Diagonal 7.81 mm (Type 1/2.3) 12.40M-Effective Pixel High-Speed, High-Sensitivity Back-llluminated CMOS Image Sensor for Consumer Digital Still Cameras

IMX078CQK

Abstract

In 2009, Sony led the industry by introducing technology that incorporated "Exmor R" to the digital still camera market. Now, Sony is releasing the IMX078CQK back-illuminated 12.40M-effective pixel CMOS image sensor that takes further advantage of that technology. The IMX078CQK achieves still imaging with both high sensitivity and high resolution as well as full HD video imaging. Furthermore, it will expand the possibilities for expressive imaging provided by digital still cameras.

■ Diagonal 7.81 mm (Type 1/2.3) 12.40 M -effective pixels $(4072 \mathrm{H} \times$ 3044 V)

■ Pixel size: $1.55 \mu \mathrm{~m}$ unit pixel

- Supports 12.40M-pixel imaging at 42 frame/s
- Back-illuminated CMOS image sensor that achieves both higher pixel counts and higher sensitivity
\square Achieves full HD video imaging: $1920 \mathrm{H} \times 1080 \mathrm{~V}$ pixels at 60 frame/s

Exmarß

* "Exmor R" is a trademark of Sony Corporation. The "Exmor R" is a Sony's CMOS image sensor with significantly enhanced imaging characteristics including sensitivity and low noise by changing fundamental structure of "Exmor" pixel adopted column-parallel A/D converter to back-illuminated type.

High-Speed Performance: 12.40M Pixels at 42 Frame/s

In the IMX078CQK, to achieve faster performance, Sony adopted column-parallel A/D conversion method and incorporated a 576 Mbps LVDS high-speed output interface. As a result, the IMX078CQK achieves the high frame rate of 42 frame/s in all-pixel
scan mode, despite being a 12.40 M -effective pixel CMOS image sensor. It is also capable of producing full HD video $(1920 \mathrm{H} \times 1080 \mathrm{~V}$ pixels at 60 frame/s).

Back-Illuminated CMOS Image Sensor that Achieves both Higher Pixel Counts and Higher Sensitivity

To achieve the higher resolution of 12.40 M effective pixels, the IMX078CQK adopts a $1.55 \mu \mathrm{~m}$ unit pixel. In conjunction with this reduced pixel size, Sony optimized both the back-illuminated structure and the pixel structure itself, and achieved a sensitivity of 1437 digits (typical). (See table 2.) Furthermore, this device achieves a saturation signal of 3089 digits (minimum) and, in terms of numbers of electrons converted per unit area, achieves an increase of about 10% over current Sony products.

Full HD Video ($1920 \mathrm{H} \times 1080 \mathrm{~V}$ Pixels at 60 Frame/s) and Readout Modes that Respond to a Variety of Needs

Users can select from a wide range of drive modes according to the application, for example high-resolution still imaging or highspeed video capture. (See table 3.)
Due to achieving both higher pixel counts and higher speed, full HD video $(1920 \mathrm{H} \times 1080 \mathrm{~V}$ pixels at 60 frame $/ \mathrm{s}$) is now possible, and this device achieves about 2.3 times more detailed imaging at ordinary HD (720p) resolution. The IMX078CQK provides two modes for full HD video: mode 1 which strives for picture
quality, and mode 9 which suppresses power consumption. It also provides modes that support high-speed imaging: mode 4 (240 frame/s) and mode 7 (1000 frame/s).

Improved Color Reproducibility
For the IMX078CQK, Sony developed technology that improves the sensor's light collecting efficiency. This technology improves the mixed-color characteristics and, for example, at a wavelength of 550 nm , the red and blue signal levels are improved by about 5 points compared to current Sony products at F2.8. (See figure 1.) As a result, color reproducibility is improved for a wide range of lens rays.

V O I C E

We pushed forward with the development of this product with the idea of making it possible to create digital cameras that could produce detailed and beautiful images in a wide range of scenes, such as nighttime and interior scenes, and that furthermore can easily capture full HD video.
We strongly recommend that you look into Sony's high-speed and high-sensitivity imaging technologies for your next camera.

Figure 1 Spectral Sensitivity Characteristics
Excludes lens characteristics and light source characteristics

Table 1 Device Structure

Item		IMX078CQK
Image size		Diagonal 7.81 mm (Type 1/2.3)
Format		4:3
Fabrication process		1-poly 4-metal $0.14 \mu \mathrm{~m}$ back-illuminated CMOS image sensor
Output format		Digital 10-bit/12-bit 10 ch Sub-LVDS, 576 Mbps serial output
Total number of pixels		$4168 \mathrm{H} \times 3060 \mathrm{~V}$, Approx. 12.75 M
Number of effective pixels		$4072 \mathrm{H} \times 3044 \mathrm{~V}$, Approx. 12.40M
Number of active pixels		$4024 \mathrm{H} \times 3036 \mathrm{~V}$, Approx. 12.22M
Unit cell size		$1.55 \mu \mathrm{~m}(\mathrm{H}) \times 1.55 \mu \mathrm{~m}(\mathrm{~V})$
Optical blacks	Horizontal	Front: 48 pixels, rear: 0 pixels
	Vertical	Front: 16 pixels, rear: 0 pixels
Power supply specifications	Analog	2.7 V
	Digital	1.8 V
	I/O	1.8 V
PGA		24 dB
Input clock frequency		72 MHz

Table 2 Image Sensor Characteristics

Item	IMX078CQK	Remarks
Sensitivity (F5.6)	1437 digits (Typ.)	$1 / 30 \mathrm{~s}$ accumulation, G signal
Saturation signal	3089 digits (Min.)	$\mathrm{Ta}=60^{\circ} \mathrm{C}$

Table 3 Readout Modes

Drive mode	Number of recommended recording pixels	Output data rate at 576 MHz	
		Frame rate [frame/s]	Number of A/D conversion bits [bit]
All-pixel scan (12 bits)	$4000 \mathrm{H} \times 3000 \mathrm{~V}$, 12.00 M pixels	20	12
All-pixel scan (10 bits)	$4000 \mathrm{H} \times 3000 \mathrm{~V}, 12.00 \mathrm{M}$ pixels	42	10
Mode 1 (16:9 cropping)	$2000 \mathrm{H} \times 1126 \mathrm{~V}$, Approx. 2.25 M pixels	60	10
Mode 2	$1332 \mathrm{H} \times 998 \mathrm{~V}$, Approx. 1.33M pixels	60	9
Mode 3*1	$1332 \mathrm{H} \times 1000 \mathrm{~V}$, Approx. 1.33 M pixels	120	10
Mode $4{ }^{* 1}$	$1332 \mathrm{H} \times 332 \mathrm{~V}$, Approx. 0.44 M pixels	240	9
Mode 5*1	$1332 \mathrm{H} \times 174 \mathrm{~V}$, Approx. 0.23M pixels	480	9
Mode $6^{* 1}$, cropping type 1	$1332 \mathrm{H} \times 94 \mathrm{~V}$, Approx. 0.13 M pixels	800	9
Mode $7^{* 1}$, cropping type 1	$1332 \mathrm{H} \times 74 \mathrm{~V}$, Approx. 0.10 M pixels	1000	9
Mode 8 *1	$1332 \mathrm{H} \times 600 \mathrm{~V}$, Approx. 0.80 M pixels	200	10
Mode 9 *2 (16:9 cropping)	$2000 \mathrm{H} \times 1126 \mathrm{~V}$, Approx. 2.25 M pixels	60	10

*1: With horizontal addition
*2: With vertical addition
Note: This device was designed for use in consumer digital still cameras and may not be appropriate for other applications.
Contact your Sony representative for consultation when considering this product for use in other applications.

