-valued Lévy process such that limt↓0 t
−p/2Lt = 0 a.s. for

some p > 0. Further, let σ : Rn → Rn×d be twice continuously differentiable and maximal
of linear growth and define X = (Xt)t≥0 as the solution of the SDE (3.1). Then, a.s.,

lim
t↓0

(
Xt − x
tp

− σ(Xt)Lt
tp

)
= lim

t↓0

(
Xt − x
tp

− σ(x)Lt
tp

)
= 0. (3.9)

In particular, if σ(x) has rank d, we have

lim
t↓0

‖Lt‖
tp

=∞ a.s. ⇒ lim
t↓0

‖Xt − x‖
tp

=∞ a.s. (3.10)

Proof. Similar to the proof of Proposition 3.3, we use integration by parts and rewrite

Xt − x
tp

− σ(Xt)Lt
tp

= − 1
tp

∫ t

0+
dσ(Xs)Ls− −

1
tp

[σ(X), L]t. (3.11)

The claim follows by showing that the desired limiting behavior for the right-hand side.
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For the term involving the quadratic variation, this is immediate from the previous cal-
culations. Hence, it remains to study the behavior of the integral. Using the Ito formula
once more yields

( ∫ t

0+
dσ(Xs)Ls−

)
i

=
d∑

k=1

∫ t

0+
(Lk)s−dσi,k(Xs)

=
d∑

k=1

∫ t

0+
(Lk)s−d

(
σi,k(x) +

n∑
j=1

∫ s

0+

∂σi,k
∂xj

(Xr−)d(Xj)r

+ 1
2

n∑
j1,j2=1

∫ s

0+

∂2σi,k
∂xj1∂xj2

(Xr−)d
[
Xj1 , Xj2

]c
r

+ (Ji,k)s
)
,

where the jump term is again denoted by J and the component of σ included in it is
carried as a subscipt. Observe that by associativity of the stochastic integral, it follows
that ∫ t

0+
(Lk)s−d

( ∫ s

0+

∂2σi,k
∂xj1∂xj2

(Xr−)d
[
Xj1 , Xj2

]c
r

)

=
n∑

l1=1

n∑
l2=1

∫ t

0+
(Lk)s−

∂2σi,k
∂xj1∂xj2

(Xs−)σj1,l1(Xs−)σj2,l2(Xs−)d[Ll1 , Ll2 ]cs

=:
n∑

l1=1

n∑
l2=1

∫ t

0+
(Lk)s−Ms−d[Ll1 , Ll2 ]cs,

which is a sum of pathwise Lebesgue-Stieltjes integrals. Thus,

1
tp

∣∣∣∣ ∫ t

0+
(Lk)s−d

( ∫ s

0+

∂2σi,k
∂xj1∂xj2

(Xr−)d
[
Xj1 , Xj2

]c
r

)∣∣∣∣
≤ 1
tp

d∑
l1=1

d∑
l2=1

sup
0<s≤t

∣∣∣(Lk)s−Ms−

∣∣∣√[Ll1 , Ll1 ]t
√

[Ll2 , Ll2 ]t.

As σ is in particular C2, the supremum on the right-hand side is bounded and we conclude
that the bound obtained converges to zero with probability one by Lemma 3.9. For the
jump term we have

1
tp

∣∣∣∣ ∫ t

0+
(Lk)s−d(Ji,k)s

∣∣∣∣ ≤ 1
tp

∑
0<s≤t

|(Lk)s−| · |∆(Ji,k)s|

by definition. However, since σ ∈ C2(Rd), it follows from Taylor’s formula that

|∆(Ji,k)s| =
∣∣∣∣σi,k(Xs)− σi,k(Xs−)−

n∑
j=1

∂σi,k
∂xj

(Xs−)∆(Xj)s
∣∣∣∣ ≤ C‖∆Xs‖2 ≤ C ′‖∆Ls‖2

for some finite (random) constants C,C ′ ≥ 0 such that

1
tp

∣∣∣∣ ∫ t

0+
(Lk)s−d(Ji,k)s

∣∣∣∣ ≤ 1
tp
C ′ sup

0<s≤t
|(Lk)s|

d∑
j=1

[Lj, Lj]t,

86



3. Short-time Behavior of Solutions to Lévy-driven SDEs

which also converges a.s. to zero as t ↓ 0. For the last term, observe first that
∫ t

0+
(Lk)s−d

( ∫ s

0+

∂σi,k
∂xj

(Xr−)d(Xj)r
)

=
d∑
l=1

∫ t

0+
(Lk)s−

∂σi,k
∂xj

(Xs−)σj,l(Xs−)d(Ll)s

by the associativity of the stochastic integral. Including the summation over k and j, this
can be rewritten as

d∑
k=1

d∑
l=1

∫ t

0+
(Lk)s−

( d∑
j=1

∂σi,k
∂xj

(Xs−)σj,l(Xs−)
)

d(Ll)s =
d∑

k=1

d∑
l=1

∫ t

0+
(Lk)s−(Mi,k,l)s−d(Ll)s,

where we note that sup0<s≤t |(Mi,k,l)s| is bounded for any fixed small t ≥ 0 and contin-
uous at zero due to the continuity of σ and its derivatives. Since limt↓0 t

−p/2Lt = 0 with
probability one, it follows that, a.s., limt↓0 t

−p/2(Lk)t(Mi,k,l)t exists. Thus, the second part
of Proposition 3.8 is applicable and one can conclude that the integral also converges to
zero with probability one. Since limt↓0 t

−p/2Lt = 0 with probability one, we have

0 ≤
∥∥∥∥σ(Xt)Lt

tp
− σ(x)Lt

tp

∥∥∥∥ ≤ ∥∥∥∥σ(Xt)− σ(x)
tp/2

∥∥∥∥ · ∥∥∥∥ Lttp/2

∥∥∥∥
≤

n∑
j=1

sup
0<s≤t

∥∥∥∥ ∂σ∂xj (Xt)
∥∥∥∥ · ∥∥∥∥Xt − x

tp/2

∥∥∥∥ · ∥∥∥∥ Lttp/2

∥∥∥∥. (3.12)

As t ↓ 0, the first term converges with probablity one by the assumptions on σ and
Proposition 3.3 is applicable for the second one. Using that limt↓0 t

−p/2Lt = 0 a.s., the
right-hand side of (3.12) converges to zero with probability one as t ↓ 0. If σ(x) has rank d,
Equation (3.10) follows immediately from the convergence result in (3.9).

Theorem 3.10 allows to characterize the a.s. short-time behavior of the solution to a Lévy-
driven SDE in terms of power law functions. In order to derive precise LIL-type results, we
now turn to more general functions. Note that, whenever the driving Lévy process has a
Gaussian component, its a.s. short-time behavior is determined by Khintchine’s LIL (see
e.g. [58, Prop. 47.11]). Hence, Lemma 3.9 readily generalizes to continuous increasing
functions f : [0,∞)→ R with f(0) = 0 and f(t) > 0 for all t > 0, as any function f such
that limt↓0 Lt/f(t) exists in R must satisfy

√
2t ln(ln(1/t))/f(t)→ 0 and it follows

lim
t↓0

[L,L]t
(f(t))2 = lim

t↓0

( [L,L]t
t

t

2t ln(ln(1/t))
2t ln(ln(1/t))

(f(t))2

)
= 0 a.s. (3.13)

by [64, Thm. 1]. Thus, [L,L]t = o(f(t)2) and we can replace the function tp/2 for some p > 0
in Theorem 3.10 by f in this case and obtain a precise short-time behavior for the solutions
of stochastic differential equations that include a diffusion part. In the case that L does
not include a Gaussian component, [L,L] is a finite variation process without drift satis-
fying limt↓0 t

−1[L,L]t = 0 a.s. by [64, Thm. 1], such that an argument similar to (3.13) is
still applicable if f decays sufficiently fast as t ↓ 0. For the general case, we combine The-
orem 3.10 with the precise information on possible scaling functions derived in [26]. Note
that the conditions of Corollary 3.11 below immediately follow from Khinthchine’s LIL
whenever h ≡ 1, as the process does not include a Gaussian part by assumption.
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Corollary 3.11. Let L be a purely non-Gaussian Rd-valued Lévy process and f :[0,∞)→R
be of the form f(t) =

√
t ln(ln(1/t))h(1/t)−1, where h : [0,∞)→ [0,∞) is a continuous

and non-decreasing slowly varying function, such that the set of cluster points of Lt/f(t)
as t ↓ 0 is bounded with probability one. Further, let σ : Rd → Rn×d be twice continu-
ously differentiable and maximal of linear growth and define X = (Xt)t≥0 as the solution
of (3.1). Then, a.s.,

lim
t↓0

(
Xt − x
f(t) −

σ(Xt)Lt
f(t)

)
= lim

t↓0

(
Xt − x
f(t) −

σ(x)Lt
f(t)

)
= 0. (3.14)

In particular, if σ(x) has rank d, we have

lim
t↓0

‖Lt‖
f(t) =∞ a.s. ⇒ lim

t↓0

‖Xt − x‖
f(t) =∞ a.s.

Proof. As the scaling function is of the form f(t) = t1/2`(1/t) with a slowly varying
function ` by assumption, the a.s. boundedness of the cluster points of Lt/f(t) in Rd

implies that, for all ε ∈ (0, 1/2),

lim
t↓0

Lt
t(1/2−ε)

= lim
t↓0

Lt
f(t) · `(1/t)t

ε = 0

with probability one. Thus, Theorem 3.10 is applicable with p/2 = 1/2− ε, yielding

lim
t↓0

(
Xt − x
t1−2ε −

σ(x)Lt
t1−2ε

)
= 0

almost surely. Using the explicit form of f and choosing ε ∈ (0, 1/4), it follows that

lim
t↓0

(
Xt − x− σ(x)Lt

f(t)

)
= lim

t↓0

(
Xt − x− σ(x)Lt

t1−2ε · t
1−2ε

f(t)

)
= 0

with probability one, which is (3.14), and the remaining claims follow in analogy to the
proof of Theorem 3.10.

The above results show that the almost sure short-time LIL-type behavior of the driving
Lévy process directly translates to the solution of the stochastic differential equation (3.1).
We also note the following statement for the conversion of the corresponding cluster set.

Corollary 3.12. Under the assumptions of Corollary 3.11 let lim supt↓0 ‖Lt‖/f(t) be
bounded with probability one. Then there exists an a.s. cluster set AX=C({Xt/f(t) : t ↓ 0})
for the solution X of (3.1) which is obtained from the cluster set AL=C({Lt/f(t) : t ↓ 0})
of the driving Lévy process L via AX = σ(x)AL.

Corollary 3.12 implies in particular that AX shares the properties of AL derived in [26,
Thm. 2.4] and that there is a one-to-one correspondence between the cluster sets when-
ever σ(x) has rank d. As σ(x) = Id for the stochastic exponential, we have AX = AL for
this example, mirroring the statement of Corollary 3.6.
Lastly, we use Theorem 3.10 to show that one can also translate more general limiting
results at zero from the driving Lévy process to the solution of (3.1). Here, convergence
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in distribution and convergence in probability are denoted by D→ and P→, respectively.
As the short-time behavior of Brownian motion is well-known, L is taken to be a purely
non-Gaussian Lévy process and we further assume the drift of L, whenever existent, to
be equal to zero. Note that sufficient conditions for the attraction of a Lévy process to
normality are e.g. given in [24, Thm. 2.5]. Thus, the conditions of Corollary 3.13 below
are readily checked from the characteristic triplet of L and e.g. satisfied for a Lévy process
with a symmetric Lévy measure such as νL(dx) = exp(−|x|)1[−1,1](x)dx.

Corollary 3.13. Let d = 1, L as specified above and assume that there is a continuous
increasing function f : [0,∞)→ [0,∞) such that f(t)−1Lt

D→Y as t ↓ 0, where the random
variable Y follows a non-degenerate stable law with index α ∈ (0, 2]. Let further σ : R→ R

be twice continuously differentiable and maximal of linear growth and define X = (Xt)t≥0
as the solution of (3.1) such that the initial condition x ∈ Rn satisfies σ(x) 6= 0. Then

Xt − x
f(t)

D→ σ(x)Y. (3.15)

Whenever f is regularly varying with index a ∈ (0, 1/2] at zero, (3.15) also holds if the
random variable Y is a.s. constant.

Proof. If α = 2, i.e. Y is normally disributed, the convergence of Lt/f(t) implies that

lim
t↓0

tΠ(#)
L (xf(t)) = 0 (3.16)

for all x > 0 and # ∈ {+,−} by [43, Prop. 4.1]. Choosing x = 1, note that the condi-
tion (3.16) is not sufficient to imply the integrability of Π(#)

L (f(t)) over [0, 1]. However,
since the distribution of Y is non-degenerate, the scaling function f is regularly varying
with index 1/2 at zero (see [24, Thm. 2.5]) such that also

lim
t↓0

tΠ#
L(t1/2−ε) = 0.

This yields the estimate
Π#
L (t(1/2−ε)k) ≤ Ct

tk
(3.17)

where Ct is bounded as t ↓ 0 and the function is thus integrable over [0, 1] for 0 ≤ k < 1.
By assumption, L does not have a Gaussian component and the drift of the process is
equal to zero whenever it is defined. Hence,∫ t

0+
Π#(t(1/2−ε)k)dt <∞

for both # = + and # = − and thus limt↓0 t
−(1/2−ε)kLt = 0 a.s. by [12, Thm. 2.1].

Applying Theorem 3.10, we obtain

lim
t↓0

(
Xt − x
tk−2εk −

σ(x)Lt
tk−2εk

)
= 0
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with probability one. It now follows for k − 2εk > 1/2 that

lim
t↓0

(
Xt − x− σ(x)Lt

f(t)

)
= lim

t↓0

(
Xt − x− σ(x)Lt

tk−2εk · t
k−2εk

f(t)

)
= 0

almost surely, which yields the desired convergence of f(t)−1(Xt − x). If Y follows a
nondegenerate stable law with index α ∈ (0, 2), the right-hand side of (3.16) is to be
replaced by the tail function Π#

Y (x) (see [43, Prop. 4.1]) and it follows from the proof
of [43, Thm. 2.3] that the scaling function f is regularly varying with index 1/α at zero
in this case. Thus, we can derive a bound similar to (3.17) and argue as before. Noting
that [43, Prop. 4.1] does not require the law of the limiting random variable to be non-
degenerate, the argument is also applicable if Y is a.s. constant and f is regularly varying
with index a ∈ (0, 1/2] at zero.

One can also give a result for convergence in probability. The conditions can be checked
directly from the characteristic triplet of the driving Lévy process using [24, Thm. 2.2]
and are e.g. satisfied for finite variation Lévy processes. As the limiting random variable
is a.s. constant, the proof is immediate from Corollary 3.13.

Corollary 3.14. Let d = 1, L as above and assume that there is a continuous increasing
function f : [0,∞)→ [0,∞) that is regularly varying with index a ∈ (0, 1/2] at zero such
that f(t)−1Lt

P→v for some finite value v ∈ R as t ↓ 0. Let further σ : R → R be twice
continuously differentiable and maximal of linear growth and define X = (Xt)t≥0 as the
solution of (1.6). Then

Xt − x
f(t)

P→ σ(x)v.
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A. Some Additional Remarks on
Chapter 2

In this section, we collect some additional remarks on the contents of Chapter 2 regarding
the methods used, as well as possible extensions, that were not included in [9] and [8], but
might be of interest either in their own or for further investigations. Recall that ξ and η
denote independent Lévy processes with characteristic triplets (σ2

ξ , νξ, γξ) and (σ2
η, νη, γη),

and characteristic exponents Ψξ and Ψη, respectively. Further, τ denotes an exponen-
tially distibuted random variable with parameter q ≥ 0 that is independent of ξ and η
and τ =∞ a.s. whenever q = 0.

A.1. An Alternative Approach to Corollary 2.45
First, we give an approach to deriving an analog of [38, Cor. 2.4] for Vq,ξ,η directly from
the result in the case without killing. To keep the argument below more transparent, the
Lévy measures νξ and νη are assumed to be supported only on [−1, 1] to account for the
moment condition in [38] and we exclude the case of η being equal to zero or a compound
Poisson process to avoid additional terms including point masses (cf. Corollary 2.26).
Recall that the infinitesimal generator AṼ (cf. Theorem 2.34) is given by

AṼ = AV + q(f(0)− f(x)),

where AV denotes the infinitesimal generator of a generalized Ornstein-Uhlenbeck process
driven by ξ and η. Denoting again µ = L(Vq,ξ,η), it follows that∫

R
AṼ f(x)µ(dx) =

∫
R
AV f(x)µ(dx) +

∫
R
q(f(0)− f(x))µ(dx) = 0 (A.1)

holds for all functions f in the domain of the operator, in particular for f ∈ C∞c (R). We
use this decomposition to show a special case of Corollary 2.45. Note that, although η
is assumed to be a subordinator below, the same approach can also be applied in other
cases, as long as the equation and the asymptotics of the individual terms are known in
the case without killing.

Proposition A.1. Let ξ, η be two independent Lévy processes such that η is a subordinator
that is neither a compound Poisson process nor the zero process and the Lévy measures νξ
and νη are only supported on [−1, 1]. Let further q > 0. If σ2

ξ > 0, then µ has a density
with respect to the Lebesgue measure on R.

Proof. Since µ is continuous by assumption and η is a subordinator, it is enough to con-
sider functions f ∈ C∞c ((0,∞)). With the moment condition E|ξ1|,E|η1| < ∞ in [38]
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satisfied due to neither ξ nor η possessing big jumps, we can follow the proof of [38,
Thm. 2.3] and rewrite the term involving AV in (A.1). Note, however, that the process ξ
considered here refers to the negative of the exponent in the paper and that some quan-
tities need to be modified slightly. It follows that∫ ∞

0
AV f(x)µ(dx) =

∫ ∞
0

g′(z)ν(dz), (A.2)

where f ∈ C∞c ((0,∞)), g(z) = zf ′(z) and ν is given for z > 0 similar to Equation (2.3)
in [38] by

ν(dz) = −γξ
∫ ∞
z

µ(dx)dz +
σ2
ξ

2 zµ(dz) (A.3)

+
∫

(z,ez]
Π

(+)
ξ

(
ln x
z

)
µ(dx)dz +

∫
[ z
e
,z)

Π
(−)
ξ

(
ln z
x

)
µ(dx)dz + γη

∫ ∞
z

µ(dx)
x

dz

+ 1
z

∫
(0∧(z−1),z)

Π
(+)
η (z − x)µ(dx)dz −

∫ ∞
z

1
t2

∫
(0∧(t−1),t)

Π
(+)
η (t− x)µ(dx)dtdz.

As ν yields finite values when evaluated on compact subsets of (0,∞), it can be interpreted
as a distribution in the sense of Schwartz and the right-hand side of (A.2) can be rewritten
as 〈g′, ν〉 to emphasize the dual pairing. Due to the assumptions made in the proposition,
Lemma 2.4 in [38] also holds for (A.3) such that its limiting behavior is characterized by

lim
z→∞

1
z
|ν|(a, z) = 0, a > 0

and consequently,

lim
z→∞

1
h(z) |ν|(a, z) = 0, a > 0 (A.4)

holds for all functions h(z) such that (h(z))−1 = O(z−1). This condition is later used
similarly to the lemma in [38] to determine the constants appearing in the solution.
For the term in (A.1) that constitutes the contribution of the killing we have∫ ∞

0
q · (f(0)− f(x))µ(dx) =

∫ ∞
0

f(x)(−q)µ(dx)

setting f(0) = 0 due to the choice f ∈ C∞c ((0,∞)). Again, the measure on the right-hand
side is interpreted as a distribution in the sense of Schwartz and the term can be rewritten
as 〈f,−qµ〉. Using (A.1) and the definition of the distributional derivative, this leads to
the equation

〈g′, ν〉+ 〈f,−qµ〉 = 〈f, (xν ′)′〉+ 〈f,−qµ〉 = 〈f, (xν ′)′ − qµ〉 = 0

which holds for all f ∈ C∞c ((0,∞)). This implies that the distribution (xν ′)′ − qµ has
empty support in (0,∞), which can only be the case if it is the zero distribution. Thus,

(xν ′)′ − qµ = 0 ⇐⇒ (xν ′)′ = qµ (A.5)
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such that ν is determined, similarly to G in the proof of Theorem 2.43, by solving an
ordinary differential equation (ODE). Note, however, that the the ODE derived in this
approach is inhomogenous as opposed to the homogenous equation G′′ = 0 arising in Sec-
tion 2.4.3. As every distribution has a well-defined antiderivative (see e.g. [25, Thm. 4.3]),
we can obtain xν ′ from (A.5) as an antiderivative of qµ. It can be given explicitly as

f 7→
∫ ∞

0
f(t)qµ((0, t])dt,

e.g. by using a similar argument as in Example 6.14 of [55]. Since this antiderivative is
only unique up to a constant, we find that

xν ′(dx) = qµ((0, x])dx+ C1dx ⇐⇒ ν ′(dx) = qµ((0, x])dx
x

+ C1dx
x

(A.6)

for some constant C1 ∈ R. In the particular case considered, the function x 7→ µ((0, x]) is
continuous due to µ not having atoms. The antiderivative ν of ν ′ can now be determined
similarly to the solution of (A.5) by superposition of the individual solutions for the terms
on the right-hand side of (A.6). As µ is continuous, g(x) = x−1qµ((0, x]) is also continuous
for x > 0 Thus, using results from [55] yields that an antiderivative of x−1qµ((0, x])dx
is given by g̃(x)dx with g̃ denoting an antiderivative of g, e.g. g̃(x) =

∫ x
1 t
−1qµ((0, t])dt.

Note, however, that a similar result would also follow from [55] if t 7→ µ((0, t]) is only
right-continuous. The second term on the right-hand side of (A.6) can be treated similarly
and corresponds to the solution of the homogenous equation obtained in [38]. Hence, it
follows

ν(dx) =
∫ x

1

1
t
qµ((0, t])dtdx+ C1 ln(x)dx+ C2dx, (A.7)

where C2 ∈ R has to be included as the antiderivative of the distribution is only deter-
mined up to an additive constant. Note that ν as given above is the same as in (A.3). Since
the limiting behavior of ν is known from (A.4), it can now be used to determine the con-
stants C1 and C2. To find C1, observe that the corresponding term will behave like z ln(z)
when evaluated on sets (a, z) for a > 0. Choosing h(z) = z ln(z) and applying (A.4) to
the left-hand side of (A.7) leads to

0 = lim
z→∞

1
z ln(z)

∫ z

a

∫ x

1

1
t
qµ((0, t])dtdx+ C1,

such that C1 can be determined by calculating the limit. As the integrand in the first
term is continuous by assumption, the double integral can be interpreted as a Riemann
integral and is thus twice continuously differentiable. As the same holds for z ln(z) if z > 0,
l’Hôspital’s rule can be applied to calculate the limit, yielding

lim
z→∞

1
z ln(z)

∫ z

a

∫ x

1

1
t
qµ((0, t])dtdx = lim

z→∞

1
ln(z) + 1

z
z

∫ z

1

1
t
qµ((0, t])dt

= lim
z→∞

z
1
z
qµ((0, z]) = qµ((0,∞)),

i.e. C1 = −qµ((0,∞)). Note that the limit can also be derived without relying on the
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continuity assumption by giving upper and lower bounds for the integrand. To find C2,
observe that the corresponding term in (A.7) behaves like z when evaluated on (a, z)
for a > 0. Using (A.4) and the explicit value of C1, this yields

0 = q lim
z→∞

1
z

( ∫ z

a

∫ x

1

1
t
µ((0, t])dtdx− µ((0,∞))

∫ z

a
ln(x)dx

)
+ C2 (A.8)

such that the constant is again determined by calculating the limit. To do so, rewrite the
second term as

µ((0,∞))
∫ z

a
ln(x)dx =

∫ z

a

∫ x

1

1
t
µ((0,∞))dtdx

such that the difference in (A.8) is given by

1
z

( ∫ z

a

∫ x

1

1
t
µ((0, t])dtdx− µ((0,∞))

∫ z

a
ln(x)dx

)
= −1

z

∫ z

a

∫ x

1

1
t
µ((t,∞))dtdx.

Note that one may replace a by 1 here, as the additional constants obtained from rewriting
the term will vanish when the limit is evaluated. For z fixed and finite, Fubini’s Theorem
can be applied, yielding

−1
z

∫ z

a

∫ x

1

1
t
µ((t,∞))dtdx = −

∫ z

1

1
t
µ((t,∞))dt+ 1

z

∫ z

1
µ((t,∞))dt.

Here, the second term on the right-hand side has already been treated on page 9 of [38]
and is shown to vanish when the limit is evaluated. From (A.8) we can see that the limit
for z →∞ must also exist for the other term, such that the constant C2 is given by

C2 = q
∫ ∞

1

1
t
µ((t,∞))dt.

Replacing C1 and C2 in (A.7) and simplifying the term now leads to

ν(dz) =
∫ z

1

1
t
qµ((0, t])dtdz − qµ((0,∞)) ln(z)dz + q

∫ ∞
1

1
t
µ((t,∞))dtdz

= q
∫ ∞
z

1
t
µ((t,∞))dtdz.

As ν is the same as in (A.3), we arrive at

q
∫ ∞
z

1
t
µ((t,∞))dtdz = −γξ

∫ ∞
z

µ(dx)dz +
σ2
ξ

2 zµ(dz)γη
∫ ∞
z

µ(dx)
x

dz (A.9)

+
∫

(z,ez]
Π

(+)
ξ

(
ln x
z

)
µ(dx)dz +

∫
[ z
e
,z)

Π
(−)
ξ

(
ln z
x

)
µ(dx)dz

+ 1
z

∫
(0∧(z−1),z)

Π
(+)
η (z − x)µ(dx)dz

−
∫ ∞
z

1
t2

∫
(0∧(t−1),t)

Π
(+)
η (t− x)µ(dx)dtdz.

Note that all terms in (A.9) except (σ2
ξ/2)zµ(dz) are by definition absolutely continuous
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with respect to the Lebesgue measure such that the existence of a density is implied.
In this case it also follows from (A.9) that the density is bounded on compact subsets
of (0,∞).

A.2. Self-Decomposability
Aside from the distributional properties studied in Sections 2.1 to 2.4, many more aspects
of the law of the killed exponential functional can be considered. One such example is the
question of self-decomposability. We call a random variable X self-decomposable, if for
any c ∈ (0, 1) there exist random variables X ′ and Yc such that X d=cX ′+ Yc with X ′ d=X,
where the summands on the right-hand side are assumed to be independent. Equiva-
lently, this can be expressed through the factorization property ΦX(z) = ΦX(cz)Φc(z)
for all z ∈ R, where ΦX and Φc denote the characteristic functions of X and Yc, re-
spectively. Exponential functionals of the form

∫∞
0 e−asdηs, where a > 0 and η is a Lévy

process satisfying
∫
R\[−e,e](ln |y|)νη(dy) <∞, are classical examples of self-decomposable

random variables. It was further shown in [13, Rem. to Thm. 2.2] that the deterministic
subordinator ξt = at can be replaced by any Lévy process ξ that has no positive jumps
and drifts to ∞ a.s. as t → ∞, showing that the law of V0,ξ,η is self-decomposable under
mild assumptions. If η ≡ 0, the law of Vq,ξ,η is the zero measure and hence clearly self-
decomposable. However, a simple condition similar to the one given in [13] cannot hold
for the killed exponential functional, as can be seen from the examples below.

Example A.2. (i) Let ηt = t, ξt = at and q = a > 0. In this case, the characteris-
tic function ϕ of Vq,ξ,η was calculated explicitly in (2.66). Note that ϕ has zeroes, such
that the corresponding distribution cannot be self-decomposable as it is not infinitely di-
visible (cf. [58, Cor. 15.11]). Further, any infinitely divisible distribution has unbounded
support unless it is degenerate (cf. [58, Thm. 24.3]), such that the law of the killed expo-
nential functional is never self-decomposable if η is deterministic and ξ is a subordinator
with positive drift (see also Section 2.1). If ξ ≡ 0, we have Vq,0,t =

∫ τ
0 e0dt = τ , which is

exponentially distributed and hence has a self-decomposable law by [58, Ex. 15.13].
(ii) Whenever η is a compound Poisson process, the law of the killed exponential func-
tional has an atom at zero. Since self-decomposable distributions are absolutely continuous
unless degenerate (see [58, Thm. 28.4]), the law of Vq,ξ,η cannot be self-decomposable re-
gardless of the choice of ξ.
(iii) Let ξ ≡ 0 and η be a standard Brownian motion. In this case, Vq,ξ,η d=ητ and the law of
the killed exponential functional is absolutely continuous by Corollary 2.45. Since L(Vq,ξ,η)
is equal to q times the potential measure, its density is given by

f(x) = q · vq(x) = q · 1√
2q exp(−|x|/

√
2q)

where vq denotes the density of the corresponding potential measure derived in [58,
Ex. 30.11]. Note, however, that f is identified as the density of a two-sided exponen-
tial distribution in [58, Ex. 45.4], which is self-decomposable (cf. [58, Ex.15.14]).
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A.3. Extension to the Multivariate Case
Throughout Chapter 2, the killed exponential functional has been considered for real-
valued Lévy processes ξ and η only. Note, however, that all relevant quantities can be
formulated in a multivariate setting as well (see [4]). We give a brief overview of the tools
needed to extend the notion of the (killed) exponential functional to the multivariate case
as well as the main differences to the univariate setting analyzed in Chapter 2. Let (U,L)
be an Rd×d ×Rd-valued Lévy process with U possibly being independent of L. Then the
solution to the SDE

dVt = dUtVt− + dLt (A.10)

with starting random variable V0 is called a multivariate generalized Ornstein-Uhlen-
beck (mGOU) process. Alternatively, one can assume L to be Rd×d-valued and obtain a
matrix-valued generalized Ornstein-Uhlenbeck process that includes the stochastic expo-
nential by setting L ≡ 0. In either case, the process V = (Vt)t≥0 is well-defined as the
unique strong solution to the SDE by Theorem 1.17. It was shown in [4, Thm. 3.4] that,
similar to (1.10) in the univariate case, the mGOU process can be given explicitly as

Vt =
←
E (X)−1

t

(
V0 +

∫ t

0+

→
E (X)s−dYs

)
, t ≥ 0,

where det(Id + ∆X) 6= 0 for all t ≥ 0 such that
←
E (X)−1 is well-defined. The Lévy

processes X and Y are considered the driving processes of V and play the role of ξ and η,
respectively. Further, U and L in (A.10) are obtained through the relations

→
E (U)t =

←
E (X)−1

t , t ≥ 0,
Lt = Yt +

∑
0<s≤t

((Id + ∆Xs)−1 − Id)∆Ys − [X, Y ]ct , t ≥ 0,

where [·, ·]c denotes the continuous part of the quadratic covariation. Note that U , too,
satisfies det(Id+∆Ut) 6= 0 for all t ≥ 0, matching the condition ∆Ut 6= −1 in the univariate
case. Whenever V0 is independent of (X, Y ), the mGOU process is a time-homogenous
Markov process which, under suitable conditions, has a unique stationary distribution
that is given by the law of the improper integral

V0,U,L =
∫ ∞

0+

←
E (U)s−dLs, (A.11)

where the limit exists a.s. if we assume e.g.

E[ln max{1, ‖U1‖}],E[ln max{1, ‖L1‖}] <∞, and E[ln ‖
←
E (U)t0‖] < 0 for some t0 > 0

in the above setting (cf. [4, Thm. 5.4]). Thus, V0,U,L is the multivariate analog to the
exponential functional in the case without killing. Similar to the univariate case, it can
be shown that the mGOU process is a Feller process under suitable assumptions on the
Lévy measure of U and one can give the infinitesimal generator of the process. We show
the first result by vectorization of the SDE (A.10) and evaluation of the necessary and
sufficient condition for the solution to be a rich Feller process given in [37, Thm. 1.1]
similar to [37, Ex. 4.3]. We call a Feller process rich if the space of test functions lies in
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the domain of its infinitesimal generator.

Lemma A.3. Let (U,L) be a Lévy process taking values in Rd×d ×Rd. Then the mGOU
process driven by U and L, i.e. the solution of the stochastic differential equation

dVt = dUtVt− + dLt, t > 0, V0 = v ∈ Rd

is a rich Feller process if the Lévy measure νU of U satisfies

νU({m ∈ Rd×d : det(m+ Id) = 0}) = 0. (A.12)

Whenever νU has atoms in the set {m ∈ Rd×d : det(m + Id) = 0}, the solution is not a
rich Feller process.

Proof. We compare (A.12) to the necessary and sufficient condition derived in [37]. First,
we rewrite the SDE to the form

dVt = σ(Vt−)dZt (A.13)

where Z = (Zt)t≥0 is an Rd2+d-valued Lévy process such that

Z =
(
U vec

L

)
= (U1,1, U2,1, . . . , Ud,1, U2,1, . . . , Ud,d, L1, L2, . . . , Ld)T (A.14)

and σ : Rd → Rd×(d2+d) is given by

σ((x1, . . . , xd)T ) =
(
xT ⊗K Id | Id

)
,

where ⊗K denotes the Kronecker product and Id ∈ Rd×d the identity matrix. Note that by
Theorem 1.17, V is a strong solution of (A.13) such that the conditions of [37, Thm. 1.1]
are satisfied. Thus, the solution is a rich Feller process if and only if

νZ(Ar(x)) = νZ({y ∈ Rd2+d : σ(x)y ∈ B(−x, r)}) ‖x‖→∞→ 0 (A.15)

holds for all r > 0, where B(−x, r) ⊂ Rd denotes the ball of radius r centered at −x. For
the given SDE and y = (y1, y2) ∈ Rd2+d with y1 ∈ Rd2 and y2 ∈ Rd, the condition reads

σ(x)y ∈ B(−x, r) ⇔ ‖σ(x)y + x‖ < r

⇔ ‖ymat1 x+ y2 + x‖ = ‖(ymat1 + Id)x+ y2‖ < r

where ymat1 ∈ Rd×d is constructed from y1 by reversing the vectorization. Assume now
that νU({y1 ∈ Rd2 : det(ymat1 + Id) = 0}) = 0. Whenever det(ymat1 + Id) 6= 0, the linear map-
ping x 7→ (ymat1 + Id)x is continuous, one-to-one and onto and takes the value −y2 for
exactly one x0 ∈ Rd. In particular, x 7→ ‖(ymat1 + Id)x+ y2‖ is continuous and unbounded
for ‖x‖ → ∞ such that

lim
‖x‖→∞

1Ar(x)∩{y=(y1,y2)∈Rd2+d:det(ymat1 +Id) 6=0} = 0.

Since νZ is a Lévy measure on Rd2+d \ {(0, . . . , 0)T} and Ar(x) does not contain a neigh-
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borhood of the zero vector if ‖x‖ is sufficiently large, it follows by dominated convergence
that (A.15) is satisfied.
Next, let m ∈ Rd×d with det(m + Id) = 0 and νU({m}) > 0. We show necessity by
contradiction. Assume that νZ(Ar(x)) → 0 as ‖x‖ → ∞. Since det(m + Id) = 0,
the mapping x 7→ (m+ Id)x is not one-to-one and onto. In particular, the linear sys-
tem (m+ Id)x = 0 has infinitely many solutions and there exists a unit vector x0 ∈ Rd

with `(m+ Id)x0 = 0 for all ` ∈ R. Choosing x = `x0 yields

‖(m+ Id)x+ y2‖ = ‖y2‖,

i.e., (mvec, y2) ∈ Ar(`x0) for any y2 ∈ Rd with ‖y‖ < r. Hence,

lim
`→∞

νZ(Ar(`x0)) = νZ({m} × {y2 ∈ Rd : ‖y2‖ < r}). (A.16)

Observe that the right-hand side tends to νZ({m} × Rd) = νU({m}) > 0 as r → ∞ and
is, therefore, positive for large enough r, contradicting lim‖x‖→∞ νZ(Ar(x)) = 0.

A similar result holds if we assume L, and hence V , to be matrix-valued. Note, however,
that, unlike in one dimension, (A.12) is in general not necessary in the vector or matrix-
valued case, as one can construct examples where νU(·+ Id) has mass, but no atoms, on
the non-invertible matrices, but the condition given in [37] is still satisfied.

Example A.4. Set d = 2 and let U and L be two independent Lévy processes such that L
is a Brownian motion and U is a compound Poisson process with νU(·+ Id) having mass
on the non-invertible matrices, but no atoms, such that the jumps of the process are of
the form

∆Us + Id =
(

1 a
1 a

)
= ymat1 + Id

with some a ∈ [0, 1) that is distributed according to the one-dimensional Lebesgue mea-
sure λ restricted to [0, 1). In particular, (A.12) does not hold, as

νU({m ∈ Rd×d : det(m+ Id) = 0}) = λ([0, 1)) = 1 6= 0.

Observe that for x = (x1, x2)T and y2 = (z1, z2)T it is

‖(ymat1 + Id)x+ y2‖ =
√

2(x1 + ax2)2 + ‖y2‖2 + 2(x1z1 + ax2z1 + x1z2 + ax2z2).

As L does not jump, we can set y2 = 0, and to check (A.15) it is sufficient to show that
the set

Cr(x) =
{
a ∈ [0, 1) : (x1 + ax2)2 <

r2

2

}
or, equivalently, the set

C̃r(x) =
{
a ∈ [0, 1) :

(
1 + 2a x1x2

x2
1 + x2

2

)
<

r2

2‖x‖2

}
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reduces to a Lebesgue null set as ‖x‖ → ∞. Observe that the function

(0, 0)T 6= (x1, x2)T 7→ 2a x1x2

x2
1 + x2

2

only takes values in the interval [−a, a] such that the term on the left-hand side of the
inequality defining the elements of C̃r(x) is strictly positive regardless of the choice of the
continuous curve (x1, x2)T = (f1(t), f2(t))T with limt→∞ ‖(f1(t), f2(t))T‖ = ∞. Thus, the
set reduces to the empty set as ‖x‖ → ∞. Since, by the choice of U and L, the Lévy
measure of the process Z defined in (A.14) is finite, it follows

lim
‖x‖→∞

νZ(Ar(x)) = 0,

by dominated convergence, showing that (A.15) may be satisfied even if (A.12) is not.

Next, we calculate the infinitesimal generator AV of the mGOU process using results
from [37]. Alternatively, AV can be derived using the multivariate version of Ito’s formula
similar to the proof of [5, Thm. 3.1].

Lemma A.5. Let (U,L) be an Rd×d × Rd-valued Lévy processes such that the compo-
nents U and L are independent. Further, assume that (A.12) holds. Then the infinitesimal
generator AV of the mGOU process V satisfying the SDE

dVt = dUtVt− + dLt, t > 0, V0 = v ∈ Rd

acts on functions f ∈ C∞c (Rd) by

AV f(x) = ALf(x) + 1
2
(
(xT ⊗K Id)AU(x⊗K Id)∇

)T
∇f(x)

+ γTU (x⊗K Id)∇f(x) (A.17)

+
∫
Rd

2
f(x+ sT (x⊗K Id))− f(x)− sT (x⊗K Id)∇f(x)1D(s)νU(ds),

where AL is the infinitesimal generator of the Lévy process L as given in Theorem 1.8, D
is the unit disk and ⊗K denotes the Kronecker product. Further, C2

c (Rd) and C2
0,pl(Rd)

are contained in the domain of AV and (A.17) also holds for these functions. Here, the
space C2

0,pl(Rd) is given by

C2
0,pl(Rd) =

{
f ∈ C2

0(Rd) : lim
‖x‖→∞

( d∑
k=1

(1+‖x‖)
∣∣∣∣ ∂f∂xk (x)

∣∣∣∣+ d∑
k,l=1

(1+‖x‖)2
∣∣∣∣ ∂2f

∂xk∂xl
(x)
∣∣∣∣) = 0

}
.

Proof. Whenever (A.12) is satisfied, [37, Thm. 1.1] yields the the infinitesimal generator
of V as

AV f(x) = −
∫
Rd
eixyq(x, y)f̂(y)dy, f ∈ C∞c (Rd), x ∈ Rd,

where f̂ denotes the Fourier transform of the function f and q(x, y) is the so-called sym-
bol of the process V , which can be calculated from the characteristic exponent ψZ of Z
via q(x, y) = ψZ(σ(x)Ty). Thus,AV is readily obtained from evaluating the integral. Using
linearity and the independence of the processes U and L, we can calculate the contribu-
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tions of the individual processes separately. The contribution of L is readily identified, as
the terms obtained from the characteristic exponent ψL of L reproduce the infinitesimal
generator of the Lévy process as given in Theorem 1.8, i.e.,

−
∫
Rd
eixyψL(y)f̂(y)dy = ALf(x)

= 1
2∇

TAL∇f(x) + γTL∇f(x) +
∫
Rd
f(x+ s)− f(x)−∇Tf(x)s1D(s)νL(ds).

For the contribution of U , the Gaussian, drift and jump part can be treated separately.
Starting with the Gaussian part, observe that

− 1
2

∫
Rd
eixyyT (xT ⊗K Id)AU(x⊗K Id)yf̂(y)dy

= 1
2
(
(xT ⊗K Id)AU(x⊗K Id)∇

)T
∇f(x)

since every multiplication by some yi in the integrand yields a partial derivative when
the inverse Fourier transform is considered. Note that, since AU is symmetric, the ma-
trix (xT ⊗K Id)AU(x⊗K Id) is symmetric as well. Further, a similar calculation yields the
contribution of the drift part, which is given by

−
∫
Rd
eixyi〈γU , (x⊗K Id)y〉f̂(y)dy = γTU (x⊗K Id)∇f(x).

Lastly, we obtain for the integral term

−
∫
Rd

∫
Rd

2
eixy

(
exp(i〈s, (x⊗K Id)y〉)− 1− i〈s, (x⊗K Id)y〉1D(s)

)
νU(ds)f̂(y)dy

=
∫
Rd

2
f(x+ sT (x⊗K Id))− f(x)− sT (x⊗K Id)∇f(x)1D(s)νU(ds),

by observing that the first term of each integral yields a phase shift. Summing up the
individual terms yields AV f(x) for f ∈ C∞c (Rd) as claimed.
It follows from [37, Thm. 1.1] that C2

c (Rd) ⊂ dom(G) and it is further readily checked
that the right-hand side of (A.17) is also well-defined for f ∈ C2

0,pl(Rd) by generalizing
the bounds obtained in [5] to higher dimensions. Denote the integro-differential operator
on the right-hand side of (A.17) by H and observe that

∣∣∣∣γTU (x⊗K Id)∇f(x) + γTL∇f(x)
∣∣∣∣ ≤ max

j
γj

d∑
k=1

(
1 +

d∑
l=1
|xl|

)∣∣∣∣ ∂f∂xl (x)
∣∣∣∣

≤ C max
j
γj

d∑
k=1

(1 + ‖x‖)
∣∣∣∣ ∂f∂xl (x)

∣∣∣∣
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by the equivalence of norms on Rd2 and that∣∣∣∣12
(
(xT ⊗K Id)AU(x⊗K Id)∇

)T
∇f(x) + 1

2∇
TAL∇f(x)

∣∣∣∣
≤ 1

2 max
i,j
|Ai,j|

d∑
k,l=1

(
1 +

d∑
m,n=1

|xmxn|
)∣∣∣∣ ∂2f

∂xk∂xj
(x)
∣∣∣∣

≤ 1
2 max

i,j
|Ai,j|

d∑
k,l=1

(1 + ‖x‖)2
∣∣∣∣ ∂2f

∂xk∂xj
(x)
∣∣∣∣

by the Hölder inequality. Denoting ‖f‖∞ = supx∈Rd |f(x)|, we further obtain∣∣∣∣ ∫
Rd

2
f(x+ sT (x⊗K Id))− f(x)− sT (x⊗K Id)∇f(x)1D(s)νU(ds)

∣∣∣∣
≤

d∑
k,l=1
‖x‖2

∣∣∣∣ ∂2f

∂xk∂xl
(x)
∣∣∣∣ ∫
D
‖s‖2νU(ds) + 2‖f‖∞νU(Rd2 \D)

by splitting the integral and applying the Taylor formula for the integrand in the first
term and a general estimate for the second one. Similarly,∣∣∣∣ ∫

Rd
2

(
f(x+ s)− f(x)−∇Tf(x)s1D(s)

)
νL(ds)

∣∣∣∣
≤

d∑
k,l=1

∣∣∣∣ ∂2f

∂xk∂xl
(x)
∣∣∣∣ ∫
D
‖s‖2νL(ds) + 2‖f‖∞νL(Rd \D),

which also yields a finite bound. Hence, Hf(x) is indeed in C0(Rd) for the functions f
considered, as dominated convergence is applicable for the integrals. We can thus conclude
that both C2

c (Rd) and C2
0,pl(Rd) are contained in dom(H). To see that H extends uniquely

to the desired spaces, observe that the above bound for |Hf(x)| can be made uniform
in x ∈ Rd by taking the supremum and equip C∞c (Rd), C2

c (Rd) or C2
0,pl(Rd), respectively,

with the norm

‖f‖pl = ‖f‖∞ +
d∑

k=1

∥∥∥∥(1 + ‖x‖) ∂f
∂xk

∥∥∥∥
∞

+
d∑

k,l=1

∥∥∥∥(1 + ‖x‖)2 ∂2f

∂xk∂xl

∥∥∥∥
∞
.

It now follows that there is a constant C ≥ 0 such that

‖Hf(x)‖∞ ≤ C‖f‖pl,

if f is taken from any one of the considered function spaces. Since AV is a closed op-
erator, H, interpreted as an operator (C∞c (Rd), ‖.‖pl)→ (C0(Rd, ‖.‖∞), is bounded and
hence continuous, C∞c (Rd) is dense in both C2

c (Rd) and C2
0,pl(Rd), and (C0(Rd), ‖.‖∞) is

a Banach space, H uniquely extends to the desired spaces.

Again, a similar result holds if we assume L, and hence V , to be matrix-valued. Observe in
particular that the structure of the infinitesimal generator in (A.17) mirrors (2.28) in the
one-dimensional case and that, similar to [5, Thm. 3.1, Cor. 3.3], it can also be calculated
without the assumption of independence, yielding a more general form. Letting τ denote
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an exponentially distributed random variable and defining

Vq,U,L =
∫ τ

0+

←
E (U)s−dLs (A.18)

now gives the multivariate analog for the killed exponential functional and thus the start-
ing point for an analysis similar to Chapter 2 for the multivariate case.
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