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Abstract 

Epilepsy is one of the most common and devastating neurologic diseases, which affects over 70 

million people around the world. For some patients, it can be managed with antiepileptic drugs. 

However, 20 to 30% of them would likely get worse after the initial improvement, and some may 

even remain refractory to the current medicine. Predicting seizures enough in advance could allow 

patients or caretakers to take appropriate actions and therefore, reduce the risk of injury. 

This work focused on time-domain features to achieve discriminative information about EEG 

signals and at a lower CPU cost. Thus, Kruskal Wallis, a non-parametric approach, was found to 

perform better than other approaches due to its less resource consumption strategy while 

maintaining the highest Matthews’s Correlation Coefficient (MCC) score. The performance of 

Kruskal Wallis may suggest considering the importance of univariate features like complexity and 

interquartile ratio along with auto regressive model parameters and maximum cross-correlation.  

Furthermore, it has been demonstrated that dividing EEG to sub-bands will provide more 

discriminative information and that a 2-second window length provides the highest MCC score 

while dealing with the non-stationary behaviour of EEG signal for this window length. 

Consequently, the obtained results from 2-s window were fed to a binary (Extreme Gradient 

Boosting) classifier and the posterior probability of the test data extracted. The probabilistic 

framework requires the mean and maximum probability of the non-seizure and the seizure 

occurrence period segments. Once all these parameters were set for each patient, the medical 

decision maker can send alarm based on well-defined thresholds. 

While finding a unique model for all patients is really challenging, our modelling results 

demonstrated that the proposed algorithm can be an efficient tool for reliable and clinically relevant 

seizure forecasting. Using iEEG signals, the proposed algorithm is capable of forecasting seizures, 

informing a patient about 75 minutes before a seizure would occur, a period large enough for 

patients to take practical actions to minimize the potential impacts of the seizure. 

The proposed tool aims to be implemented in a low power portable device by considering few 

simple time-domain features for a specific sub-band. It should be noted that there are not many 

publications investigating frontal lobe epilepsy, making the findings in this work promising results. 
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Chapter 1 

Introduction 

 

1.1 Motivations 

 

As a chronic neurological disorder, epilepsy is the third most common neurological disease; it 

affects about 1% of the world population [1], [2]. Patients with epilepsy suffer from recurrent 

seizures that affect their quality of life with loss of consciousness, depression, mental illness, 

strange sensations, and convulsions. If seizures are not controlled, these patients will have to deal 

with serious limitations in terms of family, social, educational, and vocational activities [1].  

Epileptic seizures happen when there is a sudden excessive electrical discharge in the entire brain. 

During the epileptic seizure, the normal activity of the brain will be interrupted, which alters an 

individual’s behaviour and functioning [3]. Patients with epilepsy sometimes are treated with 

medication or surgery, but these approaches are not completely effective and poor response to 

medication remains a serious limitation in the treatment of epileptic seizures [4]. Unfortunately, 

the seizures that cannot be completely cured have a negative influence on the patient’s lifetime. In 

this scenario, a patient cannot autonomously work and do some activities [5], [6], since he/she is 

susceptible to face severe issues such as injuries and sudden death, limited independence, driving 

restrictions and difficulties in finding and keeping a job.  

A seizure forecasting tool can therefore significantly enrich the patient's life. Prediction of an 

epileptic seizure at an early stage is vital for such people [1], [7] and, consequently, the objective 

of an ever-increasing numbers of research teams, as demonstrated by the number of papers 

published in this field (Figure 1.1 [8]).  
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Figure 1-1 The evolution of research in seizure prediction [8]. 

 

To this aim, non-invasive/scalp electroencephalogram (EEG) and intracranial 

electroencephalography (iEEG) tests are seen as the major sources of data that can help efficient 

diagnostic of different neurological disorders namely, epilepsy, and to study the function and 

behaviour of the brain [9]–[13].  

Since iEEG is an invasive method that records by implanting the electrodes in the brain during 

surgery, there are generally many fewer artifacts than in scalp recordings (EEG), which can be 

concluded from the higher signal-to-noise ratio (20 to above 100 times) of iEEG compared to non-

invasive EEG [8], [11]–[15]. Therefore, iEEG is more valuable for epilepsy research. Figure 1-2 

illustrates the comparison between the non-invasive EEG compared to the invasive one. 
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Figure 1-2 Signal characteristics between EEG and iEEG signals. 

 

The International League Against Epilepsy (ILAE) divided epileptic seizures into partial or focal 

and generalized seizures. Focal seizures originate in a limited region of the brain and may spread 

to other regions. On the other hand, generalized seizures are initiated in bilateral hemispheric areas 

and quickly propagate to all cortical areas [16]. Though there are different forms of seizures, we 

focused on those that are focal, mainly in the temporal and frontal lobes, entitled to Temporal Lobe 

Epilepsy (TLE) and Frontal Lobe Epilepsy (FLE), respectively.  

TLE is one of the most prevalent form of focal epilepsy. It has received a significant amount of 

attention from the neurologists due to its high likelihood of clinical occurrence [17]–[20]. This 

kind of epilepsy may be treated medically at the onset of the disease with different antiepileptic 

drugs [20]. However, investigation on predicting of temporal lobe epilepsy is still open since in 

the last decade, various approaches have been employed to attain to increase the sensitivity and 

decrease the low False-Positive rate [7], [21]–[24]. 

FLE is the second-most common form of focal epilepsy after TLE accounting for 25% of epilepsy 

[25]–[28]. Instead, FLEs, as compared to TLEs, tend to be brief, drug resistant, more problematic, 

and to occur during sleep. Furthermore, the surgery for FLE has poorer outcomes than for TLE; 

as a result, the surgical workup of FLE is even more demanding [25], [29], [30]. Diagnosis of the 
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FLE is rather hard due to having similar symptoms as sleep disorder, night terror, and psychiatric 

diseases [30]. 

Consequently, designing and implementing a reliable forecasting and early warning tool that can 

help epileptic individuals to take appropriate drugs during an early warning period is also vital 

[31]–[33]. Therefore, the challenge is to reach a higher sensitivity with lower false positive rate 

and longer anticipation time. To do so, the characteristics of EEG signals need to be investigated 

to select the most appropriate features that reliably reflect the variations in the signals, the proper 

bands of frequencies to consider, the window size to apply, and the type of classifiers to use in 

order to better predict seizures. 

Efficient feature selection is indeed the key in prediction. Some studies already touched this aim 

but in a relative limitative way, like in [34], in which the authors just used a filter method to select 

features or in [35], where the authors based their approach on accuracy, which, due to imbalanced 

data, may be seen as not so accurate. In fact, even if their model can predict the majority class, 

normal cases, it might be not so adequate for the minority class, seizure cases. Also, in their work, 

EEG signal was filtered by a band-pass filter 0.5-70 Hz, so an important part of the seizure 

information was removed (frequencies higher than 70 Hz). In fact, one of the limitations of existing 

works is filtering the EEG signal with a pass-band filter, which removes the high-frequency sub-

bands that are very important in the prediction of the seizure [35], [36]. It is then important to use 

a wide range of frequencies (up to 120 Hz) and consider the whole available data for the nominated 

patients. Another notable limitation of published works in this field is about employing limited 

data in their studies. In [37], the authors attempted to study just one minute of data or in [38], they 

used a limited amount of data: 5 min preictal and 10 min interictal.  

As for which kind of features to consider to best predict seizures, several works have been 

published in this field. In [39], [40] the authors compared various feature ranking methods but here 

also, only accuracy was considered as solely measure. In [38], [41] the authors implemented few 

features and applied just a classifier so that the results may not be generalizable to a larger set of 

data. Also, in [13], [34], [42] the authors tried to combine and investigate the frontal lobe and 

temporal lobe epilepsy cases and provide a general result for all of the patients. However, there 
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are some neuropsychological differences between FLE and TLE and also the spreading of the TLE 

is different from that of the FLE [43], [44].  

Currently, there are three main approaches in analyzing EEG signal for prediction of seizures. In 

one group, researchers divided the EEG signal into various sub-bands and extracted the features 

for each correspondent sub-band [45], [46] while in a second group, researchers applied the feature 

extraction on just the EEG electrodes [37], [47]–[49]. In the last group, people intended to combine 

those two early mentioned groups in their works [34], [41]. It will be then beneficial to examine 

the effect of considering sub-bands in processing of such complicated, non-linear, and uncertain 

signals. 

Among the several feature extraction techniques that have been introduced in the last few years, 

the time-domain ones are the earliest recommended methods. Time-domain features are employed 

to achieve discriminative information at a low computational cost. The obtained features are then 

fed to feature selection methods [50]. High-quality features can be defined as those that produce 

maximum class separability, robustness, and less computational complexity, key parameters to 

consider when targeting their use in everyday devices such as wearable devices. It is therefore 

crucial to explore the impact of iEEG signal variations on a reduced set of commonly used features 

and compare their performance. However, there is little evidence on the effectiveness of various 

feature selection methods on iEEG data of epilepsy patients. So, it is important to explore their 

differences and find which ones may perform better in the perspective to deploy an algorithm in 

an implantable medical device that uses linear features, allowing rapid calculation with less 

complexity in prediction of the seizure. 

In addition, any selection implies setting guidelines in terms of threshold. In fact, decision making 

is one of the unmissable steps in prediction of the seizure [10], [11], [15]. In [2], [38] the authors 

did not define properly the threshold rules, while in [13], [51] just the preictal portion of the signal 

has been used in generating the threshold. Therefore, setting a reliable threshold approach is an 

important step to address while extracting the signal features.  

Seizure prediction is also strongly dependent on the window size used in processing data. Different 

works have been published in selecting the most suitable window size. However, some of them 
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used accuracy as the plain evaluation metric, while in other studies, the performance measure of 

the feature classifier was not reported [15], [38], [52], [53]. Also, in some published works, the 

authors just employed one feature to optimize the classifier and find the best window size [38], 

[54] while redundant information may be extracted from the electrodes during a given period of 

time, which may be useless until be combined with other discriminative features. Therefore, 

selecting the best window size can highly improve the prediction performance.  

 

1.2 Methodology 

 

This work intends to design and implement a reliable forecasting and early warning tool that can 

help epileptic individuals to take appropriate drugs during an early warning period [2], [55], [56]. 

Furthermore, since portable devices are so present in our daily life, targeting tools that could be 

easily implemented in such devices is the objective of this study. However, knowing that:  

 for new customers, the application will have to be frequently updated during its first uses 

to be able to efficiently integrate the new patient data, 

 some patients may not have regular access to wireless connections and/or 

computers/tablets, 

we opted for a strategy of dual-mode operation: the training/update should be performed on the 

portable device itself while the application is still working on prediction mode. So, in order to 

ensure an efficient online training/prediction, it is crucial to shorten the training CPU time while 

making the tool operation as simple as possible.  

As starting point, we will try to avoid the limitations mentioned earlier in existing works by taking 

into account a large range of frequencies up to 120 Hz in processing of EEG signals and 

considering various classifiers with different performance metrics. In fact, accuracy cannot be 

good enough when dealing with imbalanced datasets in which the vast majority of a class comes 

from one class. Thus, we will utilize various classifiers and evaluation metrics other than accuracy 

to make sure our results are not just based on one measurement and a single classifier.  
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Also, in order to avoid any confusion whether the division of EEG signals to various sub-bands is 

beneficial in processing or not, we will run two scenarios: on one side, we will divide the EEG 

signal into 6 sub-bands and extract the energy accumulated for each sub-band of EEG electrode 

while on another side, the energy will be extracted from an electrode without diving it to various 

sub-bands. Finally both scenarios will be compared together with a distribution free test, Kruskal 

Wallis, to show which approach extracts more meaningful and informative biomarkers from an 

EEG signal.  

Furthermore, we will investigate the importance of 16 time-domain features with three types of 

feature ranking methods (filter, wrapper, and embedded approach); the aim being to reduce the 

dimensionality from 630 to 30 by removing the irrelevant features and then, reducing the 

computational time and cost [57]. Since the morphology of the signal for TLE and FLE is different, 

they will be studied and investigated separately in this work instead of combining the patients with 

various origin of epilepsy.    

After determining the ability of a number of measures to discriminate between the preictal and 

interictal period utilizing a non-parametric statistical technique, which does not rely on any 

distribution and require any tuning parameters, we will look for the best window size, evaluating 

the measure for performance of a classifier, and developing a framework for efficient epileptic 

seizures prediction with introducing a novel threshold (by considering the information from both 

interictal and ictal stages). This can lead us to higher sensitivity, less false positive rate, and longer 

anticipation time. All in all, we will investigate the main parameters that can affect the prediction 

of the seizure such the choice of the features, window size, and the classifier. 

Note that because of the limited number of patients available in the database we used, i.e., the 

Freiburg database [58], the obtained results should be seen much more as a proof of concept and 

promising step in epileptic seizures prediction rather than a broad validation of the approach we 

developed.  
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1.3 Contributions 

 

The major original contributions of this thesis are as follows:  

 To the best of our knowledge, this is the first study that combines the three known types of 

feature selection (filter, wrapper, and embedded) in a scenario of seizure prediction for 

both TLE and FLE (whereas evaluated separately). 

 To the best of our knowledge, this is the first time the prediction of the frontal lobe epilepsy 

for human subjects was effectively investigated. Therefore, we enhanced that by dividing 

the patients based on the origin of their seizure, utilizing efficient performance metrics and 

applying a comprehensive study on the discriminative features in seizure prediction.  

 We demonstrated in this work how dividing the EEG signal into various sub-bands is 

important in prediction of the seizure while utilizing other performance time-domain 

metrics besides accuracy can further enhance the precision of the results.  

 We considered a large panel of time-domain features to represent the changes of a series 

of non-stationary signals and, more specifically, the ones that are most informative and 

more recommended to achieve discriminative information at a low computational cost.  

 We found out that a 2-second window is the best choice knowing that, according to [59], 

by choosing a window size longer than 1s and smaller than 4s, a non-stationary signal like 

EEG can be assumed as stationary.  

 We developed an efficient algorithm with a novel threshold method to predict the seizure 

with an invasive approach, so that patients can be warned sufficiently in advance with high 

sensitivity and very low zero false positive rate. The anticipation time can be up to about 

75 minutes and varies from patient to patient, which is enough to provide adequate clinical 

treatment time prior to a seizure [56]. Interestingly, our novel prediction system does not 

rely just on an early warning since the medical decision making continues to inform the 

patient for the upcoming seizure. 

 

  



9 
 

1.4 Outlines 

 

In the next Chapter, we will conduct a literature survey to support the fundamental concepts of the 

proposed approach in prediction of the seizure.  

Chapter Three describes the dataset used in this work, the preprocessing stage, and the feature 

engineering while the preliminary results of SVM for prediction will be explained in chapter Four.  

In chapter Five, we compare various feature selections methods based on the time domain 

extracted features.  

In chapter Six, we will discuss the proposed prediction approach. Finally, we will conclude the 

work in the last Chapter, Seven. 
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Chapter 2 

Related concepts and State of the Art 

 

This chapter is devoted to presenting the background information and related works in the field of 

automated iEEG-based, EEG-based, ECG-based, and EEG with ECG-based epileptic seizure 

prediction.  

 

2.1 Background 

 

2.1.1 The central nervous system 

 

The nervous system has two different components namely, central and peripheral nervous systems 

[11]. The peripheral nervous system (PNS) is the section of the nervous system that contains the 

nerves outside the brain and spinal cord.  

The main role of the PNS is to connect the central nervous system (CNS) to the variety of organ 

systems. On the other hand, CNS is the part of the nervous system that includes the brain and 

spinal cord. This part of the nervous system analyses information received from the PNS, and 

harmonizes the activity of all parts of the body [12]. Based on its function and structure, the nerve 

cell (neuron) can be separated into three main parts (figure 2-1): (1) the cell body named the soma, 

(2) the various short processes of the soma, termed dendrites and (3) the axon, which is the single 

long nerve fiber [12].  
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Figure 2-1: Brain cell-interconnection [12]. 

 

2.1.2 The brain and its parts 

 

The brain has a complex structure that contains a huge number of cells and is divided into two 

hemispheres. These cells have many interconnections that enable them to receive data from various 

organs. Briefly, the brain can be seen as a supervisory control unit. 

The brain is protected by several layers; from outside to the surface of the brain (cortex) they are 

scalp (skin), skull (bone), and meninges (a membrane that covers and protects the brain) [11], [12].  

The outer layer of the brain is named cortex, which contains cell bodies of the neurons. The brain 

cortex has a significant role in memory, attention, perception, consciousness, thinking, language, 

and awareness.   

Our brain cortex is divided up into four lobes (note that since each lobe has a right and left side, 

there are in fact 8 lobes) [13], [60], [61], which are (figure 2-2): 
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 The frontal lobe placed at the front of the brain and responsible for higher mental processes 

like thinking, decision making, and planning. 

 The parietal lobe located above the occipital lobe and behind the frontal lobe. 

 The temporal lobe located below the lateral fissure (one of the structures of the human 

brain that separates frontal lobe and parietal lobe and has a major role in processing sensory 

input, auditory perception, language and speech production, memory. 

 The occipital lobe located in the back of the brain and acting as a visual processing center.  

 
Figure 2-2: Illustration of the different lobes of the brain [61]. 

 

2.1.3. Neurotransmission 

 

The nervous system has developed an exclusive ability in intracellular signalling (communicating 

inside of a cell) and intercellular signalling (communicating among the cells).  
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To send an electrical signal (action potential) very fast and over a long distance along the axon, 

neurons have developed special capability, called conduction. This mechanism is how a cell body 

of a neuron communicates with its own terminals through the axon. The interaction among the 

neurons is attained at synapses via the process of neurotransmission [62]. 

The conduction in the nerve starts when an action potential is produced around the cell body. The 

action potential is an electrical impulse and is quite similar to the electrical signals in electronic 

systems. An electrical impulse in a neuron happens owing to the movement of the ions along the 

neuronal membrane like the flow of electrons through a wire in electrical devices. Ions are 

electrically charged particles (positive or negative) and the neuronal membrane performs like a 

barrier to ions. The ions transfer from the membrane to ion channels that open and close owing to 

the existence of neurotransmitters. Once the relative concentration of the positive ions inside the 

neuron changes, the electrical potential across the membrane (the transmembrane potential) 

changes. This is because the action potential depends on Na+ flowing in and then K+ flowing in or 

out (it is the charges on the ions and the relative concentration of positive ions that matter). In 

general, the resting membrane potential of a neuron is around -70 millivolts (i.e., the membrane is 

to be polarized). The ions influx and outflux will turn the inside of the neuron more positive than 

the resting potential (means depolarization). Once the depolarization reaches a certain value of no 

return, named a threshold, a large amplitude is produced. In total, we say that an action potential 

was generated (Figure 2-3) [63], [64]. 

There are two types of intercellular transmission of information in the nervous system, electrically 

and chemically [65]: 

Electrically: neurons are connected to each other. An action potential reaches the end of the 

axon through small holes (named gap junctions) in an induvial cell membrane and 

the depolarization will continue through the membrane to the postsynaptic neuron. 

Chemically:  there is a gap (the synaptic cleft) between the axon terminal and the nearby neuron. 

When an action potential comes to the end of an axon, a chemical 

(neurotransmitter) is produced that stimulates the next neuron to alter its electric 

potential [66]. 
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Figure 2-3: Illustration of the general form of an action potential in a neuron [64]. 

 

2.2 EEG recordings 

 

EEG records can be made non-invasively from the scalp or invasively via surgical implantation of 

invasive electrodes in the intracranial structures.  

 

2.2.1 Scalp EEG 

 

The scalp EEG measures the difference of potentials between pairs of electrodes attached to the 

scalp and finds the smallest electrical charges that come from the activity of the neurons. The 10-

20 system, an internationally recognized method, proposed by Jasper in 1958 [67], has been a long-
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established convention for electrode placement and labelling in clinical settings. The system states 

the position of 21 EEG electrodes related to specific anatomical landmarks such that they are 

separated by 10% or 20% of the space between the nasion and the inion and between the pre-

auricular points (figure 2-4). In order to have a higher-resolution EEG, higher density systems such 

as 128, 256, and 345 electrodes have been introduced and used by different centres [68].  

Scalp EEG recordings are limited by the extracranial artifacts caused by the scalp muscle and heart 

activities, eye movement, external electromagnetic field, etc. Therefore, implementing an 

automatic removal of the artifacts from EEG signal stays a key challenge for finding valuable 

information from brain activities. 

 

Figure 2-4: An illustration of EEG recording in 10-20 system from a left sagittal (A) and top (B) view of the head. 

Nomenclature: A= Ear lobe, C= central, P= parietal, F= frontal, Fp= frontal polar, O= occipital. Odd numbers are 

employed on the left hemisphere, even numbers on the right, and Z (zero), in the midline [69]. 

 

2.2.2 Intracranial EEG 

 

Another type of EEG called Electrocorticography (ECoGs) or intracranial EEG (iEEGs) is 

typically recorded with the help of subdural depth electrodes and/or grid electrodes. A subdural 

electrode is a small metal disc implanted in Teflon or silastic sheath material and categorized in 
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various arrangements (Figure 2-5). These electrodes, connected to a thin metal wire, are 

individually insulated and ultimately bundled and covered with plastic material (tail). When the 

configuration of electrodes is in a single column, it commonly alludes to a subdural strip electrode. 

When it includes rows and columns, it is known as a subdural grid electrode and is available in 

many different sizes and configurations. These grids or strips are embedded subdurally on the 

surface of the brain, and their tails exit the meninges, skull and eventually over the scalp to protrude 

on the scalp (Figure 2-6). 

In order to attach the electrodes on the cortex of the brain to record electrical activity, a 

neurosurgeon should first do a craniotomy (remove part of the skull to access to the brain). This 

process may be done either under general or local anesthesia [69], [70].  

Compared to the scalp EEG, electrode placement is not standardized in the intracranial EEG. Once 

the intracranial EEG is employed to record the brain activity, brain wave is not weakened or 

changed by the skull/scalp tissue which perform like a low-pass filter. Moreover, the brain wave 

is not affected by Electromyography (EMG) artifacts, regularly observed in the scalp EEG. 

Furthermore, the invasive electrode is able to record signals from the small-population neurons, 

which is non-recordable with the scalp one. Then, the seizures can be identified typically earlier 

employing the intracranial electrodes compared to the scalp electrodes (Figure 2-7) [70]–[73].  
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Fig 2-5: Different size and arrangement of subdural grid and strip electrodes fabricated by a manufacturer (PMT 

Corporation, Chanhassen, MN, USA) [72]. 

 

Figure 2-6. An intraoperative photography implanted on the left cerebral hemisphere of a patient covered by various 

subdural grid electrode arrays [72]. 

 



19 
 

2.3 Epilepsy 

 

For many years, people thought epilepsy was because of the attack of demons and spirits [74].  

Today, epilepsy is known as the third most prevalent neurological condition characterized by 

recurrent seizures, a sudden uncontrolled electrical discharge in the brain, and people with 

frequent, and unprovoked seizures are diagnosed with epilepsy.  

Neurons firing seems to be random at first. Normally, brain activity is non-synchronous. After a 

neuron fires, it becomes more resistant to produce new spikes, as seen in Figure 2-8. These 

mechanisms are broken during epilepsy seizures [75]. As a result of these abnormalities, a 

collection of nerve cells starts firing excessively and synchronously. Actually, based on the offered 

definition by the International Bureau for Epilepsy and the International League Against Epilepsy 

(ILAE), the epilepsy seizure is “a temporary incident of the abnormal and simultaneous neuronal 

activity in the brain” [16], [76], [77]. 

 

Figure 2-7. Non-invasive EEG compared to invasive EEG [78]. 
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Figure 2-8. Action potential in normal and during seizure activity. 

 

Genetic features increase the risk of developing the seizure, the abnormal electric discharge in the 

brain [74]. Other causes of seizure are brain tumours, head injuries, infectious illnesses, fever, lead 

poisoning, and imperfect development of the brain. Even for some patients with seizures, the cause 

of their seizure is still unknown [79], [80]. 

The International League against Epilepsy (ILAE) divides epileptic seizures into partial or focal 

and generalized seizures. Focal seizures originate in a limited region of the brain and may spread 

to other regions. Depending on whether or not consciousness is impaired during the attack, a partial 

seizure is categorized as simple or complex [16].  

On the other hand, generalized seizures are initiated in bilateral hemispheric areas which appear 

to be simultaneously involved. Consciousness may be altered and motor behaviours are bilateral. 

Generalized seizures are often separated into convulsive and non-convulsive types. 

Epilepsies based on their origin can be classified into four major classes: temporal, frontal, 

occipital, and parietal lobe epilepsy. Temporal lobe epilepsy is the most common form of focal 

seizures [81], [82]. It can be divided into different regions in the temporal lobe structures. Frontal 

lobe epilepsy is the second-most common kind of epilepsy. Frontal lobe seizures are usually brief 
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and tend to occur during sleep. The clinical expressions of this seizure can vary depending on the 

area of the frontal lobe affection. The symptoms are involuntary and repetitive movements, 

abnormal body posture, paresthesia, and difficulty in speaking. Finally, because of the complex 

functions of the parietal lobe, its epilepsy is infrequent. Also, seizures of parietal origin have no 

typical symptomatology and no particular EEG signature [16], [81], [82].  

 

2.4 Brain and heart interactions in epilepsy 

 

2.4.1 The autonomic nervous system 

In 1628, for the first time, William Harvey hinted at a connection between the heart and brain and 

after that, in 1947, Bayer et al. were the first to report that cerebral vascular disease can generate 

myocardial infarction and arrhythmia [83]. Now, neuroradiology is an emerging specialty that 

deals with the interaction between brain and heart, i.e., the cardiac injury can affect the brain, and 

the brain injury can affect the heart [84].  

Also, for many years, various anatomic and physiological works of research of the cardiac 

autonomic nervous system (ANS) have been done to prove the relation between the brain and heart 

and found out its complexity [85]–[89].  

As briefly explained in section 2.1.1, the brain and spinal cord form the central nervous system 

(CNS) while the system extended to outlying or peripheral parts of the body is called peripheral 

nervous system (PNS). An overview of the CNS and PNS is illustrated in Figure 2-9. A subdivision 

of the peripheral nervous system, the autonomic nervous system (ANS), controls the autonomic 

functions that happen below the level of consciousness. In other words, ANS controls the body's 

autonomic or involuntary functions, namely the blood pressure, body temperature, heart rate, 

hunger, thirst, etc. [48], [90], [91] (Figure 2-10).  
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Figure 2-9. An illustration of CNS (in red and purple color) and PNS (in blue color) [49]. 
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Figure 2-10. A picture of the autonomic nervous system and its connections [91]. 
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The region of CNS in charge of the ANS is the hypothalamus (about the size of an almond in 

Figure 2-11) and located at the base of the brain [11], [85]. The Hypothalamus is also involved in 

long term memory and emotion. Interestingly, the hypothalamus and thalamus are located together 

as one regulates automatic survival behaviours (hypothalamus), whereas the other controls 

conscious behaviours (thalamus) [49].  

 

 

 Figure 2-11. The location of the hypothalamus near the brainstem [11]. 

 

2.4.2 Influences of ANS on Cardiac Electrophysiology 

The ANS consists of the parasympathetic and sympathetic nervous systems by which many organs 

are innervated by the two. Since the effects of the two systems on a given organ often have 

opposing actions, with one decreasing the activity of the organ and the other increasing it, this 

results in control of the organ’s function. For example, sympathetic activation increases heart rate 

and heartbeat strength while the parasympathetic system does the opposite [48], [90], [91]. 

 



25 
 

 

Figure 2-12. The innervation of the heart by parasympathetic and sympathetic systems. 

While the heartbeat basically originates within the heart itself, the heart rate can be affected by the 

ANS and also by other external factors namely, emotions and drugs [90]. At a given time, just one 

system predominates under certain circumstances. Generally speaking, the sympathetic system 

dominates during an emergency while during resting, the other one, parasympathetic, prevails [48].  

Actually, during physical activity or emotional issues, the sympathetic system stimulates the AV 

(the atrioventricular node) and SA (sinoatrial node) nodes and consequently, the heartbeats 

increase. On the other hand, the parasympathetic system through essentially vagus nerve fibers, 

tries to slow down the heart rate [85], [92].  
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2.4.3 Heart/Brain interaction in seizure period 

 

Heart Rate Variability (HRV) is an assessment tool for the autonomic nervous system so that we 

can measure the variation of the heartbeat interval, the time elapsed between two successive R 

waves in the QRS complex of ECG [84], [93]. HRV reflects the instant variation in the heart rate 

and considers a complicated relationship between the heart and brain [93]–[95]. 

HRV is classified into four frequency sub-bands: HF (high frequency), LF (low frequency), VLF 

(very low frequency) and ULF (ultra-low frequency). Each sub-band can be interpreted to reflect 

different parasympathetic and sympathetic activities [84], [96].  

Heart and brain health are interrelated. On the one hand, the autonomic nervous system 

(hypothalamus) regulates the cardiac involuntary actions, but on the other hand, the heart as a 

biological pump is responsible to deliver oxygen and other nutrients to the body as well as to the 

brain (Figure 2-13).  

 

 

Figure 2-13 major brain arteries supplying the brain [97]. 
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Investigating the pre-ictal changes on non-neurological signals can be helpful in forecasting the 

seizure. There is some evidence that shows changes in the human respiratory or heart rate 30 to 45 

minutes before the seizure onset [98]–[100]. In [101], it was reported that the seizure warning in 

the ECG signal preceded the EEG onset for 23% of the seizures. Also in another study, it was 

reported that the heart rate rose from the preictal to the ictal interval for 74% of the participants 

[102]. 

The evidence shows that the autonomic nervous system, the cerebral blood flow (might be 

interpreted as variation in neural activity that cannot be detected with EEG recording), and the 

neurovascular coupling can be altered during the preictal period [21], [103], [104].  

Then, working on the interaction between the brain and heart and the correlation between their 

signals becomes significantly important. 

There is a trending interest in the development of algorithms that not only detect the onset of 

seizures but also predict the seizures before they occur. The analysis could involve Time-domain, 

Frequency-domain, Wavelet-domain, Empirical mode decomposition, Singular Value 

Decomposition, Principal component analysis, Independent component analysis, as well as non-

linear approaches (e.g. chaos theory, correlation dimension, and entropy). All those methods have 

been used on their own or with the combination of one of the machine learning algorithms.  

 

2.5 Prediction of the seizure by analyzing electroencephalogram 

 

Research on seizure prediction via an electroencephalograph (EEG) recording started in the 1960s 

[105]. Since then, research on predicting epileptic seizures using an electroencephalogram (EEG) 

continued. 

The authors in [2], first the 23 scalp EEG channels converted into a surrogate channel in order to 

enhance the SNR and after that they employed empirical mode decomposition (EMD) to the single 

channel to enhance the SNR. Then in the next stage, four statistical and three spectral moments 

were extracted and finally the feature vector was fed into three classifiers, k-NN (k-Nearest 
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Neighbors), NB (Naive Bayes), and SVM (Support Vector Machine). After comparing the 

performance of the classifiers, SVM outperformed among the other classifiers due to having the 

average sensitivity of 92.23% in prediction. The authors claimed that the maximum anticipation 

time was 33.46 minutes and the specificity was reported 93.38%. 

The proposed work in [15], 7 subjects (5 dogs and 2 humans) with iEEG signal for two databases 

were requited. The framework employed the Bernoulli-Gaussian Mixture model which considered 

as an active feature selection method and after that an adaptive seizure prediction framework was 

employed to minimize the number of labelled data and reduce the complexity of the framework. 

Finally, a SVM classifier coupled with the active learner utilized in the prediction of the seizure.  

The imbalanced ratio was reported from 2:1 to 20:1 and accuracy was just used to measure the 

performance of the classifier. They reported the performance of the prediction with FP/h = 0.03-

0.6, a sensitivity of 40-97% for the dogs as well as a sensitivity between 40 and 74% and a FP/h= 

0.26-0.6 for humans. 

In [41], an SVM-based system to predict the seizures via iEEG signals from human and dog brains 

has been described. The continuous stream of records was segmented and labelled. The preictal 

period was defined as one hour before the seizure. Features were extracted from 20 s windows and 

one-hour segments were used for prediction. Three spectral characteristics were used as features 

in this work. These were spectral power in six Berger frequency bands, the signal in time-domain 

from six bands, and cross-correlation matrix. Features from 20 s windows were classified by SVM 

based system and accuracy was employed as the final performance index. Their sensitivity was 

about 90–100%, and their false-positive rate was about 0–0.3 times per day. 

In [106], the authors used the k-nearest neighbours (k-NN) algorithm for the classification of 

seizure and non-seizure. Statistical parameters such as approximate entropy, standard deviation, 

mean absolute value, standard error etc. were employed followed by regression analysis for 

predicting seizures. Their algorithm was applied to patients of different age groups. Among all of 

the methods of classification like support vector machine (SVM), artificial neural network (ANN), 

linear discriminant analysis (LDA), naive Bayes (NB), and RBF neural network (RBFNN), k-NN 

was found the best classifier. 
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The approach proposed in [51] shows a high correlation level among pairs of electrodes for the 

delta sub-band and a reduction in the Lyapunov index for the gamma sub-band. They employed 

power spectral density and statistical analysis to define threshold levels for the delta sub-band. The 

result of this work showed that the seizure signature can be taken out from two frequency sub-

bands: the lowest and the highest. For the sake of validation, six participants from both genders 

and different age groups with temporal epilepsy were studied using the Freiburg database with an 

accuracy of 72%, and a false-positive rate of 0%. 

In [107], the authors proposed a non-invasive wearable EEG and they tested the algorithm on 16 

subjects of Children’s Hospital Boston based on scalp EEG recordings from 22 pediatric patient 

database. This paper not only proposed a novel approach in detection of the seizure but also in 

prediction of the system. The system remove the artifact from the EEG by the Cauchy-based filter 

and after that the system employs AIS (Artificial Immunity System) architecture which is the main 

forecasting mechanism of the designed work. The state-of-the-art architecture could predict 

seizures with accuracy of 72% and 14.57 second average anticipation time. 

In [40], the authors utilized the Genetic algorithm as an effective and extensive feature extraction 

approach in classification of EEG signal of epileptic patients. In this work the frequency domain 

features along with the nonlinear ones were extracted and then an optimal feature subset was 

selected. After that the feature subset were applied to various classifiers such as k-NN, decision 

tree, AdaBoost, MLP (Multi-Layer Perceptron), and NB and accuracy was used in evaluating and 

comparing the performance of the work which has been claimed to be up to 99% for the two 

classification problem. 

The authors in [108], introduced an adaptive pattern learning framework in prediction of ten 

epileptic patients. The features were extracted at the first-level were the short-term largest 

Lyapunov exponent, averaged pairwise Euclidean distance, T-statistic, and Pearson correlation 

and then in the second- level feature extraction four measures were captured from the temporal 

fluctuation of the first-level features. Three prediction rules were implemented and assessed based 

on the continuously-updated patient-specific pattern library for each individual, containing the 

adaptive probabilistic prediction (APP), adaptive linear discriminant- analysis-based prediction 

(ALP), and adaptive Naive Bayes-based prediction (ANBP). The highest testing prediction 
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accuracy (PA) were 79%, 78%, and 82% for the APP, ALP, and ANBP prediction system, 

correspondingly which PA defined as (sensitivity + specificity) /2. 

In [38], 21 patients from the Epilepsy Centre of the University Hospital of Freiburg were retained 

and 5 minutes prior to the seizure onset and 10 minutes of the interictal segments were investigated. 

They reported that a 10s window outperformed among 5s and 15s due to being more consistent 

with respect to the AECR (Average Energy Concentration Ratio) values of preictal and interictal 

segments. Three SVM kernels were compared together and finally RBF (Radial Basis Function) 

kernel SVM overtook the rest with the sensitivity of 91.95% and false positive rate of 2.14.  

In [53], the posterior probability of SVM classifier employed and later this value was compared 

for various window sizes and then, the 90 s window (from 10- 600 seconds) was chosen due to 

having the highest probability. In this work, the dataset of Kaggle with iEEG information and 

contained 61 training and 196 test segments. 

In [3], Panichev et al. requited two patients from Kaggle website along with 5 epileptic dogs. 

Various classifiers namely Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine 

(SVM), Decision Tree (DT), k-Nearest Neighbor (k-NN) and Discriminant Analysis (DA) were 

employed to investigate the effect of the cross correlation of iEEG channels. The area under the 

curve (AUC) was the only performance characterises of the classifiers in this study. The window 

length (Tw) varied from 0.5 to 300 seconds and they found out in humans, best classification was 

showed by SVM classifier for a time window Tw = 60 s (AUC = 0.9349) while for seizure 

prediction in dogs the highest obtained AUC was 0.9432 with SVM and Tw = 30 s. 

In [35], Priyanka et al. employed epilepsy patients from Neurology & Sleep Centre, New Delhi 

dataset. The signals from the scalp EEG were filtered between 0.5 to 70 Hz and then divided into 

preictal, interictal and ictal stages. At the next step, various features were extracted namely, Mean, 

Maximum, Variance, and Entropy. Then, in order to reduce the dimensionality of the database and 

increase the accuracy, three feature ranking were applied. A comparison was performed with 

respect to the normal signal over other stages such as ictal, preictal, and interictal. Finally an 

artificial neural network model was implemented with sensitivity of 95.8% and specificity of 

97.2%. During the whole process, accuracy was considered as the only evaluation metrics. 
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2.6 Prediction of the seizure based on ECG signal 

 

As for the prediction based on ECG signals, many works have been conducted [95], [96]. The 

study in [109] examined 8 heart rate variability features of 7 patients in the prediction of epileptic 

seizures from clinical data. The results showed that HRV features, such as mean Heart Rate (HR), 

Standard Deviation of the instantaneous beat-to-beat variability of data (SD1), Standard Deviation 

of the continuous long-term R-R intervals (SD2), and low frequency (LF)/high frequency (HF) 

ratio, changed 5–10 minutes before seizure onset in all seizure episodes. Their proposed seizure 

prediction algorithm achieved a sensitivity of 88.3% and specificity of 86.2%. They claimed that 

interpreting the HRV parameter changes is more difficult than EEG signal and needs further 

investigation. Finally, they concluded that a combination of EEG and ECG signals can help to 

enhance the results and efficiency of the algorithm. 

Also, in [95] a novel HRV based seizure prediction algorithm was introduced. In this method, the 

RR interval of epileptic patients was converted into 8 HRV features such as mean NN, SDNN 

(Standard deviation of the NN (R-R) intervals), RMSSD (Root Mean Square of the Successive 

Differences), total power, NN50 (number of pairs of NN intervals that is longer than 50 ms), LF, 

HF, and LF/HF. The result of the work showed a 91% sensitivity with a false positive rate of 0.7 

times per hour. It is reported that the authors could predict ten out of eleven seizures successfully. 

The proposed approach can be considered as a useful tool in daily life application. 

Therefore, parameters like mean NN, SDNN, RMSSD, total power, NN50, LF, HF, and LF/HF 

can be employed as valuable features to distinguish a seizure from a non-seizure.  

 

2.7 Prediction of the seizure based on EEG and ECG signals 

 

In [110], an approach to predict epileptic seizures from EEG and ECG signals was introduced. It 

showed that an ECG signal would be a useful approach in the prediction of the seizures as the 

electrical activity of the ECG is easier to be analyzed compared to the EEG signal. These bio-
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signals were individually examined for about 15 minutes before the seizure onset and non-seizure 

sections. They found a promising pattern with consideration of both brain and heart signals, which 

can forecast the seizure onset with a 94% average accuracy. The EEG was classified with a linear 

Bayes classifier and the ECG with a k-Nearest Neighbors (k-NN) classifier. k-NN classifier 

showed an effective classifier for prediction based on the sensitivity and accuracy measurements. 

In [111], the authors investigated the functional interactions between EEG and ECG on a data of 

a mice in with periods with and without seizures in the frequency domain from 0 to 200 Hz. They 

found out in the high frequency from 130 to 170 Hz the Generalized Partial Directed Coherence 

(GPDC) shown the highest value during seizures in the epileptic animal. To measure the GPDC 

value they fitted the 5-dimensional (4 iEEG electrodes and 1 ECG electrode) with a 7th order 

multivariate autoregressive (MVAR) models to 10s consecutive non overlapping EEG and ECG 

sections. 

 

2.8 Discussion 

 

EEG data represent different neural activities of the brain which are of great value to the field of 

neuroscience. Using EEG, the neurological state of the subject or patient can be determined, which 

can further be used for clinical, therapeutic, medicinal and physiological applications. 

From a clinical perspective, EEG diagnoses brain malfunction like attention deficit hyperactivity 

disorder, Alzheimer’s illness, Schizophrenia, Epilepsy, etc. It is also capable of monitoring the 

state of coma, alertness and brain death. EEG analysis also helps in testing the effect of drugs and 

for detecting the origin of seizures, brain injuries, and lesions [76], [112], [113].  

For the above-mentioned applications of EEG data, representing EEG signals is a crucial issue. 

However, one of the biggest problems is the non-stationary and multidimensional nature of the 

EEG data subject to frequent and non-predictable changes. Besides the presence of errors and 

artifacts of various types during recording, scalp EEG signals require extensive pre-processing and 

filtering mechanisms [6], [25], [114]. 
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For patients with infrequent seizures, the frequency of seizures becomes difficult to discover.  Even 

if a patient has frequent seizures, the types of seizures (focal, generalized, etc.) can be different 

[76].  

Assuming the algorithms based on EEG can successfully predict epileptic seizures, the patients 

who have epilepsy would need to wear a predesigned cap with recording electrodes for online EEG 

monitoring. Obviously, such a method threatens their privacy and people may tease them. Too 

many false alarms are another purpose for patients' reluctance to employ such approaches as they 

lose their confidence. 

Addressing these issues and their complexities will require the continuation of investigation in 

finding an algorithm that can provide a sufficient compromise of performance, reliability, and 

privacy. As discussed in [8], [115], the prediction of epileptic seizures using HRV can significantly 

resolve the problems of permanent recording, noise, and privacy. A lot of research has been done 

to support the hypothesis that epileptic seizures can be anticipated by employing the HRV. 

However, the results obtained in this field are still not comparable with EEG-based algorithms and 

still have great potential for optimization. 

Nevertheless we should not forget that if the brain is the source of epileptic seizures, the heart is 

the second organ affected by seizures, and its behaviour cannot be anticipated through results 

obtained by a method based on data from the brain. Even though the results for ECG may be better 

than EEG results, EEG is an important complement for ECG because the ECG methodology is 

based on HRV, which can be affected by any daily activities for the patient; here is where EEG 

becomes relevant for this task. Therefore, the aim will be devoted to improving the performance 

of seizure prediction in a combination of both signals [95], [110], [116], [117]. 

 

2.9 Conclusion 

 

After providing some background information, reviewing existing research works, and possible 

methods to predict the seizure, applying machine learning and employing different algorithms to 
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predict seizure via iEEG signals should enhance the performance of the prediction. However, 

before the implementation step, we need to work on other biological signals such as ECG to better 

understand the mechanism behind the prediction of the seizure. Therefore, we will employ a 

method that can forecast the seizure at an adequate time with higher sensitivity and that can be 

used in practice for any patient.  
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Chapter 3 

Data Pre-Processing and Feature Engineering 

 

 

In this chapter, the database used in this study, the preprocessing, and the feature engineering of 

the proposed approach, will be introduced. 

3.1 Freiburg seizure prediction EEG database 

 

The Freiburg EEG Database is one of the most cited resources employed in predicting and 

detecting experiments. The interictal and preictal intracranial electroencephalogram (iEEG) 

recordings of the Freiburg database (FSPEEG) was offered in the early 2000s as an EEG database 

[58]. The database consists of intracerebral (strips, grid and depth electrodes) EEG recordings from 

21 epileptic patients. It contains six intracranial electroencephalography (iEEG) electrodes with a 

sampling frequency of 256 Hz and a 16-bit A/D converter. 

The database contains 24 hours of continuous and discontinuous interictal recordings for 13 

patients and eight patients, respectively. Each participant had 2 to 5 preictal recordings with about 

50mn preictal recordings. This database contains 582 hours of EEG data, including preictal 

recordings of 88 seizures. Since 2012, the FSPEEG has been complemented and substituted by the 

larger EPILEPSIAE database which covers datasets of the marked long-term invasive and non-

invasive EEG recordings from 31 participants [118]. An overview of the dataset is inserted in 

Table 3-1. However, even if such database is very useful, we have to note that due to the limited 

number of patients available, the results we will obtain should be relativized.  

Figure 3-1 shows an illustration of epileptic EEG signals (from the database) for a patient with 

temporal lobe epilepsy. In this figure, the voltage of a channel for patient #4 for each sample of 

time is depicted. The period in which the seizure takes place is ictal, and the time before the seizure 
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onset happens is preictal. The postictal is the period after an epilepsy seizure, which can last more 

than an hour and interictal refers to the period between seizures. Also, in Figure 3-2, one-hour data 

from the patient with frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE) is depicted.  

As we can see, epilepsy from the frontal lobe (which takes about 7 seconds) is shorter than the 

temporal one (which takes about 91 seconds). In addition, the morphology of the signal over a 

period of time for each type of epilepsy is completely different. In fact, we can observe some hints 

in the preictal stage of the temporal one, but not the same for the other one.  

 

Figure 3-1.  An overview of an EEG signal containing seizure for patient #4, suffering from temporal lobe epilepsy. 

Red bar indicates the duration of the seizure. 
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Table 3-1: The information of patients in the dataset. SP = simple partial, CP = complex partial, GTC = generalized 

tonic-clonic; H = hippocampal origin, NC = neocortical origin; d = depth electrode, g = grid electrode, s = strip 

electrode 

Patient

# 
Sex Age Seizure type H/NC Origin Electrodes 

Seizures 

analyzed 

1 F 15 SP, CP NC Frontal g, s 4 

2 M 38 SP, CP, GTC H Temporal d 3 

3 M 14 SP, CP NC Frontal g, s 5 

4 F 26 SP, CP, GTC H Temporal d, g, s 5 

5 F 16 SP, CP, GTC NC Frontal g, s 5 

6 F 31 CP, GTC H Temporo/Occipital d, g, s 3 

7 F 42 SP, CP, GTC H Temporal d 3 

8 F 32 SP, CP NC Frontal g, s 2 

9 M 44 CP, GTC NC Temporo/Occipital g, s 5 

10 M 47 SP, CP, GTC H Temporal d 5 

11 F 10 SP, CP, GTC NC Parietal g, s 4 

12 F 42 SP, CP, GTC H Temporal d, g, s 4 

13 F 22 SP, CP, GTC H Temporo/Occipital d, s 2 

14 F 41 CP, GTC H, NC Fronto/Temporal d, s 4 

15 M 31 SP, CP, GTC H, NC Temporal d, s 4 

16 F 50 SP,CP, GTC H Temporal d, s 5 

17 M 28 SP, CP, GTC NC Temporal s 5 

18 F 25 SP, CP NC Frontal s 5 

19 F 28 SP, CP, GTC NC Frontal s 4 

20 M 33 SP, CP, GTC NC Tempo/Parietal d, g, s 5 

21 M 13 SP, CP NC Temporal g, s 5 
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Figure 3-2.  An overview of an EEG signal containing seizure for patient #1 suffering from frontal lobe epilepsy (on 

the top) and patient #2, suffering from temporal lobe epilepsy (at the bottom). Red bar indicates the duration of the 

seizure. 
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 Figure 3-3.  The position of the strip electrode for patient #1 (pat001) [58].  

 

Figure 3-4.  The position of the grid electrode for patient #1 (pat001) [58]. 
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Figure 3-5.  The position of the depth electrode for patient #2 (pat002) [58]. 

 

Figure 3-6, shows a screenshot of a patient from the newest version of the Freiburg database, 

Patient FR_264, contains EEG, iEEG, ECG, and EOG. 

 

3.2 Artifacts and Noise Removal 

 

 The artifacts in the EEG recordings are of different kinds which can originate from interior 

and exterior sources.  
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Figure 3-6.  A screenshot of the information about a patient from the new database. 

 

We can categorize the sources of the artifacts in EEG as 

 Internal/Physiological: Ocular Artifacts, Muscle Artifact (EMG), Cardiac Artifacts, 

Respiration, Sweat, … 

 External: Movement (Head, body, limbs movement, …) 

 Environmental: Power line Noise, Baseline Noise due to the loose electrode … 

A summary of various artifact types and their sources show in Table 3-2 [119]. 
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Table 3-2: Different kinds of artifacts and their sources [119]. 

 

Most of the above artifacts are related to the scalp EEG. However, for the iEEG signal, due to 

employing the specific electrodes and implanting on the cortex surface, we would just need to 

eliminate the power line noise [14], [15], [41]. In fact, biological recordings are frequently 

contaminated by the power line frequency (50/60 Hz) and such interferences, that can come from 

any conductor, lamp light and/or electronic device, are received by the electrodes and acquisition 

system. This artifact is spread in different iEEG channels and can generate errors during the 

analysis of the record. Figure 3-7 shows that only the first odd harmonic of 50 Hz (frequency of 

the power line in Germany) can affect the signal. The normalized frequency should be about 0.39 

π rad/sample for 50 Hz based on the 2πf/fs formula. 

 

3.3 Brain wave sub-bands 

 

For processing the brain wave, we recorded the brain activity with an EEG electrode. It can be 

divided into different sub-bands. Amongst the simple waveforms are the alpha, beta, theta, delta, 

and gamma rhythms [120]: 

 Delta waves have a frequency between 0.5 and 4 Hz. These waves are prominent during 

sleep and involve in triggering and releasing the hormones that help the body settle and 

recuperate. Delta waves play an important role in transporting new learning and memories 

into long-term memory storage during sleep time. 
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Figure 3-7.  An illustration of an EEG signal in time and frequency response. 

 

 Theta waves happen at a frequency range of 4 to 8 Hz, mostly observed in children and 

young adults. 

 Alpha waves present in the frequency range of 8 to 13 Hz in a regular rhythm and are strong 

around the occipital and frontal lobes. They are present when we are awake, typically with 

closed eyes and do not actively process the information. Usually, they disappear when we 

open our eyes or begin to mentally concentrate [63], [121]. 

 Beta waves range of frequency are between 13 and 30 Hz. They appear when we are 

anxious, depressed, or when we use sedatives. 

 Gamma waves have a frequency higher than 30 Hz. They involve higher processing tasks 

and cognitive functioning. These waves are the fundamental waves for learning, memory 

and information processing [120], [122].   

Figure 3-8 shows different brainwave frequencies [120]. FIR (finite impulse response) filter is one 

of the most basic elements in digital signal processing. Among different FIR windowing methods 

such as Rectangular, Hamming, Hanning, Blackman, and Kaiser with different beta parameters (5, 
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8, 12) the latest one, Kaiser with beta of 12 showed the best result according to the main lobe, side 

lobe and SNR. Filters’ order for different sub-bands varied from 158 to 226 [123]. 

We designed the FIR filters based on the “Filter Designer Toolbox” in Matlab. The complete 

characteristic of the filters are described in Table 3-3. Since the FIR windowing approach 

employed is symmetric, the filter can be considered as linear phase-frequency response [24], [124]. 

In this work, to eliminate the first odd harmonic of power line interference at 50 Hz (based on the 

database from Germany), we further divided the higher frequency sub-band (Gamma) into two 

parts instead of using a notch filter. Finally, EEG signals were split into the following sub-bands: 

Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30 Hz), as well as two Gamma bands 

namely, low-Gamma (30-47 Hz), and high-Gamma (53-120 Hz) [23], [24], [125].   

To decrease the effect of factors that cause baseline differences among different data sets, we also 

normalized the EEG signals with Z-scores (expressed in terms of standard deviations from their 

means). After pre-processing, the signal is ready to extract different features to feed for the 

classification.  

 

Table 3-3: The parameters of the filters. 

Band\frequency Lower cut-off 

frequency (Hz) 

Higher cut-off 

frequency (Hz) 

Filter order 

Delta 0.2 5 226 

Theta 2.7  8.6  198 

Alpha 4.6 16.6 158 

Beta 10.1 33.4 100 

Gamma 1 28 47 200 

Gamma 2 53 97 200 
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Figure 3-8: Typical rhythmic activities of an EEG signal [120]. 

 

3.4 Preprocessing of ECG signal 

Figure 3-9 shows an illustration of a raw ECG from the new database for patient #265. The baseline 

drift was eliminated and the final smoothed signal depicted in Figure 3-10. After that, applying the 

Wavelet transform (db4) decomposed the signal into eight sub-bands. Then, by calculating a 
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threshold for R wave based on the max and mean of the wave, we can detect the QRS complex 

[126]. The PQRS complex detected is shown in Figure 3-11. 

 

Figure 3-9: The time and frequency domain representation of the not clean ECG. 

 

Fig 3-10: The time and frequency domain representation of the clean ECG. 
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Fig 3-11: The time domain of the clean ECG. 

 

3.5 Feature Engineering  

 

3.5.1 Introduction 

 

Several feature extraction techniques have been introduced in the last few years which can be 

classified as time, frequency, and hybrid (time-frequency) based approaches. Table 3-4 categorizes 

the various features that have been introduced in seizure prediction in these different domains 

[127]–[131].  

Although the time-frequency domain features are most informative, the time-domain ones are 

more recommended to achieve discriminative information at a low computational cost. In fact, 

high-quality features can be defined as those that produce maximum class separability, robustness, 

and less computational complexity, e.g., less complex preprocessing – which do not need the 

burdensome task of framing, filtering, Fourier transform, and so forth [132], [133]. Thus, these 
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features, compared to other types, consume less processing power and time [134]. As a 

consequence, from the three above-mentioned domains, we retained, in this work, the features that 

belong to the time domain.  

 

3.5.2 Feature Extraction 

 

Feature is a variable that can represent the changes of a signal. In analyzing EEG signals, we 

selected common features that can discriminate between pre-ictal and interictal phases of the 

seizures. Note that, as will be discussed in Chapter 4, we first considered univariate features such 

as the Hjorth parameters (mobility and complexity), the average power in the considered frequency 

range, the mean of the power spectrum, the accumulated energy, the mean of the Fast Fourier 

Transform (FFT), and four statistical moments (mean, variance, skewness, and kurtosis) [41], 

[131]. Then, in chapter 5, we will concentrate more on time domain features that have been 

intensively employed by researchers in predicting seizures.  
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Table 3-4 Categorizing various features employed in seizure prediction in different domains. 

 

Domain NO. Features 

Time 

1 Energy 

2 Mean 

3 Variance (VAR) 

4 Skewness 

5 Kurtosis 

6 Interquartile range (IQR) 

7 ZCR (zero cross rating) 

8 MAD (mean absolute deviation) 

9 Entropy 

10 Hjorth mobility  

11 Hjorth complexity 

12 Coefficient of Variation (COV) 

13 Root Mean Square (RMS)  

14 MAX Cross-correlation  

15 Autoregressive (AR) model 

Frequency 

16 power of frequency in sub 6 bands 

17 Mean of Absolute of FFT 

18 Spectral density estimation 

19 Global coherence 

20 SEP (Spectral edge power) 

21 the mean of the power spectrum 

22 coherence 

23 Spectral entropy 

24 SEF (Spectral edge frequency) 

Time-Frequency  

25 Energy wavelet coefficients (six levels) 

26 Hilbert transform (phase and magnitude) 

27 EMD (empirical mode decomposition) 

28 Hilbert-Huang Transform 
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3.5.3 Time domain features 

 

3.5.3.1 Energy 

This feature can be considered as a measure of the signal strength. Calculating the accumulated 

energy at a given time-point t, is a commonly used feature in finding abnormal behavior in the 

brain. For a given discrete signal, x(n), the area under the squared of a signal is called energy and 

is expressed as [47], [135]  

E=∑ |𝑥(𝑛)|2∞
n=−∞                                                                                                                          (3-1) 

3.5.3.2 Mean 

The mean of a discrete signal, x(n), can be expressed as [136], [137]  

�̅� = (
1

𝑁
) ∑ 𝑥(𝑛)

𝑁

𝑛=1
                                                                                                                    (3-2) 

where N is the number of the samples and x(n) the discrete signal 

3.5.3.3 Variance 

The second moment of a signal is called the variance. The smaller its value, the higher the 

differences in frequencies across the samples [131]  

𝑆2 = (
1

𝑁−1
) ∑ (𝑥(𝑛) − 𝑥)2𝑁

𝑛=1
                                                                                                   (3-3) 

3.5.3.4 Skewness 

The third statistical moment measures the asymmetry of the probability distribution about its mean. 

Skew= (
1

𝑁
) ∑ [

𝑥(𝑛)−𝑥

𝑆
]3

𝑁

𝑛=1
                                                                                                         (3-4) 
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3.5.3.5 Kurtosis 

The fourth statistical moment describes the flatness of a distribution real valued random variable. 

Kurt=(
1

𝑁
) ∑ [

𝑥(𝑛)−𝑥

𝑆
]4

𝑁

𝑛=1
                                                                                                           (3-5) 

3.5.3.6 Interquartile range 

The Interquartile Range (IQR) feature is a measure of spread and variability based on dividing the 

data into four equal parts. The separated values Q1, Q2, and Q3 for each part are named respectively 

first, second, and third quartiles. IQR is computed as the difference between the 75th and the 25th 

percentile or Q3 and Q1 as the following [47], [138]: 

IQR = Q3 - Q1                                                                                                                            (3-6) 

3.5.3.7 Zero crossing rate 

The Zero Crossing Rate (ZCR) is the rate at which the signal changes signs or is the sum of all 

positive zero crossings into the EEG segment [139]. 

3.5.3.8 Mean Absolute Deviation 

Mean Absolute Deviation (MAD) “as reported in [137], evaluates the robustness of the collected 

quantitative data.” In other words, it is the average distance between each data point and the mean. 

For a given dataset, x = x1, x2, … xn, MAD can be calculated as [137]: 

MAD = median (|x − median(x)|)                                                                                            (3-7) 

3.5.3.9 Entropy 

This feature is employed to quantify the degree of uncertainty and irregularity of a signal as well 

as the complexity of human brain dynamics. With P(x) the probability mass function, “The signal 

uncertainty can be assessed in terms of repeatability of the signal amplitude”[137]. 

En= − ∑ 𝑃(𝑥(𝑛))𝑙𝑜𝑔𝑃(𝑥(𝑛))𝑁
𝑛=1                                                                                               (3-8) 
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3.5.3.10 Hjorth mobility 

In [24], three parameters namely, Activity, Mobility and Complexity, were introduced as useful 

tools in indicating the statistical property of an EEG signal in time-domain. Since the activity 

parameter is the variance of a signal, this parameter can specify the origin of the power spectrum 

in the frequency domain. This means that if the Activity parameter is assigned a large value, then 

high-frequency components are present in the signal (and vice versa for a small value). The called 

Hjorth mobility parameter represents the square root of the variance of the first derivative of the 

signal, and it is proportional to the standard deviation of the power spectrum of a time series.  

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √𝑣𝑎𝑟(𝑥′(𝑡))/𝑣𝑎𝑟(𝑥(𝑡))                                                                                        (3-9) 

In the above equation, x(t) is a signal and x’(t) its derivative. var(-) is the variance of a signal over 

a period of time.                                                                          

3.5.3.11 Hjorth complexity 

The Hjorth complexity defines how the shape of a signal is analogous to an ideal sine curve. This 

parameter gives an estimation of the bandwidth of the signal.  

Complexity = mobility (x'(t)) / mobility (x(t))                                                                         (3-10)                                                               

We can have an estimation of the second and fourth statistical moment of the power spectrum in 

the frequency domain by employing the mobility and complexity, correspondingly. While Hjorth 

parameters are identified in time-domain, they can be useful for both time and frequency analysis. 

Interestingly, computation of the Hjorth parameters stands on variance, then the cost of their 

computation is significantly low [23], [24], [131]. 

3.5.3.12 Coefficient of Variation 

The coefficient of variation (COV) is a measure is the division of the standard deviation to the 

mean of a signal [133]  

Cv=
𝑺

𝑥
                                                                                                                                        (3-11) 
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3.5.3.13 Root Mean Square 

The Root Mean Square (RMS) of a signal can be calculated as [37]:  

RMS=√
1

𝑁
∑ 𝑥(𝑛)2𝑁

𝑛=1                                                                                                                 (3-12) 

3.5.3.14 Maximum linear cross-correlation 

As a simple bivariate measure, MAX cross-correlation calculates the linear association between 

two signals, which also yields fixed delays between two spatially distant EEG signals to 

accommodate potential signal propagation. This measure can also give us a similarity between two 

different channels.  

Given an EEG signal containing N channels, one can compute the cross-correlation on 
𝑁×(𝑁−1)

2
 

pairs of channels (e.g. 15 pairs for N=6 for the employed iEEG database). Calculating the MAX 

cross correlation for six channels and six sub-bands results in a 90-D vector. 

3.5.3.15 Autoregressive (AR) model 

A sequence of observations ordered in time or space is called time-series and, in the electrical 

engineering context, is titled as signal. An AR model can be described by modeling the existing 

value of the variable as a weighted sum of its own preceding values. Similarly, we can employ this 

concept to forecast the future based on the past behavior [137], [139], [140]. An AR model with 

order p can be described as the following formula: 

yt= β1yt-1+ β2yt-2+…+ βp yt-p + εt                                                                                                                                              (3-13) 

where εt is the error term, usually specified as white noise and β=(β1, β2 … βp) is the AR coefficient. 

For a first order, an AR(1) model can be expressed as [141]–[143]:  

yt= β1yt-1+ εt                                                                                                                               (3-14) 
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and its process can be considered as a stationary process once |β1|<1. The coefficient and the error 

term have been consider as features in the prediction of the seizure [144]–[146].   

 

3.5 Conclusion 

 

In this chapter, the patient database, the preprocessing, and the feature engineering section were 

introduced. We explained the use of filters for EEG and ECG signals and noises to be removed. 

Also, in this chapter, we introduced different features of EEG signal that can be considered in 

seizure prediction. In other words, we transformed the EEG samples to a proper feature space. 

Then, these features provide some measurements from the signal and can be fed to a classifier as 

feature vectors. The feature extraction part will be used as an input to the classifier. In the next 

chapter, we will employ the inputs provided in this section in different classifiers and then will 

investigate the results. 
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Chapter 4  

Preliminary results for prediction and classification 

 

4.1 Classification 

 

4.1.1 Support vector machine (SVM) 

 

Support Vector Machine (SVM) is a supervised learning model developed by Vladimir Vapnik 

who aimed to analyze data by employing the classification or regression approach [147]. For a 

binary classification, SVM maps an input data point X to an output class value y of +1 or -1. For 

a simple case where just two feature values X1, X2 are taken into consideration, we have 

(W1X1+W2X2+b > 0 or W1X1+W2X2+b < 0) as in Figure 4-1. Here, f(X, W, b) = WTX+b, X is the 

input pattern space (Rd), Wi the weight parameters of the input point’s features, and b a bias term. 

The two classes are separated with a hyperplane (W1X1+W2X2+b = 0).  

In fact, the SVM algorithm is looking for the points closest to the line (or hyperplane) from both 

classes and the points are named support vectors. SVM computes the distance between the support 

vectors and the hyperplane, i.e., the margin. In other words, the margin is the distance that SVM 

can go from the decision boundary perpendicular to the nearest data point. It can be expressed as 

[148]–[150]:  

 An optimal hyperplane is chosen based on the maximum margin which means maximizing 

|d| (Figure 4-2), where 𝑑 =
𝑊T𝑋+𝑏

║W║
. So, in order to maximize d, we need to minimize W. 

 If our data point is labelled as y = +1, then WT X + b ≥ 1 

 and if y= -1, then WT X + b ≤ -1 
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Figure 4-1: An illustration of a simple binary classification problem with two informative features. 

It can be thus summarized as: 

 For hard margin : y (WT X + b ) ≥ 1 

 For soft margin, allow some margin violation:  y (WT X + b ) ≥ 1-ε, where ε is a non-

negative slack variable that allows points, support vectors, to be on the wrong side of their 

soft margin and decision boundary (Fig 4.3 and Fig 4.4). 

Based on the primal form of the SVM: 

 Minimize 
1

2
║𝑊║

2
+𝐶 ∑ 𝜀𝑛

𝑖=1 i  subject to: yi (W
T Xi + b) ≥ 1- εi , εi ≥ 0 , I = 1 … n, where C 

is a regularization parameter that regulates the amount of misclassification. The larger the 

C value, the smaller regularization will apply. On the other hand, a small value of C 

employs more regularization that encourages the classifier to find a large margin on 

decision boundary. In other words, the smaller C (the stronger the regularization), the 

smaller the coefficients in the model and as a result, too many variables can be eliminated 

or too much coefficients can be shrunk to weaken the model [148]–[150]. 
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Figure 4-2: Hyperplane separating the two classes. 

 

Figure 4-3: Hard Margin Classification. 
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Figure 4-4: Soft Margin Classification makes a classifier more robust. 

 

In this study, we applied the grid search to tune the cost value C in the training phase and to find 

the optimal parameter by using the Precision and Recall (PR) measure. In fact, based on the PR 

curve, we considered the higher F-score as the best result. F-score is the combination of precision 

and recall into a single performance measure that calculates the harmonic mean of the precision 

and recalls analysis and a measure of accuracy [151]. 

 

4.1.2 Constraints with overfitting 

 

As explained in the previous sections, we considered binary classification, so that the proposed 

algorithm can be used effectively. SVM can exhibit high accuracy with the capability to handle 

high dimensional data sequences. Note that the SVM target is to find a mapping of the data into a 

new space where a linear hyperplane was used to separate the two classes (Figure 4-4). 
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Then, we considered in this study two main classes: “0” (the seizure-free period) and “1” (the 

seizure period). Since seizures are infrequent events, then we have access to a large amount of 

interictal data, while few preictal data that contain seizures are accessible. The asymmetric nature 

of the seizure set is typically named as an ‘imbalanced classification’ in analyzing the data. It 

should be noted that the ratio between interictal (105028) and ictal (2912) samples is 36:1, which 

shows a significant imbalance dataset. To overcome the overfitting problem (the model doesn’t 

generalize well for unseen data), dual cross-validation with regularization was applied in this study 

[152]. 

 

4.1.3 Double cross-validation  

 

We used two approaches for validation namely, ‘Hold-out’ and ‘k-fold cross-validation’. 

A. Hold-out 

When the data are separated into two sets ‘training’ and ‘testing’, we have the called hold-out 

validation. The training set is used to train the model and, then, the model will be evaluated with 

unseen data, i.e., test set. We considered 70% of the data for training and the remaining 30% were 

employed for testing. 

B. K-fold Cross-validation 

To apply ‘k-fold cross-validation’ the dataset is first divided into ‘k’ folds. Each time, only one 

fold is employed for testing and the others are employed for training the model. Then, the model 

is trained on the training set and evaluated by the validating set. This process is repeated until each 

distinct fold is used as a validation set. For this study, we employed 10-fold cross-validation and 

ran each cross-validation experiment 10 times. Effectively, we run each model 100 times. Finally, 

the average of the obtained accuracy was considered [153]. 

In a nutshell, data were divided into two groups: 70% of them allocated for training and validating, 

and the remaining 30% (never-seen-before) for testing the model. Both training and testing data 
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segments have been numbered sequentially. Note that the validation set was used for estimating 

how precisely the classifier performs after being trained with the learning set, containing testing 

for over-fitting of the model. When the classifier was fully optimized with the learning and 

validation sets, via 10-fold cross-validation, it was applied to the testing set to evaluate the final 

performance. Figure 4-5 describes the double cross-validation approach.   

 

Figure 4-5 An illustration of the double cross-validation on the data set. 

 

4.1.4 Performance analysis 

 

The performance of a classifier must be generalized, i.e., it should perform well when submitted 

to data outside the training set. Since the ratio between the two classes is very high 105028/2912= 

36 (strong imbalance data), accuracy is not the main criteria to use to assess the performance of 
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the classifier. Although accuracy remains the most intuitive performance metric, it is basically a 

ratio of correctly predicted observation over the total observations, so reliable only when we have 

balanced datasets. 

The most common metrics employed for analysis are Sensitivity and Specificity and both of them 

focusing on the predictive model’s ability to categorize the preictal class correctly [127]. Since in 

this work, it is critical not to skip seizure events (preictal), we intended to maximize the True 

Positive Rate (TPR) or Recall. Therefore, Sensitivity, which measures the percentage of the 

preictal class predictions that were correctly recognized, and the false positive rate, were measured 

to evaluate how effectively the proposed algorithm performs.  

Sensitivity = True Positive / (True Positive + False Negative)     (5-7) 

In our test, we considered zero false-positive rates, which means a specificity of 100%. In fact, 

because specificity means if the test result shows a flag or an alarm, we will be confident we found 

out the seizure onset. In other words, it is the probability of being test negative when there is no 

seizure. 

Specificity = True Negative / (False Positive + True Negative)    (5-8) 

As already noted, these results should be relativized because of the limited number of patients 

available in the used database.  

 

4.1.5 Results for SVM 

 

In this work, we considered the participants who have the same origin of the seizure, temporal 

lobe, and the proposed algorithm is summarized in Figure 4-6. Our aim here is to use the detection 

information and to show that we can predict the seizure. 
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Figure 4-6. Flowchart of the proposed algorithm for seizure prediction. 

 

To build a high dimensional matrix as an input to the classifier, we first considered all the possible 

features that are helpful in prediction of a seizure and then, let the classifier decide which of the 

weight of the features are less relevant in the model for forecasting, in order to set them to zero.     

This allowed us to build 180 dimensions in the input space of each window (5 features, 6 

electrodes, and power in the 6 sub-bands per electrode). 

For the first group of patients, we considered the EEG dataset of six patients namely participants 

#2, #4, #7, #10, #12, and #16 with temporal seizure and 34 seizures of 154 hour-long interictal and 

preictal signals. The results of the detection and prediction of the algorithm are summarized in 

Tables 4-1 and 4-2, respectively. In both tables, we applied a 50% overlapping window for the 

files containing the ictal state and non-overlapping window for other files. These tables 

demonstrate that by decreasing the size of the window, the rate of detection remains constant, but 

the rate of prediction is dramatically improved. 
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Figures 4-7 and 4-8 illustrate the overlapping and non-overlapping windows used in this study. In 

the non-overlapping window, the number of windows is smaller and we have few samples for 

processing compared to the overlapping one. The feature extraction methods can be described as 

follows: An hour EEG signal was divided into various non-overlapping window sizes (20, 10, 4, 

2 and 1 second) for interictal section, while the ictal section was split into chunks of same window 

sizes (i.e. from 20 seconds to 1 second) with 0%, 50%, and 75% overlapping. 

 

Figure 4-7 Non-overlapping 4 seconds window for extracting the feature (adapted from [152]). 

 

Figure 4-8. A 4 seconds window with 50% overlapping for extracting the feature. 
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Figures 4-9 to 4-13 show the probability of seizure happening for 20, 10, 4, 2, and 1 seconds, 

respectively. In all cases, we considered a non-overlapping window dividing the interictal files 

into different segments and a 50% overlapping window chunking the preictal files to various 

segments. The red lines in the graphs show the period of the seizure that has the highest peak in 

each graph.  

The results of changing the window size clearly show that by decreasing the size of the window, 

the probability of seizure detection will be enhanced. Also, we found out that by decreasing the 

window size, the predictive model can detect some peaks before the onset of the seizure. Therefore, 

the lower the window size, the higher the probability of predicting the seizure. However, this trend 

does not continue up to 1-second window. While we spend nearly twice the time for computation, 

the prediction result does not improve. The accuracy of the classification for 2-second window 

reported 97.5%, while for 1-second window is 97.49%. Means by decreasing the window size we 

pay more for calculation but received quite less improvement.  

It is worth mentioning that the two-second window was selected based on different empirical 

experiments from twenty to one second. Furthermore, based on the works of Islam [119] by 

choosing a very short window, e.g., less than one second, the seizure waveform may not be 

recognized properly in such a short duration. On the other hand, by defining a longer window 

length, e.g., more than 5 seconds, artifacts tend to be more transient than a seizure. Therefore, 

artifacts and seizure cannot be distinguished from each other. In conclusion, a non-stationary signal 

like EEG can be assumed as a stationary signal in a short duration epoch like a two-second window. 

Table 4-1 Detection Results for Different window size. 

 

measure\window size 20s 10s  4s 2s  1s 

Sensitivity 83% 83% 83% 83% 83% 

Table 4-2 Prediction Results for Different window size 

 

measure\window size 20s   10s 4s 2s 1s 

Sensitivity 16% 20% 50% 75% 75% 
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Figure 4-9. Probability of seizure happening for patient #16 with a window of 20 seconds. Red bar shows the 

duration of the seizure. 

 

Table 4-3 shows the comparison of various overlapping windows ranging from 0 to 75%. The 

results clearly show that the best choice is 50% overlapping, and we can predict most of the 

seizures with a window of 2 seconds and an overlapping of 50%. As explained earlier accuracy 

cannot be a good measurement here due to having an imbalanced data. 

Table 4-3. The results for 2s-window with different overlapping window 

measures\ 

overlapping 

non-

overlapping 

 25% 

overlapping 

 50% 

overlapping 

 75% 

overlapping 

Sensitivity 50% 41% 75% 58% 

Accuracy 98.5% 97.9% 97.5% 96.6% 



66 
 

 

Figure 4-10. Probability of seizure happening for patient #16 with a window of 10 seconds. Red bar displays the 

duration of the seizure. 

 

Figure 4-11. Probability of seizure happening for patient #16 with a window of 4 seconds. Red bar displays the 

duration of the seizure. 
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Figure 4-12 Probability of seizure happening for patient #16 with a window of 2 seconds. Red bar indicates the 

duration of the seizure.  

 

 Figure 4-13 Probability of seizure happening for patient #16 with a window of 1 second. Red bar displays 

the duration of the seizure. 

 

Figure 4-14 shows the results of the test data on the model for patient #16 (file #48), taken as 

illustration, with a window size of 2 seconds. In this figure, line B indicates the seizure happening 

(very good detection) and the point A, a peak of about 0.45 probability, which appears before the 
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seizure, can be considered as a prediction alarm. If we assign a threshold of about 0.45, we can 

warn the patient that a seizure is coming (about 45 minutes before the event). 

 

Figure 4-14 Probability of seizure happening for patient #16 file #48 with window 50% overlapping 2 seconds. Red 

bar shows the duration of the seizure. 

 

Successive to learning data using the L1-regularized SVM, Platt’s scaling [71], which employs 

logistic regression on the SVM scores, was used to extract the probabilities of each class, i.e. 

seizure vs. non-seizure. It should be noted that Platt scaling is an approach of converting the output 

of classification into a probability distribution. In other words, the output of binary 0 or 1 is 

converted into probability (values between 0 and 1). 

In the next step, the mean probability of the non-seizure segments for each participant was created. 

Then, in order to predict an impending incident, the following simple model was retained: 

 τ = c. μPns                                                                                                                                                                                                      (5-9) 

where τ is the threshold used to predict a future seizure, c is a constant empirically set to for each 

patient, and μPns is the mean of the probability of the non-seizure (ns) segments for that particular 

subject.  
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For a specific patient input iEEG, if the output probability obtained using the trained iEEG segment 

is above τ, an impending seizure is reported. We applied this rule to our dataset and obtained the 

time (in minutes) expected to predict seizures before their occurrence. Table 4-4 states the 

parameters, c and μPns, of this approach for the 6 participants in this study. For patient #16 we had 

two seizures for prediction and we could find an alarm for each seizure, one 6 minutes and the 

other 45 minutes before the seizure onset. The average time for prediction of this approach as well 

as the average of the probability of the non-seizure period is inserted in Table 4-5. We will 

elaborate on this approach for the rest of the database and try to increase the performance of the 

classifier by employing different strategies, as detailed in the next few sections. 

 

Table 4-4. The results for 2 seconds window with 50% overlapping window. 

 Pa#2 Pa#4 Pa#7 Pa#10 Pa#12 Pa#16 

Time of prediction  (min.) 59.6 80  5 44 22 6&45 

Probability mean of non-

seizure (μPns) 

0.0096 0.0052 0.0079 0.0076 0.0187 0.0042 

constant empirically (c) 41.6 76.9 50.6 52.6 21.39 95.2 

 

Table 4-5. The overal results for 2 seconds window with 50% overlapping window. 

 Average of time prediction  37.4 minutes  

The average probability of the non-seizure  0.0089 

 

We were remarking that the conventional SVM with the best window size predicted 7 of 9 seizures, 

with a sensitivity rate of 78% and specificity of 100%. However, we were not able to predict 2 

seizures because of the inadequate preictal database availability. Based on Ramachandran et al. 

[15], we might need at least 3 to 16 hours before the onset of the seizure to predict seizures. Another 

possible solution is employing non-linear measures such as phase synchronization to forecast 

unpredicted seizures. 
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In the above results, it is worth mentioning that the threshold was assigned in a way that there is 

no false alarm, but after considering the threshold, we found out very promising results.  

The testing results based on the trained model and with the assumption that we “need at least 3 

hours data to claim that there is an alarm for a seizure,” we concluded the following: 

 In this work, we have 9 seizures for testing from 6 patients. 

 We did not consider two seizures due to having just less than 2 hours preictal stage, and by 

discarding those two seizures, we could successfully predict the whole 9 remaining 

seizures. 

 Besides linear kernels, we also investigated non-linear kernels such as Polynomial and 

Gaussian. However, due to taking a huge amount of time for the grid search in Python for 

tuning the hyper-parameters, we did not include them in this study.  

 

4.2.1 Other Classifiers 

 

We will employ various classifiers and compare their results in the next chapters.  

 

4.2.2 Neural Networks (Multi-Layer Perceptron: MLP) 

 

The early works on neural networks go back to the 50s and 60s. Recently, they have received huge 

interest as deep learning has given remarkable results [149]. Figure 4-15 shows an illustration of 

a binary classification scenario for a feed-forward neural network, entitled a Multi-Layer 

Perceptron (MLP). 

In this method, a hidden layer is represented by an additional set of boxes (h0, h1, and h2 in the 

figure). These boxes, hidden units, compute a nonlinear function of the weighted sums of the input 

features. Then, the results will be the intermediate output values namely, v0, v1, v2. After that, the 

neural network, usually a MLP (Multi-Layer Perceptron) network calculates a weighted sum of 
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these hidden unit outputs, to create the final output value, Ŷ. The nonlinear function employed in 

the hidden unit is named the activation function. In this figure, the activation function used is 

“Relu”, which stands for the Rectified Linear Unit and is a half rectified function. 

Various activation functions are depicted in Figure 4-16. Nowadays, the Relu is one of the most 

used activation function [154], [155]. 

 

 Figure 4-15 Multi-layer perceptron with one hidden layer with a Relu activation function [149]. 

 

Figure 4-16. Illustration of different activation functions [149]. 
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Indeed, the combination of the non-linear activation function with the weighted sum of the inputs 

enables MLP to learn more complicated models and allows neural networks to perform a more 

accurate prediction. The regularization parameter for MLPs is entitled alpha, which controls the 

model complexity by constraining the magnitude of model weights, as explained in SVM classifier 

[149].  

 

4.2.3 Random Forest  

 

Random Forest is one of the most effective methods in machine learning, consisting of creating 

models so-called as an ensemble [156]. An ensemble is a technique that combines several base 

models in order to create an optimal predictive model that is more powerful than any of its 

individual learning models alone.  

After training the model, the model tries to predict every tree in the forest, then combine individual 

predictions based on a weighted vote. This means that each tree gives a probability for each 

possible target class label, then the probability for each class is averaged across all the trees and 

the class with the highest probability is the final predicted class [149].  

Various parameters need to be set or tuned to build a random forest model such as: 

- the number of decision trees to be built in a random forest, 

- the maximum number of features permitted for the split in each decision tree, 

- the depth of the trees. 

 

4.2.4 XGBOOST  

 

XGBoost stands for eXtreme Gradient Boosting which is the fast implementation of gradient 

boosting. The gradient descent algorithm accelerate the convergence by applying second order 

partial derivative of the loss function and Boosting basically means enhancing the performance. 
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Boosting is a sequential ensemble learning method to adapt a series of weak base learners to strong 

learner to increase the performance of the model [157]–[163]. It has much faster computation than 

the gradient boosting algorithms since it employs parallel processing. To further improve it, the 

XGBoost classifier has two regularization terms (inbuilt L1 and L2) to penalize the complexity of 

the model and avoid overfitting [157], [158], [161]. 

 

4.2.5 Conclusion 

 

We introduced a probabilistic approach based on SVM and will extend the work for various 

classifiers and compare their results. Also, we will try to improve the performance classification 

by applying different strategies in the next chapter. In this work, we focus first on detection of the 

seizure and then used the information of the detection in prediction of the seizure. In this approach, 

F- score is low and for the rest of the studies the segments before the seizure along with the ictal 

stage were deemed as class one (1) the interictal with the postictal considered as zero (0) class. 

 

 

 

 

 

 

 

  



74 
 

 

Chapter 5  

Comparative study of feature selection techniques 

 

5.1 Methodology 

 

To select the suitable features for predicting seizures, the proposed method steps are illustrated in 

Figure 5-1. In the first phase, six EEG signals are preprocessed and 16 features extracted, i.e., the 

first 14 mentioned in chapter 4 (time domain) plus 2 from the 15th one (i.e., coefficient and error 

term of the AR model). Then, the data are divided into train and test sets and three kinds of feature 

selection methods employed to reduce the data dimension, making the approach computationally 

efficient. Next, the obtained results are tested by a well-known judging classifier namely, Random 

Forest. The 30 top extracted important features are ranked by various methods and fetched into the 

Random Forest classifier, while the accuracy and the Mathew’s correlation coefficient (MCC) are 

used as a performance analysis. Finally, the relevant features among the 30 top ones are retained 

for the winner feature selection method. 

 

Figure 5-1. An overview of the proposed work in analyzing the discriminative features. 



75 
 

In this work, we divided the participants into two groups based on the origin of their seizures. We 

retained twelve epilepsy patients (six TLE with the hippocampal origin (134 hours) and six FLE 

with neocortical origin (137 hours)). The TLE patients were #2, #4, #7, #10, #12, and #16 and the 

FLE patients were #1, #3, #5, #8, #18, and #19 from Table 3-1 of the Freiburg database. 

 

5.2 Feature Extraction 

 

The preliminary stage in EEG signal analysis is the preprocessing. To decrease the effect of factors 

that cause baseline differences among the different recordings within the dataset and remove the 

signal DC component, iEEG signals were normalized using Z-scores (expressed in terms of 

standard deviations from their means). The only potential artifact that could be addressed was the 

harmonic power line interference at 50 Hz. We eliminated the 50 Hz interference indirectly by 

performing the sub-band filtering in which Gamma was divided into two sub-bands.   

To deal with imbalanced dataset, an hour EEG signal was divided into 2 seconds non-overlapping 

windows for interictal section, while the ictal section was split into chunks of same window sizes 

with 50% overlapping. Various univariate linear measures were extracted at each epoch of two 

seconds along with a bivariate linear measure, as reported in Table 5-1 [47], [135], [137], [138], 

[147]. 

Prior to feature extraction, we utilized six band-pass FIR (Finite Impulse Response) filters to divide 

the iEEG signals into different frequency bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 

Hz), Beta (12-30 Hz), as well as two Gamma bands namely, low-Gamma (30-47 Hz), and high-

Gamma (53-120 Hz) [125], [127], [136]. This led to an input space of 630 dimensions for each 

window. The first 13 univariate features make dimensions of 6×6=36, the bivariate feature, MAX 

cross correlation generates 6×15= 90 and finally the AR parameters create a 2×6×6=72. 
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Table 5-1. Features extracted during a 2 seconds sliding window. 

NO. Features comments Time of the 

computation for each 

channel (s) 

1 Energy One feature ( 36D)1 0.001593 

2 Mean One feature ( 36D) 0.018089 

3 Variance One feature ( 36D) 0.011741 

4 Skewness One feature ( 36D) 0.181114 

5 Kurtosis One feature ( 36D) 0.014463 

6 Interquartile range One feature ( 36D) 0.036152 

7 Zero Crossing Rate  One feature ( 36D) 0.007410 

8 Mean Absolute Deviation One feature ( 36D) 0.010459 

9 Entropy One feature ( 36D) 1.168083 

10 Hjorth mobility  One feature ( 36D) 0.007360 

11 Hjorth complexity One feature ( 36D) 0.003935 

12 Coefficient of Variation  One feature ( 36D) 0.010528 

13 Root Mean Square  One feature ( 36D) 0.171703 

14 MAX of cross correlation 15 values for 6 channels, 

but we consider just one 

feature ( 90D) 

0.087968  

(between two channels) 

15 AR model 2 Two features ( 72 D) 0.026372 

                                1 36-dimensional (36D) feature vector.    2 (coefficient and an error term). 

 

5.3 Feature selection 

 

Feature selection is a vital stage in analyzing the data to improve model performance and reduce 

mathematical computational complexity by projecting the existing features onto a lower 

dimensional space. This technique reduces the input dimensionality by removing irrelevant or 

redundant features from the entire feature set [35], [164]–[168]. In the machine learning literature, 

the approaches to feature subset selection are often categorized as filter, wrapper, and embedded 

strategies [165], [167]–[169].  

Filter approaches are based on the statistical properties of explanatory variables (predictor 

variables) and their relationship to the outcome variable (response); basically, they are not 

computationally expensive. There are a great deal of filter methods such as PCA (Principal 
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Component Analysis), LDA (Linear Discriminant Analysis), and PLS (Partial Least Squares) 

which all of them are finding the linear combination of features to characterize two or more classes. 

However they are linear, simple, and relatively low cost to reduce the dimensionality of the data, 

we do not have any interpretation of the ranked features. Moreover, PCA as a famous feature 

reduction method is an unsupervised method which does not consider the dependant variable 

[170]–[172]. We employed the Kruskal Wallis (KW), a nonparametric test, without making prior 

assumptions about the data distribution, unlike the One Way ANOVA [173], [174]. 

The value of Kruskal-Wallis ranking can be calculated as the following equation: 

G=[
12

𝑁(𝑁−1)
∑

𝑅𝑖
2

𝑛𝑖

𝑐
𝑖=1 ] − 3(𝑁 + 1).                                                                                                                     (5-1) 

Here, N is the total number of observations across all classes, ni is defined as the number of 

observations in group i, Ri is the mean rank of the group i, c is the number of output group [174]. 

Wrapper approaches try to find a predictive model by using various combinations of features, then 

select the set of features that offer the highest evaluation performance. These techniques can be 

time consuming and tend to be slow. Therefore, they are not appropriate for large-scale problems 

to select the subset of features. We used one of the most popular wrapper techniques, Support 

Vector Machine - Recursive Feature Elimination (SVM-RFE), which backward eliminate features 

[175], [176]. The backward elimination technique builds a model on the entire set of the all features 

and computes an importance score for each one. Then it removes the least significant features at 

each iteration which enhances the performance of the model. In other words, the top ranked 

variables are eliminated last [175]–[177]. 

Embedded techniques are inbuilt feature selection, allowing a classifier to build a model that 

automatically performs attribute selection as a part of model training (performs feature selection 

and model fitting simultaneously) [178], [179]. In this work we used XGBoost (Extreme Gradient 

Boosting) which has been broadly employed in many areas due to its parallel processing, high 

scalability and flexibility [157]–[161], [180]. This embedded technique is an optimized 

implementation of the Gradient Boosting framework. Boosting is building a strong learner with 

higher accuracy with combination of weaker classifiers and it is known as the Gradient Boosting 

once the weak classifiers in each phase are built based on the gradient descent to optimize the loss 
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function [157]–[161]. To further improve it, the XGBoost classifier has two regularization terms 

(inbuilt L1 and L2) to penalize the complexity of the model and avoid overfitting [157], [158], 

[161]. Interestingly, one of the reasons XGBoost outperforms other embedded feature selection 

methods such as Lasso as explained eailer XGBoost employs two regularization terms to combat 

overfitting problem. While Lasso is a linear approach which employs just one regularization 

parameter (L1) [181]. 

 

5.4 Evaluation and Performance analysis 

 

We deemed 30 features that hold most informative and discriminative information. We extracted 

them from three approaches and then applied each new group of features to one of the most 

powerful ensemble method, Random Forest. This embedded approach belongs to a bagging for 

judging the performance of the other attribute selectors and it differs from boosting mechanism 

[162], [163], [178]. We selected bagging rather than boosting to avoid systematic bias in the 

comparison results. 

A classifier must generalize, i.e., it should perform well when submitted to data outside the training 

set. Since we are dealing with the problem of class imbalance, accuracy seems inadequate metric 

to evaluate the performance of the classifier [182]–[185]. Although accuracy remains the most 

intuitive performance measure, it is simply a ratio of correctly predicted observations over the total 

observations, so reliable only when a dataset is symmetrical. However, this measure has been used 

exclusively by some researchers in analyzing seizures [52], [174], [175].  

Numerous metrics have been developed to analyze the effectiveness and efficiency of the model 

in handling the imbalanced datasets such as F1 score, Cohen’s kappa, and Matthews’s correlation 

coefficient (MCC) [184], [185]. Among the above popular metrics, MCC is revealed as a robust 

and reliable evaluation metric in the binary classification tasks and, in addition, it was claimed that 

measures like F1 score and Cohen’s kappa should be avoided due to the over-optimism results 

especially on imbalanced data [176], [177], [184], [185].  
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To visualize and evaluate the performance of a classifier, we employed the confusion matrix (see 

Table 5-2, which represents the confusion matrix of a binary classification). After computation of 

the confusion matrices, we retained accuracy and MCC to compare the classification performance 

and effectiveness of the feature selection methods.  

 

Table 5-2. The confusion matrix for a binary classification task. 

Actual Predicted 

Positive Negative 

Positive TP (True Positive) FN (False Negative) 

Negative FP (False Positive) TN (True Negative) 

Accuracy (Acc): 

Accuracy can be defined as the ratio between the number of correct predictions and the total 

number of correct predictions. Let TP be actual positives that are correctly predicted positives, TN 

be actual negatives which are correctly predicted negatives, FP actual negatives that are incorrectly 

predicted positives and FN actual positives that are incorrectly predicted negatives. Then, accuracy 

can be expressed as: 

Acc = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                       (6.2) 

 

Matthews’s Correlation Coefficient (MCC): 

MCC takes into account all four quadrants of the confusion matrix, which gives a better summary 

of the performance of classification algorithms. The MCC can be considered as a discretization of 

the Pearson’s correlation coefficient for two random variables due to taking a possible value in the 

interval between -1 and 1 [177], [179], [186]. A score of 1 is deemed to be a complete agreement, 

−1 a perfect misclassification, and 0 indicates that the prediction is no better than random guessing 

(or the expected value is based on the flipping of a fair coin). 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                                                                    (6.3) 
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5.5 Dividing signals into frequency sub-bands 

 

Our aim is to analyse and rank the time-domain features introduced by different researchers and 

related to epileptic seizures forecasting with EEG signals by comparing the performance of three 

feature selection approaches. Before ranking the features and comparing them, we first 

investigated how much dividing EEG signal into various sub-bands can be important.  

Therefore, we compared the accumulated energy for two cases, without and with dividing the 

signal into 6 sub-bands. The feature selection scores are represented by Figures. 5-2-a and 5-2-b 

for temporal and frontal lobe, respectively.  

The results for both graphs show that dividing the EEG signal into various sub-bands can improve 

the performance of seizure forecasting because it contains much more discriminative information 

than the other case. Interestingly, we will increase the dimensionality of data for now but, later, 

we will focus on specific sub-bands and reduce the dimensional feature space to consume less 

memory at runtime. 

 

5.6 Feature selection methods comparison 

 

We employed three methods for feature ranking and, afterwards, independent train and test sets 

were defined to compare their performance using a Random Forest classifier. To have a better 

estimation of the generalization performance of the work, we evaluated the top 30 selected features 

on the testing dataset, which has not been used during the training process. 
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Figure 5-2. Investigation of dividing the EEG signal into various sub-bands a) for temporal lobe b) for frontal lobe. 

 

Using Matlab, the calculations were made on an Intel(R) Core (TM) i7CPU 3.3GHz, and 16 GB 

RAM. Once the preprocessing stage was done in Matlab, MAT files were converted to NumPy 
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arrays and we developed the rest of the work in Python (3.7.6) programming language. The 

computation time for each feature selection method is listed in Table 5-3 and the performance of 

the various feature selection methods is listed in table 5-4.  

Table 5-3. The comparison of computational cost of three feature selection methods applied on the train 

set. 

Brain lobe/Selection 

method 

Kruskal-

Wallis 
SVM-RFE XGBOOST 

Temporal lobe 12.4 min 3411 Min 18.7 Min 

Frontal lobe 10.9 min 2375 Min  12 Min 

 

Table 5-4. The performance of the various feature selection methods for both lobes applied on the test 

set. 

Selection method Temporal Frontal lobe 

performance Acc.  MCC Acc.  MCC 

Kruskal-Wallis  76%   0.55 59%  0.24  

SVM-RFE  68%   0.40 55%  0.11 

XGBOOST  72%   0.496 57%  0.12 

If we compare the results in the two above tables, we can conclude that the computational 

complexity of filter-based method, Kruskal Wallis, has the highest MMC score and less 

computation time. While SVM-RFE has a longer computation time compared to the other 

approaches and shows the poorest performance. 

The top 30 ranked subset, are listed in Tables 5-5 and 5-6 for TLE and FLE, respectively, based 

on the three feature selection approaches. The most popular feature ranked by the three feature 

selection methods is AR. The second most important feature is the MAX cross correlation and 

complexity is the next one. Interestingly, features like Mean, Skewness, Zero Crossing Rate, and 

Entropy are not deemed as top 30 ranked feature-subset as in Tables 5-5 and 5-6. Also the 

following remarks can be made:  

 AR model is an interesting feature along with MAX cross correlation for all three feature 

selection methods and both lobes. 

 Delta sub band is considered an important sub band for XGBOOST and SVM-RFE, but 

not the case for Kruskal Wallis. 
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 Error is more important than coefficient as AR parameters in discriminating feature 

between seizure and non-seizure for all three feature selection methods. 

Some of the attributes are selected multiple times by the feature ranking approaches for both tables 

like AR High-Gamma Error which has been chosen by Kruskal Wallis as feature 1, 7, and 30 in 

table 5-5. The reason behind that is the feature has been selected and presented without considering 

the order of the electrodes.   

Figures. 5-3-a and 5-3-b illustrate an overview of the features selected with the KW for temporal 

and frontal lobes, respectively. Figure 5-3-a confirms that, amongst the time-domain parameters 

that play important role in prediction of the seizure, AR is the top feature, followed by the cross 

correlation and the IQR. On the other hand, Figure 5-3-b shows that the AR model, a measure of 

complexity obtained with Hjorth’s analysis, is an important feature besides IQR for patients with 

frontal lope epilepsy.  

In the last step, we applied another filter method to get the product-moment correlation coefficient, 

or Pearson correlation coefficient, in order to identify the linear relationship between the 30 top 

ranked features and thus, to eliminate any redundant information. This coefficient can be set as 

𝜌 =
𝐶𝑜𝑣(𝑋1𝑋2)

𝜎𝑋1𝜎𝑋2
                                                                                                                        (6-4) 

where Cov(X1, X2) is the covariance of two features and 𝜎𝑋𝑖 is the standard deviation of each 

variable. 𝜌 can take a value in the range of [-1, +1] with +1 the case of a perfect positive linear 

relationship between random variables and -1 a negative linear relationship between two features. 

That is to say, the larger X1 values the smaller X2 values and vice versa. 𝜌 = 0 implies the 

independence between the variables. In other words, the higher absolute value of the correlation 

coefficient, the more similar they are [187]–[189]. 

We calculated the product-moment correlation matrix for the top 30 subset of features with the 

highest Kruskal-Wallis scores as shown in Figures. 5-4-a and 5-4-b (the darker the color, the 

stronger the correlation between two variables). We can see some features with a perfect positive 

linear relationship in both figures. We reported the features with the strongest linear pattern in 

Table 5-7. Interestingly, we can see a good relation between IQR and MAD in both lobes, which 
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has a strong linear relationship and it happens in Alpha and Beta sub-bands in frontal lobe and in 

low and high- Gamma sub-bands for temporal lobe. Also we can see a close relationship between 

variance and energy for both lobes.  
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Table 5-5. Top 30 feature-subset ranked by three types of approaches for temporal lobe epilepsy. 

Top 

Features  

       KW 

 

SVM-RFE 

 

XGBOOST 

 

1 AR High-Gamma error cross correlation Beta Beta error AR 

2 AR Alpha error AR Delta coefficient AR Beta error  

3 AR Beta coefficient 
MAX cross High-

Gamma   
AR High-Gamma error 

4 AR Beta error MAX cross Beta AR Low-Gamma error  

5 
MAX Cross Low-

Gamma 
MAX cross Beta AR Theta error    

6 
MAX cross High-

Gamma 

MAX cross High-

Gamma    
AR Delta error     

7 AR High-Gamma error RMS High-Gamma AR Delta error   

8 IQR High-Gamma AR Theta coefficient AR Alpha coefficient   

9 
AR High-Gamma 

coefficient  
AR Theta error complexity High-Gamma   

10 Cross High-Gamma RMS Beta AR Delta coefficient  

11 IQR High-Gamma AR Beta coefficient AR High-Gamma error  

12 MAD High-Gamma cross Beta AR Delta error  

13 AR Beta error cross Delta complexity Beta   

14  
complexity High-

Gamma 
cross Delta AR Alpha coefficient  

15 Cross Low-Gamma 
STDtoMEAN Low-

Gamma 
MAD High-Gamma  

16 VAR High-Gamma cross Alpha AR Alpha error   

17 Energy High-Gamma RMS Delta cross High-Gamma  

18 RMS High-Gamma cross Low-Gamma   AR High-Gamma error    

19 Cross High-Gamma RMS Theta   AR coefficient Alpha   

20 MAD High-Gamma cross Beta 
AR High-Gamma 

coefficient   

21 AR Low-Gamma error RMS Delta AR Beta coefficient   

22 complexity Low-Gamma RMS Low-Gamma AR Beta coefficient   

23 Cross High-Gamma 
complexity High-

Gamma 
AR Beta error   

24 VAR Low-Gamma mobility Delta AR Alpha coefficient    

25 Energy Low-Gamma 
mobility Low-

Gamma 
IQR Beta  

26 RMS Low-Gamma cross Delta AR Delta coefficient   

27 IQR Low-Gamma complexity Alpha AR Delta error   

28 Cross Low-Gamma 
complexity High-

Gamma 
AR Alpha error   

29 
AR coefficient Alpha 

coefficient   
complexity Low-

Gamma 

AR Low-Gamma  

 

30 AR High-Gamma error      complexity Delta mobility  Delta   
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Table 5-6. Top 30 feature-subset ranked by three types of approaches for frontal lobe epilepsy. 

Top 

Features  

       KW 

 

SVM-RFE 

 

XGBOOST 

 

1 AR Low-Gamma error AR High-Gamma 

error 

AR delta 

coefficient   

2 AR Alpha coefficient AR Alpha error AR Theta error   

3 AR Theta error cross High-Gamma AR Delta 

coefficient   

4 AR Low-Gamma error AR Theta coefficient AR Theta error   

5 AR Low-Gamma error cross correlation Beta AR Theta error   

6 AR Theta error AR Delta error AR Delta error   

7 Complexity Alpha cross Alpha AR Low-Gamma error   

8 IQR Alpha cross Beta AR Alpha coefficient     

9 mobility Beta AR Delta error AR Alpha error   

10 IQR Alpha RMS Low-Gamma AR Alpha error    

11 IQR Theta cross delta AR Theta coefficient   

12 IQR Beta RMS High-Gamma AR Beta coefficient   

13 IQR Low-Gamma MAX cross Alpha AR Beta error  

14  IQR Alpha complexity Alpha kurtosis High-

Gamma  

15 kurtosis Beta MAX cross High-

Gamma 

AR Beta error   

16 AR Beta coefficient MAX cross Beta AR Low-Gamma 

coefficient   

17 MAD Alpha MAX cross Theta AR Beta 

coefficient   

18 MAD Beta 

error 

MAX cross Low-

Gamma 

AR High-Gamma  

 

19 Complexity Alpha MAX cross Beta AR Beta coefficient    

20 IQR Theta RMS Delta AR Beta error    

21 AR Beta error MAX cross Alpha AR High-Gamma error    

22 IQR High-Gamma MAX cross Theta AR Delta coefficient   

23 AR Theta coefficient complexity Delta AR High-Gamma error    

24 Energy Alpha RMS Low-Gamma 

coefficient 
AR Delta error   

25 RMS Theta mobility Alpha AR High-Gamma 

coefficient   

26 VAR Alpha complexity High-

Gamma 

AR Delta error   

27 MAD Alpha mobility Alpha AR High-Gamma error   

28 Complexity Theta complexity Low-

Gamma 

AR Theta 

coefficient   

29 Complexity Theta complexity Delta MAD Beta   

30 Energy Beta mobility High-Gamma AR Delta 

coefficient    
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Figure 5-3. An overview of the features ranked by Kruskal-Wallis as a winner method. : (a) for temporal lobe; (b) for 

frontal lobe. 
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Figure 5-4. Heat-map of the correlation matrix between the top 30 subset of features with the highest Kruskal-Wallis 

scores: (a) for the temporal lobe; (b) for the frontal lobe. The dark red and dark blue show a high correlation magnitudes 

which indicate those features contain similar information while gray color identifies a low correlation. 
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Table 5-7. Features with the strongest linear relationship among top 30 features with the highest Kruskal-

Wallis scores. 

Lobes Attributes with a strong linear relationship 

 

 

Temporal 

lobe 

         AR High-Gamma error      /       AR High-Gamma coefficient  

         IQR High-Gamma             /       MAD High-Gamma   

         Energy High-Gamma        /       VAR High-Gamma 

         complexity High-Gamma /        complexity Low-Gamma 

         VAR Low-Gamma           /        Energy Low-Gamma 

 

Frontal 

lobe 

         Complexity Alpha            /    Mobility Beta             /       Energy Beta   

         MAD Alpha                     /      IQR Alpha               /      RMS Theta    

         IQR Beta                         /     MAD Beta      

         Energy Alpha                 /      VAR Alpha    

 

The mRMR (Minimum Redundancy Maximum Relevance) method is one of the most well-known, 

powerful, and widespread approaches as filter-based feature selection that tends to rank features 

with the highest correlation with the class (output) and the least correlation among themselves 

[190]–[192]. Based on the results of KW, we decided to compare the winner approach as a filter 

with mRMR to compare the performance of the new approach to remove redundant attributes and 

select the largest relevance ones. We implemented mRMR for temporal lobe epilepsy data and we 

found out that this method of feature selection is indeed very fast (it took less than 3 minutes) but 

the results were not better than those obtained with KW. The reported MCC score is 0.33, which 

is too low compared to that of KW. The other issue with this ranking feature is about the ranked 

features; the parameters related to AR model are not the most important among the extracted 

features in this work. We checked the top 30 attributes and none of the attributes from AR model 

was selected by mRMR (figure 5-5) while the results of all feature ranking approaches utilized in 

this work proved the importance of the AR model parameters. Therefore, mRMR as a powerful 

feature ranking approach does not surpass the retained filter method, KW. 
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Figure 5-5. The result of mRMR feature ranking for temporal lobe. 

 

5.7 Discussion 

 

For different reasons, some researchers have divided the EEG sub-bands into various sub-bands 

[45], [46] while other did not [37], [47]. Our aim was, therefore, to consider both cases and evaluate 

the impact of dividing the EEG signal into various sub-bands. In fact, as shown in Figures 5-2-a 

and 5-2-b, dividing the EEG signal into 6 sub-bands will carry more predictive information than 

not splitting it.   

In this study, we compared three various feature selection methods and the results showed that the 

filter method has the highest performance with the highest MCC and accuracy. Also, KW can rank 

the features a lot faster, with the shortest computational time. 

A large panel of wrapper approaches have been proposed for feature selection but most of them 

are computationally expensive and complex in nature [177]–[179]. The results we obtained 

confirmed this fact: SVM-RFE has the lowest prediction performance and is the most intensive in 

terms of computation. Although, in most of existing works, it has been claimed that the embedded 
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methods that combine filters and wrappers take advantage of both, the obtained results did not 

really demonstrate that claim, showing that the non-parametric filter-based method, Kruskal 

Wallis, outperforms better than the above approaches.  

The AR method estimates the power spectrum density (PSD) of a given signal. Then, this approach 

does not have the problem of spectral leakage and we can expect a better frequency resolution 

dissimilar the nonparametric method. PSD can be estimated by calculating the coefficients even 

when the order is low [193]–[195]. Furthermore, the prediction error term extracted from an AR 

model of the brain signals is claimed to reduce during preictal stage [146].   

The maximum of cross-correlation, a bivariate feature, can be considered as a measure for lag 

synchronization due to estimating of the phase difference between two spatially separated sensors 

even with a low SNR [131], [196]. The key points for Kruskal Wallis as a winner, can be due to 

not just considering the parameters of AR model and MAX cross coloration. This feature selection 

tried to engage other important univariate features like complexity, which having an estimation of 

statistical moment of the power spectrum. 

The temporal lobe is responsible to deal with the processing of the information and play a role in 

long term memory. Gamma rhythms are involved in higher processing tasks and cognitive 

functioning. These waves are the fundamental waves for learning, memory and information 

processing. The Frontal lobe is responsible for emotion control center, planning, judgment, and 

short-term memory. Theta rhythms are produced to help in creativity, relaxation, and emotional 

connection. Alpha waves help in feeling of deep relaxation and Beta waves are related to 

someone’s conscious and problem solving [120].  

In this study, we found that the low and high-gamma sub-bands are the most discriminating ones 

between preictal and interictal for TLE patients while the frequency ranges from Theta to low-

Gamma were found to be the most discriminating features in six patients with FLE. Our results 

confirmed that gamma sub-bands are a promising biomarker in predicting of seizure for TLE 

[197]–[200]. However, for FLE, we should consider a wider range of frequencies (lower frequency 

compared to TLE) in the preictal stage. Note that some existing works in detection of FLEs 
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proposed that frequencies less than 50 Hz can play dominant roles among different brain waves 

[32], [33], [201]. 

Our results also demonstrated the complexity of seizure prediction and detection due to the fact 

that the frontal lobes of the brain control a wide variety of complex structural and functional roles 

[25]–[27], [202]. These findings can help establish specific relationships regarding the impact of 

each lobe in a specific function and the generation of waveforms based on that function. 

Furthermore, by comparing the performance results of Kruskal Wallis for both lobes in Table 5-4, 

we see that MCC is not close to 1, the perfect prediction case by looking at the accuracy values. 

Not having very high accuracy can imply that the issue of the imbalanced was resolved and the 

reason for not having a high MCC is related to the low capacity of this version of Freiburg database 

due to having data up to 90 minutes of preictal, or to the fact that some seizures take few minutes. 

Based on Ramachandran et al. [15], we might need at least 3 to 16 hours before the onset of the 

seizure to efficiently predict seizures. It may be considered as a limitation in this study and 

weakness of this database. Another possible solution is employing non-linear measures, such as 

phase synchronization, to improve the model performance in forecasting seizures.  

Moreover, according to [6], [119], a non-stationary signal like EEG can be anticipated as a 

stationary signal in a short duration epoch, like a two-second window. Also, based on the results 

in figures 5-3-a and 5-3-b, the variation of the mean feature for both lobes is nearly a constant 

value. This result partially confirms the previous claim, but this would require further 

investigations.  

The effectiveness of the Kruskal Wallis as a nonparametric method is based on the fact that it does 

not need to assume a data distribution model, making our results promising in feature selection of 

EEG data of TLE and FLE. Therefore, dealing with a higher number of epilepsy patients will not 

be an issue and this approach would be applicable to a larger set of data. Furthermore, we divided 

the data into train and test sets and the model built by random forest was trained and validated with 

10 fold cross validation. Also, we prevented overfitting, which can be considered as a generalized 

model for an unseen data.   
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Note that by applying mRMR, we spent not only less time in ranking the features but also we did 

not need to remove the redundant attributes, which we had to do for KW. However, by comparing 

the results of MCC for KW and mRMR, we found out that KW is really more efficient than its 

counterpart. 

Furthermore, applying MCC in measuring the performance of the model, is a significant 

improvement over other existing works that deemed accuracy as the performance of the classifier 

while dealing with imbalanced data [15], [38], [108]. Moreover, according to [19], [20] a non-

stationary signal like EEG can be anticipated as a stationary signal in a short duration epoch, like 

a two-second window. Also, based on the results in figures 5-3a and 5-3b, the variation of the 

mean feature for both lobes is nearly a constant value. This result partially confirms the previous 

claim, but this would require further investigations. 

We do emphasized on the computation time in this chapter. Nevertheless, one may argue that since 

the training process can be performed offline, the computation time should not be an issue. 

However, as already mentioned in the objectives, our long-term target in implementing our 

algorithm in portable devices is to enhance the daily life of the patients and increase their 

autonomy. Thus, we opted for a dual-mode operation:  

 The training can be done offline and the model can be updated afterwards via any available 

communication application. So, the model can be updated after an offline training.  

 Knowing that (i) the application should need to frequently integrate new data in its early 

utilizations and (ii) that some patients could not have regular access to wireless 

connections, the other possible scenario is to update the tool online. Then, the 

training/update should be performed on the portable device itself while the application is 

still working on prediction mode.  

To ensure this dual-mode operation, it is crucial to shorten the training CPU time while making 

the tool operation as simple as possible.  

We believe that the findings of this work can be implemented on a low power hardware by 

efficiently considering less complex features for a specific sub band with the information from 
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only one patient, instead of building and deploying a model for the entire patients in the database. 

Note that, as already mentioned, the obtained results are based on a limited number of patients.  

 

5.8 Conclusion 

 

The epileptic seizures are the temporary occurrence of symptoms due to synchronization of 

abnormally excessive activities of the brain nerve cells. However, reviewing of the EEG signals 

will be a time consuming task for neurologists to analysis and monitor continuous 

electroencephalograms. Therefore, even it is quite challenging, implementing a high performance 

automated analysis of EEG signals is in high demand.  

The Kruskal-Wallis feature selection strategy is simple and less time consuming as compared to 

other approaches. Among the time-domain features investigated, the parameters of AR model are 

ranked as the top features for both lobes. The second most important features are the maximum of 

cross-correlation and IQR for temporal and frontal lobes, respectively. Moreover, a high range of 

frequency like low and high-Gamma have been introduced as an interesting sub-band for the 

temporal lobe epilepsy, while the middle range of frequencies from Theta to Beta can be seen as 

important ranges of frequency for frontal lobe epilepsy. 

Future efforts should be focused to reliably improve the performance of the prediction on test set 

for a patient-specific by considering a combination of various features that provide an estimation 

of phase, frequency and amplitude of the EEG signal. 
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Chapter 6 

 

Probabilistic approach for efficient prediction of epileptic seizure with 

iEEG signal 

6.1 Introduction  

 

In this chapter, we will employ the time domain features thoroughly explained in the previous 

chapter. We extracted those features within a 2-second window while in this chapter we will vary 

the window size from 1 to 40 seconds and investigate the changes in the performance of various 

classifiers. After finding the optimum window size, we will introduce a new probabilistic approach 

in seizure prediction in order to improve the performance of the existing studies in this field. 

 

6.2 SOP and SPH definitions in seizure forecasting 

We introduce three additional important terms in the field of seizure forecasting (as illustrated in 

figure 6-1): 

 Seizure occurrence period (SOP): The time interval in which a seizure is expected to occur 

[15], [203], [204]. 

 Preictal period (PP) or preictal zone: the period before a seizure, which is clinically obscure 

but implicitly determined in the dataset [41].  

 Seizure prediction horizon (SPH): The interval between the alarm and a leading seizure 

expected to occur, is named SPH. This period is also vague though it should be in the 

preictal period [41], [203], [204].  
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During the SPH interval, a seizure-warning tool can effectively inform the patient to behave 

carefully or treatment plans can be employed [203]. Based on the clinical aspect, SPH should be 

high enough to allow sufficient time for the patient to behave cautiously or take medicines. By 

contrast, SOP should be low enough to soothe the patient’s anxiety and stress [203], [204]. 

 

Figure 6-1: Durations of seizure occurrence period (SOP) and prediction horizon (SPH) are demonstrated. 

 

6.3 Accuracy, an inadequate metric to evaluate an imbalanced dataset  

The most common and natural technique to evaluate a classification model is to compute the 

accuracy, the ratio between the number of correct predictions and the total number of predictions. 

We consider the case with the task to forecast whether a given signal is preictal or abnormal (1) or 

interictal or normal (0).  

In the bi-class scenario like our case, the class label being either 1, representing preictal, or 0 

representing interictal. When the actual label is 1 and the predicted label is 1, then this is a true 

positive, TP, where the label is legitimately forecasted as positive. When both the actual and the 

predicted labels are 0, thus this is called TN (true negative), then the label is properly projected as 

negative. If the actual label is 0 and the predicted label is 1 we have the false positive case, FP. 

The case the label is fraudulently forecasted as positive while it should be negative is pondered as 

type 1 error. Reversely, the case when the actual label is 1 and the predicted label is 0, is considered 

as false negative, FN. We ponder this case as type 2 error [205]–[207]. 
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A data with unequal distribution between its majority and minority groups is titled imbalanced 

dataset. Interestingly, a medical device to forecast a rare case as seizure cannot solely depend on 

plain accuracy in evaluation. The cost associated with missing a seizure is worse than fraudulently 

labeled a healthy signal as an abnormal signal. To investigate the issue of the imbalanced data, we 

considered the EEG signal of a patient from the database, #4, in this study. The imbalanced ratio 

was about 22 and 20 for train and test set respectively (the size of majority class to minority one).  

The result of the classification for this data has been inserted in Table 6-2.  

 

Table. 6-1 The confusion matrix for a classifier. 

 

Actual label Predicted label The result of comparison Error type 

1 1 True Positive (TP)            -- 

0 0 True Negative (TN)            -- 

0 1 False Positive (FP) Type 1 error 

1 0 False Negative (FN) Type 2 error 

 

Table. 6-2 Various measures for multiple classifiers in an imbalanced dataset.  

 

Performance analysis of classification SVM XGB RF 

True Negatives 13731 13730 13731 

False Positives 0 1 0 

False Negatives 691 241 691 

True Positives 0 450 0 

Specificity 1.0 1.0 1.0 

Sensitivity 0.0 0.65 0.0 

Accuracy 0. 95 0.98 0.95 

F1 score -- 0.65 -- 

Average precision-recall score 0.05 0.67 0.05 

AUC 0.50 0.83 0.50 

MCC 0.0 0.80 0.0 

This table demonstrates that SVM and RF classifiers could not deal with the imbalanced issue 

compared to XGB. Having a high value of accuracy while the rest of the measures like MCC are 

low can be consider as failure in dealing with the imbalanced classification problems. Thus, we 

found out that the plain accuracy may be misleading. 
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6.4 The optimum window  

In this section, we describe the process of determining the optimum window length (figure 6-2). 

 

 

Figure 6-2. Flowchart of the work to select the best length of the window (CV stands for “cross-validation” loop). 

 

As mentioned before, an iEEG signal was chunked into various sections and during each sliding 

window a specific feature was extracted. This is repeated until the whole signal is treated. The 

time window size varies from study to study from 1 to 20 seconds [15], [41], [203], [204], [208] 

and some works have been done about finding an optimum length of seizure prediction [38], [53], 
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[209], but due to lack of information related to the performance of the classifier, this issue still 

needs further investigation.  

The length of the window is a crucial parameter that needs to be chosen carefully. This size cannot 

be deemed too small since the signal requires to be long enough to provide reliable values for the 

features. Furthermore, our aim in this work is to implement an algorithm on a low power device, 

which usually means limited computing power. Then with a very small window size, the features 

will require to be computed over and over in a short period of time. This can pose a threat once 

enough computational power is not available on a small implantable medical device [175], [209]. 

On the other hand, the window size cannot be taken too long because the characteristics extracted 

from the signal will not have a very smooth transition over time. In fact, because the targeted 

activity might occur at the beginning or in the middle of the window, the values extracted for the 

whole part of the sliding long-window may not exactly represent the type of the activity [175]. 

Six patients from Table 3-1 with temporal epilepsies originating from the hippocampal area were 

retained for this chapter namely, participants #2, #4, #7, #10, #12, and #16. 134 hours iEEG data 

available in the Freiburg database, i.e. 52 and 82 hours from preictal and interictal, respectively. 

Then based on the assumption in the previous chapter, we considered to employ besides accuracy 

other measures like MCC as the performance analysis in this part. 

An hour EEG signal was divided into various non-overlapping window sizes (40 s, 20 s, 10 s, 4 s, 

2 s, and 1 s) for interictal section, while the preictal section was split into chunks of same window 

sizes (i.e. from 40 s to 1 s) with 50% overlapping. The performances of various classifiers for 

different window sizes were reported in Table 6-3. We intended to employ various classifiers and 

measurements to increase the consistency in our results: SVM as linear approach, MLP as 

nonlinear method, the ancestor deep neural networks and two various ensemble tactics. Ensemble 

learning has been considered as a powerful machine learning algorithm that has demonstrated a 

great deal of advantages in various applications. This method of machine learning algorithm 

combines numerous base models in order to build one optimal predictive model [160], [210], 

[211]. We employed two various ensemble approaches in this study XGBoost (boosting) and 

Random Forest (bagging). The performance, MCC score, of the classifiers for different sets of 

window lengths were depicted in figure 6-3 based on the results from Table 6-3. XGBOOST had 



100 
 

the highest MCC score while MLP demonstrated the least performance. The result of MCC for 

XGBOOST are plotted on a graph, as shown in figure 6-4. 

Among the available classifier candidates in the previous experiment, we found that XGBoost 

(XGB) gave the best performance in binary classification with the highest MCC score while the 

grid search has been performed to optimize the maximum depth parameter. XGB has been broadly 

utilized in numerous fields to demonstrate state-of-the-art results on some data challenges and it 

has shown a strong potential to solve the resulting difficulties in data analysis and is one of the 

most favourable classifiers in machine learning regarding classifiers [158], [212], [213].  

Table 6-3. The performance of various classifiers for different window sizes. 

Window 

/classifier 

1s 2s 4s 10s 20s 40s 

XGB RF SVM XGB RF SVM XGB RF SVM XGB RF SVM XGB RF SVM XGB RF SVM 

Accuracy 0.76 0.66 0.74 0.79 0.72 0.56 0.79 0.71 0.53 0.79 0.73 0.76 0.74 0.71 0.68 0.74 0.72 0.75 

F1 score 0.75 0.54 0.75 0.79 0.66 0.61 0.78 0.63 0.73 0.78 0.67 0.76 0.70 0.64 0.70 0.71 0.65 0.76 

F2 score 0.71 0.44  0.74 0.76 0.56 0.63 0.75 0.53 0.74 0.75 0.57 0.75 0.62 0.54 0.70 0.63 0.55 0.76 

Average 

PR score 

0.72 0.68 0.70 0.76 0.73 0.56 0.76 0.73 0.66 0.76 0.74 0.72 0.74 0.72 0.64 0.74 0.73 0.71 

AUC 0.76 0.67 0.74 0.79 0.73 0.55 0.79 0.72 0 .69 0.79 0.74 0 .76 0.75 0.72 0 .67 0.75 0.73 0 .75 

MCC 0.512 0.41 0.48 0.582 0.51 0.11 0.58 0.51 0.39 0.58 0.52 0.51 0.53 0.50 0.35 0.53 0.45 0.50 
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Figure 6-3: MCC for all the classifiers in a graph. 

 

Finally, MCC score of XGB for various window sizes was displayed in figure 6-4, showing that 

the best MCC was located in the range of 2-10s window. We also drew the PR and ROC curves 

(Figures 6-5 and 6-6, respectively). In these plots, the line in the middle (the orange dashed line) 

shows that the classifier is a random guess while a perfect classifier assumes to cover the largest 

area under the curve [214], [215]. 
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Figure 6-4: MCC of XGB for various window size. 

 

 

Figure 6-5: Precision and recall (PR) curve of XGB for 2 s window. 
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Figure 6-6: The Receiver Operating Characteristic (ROC) curve of XGB for 2 s window. 

 

6.5 Discussion about the choice of the window size 

Based on Table 6-4, Parvez [38] claimed that a 10 s window outperformed due to being more 

consistent with respect to the AECR values of preictal and interictal segments although the length 

of the data in this experiment was about 10 minutes. Then the above statement needs to be 

reinvestigated for a larger set of data. In another work [15], the authors employed accuracy on a 

highly imbalanced dataset to find the best window size, i.e. 20 s, from a set of 1 to 60 s window 

lengths. However, we investigated that accuracy alone is not the best metric to use. Therefore, the 

result of this work needs to be re-evaluated by applying other measures besides accuracy. In fact, 

in the above work, very few pre-ictal samples were studied while most of the samples belonged to 

the inter-ictal segments. Then, the model may gradually lose the capability of predicting the 

preictal patterns succeeding a long inter-ictal patterns. Same issue can be applied to [52]. 

In [53], Sigh employed the posterior probability of the classifier and compared it for various 

window sizes and then, the 90 s window was chosen due to having the highest probability while 
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the performance of the model was not reported whether the under-fitting or over-fitting resolved 

during the training or not. In [54], the authors calculated the correlation coefficient during a certain 

time window (from 0.5 to 300 seconds) and investigated the performance of the classifier just by 

employing AUC. They found out that the time window of 60 s and 30 s demonstrated the highest 

AUC for seizure prediction in humans and dogs, respectively. Again, the imbalanced ratio was not 

reported while AUC demonstrated various flaws and drawbacks owing to the fact that it is sensitive 

to class imbalance [214]–[216].  

Note that our work does not suffer from the imbalanced issue which this ratio is about 2:1. We 

applied various performance measures and classifiers to make sure the prediction system was 

investigated thoroughly. For a window length of 1 s, the classifiers performance has not been 

improved, which can confirm Islam’s works [59], [119] that, by choosing a very short window, 

e.g., less than one second, the seizure waveform may not be recognized properly in such a short 

duration. 

We intended to keep the stationarity of the EEG signal and based on the work of Islam [59] by 

choosing a very short window, e.g., less than one second, the seizure waveform may not be 

recognized properly in such a short duration. On the other hand, by defining a longer window 

length, e.g., more than 3 seconds, the assumption of stationarity of an EEG signal is not valid 

anymore. Therefore, artifacts and seizure cannot be distinguished from each other. In conclusion, 

a non-stationary signal like EEG can be assumed as a stationary signal in a short duration epoch 

like a two-second window. 

Another point to note that, in order to optimize the device performance for a real time processing 

we need to take into consideration the factors of computing resources, power consumption and 

CPU time In a real time processing. In a real time scenario, a device will be always sequentially 

extracting and calculating some features then by assuming for a longer window size, the device 

needs to calculate the features based on a longer portion of the signal. The longer the window size 

then higher will be the power consumption and CPU time. 
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Table 6-4. The comparison of our study with existing works. 

Name of 

the work, 

database 

Feature used  Window 

size used 

in the 

paper 

# of 

Subjects 

and 

seizures 

Performance 

of the 

classifier 

imbalance ratio (data 

length) 

[15], 

2018  

Area, Normalized 

decay, Line 

length, Mean 

energy, Peak 

amplitude, Valley 

amplitude, 

Normalized peak 

number, Peak 

variation 

1-100 s 7 subjects 

(5 dogs 

and 2 

humans) 

accuracy 20:1 for dogs 2:1 for 

patients 

[53], 

2016 

Power Spectral 

Entropy, 

Fast furrier 

Transform, 

Higuchi Fractal 

Dimension, and 

Hurst Exponent 

10-600 s   optimal window size 

can be argued to be 

around 90 seconds  

[54], 

2015 

calculate the 

correlation 

coefficient in a 

certain time 

window between 

all possible pairs 

of EEG signals 

 

0.5-300 s Kaggle 

dataset, 5 

epileptic 

dogs and 2 

epileptic 

patients 

AUC, no 

other 

information 

about the 

classifier 

performance 

in humans, best 

classification is 

showed by SVM 

classifier for a time 

window Tw = 60 s 

(AUC = 0.9349); for 

seizure prediction in 

dogs, highest obtained 

AUC is 0.9432 for 

SVM classifier and Tw 

= 30 s 

[52], 

2008 

Empirical Mode 

Decomposition 

(EMD)  and AR 

model coefficients 

12, 24, 

35, and 

47 s 

19 patients 

the 

Freiburg 

database 

Accuracy and 

variance 

From 5 to 20 min of 

preictal and same 

length from interictal 

[38], 

2016 

Average of the 

energy 

concentration 

ratio 

5, 10, 15 

seconds 

21 patients 

 

No 

information 

10 second window 

outperformed due to 

being more consistent 

with respect to the 

AECR values 

This 

work 

AR parameters, 

IQR, MAD, 

complexity, and 

MAX cross 

coloration 

1-40 

seconds 

6 patients 

from the 

Freiburg 

database 

MCC: 0.582 1.6 (52 and 82 hours 

preictal and interictal 

respectively) 
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6.6 Proposed method for probabilistic approach 

In order to undertake this research, various phases were recruited: data collection, data 

preprocessing and feature extraction, classification and optimization, evaluation and decision 

making. The overview of the proposed pipeline is illustrated in Fig. 6-7. 

 

Fig. 6-7 Flowchart of the proposed work. 
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6.6.1 Preprocessing and feature extraction 

 

We utilized the same preprocessing as in chapter 5 and the results of feature selection in figure 5-

3 (a). The signal was chunked to 2 seconds window and 6 features were extracted namely, AR 

parameters, IQR, MAD, complexity, and MAX cross correlation. Afterwards, the data were 

divided into two groups: 75% of them allocated for training and validating, and the remaining 25% 

(never-seen-before) for testing the model. Both training and testing data segments have been 

numbered sequentially. “Numbered sequentially” means they are not randomly fetch to the 

classifier. The preictal sections are applied sequentially to the classifiers and from that, the 

classifiers try to find a pattern. Note that the validation set was used for estimating how precisely 

the classifier, XGB (with maximum depth of 1), performs after being trained with the learning set, 

including validating to prevent over-fitting of the algorithm and reducing of the bias estimation  

[217], [218] so that the model can generalize well to predict new samples of data. Once the 

classifier was fully optimized with the learning and validation sets, via 10-fold cross-validation, it 

was applied to the training set to assess final performance. We used the scikit-learn (machine 

learning) library through the python package for this work [219]. The experiments were executed 

on a desktop computer with Intel® Core™ i7 CPU @ 3.3 GHz processor, 16 GB RAM, Windows 

7 Professional 64-bit operating system, and HDD storage.  

 

6.6.2 Probabilistic framework 

 

Platt scaling is used to extract the probabilities of each class, i.e. seizure vs. non-seizure. This 

calibration method passes the output of a classifier from a single model to a probability distribution 

through a sigmoid, as a result an estimation of posterior probability on (0,1) [220], [221].  

In the next step, two important parameters are calculated namely, the mean and maximum 

probability of the non-seizure (PNS) and the seizure occurrence period (PSOP) segments for each 

participant along with the maximum probability of the PIN. The histogram of Platt scaling for the 

whole test set (PIN) is illustrated in figure 6-8. It shows that the model predicts most of the time 
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the lowest value and the chance to have a seizure is not too high. However, in the case the system 

creates a very high probability value then, possibly, we should have been dealing with a high rate 

of false positive rate since we had a larger set of interictal section. 

 

 

Fig. 6-8 The histogram of Platt scaling for the whole test set (PIN). 

 

Successive to learning the data using the optimized XGBoost framework and extracting the 

probabilities as described earlier, few adaptable thresholds were chosen to forecast the seizure 

efficiently based on the following procedure. 
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In order to set the thresholds (τN, τS) for 6 patients, the average and the maximum of the probability 

of non-seizure (NS), the seizure occurrence period (SOP), and the maximum probability of PIN 

(PMAX) were computed. Then τN and τS were defined as (Table 6-5): 

 τ𝑁𝑖 =
𝑃𝑀𝐸𝐴𝑁𝑖 

𝑃𝑀𝐴𝑋𝑖
 [𝑓𝑜𝑟 𝑁𝑆]                  i=1, 2 … 6                                                                         (6-1)      

τ𝑆𝑖 =
𝑃𝑀𝐸𝐴𝑁𝑖

𝑃𝑀𝐴𝑋𝑖
  [𝑓𝑜𝑟 𝑆𝑂𝑃]                 i=1, 2 … 6        (6-2) 

These empirical constants were considered as thresholds based on numerous experiments for the 

6 patients and, in order to predict an impending incident, a simple model was then retained. 

The pseudo-code of the supervised prediction framework for an impending incident is shown in 

Algorithm 1.  

 

Algorithm 1 Pseudo-code of seizure prediction framework with an adaptable threshold 

1: procedure PREDICTION (PIN, τN, τS, PMAX, POUT) 

2:       inputs:  PIN, τNi, τSi, PMAXi (i=1, 2,…, 6) 

3:       output: POUT 

4:             for each time point of PIN 

5:                    if PIN ≥ PMAXi then 

6:                        go to line 11 

7:                    else if PMAXi > PIN ≥ MEAN (τNi and τSi) then 

8:                       return activate PA1 (Prediction Alarm level 1) 

9:                       P1 ← compute average of PIN over a 1-minute window  

10:                       if P1 > MAX (τNi /τSi and (τNi + τSi)/2) then 

11:                            return trigger PA2 (Prediction Alarm level 2) 

12:                        else go to line 7 

13:                      end if 
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14:                    else go to line 5 

15:                   end if           

16:             end for           

17: end procedure        

 

As shown in this algorithm, the probabilistic prediction framework sequentially employs 270 

dimensional feature-set (i.e., 3 univariate features, one bivariate feature, and 2 from AR: 

3×6×6+15×6+2×6×6=270) to generate PIN as one of the inputs to the probabilistic prediction 

framework (along with τNi, τSi, and PMAX). Based on the PIN value and the first set of thresholds 

(τNi ,τSi), the system triggers the first prediction alarm (PA1) to warn the patient for an upcoming 

seizure with about 60% probability (the average of τN and τS) within the period T1 (in Table 6-6). 

If PIN is higher than PMAX, then the second alarm (PA2 as T2 in Table 6-6) will instantly be 

activated. Afterwards, the function accumulates the input for one minute (the future window length 

can be called the forecast horizon) to generate the second level of warning. This is done with the 

succeeding set of thresholds (MAX of [τNi /τSi and (τNi + τSi)/2]) which entrust 80% for an 

impending seizure (PA2) at a certain time T. Finally, it sends an urgent alert to the patient and 

caretaker. Interestingly, in all the published work the anticipation time of the first alarm has been 

reported while in this work we provided two sets of alarms and finally we will compare our work 

with others based on the first triggered alarm. 

If the second condition is not met, at least the primary flag is raised and the system will continue 

to accumulate the next one minute PIN to satisfy the PA2 condition. This procedure will continue 

as PIN ≥ (τNi +τSi)/2 and up to T2 times (i.e., this procedure will continue, T2 will be updated, and 

the system will remain active to make sure the seizure will happen as predicted earlier. The whole 

procedure is repeated until the end of the iEEG signal. It is worth mentioning that there are two 

values of T for patient #10 and #16 since we tested the model on two seizures for those patients.  
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Table 6-5. The implemented thresholds after numerous experiments for various patients. 

The parameters of 

prediction for each 

patient 

Pa#2 Pa#4 Pa#7 Pa#10 Pa#12 Pa#16 The 

average 

with 95% 

confidence 

interval  

          

 

PNS 

 

PMEAN 

PMAX 

       τN = 

PMEAN/PMAX 

0.2068 

0.53349 

0.387717 

0.002508 

0.01957 

0.12815 

0.06607 

0.3059 

0.21597 

0.02169 

0.05004 

0.43337 

0.00249 

0.0233 

0.1069 

0.0194 

0.03959 

0.49087 

0.0532 

0.16198 

 

PSOP 

PMEAN 

PMAX 

τs = 

PMEAN/PMAX 

0.34057 

0.4499 

0.75699 

0.0644 

0.10319 

0.62446 

0.16109 

0.3059 

0.5266 

0.7457 

0.9039 

0.8251 

0.76478 

0.8478 

0.902 

0.623 

0.863 

0.7219 

0.44997 

0.57899 

 (τN+ τS)/2 

         τN / τS  

MAX([τN+ τS]/2 & τN 

/τS) 

0.572 

0.51218 

0.572 

0.3763 

0.2052 

0.3763 

0.3713 

0.41013 

0.41013 

0.6292 

0.52527 

0.6292 

0.5045 

0.11849 

0.5045 

0.6065 

0.6799 

0.6799 

0.51 

0.41 

0.53 

Maximum probability 

of PIN, (PMAX) 

0.6435 0.59142 0.7376 0.94712 0.9173 0.9577 0.7991± 
0.09 

 

 

6.7 Results and discussions  

 

After optimizing a classifier, the performance of the overall prediction was measured using 

common metrics utilized in the field to verify and estimate how successfully the proposed 

algorithm performs. Sensitivity of the triggered alarms and False Prediction Rate (FPR) were 

employed to demonstrate the results of this research and compare them with related works. 

Sensitivity measures the ratio of correctly predicted seizures divided by the total number of 
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seizures while the false prediction rate (FPR) is the number of false predictions over a period of 

time [222]. 

𝐹𝑃𝑅 =
FP

𝐹𝑃+𝑇𝑁
= 1 − specificity                  (6-3) 

Since in this work it is critical not to miss the seizure events (preictal), our aim was to maximize 

the sensitivity or True Positive Rate (TPR) [223] and, at the same time, to have a low FPR.  

Conventionally, in order to set a threshold, some researches plotted the TPR vs. FPR (the ROC 

curve). So there is a trade-off to find the best threshold, between avoiding a great number of false 

positives (FP) and benefiting from true positive (TP), in order to maximize the performance of the 

prediction. In fact, it not easy to simultaneously lower the number of false alerts and increase the 

sensitivity [212], [223]–[225].  

In the last decade, various approaches have been employed by scientists to attain an increase of 

the sensitivity and a decrease of low false-positive rate while targeting a high anticipation time 

[53], [107], [168], [203], [225]. 

If the outcome is above threshold, a seizure alarm is triggered (in this work we inserted the values 

of the alarm in the first stage). As explained earlier, the threshold values of our seizure prediction 

framework are set so that they do not miss seizure episodes.  

The results of this work for both sets of alarms are depicted in Table 6-6 and 6-7. We also 

illustrated the output of the probabilistic model based on Platt scaling (PIN in figure 6-7) for patient 

#10 and #12 in figure 6-9 and 6-10, respectively. In figure 6-9, we illustrated PIN for both preictal 

and interictal segments. The seizure is happening between 5980 and 6133 seconds (highlighted in 

red) which precede the interictal sections. The seizure period is highlighted in red for patient #12 

in figure 6-10. 

The proposed prediction system not only is capable of forecasting the seizures (a high sensitivity) 

but also will not generate a high false alarm (Table 6-6). As already noted, these results should be 

relativized because of the limited number of patients available in the used database.  
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Fig. 6-9 PIN related to file #166 included preictal and proceeding of the interictal portions for Patient #10. The red 

bar is the period of the seizure. 
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Fig. 6-10 PIN related to file #19 included preictal and proceeding the interictal portions for Patient #12. The red bar 

is the period of the seizure. 

 

Table 6-6. The result of two kinds of prediction time for 6 patients. 

Time of 

prediction   

Pa#2 Pa#4 Pa#7 Pa#10 Pa#12 Pa#16 The average 

with 95% 

confidence 

interval  

 for  PA1, T1 

(min.) 

59.6 70.2 68.4 88.7 & 80.3 85.1 67.1 & 84.9 75.5±7 

 for  PA2, T2 

(min.) 

55.9 70.1 43 82.7 & 38.8 55.6 15.6 & 33.1 49.4±14 
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Table 6-7. The overall Forecasting results using for 6 patients. 

Results Average for all the patients 

based on PA1, T1 

Average for all the patients 

based on PA2, T2 

Sensitivity 100% 100% 

FPR 0.07% Almost 0% 

Anticipation 

Time 

75.5±7 49.4±14 

 

 

The obtained results were successfully compared to those already published (Table 6-8). As 

demonstrated, the proposed approach performs better with the highest sensitivity and the lowest 

false positive rate (figure 6-11). As mentioned earlier, our comparison will be based on the first 

set of alarm, PA1, and the anticipation time is considered T1. 

With regard to Table 6-8, in [2], [15], [107] the classifiers were optimised based on one measure, 

i.e. accuracy, which is not, as discussed, a good measure for an imbalanced dataset. Furthermore, 

in [41] the performance of the classifier were not reported and if the performance of the classifier 

(other than accuracy) is low, then the result of the work really need to be reinvestigated. 

Table 6-8. Our forecasting results using for 6 patients compared to the published works. 

Reference, 

Year 

Avg. 

prediction 

time 

Feature used Performance 

analyzing & 

classifier’s 

performance 

imbalance 

ratio (data 

length) 

Database 

(patients, 

human/dog) 

# seizures 

and # hours 

data 

[107], 2019 0.25 

minutes 

 

Nonlinear 

features 

(which are 
computation

ally 

expensive) 

sensitivity of 91% 

FP:36% 

(FP/TP was 

calculated and then 

compared & 

Accuracy 

-- 16 patients / 

Boston 

Hospital 

non-invasive 

EEG 

The number 

of seizures is 

not 

mentioned 

Less than 60 

hours data 

investigated 
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[15], 2018 Not 

reported 

time and 

frequency 

domain 

FP/h=0.03-0.6 

TP/h=40-97% 

For human: 

TP/h:0.4-0.74 

FP/h: 0.26-0.6 

& Accuracy 

From 2:1 to 

20:1 

 

677 hours 

(42 hours for 

human) 

111 seizures 

(10 for 

humans) 

MSEL-LAB  

7 subjects (5 

dogs and 2 

humans) 

 

MSEL and 

IEEG.ORG 

[41], 2017 No 

informatio

n 

provided 

time and 

frequency 

domain  

 

Prediction can 

achieve a 

sensitivity of about 

90–100%, and the 

false-positive rate 

of about 0–0.3 

times per day. 

No performance 

classification is 

reported.  

8:1 to 10:1 

(607:77) 

 

Kaggle 

competition 

(6 Dogs) 

canine 

epilepsy is 

an excellent 

analog for 

human 

epilepsy 

20 seizures 

[2], 2017 33  time and 

frequency 

domain 

Sensitivity=92.2%,  

and specificity 

93.38%. or 0.06 

1/h 

& accuracy 

Not 

mentioned 

CHB-MIT, 

scalp 

 

84 seizures, 

22 subjects 

[108], 2017 25.66 26 univariate 

and 3 

bivariate 

features 

 

 

Sensitivity79% 

Specificity 82% 

 

Not 

mentioned 

 

10 patients   

26 electrode 

iEEG 

154 seizures 

86.20 days 

data 

Our work Average 

time of 75 

min 

Time domain 

features 

100% sensitivity 

and 0.07 false 

positive rate 

MCC : 0.582 

1.6 the Freiburg 

Seizure 

Prediction 

EEG 

(FSPEEG) 

database 

36 seizures 

134 hours 

data 
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Fig. 6-11 Comparison of sensitivity, false positive rate and the prediction time (NC: not clear). 

 

6.8 Conclusion 

 

While finding a unique model for all patients is really challenging, our modelling results 

demonstrated that the proposed algorithm can be an efficient tool for reliable and clinically relevant 

seizure prediction. The presented XGBOOST-based system for seizure prediction uses iEEG 

signals and exhibits two original features. First, we found out that a 2s window showed the highest 

performance (MCC score) while assuring that the data did not suffer from imbalanced issue. 

Second, the previous published work had lower sensitivity, higher false positive rate while the 

proposed showed a sensitivity rate of 100% with no false alarm. As already mentioned, these 

results should be relativized because of the limited number of patients available in the used 

database.  
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Chapter 7 

Conclusions and Future Work  

 

7.1 Conclusions 

Predicting of epileptic seizures remains an active research field with several unanswered questions 

that must be determined before deploying a commercial medical warning device to predict the 

seizure successfully. The provision for a warning medical device is widely demanding to enhance 

the life quality of more than 70 million individuals afflicted by this debilitating disease. The 

proposed probabilistic seizure prediction framework is one small part of this complex medical and 

social problem and could help doctors, scientists, and finally epileptic patients to tackle treating in 

a new era. 

In this thesis, we introduced numerous features of EEG signals that can be considered in seizure 

prediction. We transformed the EEG samples to a proper feature space by extracting some useful 

features and measurements from such signals, and then to feed them to a classifier. Our aim was 

to implement an algorithm to reduce CPU time with simpler algorithm and less complexity for a 

low-cost computing device. As preliminary results, we introduced a probabilistic approach based 

on SVM classifier in which the data of the detection were used in the prediction. This approach 

later was completed with one of the most powerful classifiers, XBGboost. 

Before introducing the novel probabilistic approach, we applied three principle feature selection 

methods on time domain features and the Kruskal-Wallis, a simple and less time consuming 

method compared to other approaches, showed the highest performance metric. Also, we found 

out that among the time-domain features investigated, the parameters of AR model are ranked as 

the top features for both lobes. The second most important set of features includes the maximum 

of cross-correlation and IQR for temporal and frontal lobes, respectively. Moreover, a high range 

of frequency like low and high-Gamma have been introduced as interesting sub-bands for the 
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temporal lobe epilepsy, while the middle range of frequencies from Theta to Beta can be seen as 

important ranges of frequency for frontal lobe epilepsy.  

Implementing a unique model for all patients is really challenging, but our promising results 

demonstrated that the novel probabilistic XGBOOST-based system can be an efficient tool for 

reliable and clinically relevant seizure prediction. The result of the prediction showed a sensitivity 

and specificity of almost 100% and the average of the anticipation time was 75 minutes. 

 

7.2 Future work 

 

Based on Figure 1-1, the number of papers in the prediction of seizure is increasing while the 

unpredictable nature of seizures makes it an ever-growing research field.. Many algorithms have 

been developed to better detect, analyze, and study the seizure and its mechanisms, like the Phase-

Amplitude Coupling Measure [226], Phase and Amplitude Lock Values [227], Cross-Frequency 

Coupling [228] while there is still room to enhance or develop new techniques. To distinguish 

between the normal and abnormal synchronization of a neural activity, a coherence-based analysis 

can be proposed. Coherence is a measure that provides synchrony between pairs of brain regions 

while global coherence offers coordinated neural activity across multiple brain areas. Unlike 

pairwise coherence, global coherence gives a better understanding of neural synchronization 

across several brain regions due to rendering a higher coordinate spatial activity [229], [230].  

Global coherence can be described based on the eigenvalues of a cross spectral matrix for a range 

of frequencies and, therefore, spectral analysis should be applied [231]. Global coherence can be 

defined as the ratio of the largest eigenvalue of the cross spectral matrix to the sum of its 

eigenvalues at a given frequency [231]–[233]. 

To the best of the author’s knowledge, global coherence has not been used to study seizures, 

evaluate the potential of this measure in prediction of the seizure, as well as to explore the 

synchronous activities during and before the seizure for both lobes. The following preliminary 

results proved that this direction can be promising. 
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In fact, we illustrated the global coherence for both preictal and interictal over various frequencies 

in Figures 7-1 and 7-2.  Figure 7-1 shows the global coherence of preictal (two non-consecutive 

hours) and interictal (one hour) portions for patient #2 with temporal epilepsy. Figures 7-1a and 

7-1b demonstrate that there is a wide range of frequencies can be considered prior to the seizure 

whereas figure 7-1c helps us to limit this broad rage.  

Figure 7-2 shows the global coherence of preictal (3 consecutive hours) and interictal (one hour) 

portions for patient #1 with frontal lobe epilepsy. From figure 7-2 (a), (b), and (c) we can see there 

is a meaningful change in global coherence for the range of frequencies of 20-65 Hz before and 

during seizure. However, the results of the global coherence for non-seizure file, figure 7-2 (d), do 

not show the pattern in preictal files. We evaluated the potential of the global coherence in 

prediction of the seizure, as well as to discover the synchronous activities during and prior to the 

seizure. Finally, our investigation demonstrated that the global coherence can be a promising 

measure prior to the seizure for both lobes. 
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 Figure 7-1 Global coherence for various frequencies of a temporal lobe epilepsy patient (patient # 2) a) one 

hour EEG signal contains the seizure from 53 to 56 minutes b) a seizure occurs between  50 to 52 minutes c)  one 

hour interictal file. 
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Fig 7-2. Global coherence for various frequencies of a frontal lobe epilepsy patient (patient # 1) a) one hour EEG 

signal prior to the seizure b) one hour data contains seizure from 356 to375 seconds and precede a seizure c)  A 

seizure occurs between 287- 305 seconds d) one hour interictal file. 
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From that, the following directions can be undertaken as future work to further investigate the 

outcomes of the obtained results: 

 By comparing the performance results of Kruskal Wallis for both lobes, we found out that 

MCC is not close to 1 (perfect prediction case). Not having a high MCC value can imply 

the low capacity of the version of Freiburg database we used, due to having data up to 90 

minutes of preictal. Based on Ramachandran [15], one might need at least 3 to 16 hours 

before the onset of the seizure to efficiently predict seizures. It may be considered as a 

limitation in this study and weakness of this database. In future, a newer version of the 

Freiburg dataset should be used to alleviate this issue. 

 As future work, the window length (called forecast horizon in this work and of 1 minute 

long), can be further investigated to give the patient various kinds of options and warning 

time zones with a certain confidence for an impending seizure. The proposed approach can 

be implemented on a low power device due to considering few simple time-domain 

features, particularly when compared to other works that employed computationally 

expensive features. Also, this framework can be extended to an online semi-supervised 

seizure prediction in which the values of the future thresholds can be adjusted, based on 

the current and past parameters. 

 Knowing that seizure patterns differ from patient to patient, and sometimes may need 

different approaches for different seizures with various origins, future efforts should be 

deployed to reliably improve the performance of the prediction on train and test set for a 

patient-specific. 

 The MCC score for FLE patients was low compared to TLEs. Therefore, a new set of 

features that can characterize the dynamic of the brain network for this kind of epilepsy 

should be considered. Since there are not many publications investigating frontal lobe 

epilepsy then the findings in the work indicate promising results. 

 We found that the Global Coherence is a promising measure prior to the seizure for TLEs 

and FLEs. Thus, this measure needs to be investigated further and compared to other 

measures such as cross-frequency coupling (CFC) and phase and amplitude lock values 

(PLV/ALV) to characterize the patterns of coordinated neural activity within and across 

the brain regions.  
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 Various experiments have been done with respect to mice subjects, to quantitatively 

tracking the brain-heart interactions (such as the frequency and the strength of the signals 

from brain affecting the heart) during and prior to the epilepsy [117]. In addition, in [111], 

the generalized partial directed coherence (GPDC) was applied to find the most useful 

range of the frequency spectrum that the brain and heart interact with each other. However, 

we still do not have a similar analysis on human database subjects. In future, further 

investigation by the GPDC analysis should be done on the heart-brain interactions for 

prediction of the seizure with the newest available database of epilepsy. Figure 7-3 could 

illustrate the kind of future work that should take in prediction of the seizure, by showing 

the relations between ECG and EEG signals.  

 

 

 

 Figure 7-3: The interaction of EEG and ECG: (A) a device predict seizure based on ECG and EEG signals (B) the 

first top signals are related to EEG and the last one is the ECG signal. The heighted area shoes the seizure period.  

 

 The first stage in deploying a machine learning model on a medical device is having access 

to an online wireless recording system with an implantable wireless ECoG or iEEG. 

Wireless ECoG electrodes utilized on a monkey [234] , a sheep [235], and recently, fully 
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implantable wireless ECoG electrodes for humans [236], [237] have already been designed. 

Figure 7-4 shows a wireless ECoG recorder, WIMAGINE (Wireless Implantable Multi-

channel Acquisition system for Generic Interface with Neurons) implanted on the brain 

cortex of a sheep. In the next stage, a Brain Computer Interface (BCI) is required to receive 

and analyze the ECoG signal, and then to produce a particular output based on the proposed 

algorithm [236], [237]. This data and power management unit can be considered as an 

abdominal device and finally can be connected as external devices like Wi-Fi access point 

to communicate with an external base station [236]. 

 

 

 Figure 7-4: (A) View of the cortical electrode array. (B) Lateral implantation of a WIMAGINE implant on an 

anatomical model [235]. 

 

 Other than sending an alarm, the implanted device can perform as a trigger therapy. This 

system can deliver a small dose of fast acting antiepileptic drugs to cool down a certain 

part of the brain [237] or for the patients with drug-resistant epilepsy, deep brain 

stimulation can be a solution to cease the seizure instantaneously [225], [230]. 

Furthermore, with an electric stimulation we may try to reset the brain dynamics to a state 

which no seizure may be developed [136]. This is certainly another direction worth to 

explore. Finally, figure 7-5 shows an autonomous closed loop seizure prevention system 

with three essential elements: prediction, stimulation, and advisory sections. Therefore, 
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based on this work, the next step would be to create this system is studying the stimulation 

of electrical impulses of the defected brain region. 

 

 

 

Figure 7-5: An illustration of an autonomous medical device with a closed loop seizure suppression system. 
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